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Abstract

In a wide class of direct and semi-direct gauge mediation models, it has been observed that

the gaugino masses vanish at leading order. It implies that there is a hierarchy between the

gaugino and sfermion masses, invoking a fine-tuning problem in the Higgs sector via radiative

corrections. In this paper, we explore the possibility of solving this anomalously light gaugino

problem exploiting strong conformal dynamics in the hidden sector. With a mild assumption

on the anomalous dimensions of the hidden sector operators, we show that the next to leading

order contributions to the gaugino masses can naturally be in the same order as the sfermion

masses. µ/Bµ problem is also discussed.



1 Introduction

Gauge mediated supersymmetry breaking [1, 2, 3, 4] is a highly predictive and attractive way

of transmitting supersymmetry breaking of the hidden sector to the SSM (See [5, 6, 7] for

reviews). Also, given the fact that gauge interactions do not distinguish flavors, phenomeno-

logically dangerous flavor changing neutral currents are naturally suppressed.

One drawback of gauge mediation is that gauginos tend to be light compared to sfermions.

First of all, gauge interactions themselves do not break R-symmetry, so R-symmetry must be

broken in the hidden sector for gauginos to obtain non-vanishing masses. But as was studied

in [8], the absence of supersymmetry preserving vacuum for a theory with generic superpo-

tential requires R-symmetry be spontaneously broken, thus introducing a phenomenologically

unfavorable R-axion. This problem can be avoided using recently proposed metastable super-

symmetry breaking vacua [9]. However, there is another problem: broken R-symmetry itself

does not guarantee sufficiently large gaugino masses. Actually, in a wide class of direct gauge

mediation models (See e.g. [10, 11, 12, 13, 14]) and also in any semi-direct gauge mediation

models [15, 16, 17], the leading order contribution to gaugino masses vanishes irrespective of

whether R-symmetry is broken or not1.

Anomalously light gauginos are problematic because relatively heavy sfermions induce a

large correction to the Higgs mass, reintroducing the hierarchy problem. One possible way

out may be to take the messenger scale to be very close to the supersymmetry breaking scale

so that the subleading corrections are to be in the same size as the leading contribution.

However, as was studied in [19], such a model is severely constrained by the recent Tevatron

bound on the sparticle masses and the mass bound on a light gravitino.

Recently, Komargodski and Shih shed light on the origin of the light gauginos. In [20],

they related the vanishing gaugino masses at leading order and global structure of the vacua

in renormalizable theories, and showed, based on the study of generalized O’Raifeartaigh

models, that the pseudomoduli space must have a tachyonic direction somewhere to generate

sizable gaugino masses. This analysis opens up a new possibility to avoid the anomalously

light gaugino problem. Namely, the leading order gaugino mass generally does not vanish if

supersymmetry is broken in uplifted metastable vacua. This idea was initially employed in

[21] and further discussed in [22, 23]2.

In this paper, we propose an alternative solution to this anomalously light gaugino mass

problem. As was studied in [25], due to the gaugino screening effect, it is hard to generate

1For F -term breaking models with calculable messenger sector, one can show that there is an upper bound
for the ratio of gaugino masses to sfermion masses [18].

2For recent studies for generating leading order gaugino masses in semi-direct gauge mediation, see [24].
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the leading order gaugino mass at one-loop level even if we impose a non-canonical Kähler

potential of a messenger. Thus, we instead reduce the sfermion masses relative to the gaugino

masses by exploiting conformal sequestering [26, 27]3: With an appropriate choice of a hidden

sector which is assumed to approach a strongly coupled fixed point below the messenger scale,

sfermion masses can be suppressed relative to the gaugino masses by strong hidden sector

renormalization group effects. Thus, one can make the sfermion mass parameters be lower

or in the same order as the gaugino masses at the end of conformal sequestering. Then, the

sfermion masses are driven to be in the same order as gaugino masses by standard model

renormalization group effects.

In this work, we only discuss how conformal sequestering works for a messenger model

with vanishing leading order gaugino masses and do not discuss the details of the hidden

sector. But embedding our scenario into direct and semi-direct gauge mediations where the

gaugino masses are zero at leading order would be possible and an interesting future direction.

