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Abstract

Some recent studies of the AdS/CFT correspondence for condensed matter

systems involve the Fermi liquid theory as a boundary field theory. Adding B-

flux to the boundary D-branes leads in a certain limit to the noncommutative

Fermi liquid, which calls for a field theory description of its critical behavior.

As a preliminary step to more general consideration, the modification of the

Landau’s Fermi liquid theory due to noncommutativity of spatial coordinates

is studied in this paper. We carry out the renormalization of interactions at

tree level and one loop in a weakly coupled fermion system in two spatial

dimensions. Channels ZS, ZS’ and BCS are discussed in detail. It is shown

that while the Gaussian fixed point remains unchanged, the BCS instability is

modified due to the space non-commutativity.
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1 Introduction

Since more than ten years ago, noncommutative quantum field theory arising from

string theory [1, 2, 3, 4] has received a great deal of attention. (For excellent reviews,

see [5, 6]. For a reprint volume, see [7]. The Wightman axioms for noncommutative

quantum field theory were studied in [8].) One of the most interesting results in

the analysis of perturbative dynamics of noncommutative scalar field theories on a

Euclidean space R
4, is the existence of a mixing of the UV and IR behaviors [9] and

its origin from the theory of open strings [4].

However application of noncommutative quantum field theory to low energy (low

temperature) many-body systems other than the fractional quantum Hall effect (FQHE)

has not been yet discussed extensively in the literature. It is known that the low en-

ergy dynamics of a quantum many-body system can be described by an effective field

theory. It would be interesting to study the modifications due to spatial noncommuta-

tivity. In this paper we are particularly interested in studying the effective field theory

of non-relativistic weakly interacting fermions at low temperature.

In the absence of spatial noncommutativity, such systems are described phenomeno-

logically, as well as quantum field theoretically, by the so-called normal Fermi liquid

theory (see Refs. [10, 11, 12, 13] for a traditional perspective). This theory has also been

studied in the functional integration approach in [14]. Recently, a great deal has been

worked out concerning the Fermi liquid theory in the context of an effective field theory

and its characterization in terms of the renormalization group [15, 16, 17, 18, 19, 20, 21].

Within this modern perspective the renormalization group methods have been used to

study the interacting fermion systems, and the Landau’s theory of the Fermi liquid is

derived as a fixed point of the renormalization group flow. The Landau’s theory of

Fermi liquid theory is a very important paradigm: it may be implicitly ”hidden” in

unphysical Hilbert spaces, as suggested in [22], in phenomena like high Tc supercon-

ductivity and the FQHE, which are normally thought of as non-Fermi liquids.

Recently the string/M theory community has also shown great interest in the theory

of Fermi liquids, and has been able to relate it to various situations and processes. For
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instance it was found in [23] that non-critical M-theory in 2 + 1 dimensions can be

described in terms of a non-relativistic Fermi liquid. Moreover, the topology of the

Fermi surface in the Fermi liquid theory has also been described through K-theory

[24]. In the context of the AdS/CFT correspondence there are also certain relations

with the