The rest of the paper is organized as follows. In section 2, we review light gaugino mass

problem and gaugino screening. Then, we comment on UV sensitivity of a non-renormalizable

model and discuss a contribution of a heavy messenger which is either coupled to a light

messenger or not. In section 3, we discuss the effects of conformal sequestering on sfermion

and gaugino masses as well as µ, Bµ terms. Although µ is required to be fine-tuned in a

technically natural way, we find that our scenario can be phenomenologically viable with all

the dimensionless parameters other than Higgs-hidden sector coupling be of order one. In

the Appendix, we present a model of Higgs-messenger coupling which generates µ and Bµ at

one-loop with a messenger sector exhibiting vanishing leading order gaugino masses.

2 Anomalously Light Gaugino Problem

In this section, we review some known facts on gaugino masses at leading order in supersym-

metry breaking scale. If the SUSY breaking scale is much smaller than messenger masses,

one can reliably use the technique of analytic continuation into superspace [34, 25].

2.1 Leading order gaugino mass

We first review anomalously small gaugino mass problem which have been observed quite

frequently in direct gauge mediation models. Suppose a messenger sector having the following

3For applications to gauge mediation, see, e.g., [28, 29, 30, 31, 32, 33].
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general superpotential interaction with supersymmetry breaking field 〈X〉 = M + θ2F ,

W =
∑

ab

M(X)abφ
aφ̃b. (2.1)

where the messenger mass matrix Mab(X) is a holomorphic function of X . In this case, the

gaugino masses are generated by integrating out the messengers φa, φ̃b. The formula is given

[34, 21] by

mλ = − g2SM
16π2

F
∂

∂X
log detM(X). (2.2)

As was studied in [20], if the fermion mass matrix M(X) includes a zero eigenvalue at some

point in the pseudomoduli space spanned byX , then the corresponding bosonic mode becomes

tachyonic in a region including the point where the fermionic zero mode appears. In this case,

the determinant of M(X) is a function of X . On the other hand, if the eigenvalues of M(X)

are non-vanishing, the bosonic modes of φa are stable everywhere4 in the pseudomoduli space

and detM(X) is constant, which yields vanishing leading order gaugino masses. Since the

sfermion masses are generally generated at this order, the gauginos are light relative to the

sfermions if the pseudomoduli space is stable everywhere.

2.2 Gaugino screening

Now we consider a more general setup in which the Kähler potential of messengers is non-

canonical: it has a dependence on the supersymmetry breaking field X . Let us derive the

gaugino mass formula utilizing analytic continuation into superspace [25]. Suppose the theory

has N pair of messengers φa, φ̃a (a = 1, . . . , N) which are fundamentals and anti-fundamentals

of the standard model gauge interactions, respectively. A generic Kähler potential we consider

is

K =
∑

a

Za(X,X†)(φa†eV
(φ)
SM φa + φ̃a†eV

(φ̃)
SM φ̃a), (2.3)

where Za(X,X†) are some real functions of X,X†. Finally, the superpotential is given by

(2.1).

One can extract the gaugino masses generated by integrating out the messenger fields

from the wave function renormalization gauge chiral superfield. One should, however, use the

physical gauge coupling R rather than the holomorphic one, since the holomorphic coupling is

not invariant under field rescaling [25]. As pointed out in [25], contributions from messenger

interactions to the gaugino masses are suppressed by additional loop factors. Thus, a non-

canonical Kähler potential cannot contribute to the leading order gaugino mass. To see

4The presence of a supersymmetric vacuum at large X should be a small effect.
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this, one may write down the physical coupling below the messenger scale. For the sake of

simplicity, we assume the fermion mass matrix of the messengers is constant: M(X) = m,

so W = mφφ̃. The physical mass is defined using wavefunction renormalization ZM of the

messenger at the scale,

µ2
m =

|m|2
ZM(µm)2

.

Below this scale, the physical coupling is given by

R(µ) = R′(µ0) +
b

16π2
log

µ2

µ2
0

+
1

16π2
log

|m|2
µ2
0Z

′
M(µ0)2

+
TG

8π2
log

ReS(µ)

ReS ′(µ0)
−

∑

r

Tr

8π2
log

Zr(µ)

Z ′
r(µ0)

,

where r runs all matter fields in the SSM, µ0 is the cut-off scale of the theory, and b is a

coefficient of beta function below the messenger scale. S(µ) is a holomorphic gauge coupling

and primed quantities are the ones above the messenger scale. Here, we see that ZM(µm)

dependence drops out at low energy. Thus, a non-canonical Kähler potential does not con-

tribute to the leading order of gaugino mass. Moreover, we could have assumed a spurion

dependence of Kähler potential at the cut-off scale. Plugging the definition of real coupling

R′(µ0) at the cut-off scale, we see that Z ′
M(µ0) dependence also cancels out. Therefore, the

leading order gaugino masses are not affected by spurion dependence of Kähler potential of

messengers at all. However, if we impose a spurion dependence in S ′(µ0), it definitely con-

tributes. Although it is nothing but adding gaugino masses by hand at the cut-off scale, it

is contained in a frame work of the gauge mediation [4], since it vanishes in turning off the

gauge coupling of the SSM. Usually in calculable models, these contributions, if exist, are

generated by a heavy messenger around the cut-off scale and small compared to the leading

term. Nevertheless, as we will see below, in some case it can be dominant and comparable to

the sfermion masses.

2.3 Next to leading order gaugino mass

Since the sfermion masses generally arise at leading order, the vanishing gaugino masses at

leading order implies that there is a hierarchy between gaugino and sfermion masses. One

may consider the next to leading order gaugino masses to solve the hierarchy. There are

several sources for non-vanishing gaugino masses at next to leading order5:

1. While the gaugino masses leading order in F at one-loop are prohibited, there is no prob-

lem for having non-vanishing gaugino masses at higher order in F . Explicit calculations

5Here, we focus on the gaugino masses generated at or above the messenger scale. At low-energy, the
Higgs-Higgsino loop can also generate non-zero gaugino masses [35].
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show that the next leading order contribution arises at O(F 3/M5
mess) [10]. One might

hope that the gaugino masses can be comparable to sfermion masses if F/M2
mess ∼ 1.

However, these higher order corrections are suppressed by small numerical coefficients

in known examples and not sufficient to solve the hierarchy. Also, there is a phenomeno-

logical constraint on such a low scale mediation model [19].

2. Another possibility is that the gaugino masses are generated in O(F ), but at higher

loop level. In this case, using wave-function renormalization technique [25], one can

explicitly show that the leading order gaugino mass in F at two-loop also vanishes if

one-loop contribution does. Thus, the leading contribution is generated at best from

three-loop diagrams. This contribution includes additional loop factors, so should be

suppressed compared to the leading order.

3. As discussed in the previous subsection, there could be a contribution of a heavy messen-

ger at the cut off scale or above, which would be of order O(F/Mheavy). This type of con-

tribution is suppressed to the leading order soft masses by a factor of O(Mmess/Mheavy)

compared to the leading order soft masses.

In any case, the gaugino masses are suppressed compared to the leading order and so to

sfermion masses. This, combined with the current experimental lower bound for gaugino

masses, indicates that the scales of the sfermion masses should be much higher than that of

electroweak symmetry breaking, giving rise to fine tuning for the Higgs mass via top-stop

loops. This is in contrast to the fact that relatively heavy gauginos at the messenger scale

does not cause any problem because the sfermion masses are driven to be in the same order as

gaugino masses at a lower scale by standard model renormalization group effects. In the next

section, we explore the possibilities of solving this fine tuning problem using strong conformal

dynamics in the hidden sector.

3 Conformal Sequestering

In the previous section, we learned that the vanishing of the gaugino masses at leading order

gives rise to fine tuning associated to heavy sfermions and just modifying the Kähler potential

does not generates a large enough gaugino masses. In this section, we show that the gaugino

masses can naturally be larger than or comparable to the sfermion masses if the hidden sector

flows into a strongly coupled fixed point below the messenger scale. We first see how the strong

conformal dynamics in the hidden sector reduces the sfermion masses. Then we show how

the next to leading order gaugino masses are sequestered, and provide a set of constraints the
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Figure 1: Energy scales in our scenario

parameters should satisfy to avoid fine tuning. As the hidden sector is assumed to be strongly

coupled, one cannot calculate the anomalous dimensions of the non-holomorphic operators.

But we expect that given a large number of SCFTs, one can find appropriate SCFTs which

satisfy the constraints. To illustrate, we discuss the explicit numbers which are consistent

with the constraints. We end this section with a discussion on µ/Bµ problem. We assume

that supersymmetry is broken by a gauge singlet throughout this section.

3.1 Sequestering of scalar masses

Let us assume that a singlet chiral superfield X eventually gets a non-zero F -component vev

and breaks SUSY. Before the hidden sector flows into the IR fixed point, messengers are

integrated out at the scale Mmess. It generates interactions between X , X† and the SSM

matters in Kähler potential and subsequently the sfermion masses. The operators which

generate the sfermion masses are summarized as6

∫

d4θ T (X,X†)Q†
SMQSM.

and the D-component of T (X,X†) induces the sfermion masses. In general, the function

T (X,X†) can be expanded as follows:

T (X,X†) = c0|X|2 + · · ·

where the ellipsis contains a holomorphic and anti-holomorphic function of X which do not

contribute to the scalar masses as well as higher order interaction terms.

6We impose messenger parity [1, 36] to prevent dangerous hypercharge D-terms from being generated in
the hidden sector.
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Our goal is to suppress these terms so that the sfermion masses can be lower than or in

the same order as next to leading order gaugino masses. To do this, let us suppose that at

some scale Λ∗ below Mmess, the theory flows into a strongly coupled CFT (see Figure 1). Since

the theory is strongly coupled, the anomalous dimensions of various operators such as X and

|X|2 are expected to be order one7. Then, the terms in the Kähler potential, or equivalently

those in T (X), are suppressed until the theory exits from the conformal regime at a scale µ.

If the anomalous dimensions of X and |X|2 are given by γX and 2γX + α∗, respectively, the

operators in T (X,X†) are sequestered as

T (X,X†) → ǫ2γX+α∗c0|X|2 + · · · , (3.1)

where the epsilon is defined by

ǫ = µ/Λ∗.

Note that the anomalous dimension of |X|2 is not just the twice of the anomalous dimension

γX because it is not a chiral operator and this fact is crucial to suppress the sfermion masses

relative to the gaugino masses. Then, after the theory exits from a strongly coupled CFT at

µ, supersymmetry is broken at the scale Λ2 := F < µ2.

In this scenario, the leading order of the scalar masses below the scale µ are given by

m2
s = ǫ2γX+α∗

(

g2SM
16π2

)2

c0|F |2 ∼ ǫ2γX+α∗

(

g2SM
16π2

)2 |F |2
M2

mess

, (3.2)

where we took c0 ≃ 1/|Mmess|2 because this operator was generated by integrating out the

messengers with mass Mmess
8.

Let us then discuss the sequestering of the gaugino masses. As discussed in the previous

section, the following three contributions to the gaugino masses can be dominant when the

leading order contribution (2.2) vanishes:

1. The first possibility is the case where the gaugino masses generated at order F 3/M5
mess

at one-loop level dominate over others. These gaugino masses typically originate from

non-holomorphic operators including D or D̄. For example, a term

∫

d4θ
X†XX†D2X

M6
mess

W αWα,

7Since the conserved current is not renormalized, one have to be careful about global symmetries which
may prevent these operators from acquiring large anomalous dimensions [26, 27].

8For simplicity, we also assumed that higher order terms have larger anomalous dimensions and so sup-
pressed by larger powers of ǫ. Since the hidden sector is strongly coupled, however, there is no way to justify
this assumption.
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generates gaugino masses of order F 3/M5
mess if one assumes that the lowest component

of X is in the same order as Mmess. This type of operators is not protected by the

superconformal algebra, so one cannot determine the precise scaling at strong coupling.

Nevertheless, one expects that for an appropriate choice of SCFT, the gaugino masses

can be at the same order as the sfermion masses after sequestering. Let us assume that

the anomalous dimension of the operator generating the O(F 3/M5
mess) correction to be

4γX + γ∗. Then, the gaugino masses after conformal sequestering are

m1−loop
λ ∼ ǫ4γX+γ∗

g2SM
16π2

F 3

M5
mess

> m3−loop
λ , mheavy

λ .

If the condition ǫα∗/2−3γX−γ∗ ≃ F 2/M4
mess holds, the gaugino mass is comparable to the

sfermion masses.

2. The second possibility comes from the leading contribution in F at three loop level.

As noted in the previous section, at two loop order the leading contribution in F also

vanishes. This contribution dominates over others when

m3−loop
λ ∼ ǫγX

(

g2SM
16π2

)3
F

Mmess

> m1−loop
λ , mheavy

λ .

If ǫα∗/2 ∼ (g2SM/16π
2)2, the gaugino and scalar masses are in the same order. Since

the gaugino masses are proportional to g6SM, this scenario would induce a heavy gluino

due to the comparatively large g3. This is problematic because the squark masses are

roughly in the same order as gluino masses after the standard model renormalization

group effects are taken into account, invoking a fine tuning problem. This problem can

be avoided if the gauge couplings are close to each other at the messenger scale (i.e., if

the messenger scale is large) and will be discussed in the next subsection.

3. The last possibility is coming from a decoupled heavy messenger around the cut-off

scale. There could be a contribution to the gaugino mass at leading order in F at one

loop level. Since it typically comes from a operator XWαW
α generated at the heavy

messenger scale Mheavy, one expect the following scaling under the sequestering.

mheavy
λ ∼ ǫγX

g2SM
16π2

F

Mheavy

> m1−loop
λ , m3−loop

λ .

When this contribution dominates over others, by taking ǫα∗/2 ≃ Mmess/Mheavy one can

make gaugino mass and scalar mass are in the same order.

Which effect can be dominant is the subject of the next subsection.
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3.2 Constraints on the parameters

For simplicity, let us assume that the hidden sector enters into the conformal regime some-

where close to the messenger scale Λ∗ ∼ Mmess and it exits near the scale of supersymmetry

breaking, µ ∼
√
F . For the first scenario, where one-loop F 3 contribution is dominant, to be

realized, three-loop contribution should be sufficiently suppressed. This condition leads to

ǫ3γX+γ∗+4 >

(

g2SM
16π2

)2

. (3.3)

This inequality implies that the lower bound of ǫ becomes larger for larger 3γX+γ∗. Especially,

if 3γX + γ∗ is positive, ǫ must be larger than O(10−1). If we assume that the coupling in the

hidden sector is small at the messenger scale, this may not be enough to guarantee the room

for the small coupling constant at the messenger scale to become large at the conformal

fixed point, so the conformal sequestering may not happen. For strongly coupled messengers,

however, this is not a problem. Another constraint is that the gaugino masses should be

comparable to or larger than the sfermion masses. This implies

ǫα∗/2−3γX−γ∗−4 . 1. (3.4)

This condition may require large |α∗| and |γ∗| while they can still be order one. Since ǫ < 1,

one can rewrite the inequality (3.4) as

α∗

2
− γ∗ & 4 + 3γX . (3.5)

In any CFT, the conformal dimension of a gauge singlet, Lorentz scalar operator must be no

less than one, thus γX must be positive. For γX & 2, the left hand side of (3.4) should be

larger than 10, so it requires somewhat large |α∗| and |γ∗|, while for small γX , |α∗| and |γ∗|
can be order one. Finally, we take the mass of the lightest chargino to be of order 102 GeV

to avoid fine tuning:
g22

16π2
Mmessǫ

4γX+γ∗+6 ∼ 102 GeV, (3.6)

which determines the size of Mmess.

The argument above may be too abstract, so we can use numerical values to see that this

scenario can be realized with order one anomalous dimensions. Let us take

γX ∼ 0.5, γ∗ ∼ −4, ǫ ∼ 10−1.5.

Then, (3.3) is satisfied. Eq.(3.4) determines the value of α∗ to be & 3, so let us just take

α∗ ∼ 3. The messenger scale and the supersymmetry breaking scale are fixed by (3.6) and

Mmess ∼ 1011 GeV,
√
F ∼ 109.5 GeV.

9



For this choice of parameters, we can also calculate the gravitino mass

m3/2 =
F

MPl

∼ O(1 GeV).

So, the anomaly and gravity mediation effects are also suppressed compared to the gauge me-

diation contributions. Note that the gravity mediation effect is also suppressed by conformal

sequestering.

For the second scenario to be realized, the leading order contribution at three-loop should

be larger than the F 3 contribution at one-loop. This is the case when

ǫ3γX+γ∗+4 <

(

g2SM
16π2

)2

. (3.7)

The gaugino masses are larger than the sfermion masses after the hidden sector renormaliza-

tion group effect is considered when

ǫα∗/2 .

(

g2SM
16π2

)2

. (3.8)

The condition that the lightest chargino is somewhere close to 102 GeV implies

(

g22
16π2

)2

ǫγX+2Mmess ∼ 102 GeV. (3.9)

To make the discussion concrete, let us again plug some numerical value to these conditions

and see if they can be realized. Let us take

γX ∼ 0, γ∗ & 0, ǫ ∼ 10−2.

Then, (3.7) is satisfied. In order for (3.8) to be satisfied, α∗ should be & 4. Finally, our

scenario provides an appropriate lightest chargino mass for

Mmess ∼ 1012 GeV,
√
F ∼ 1010 GeV.

For these parameters, the gravitino mass is estimated as

m3/2 ∼ O(10 GeV).

In this scenario, one also needs to check that the hierarchy between the gluino mass and

the lightest chargino mass is sufficiently small at the messenger scale to avoid the hierarchy

problem. At 1012 GeV, α2/α3 ∼ 3/4, implying that the ratio between the gluino mass and the

lightest chargino is of order one. We conclude that the hierarchy between the gluino masses

and the lightest chargino mass is small enough to avoid a fine-tuning problem.
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For the third scenario to be realized, the effect of heavy messengers should dominate over

the other contributions. One-loop, F 3 contribution is naturally small if γ∗ is large. The

condition that the contribution from heavy messengers is larger than that from three-loop

contribution gives
Mmess

Mheavy

>

(

g2SM
16π2

)2

. (3.10)

For the light messengers to play some role, the gaugino masses from the heavy messenger

should be comparable to the sfermion masses from the light messengers. This gives a con-

straint
Mmess

Mheavy

∼ ǫα∗/2. (3.11)

Note that the contribution to sfermion masses from heavy messengers are suppressed by

mmess/Mheavy relative to that from light messengers. Finally, we take the lightest chargino

masses to be around 102 GeV, so

ǫγX+2 g22
16π2

Mmess ∼ 102 GeV. (3.12)

All the conditions are satisfied, for example, if we take

Mmess ∼ 1011 GeV, Mheavy ∼ 1013 GeV,
√
F ∼ 109 GeV,

γX ∼ 1, α∗ ∼ 2.

With these parameters, the gravitino mass is given by

m3/2 ∼ O(10−1 GeV).

Again, the gravity and anomaly mediation effects are suppressed.

3.3 µ/Bµ Problem

µ and Bµ parameters can be defined as coefficients of supersymmetric and non-supersymmetric

holomorphic Higgs bilinear terms in the Lagrangian, respectively:

∫

d2θµHuHd, BµHuHd. (3.13)

For natural electroweak symmetry breaking, both µ and Bµ should be typically in the same

order as electroweak scale. Bµ is a supersymmetry breaking parameter, so should be in the

same order as electroweak symmetry breaking scale if one assumes that hierarchy problem is

solved by supersymmetry. However, µ is a supersymmetry preserving parameter and there is
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a priori no reason why it is also in the same order. This is so-called µ problem, and requires

direct coupling between Higgs and hidden sector.

In gauge mediated supersymmetry breaking, there is another problem called Bµ problem.

Generally in models of gauge mediation, µ and Bµ are generated at the same loop order. For a

model given in Appendix A, for example, both of them are generated at one-loop. Typically,

µ =
λuλd

16π2

F †

Mmess

, Bµ =
λuλd

16π2

|F |2
M2

mess

, (3.14)

where λu,d is a coupling between Hu,d and messengers and should be small for perturbation

theory to be valid. This implies

µ2 ∼ λuλd

16π2
Bµ ≪ Bµ, (3.15)

which prevents natural electroweak symmetry breaking. For a general study and earlier

attempts on µ/Bµ problem, see [37] and references therein.

Unlike the scenarios in [29, 30], where gaugino masses and µ are naturally in the same

order, the gaugino masses are typically smaller than µ in our scenario. This implies that

we must manually set them to be in the same order by unnaturally fine-tuned sequestering

or small coupling constants λu,d. In this sense, our scenario does not solve the µ problem

naturally. Nevertheless, Bµ can be naturally in the same order as µ and other soft masses

after conformal sequestering and standard model renormalization group effects are taken into

account, following the line of arguments employed in [29, 30]. Here, we should emphasize that

µ must be fine-tuned to the same order as gaugino masses at the messenger scale, while Bµ

just has to be smaller than µ and does not require any fine-tuning—if Bµ is smaller than µ

at the messenger scale, it is automatically driven to the same order as µ due to the standard

model renormalization group effects.

For concreteness, we work on a model where the next to leading order gaugino masses come

from F 3-terms at one-loop, while the above argument also works in other models discussed

in Section 3.1. Also, we consider all the soft parameters related to the Higgs sector for

completeness. Among the soft terms, the µ, and Au,d terms arise from operators linear in X .

They are typically generated at one-loop by

cµ

∫

d4θX†HuHd, cAu,d

∫

d4θX†H†
u,dHu,d, (3.16)

Here, cµ and cAu,d
are numerical coefficients and proportional to λuλd and λ2

u,d, respectively.

The scaling of these operators under hidden sector renormalization group flow is characterized
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by γX , the anomalous dimension ofX . To have µ comparable to the gaugino masses, we should

set λu and λd to satisfy

λuλd ∼ g2SMǫ
3γX+γ∗+4. (3.17)

This condition may require small λu and λd, while that can be achieved if, e.g., the Higgs or

messengers are composite.

The terms generated by operators quadratic in X require a bit of care. The operators

relevant to the Higgs sector are

cmu,d

∫

d4θXX†Hu,dH
†
u,d, cBµ

∫

d4θXX†HuHd, (3.18)

The numerical coefficient are, up to order one coefficient, typically (g2SM/16π
2)2, λuλd/16π

2,

respectively. At first sight, one may expect that cmu,d
and cBµ

are suppressed by hidden

sector renormalization group effects. As was pointed out in [29, 30], however, the operators

quadratic in X mix with those linear in X and what ends up being suppressed is a specific

combination of the coefficients cmu,d
, cBµ

, cµ and cAu,d
. A careful operator product analysis

[38] shows that the combinations that are sequestered by the anomalous dimension of XX†

are

cmu,d
− 1

2
C(2− α∗)(|cµ|2 + |cAu,d

|2), cBµ
− 1

2
C(2− α∗)Re(cµ(c

∗
Au

+ c∗Ad
)),

where C is the OPE coefficient of X and X† and assumed to be order one. Since m2
u,d =

−(cmu,d
− |cAu,d

|2)|F |2 and Bµ = −(cBµ
− Re(cµ(c

∗
Au

+ c∗Ad
)))|F |2, they are naturally in the

same order as µ and Au,d after sequestering if α∗ is sufficiently large and λu and λd are taken

to be in the same order. The value of α∗ is constrained by

λuλd

16π2
& ǫα∗ ,

which can be rewritten, using (3.17), as

g2SM
16π2

& ǫα∗−3γX−γ∗−4.

This is satisfied for the choice of parameters in Section 3.2.
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Appendix A Generating µ and Bµ

In this Appendix, we present a simple model that generates µ and Bµ at leading order. Let

us consider a simple messenger superpotential,

Wmess = m1(X)(φ1φ̄1 + φ2φ̄2) +m2(X)(φ′
1φ̄

′
1 + φ′

2φ̄
′
2),

with coupling to Higgs being given by

WHiggs = λuHuφ1φ2 + λdHdφ̄1φ̄2 + λ′
uHuφ

′
1φ

′
2 + λ′

dHdφ̄
′
1φ̄

′
2,

The condition for anomalously small gaugino is given by

∂

∂X
(m1(X)m2(X)) = 0. (A.1)

For this superpotential, the µ-term at the leading order was calculated in [39]:

µ = − F

16π2

[

λuλd
m′

1(X)

m1(X)

∣

∣

∣

∣

0

+ λ′
uλ

′
d

m′
2(X)

m2(X)

∣

∣

∣

∣

0

]

= − F

16π2

[

λuλd

(

∂

∂X
lnm1(X)m2(X)

)
∣

∣

∣

∣

0

+ (λ′
uλ

′
d − λuλd)

m′
2(X)

m2(X)

∣

∣

∣

∣

0

]

.

The first term in the second line vanishes because of (A.1), but the second term is non-zero

in general (except for the case with λuλd = λ′
uλ

′
d). We conclude that the µ-term is generically

generated at the leading order. Similarly, these superpotential interactions also generate

Bµ-term. The result is

Bµ = − F

16π2

[

λuλd

(

m′
1(X)

m1(X)

∣

∣

∣

∣

0

)2

+ λ′
uλ

′
d

(

m′
2(X)

m2(X)

∣

∣

∣

∣

0

)2
]

,

which is also non-vanishing. In general, µ and Bµ do not vanish if each messenger couples to

Higgs superfields differently.
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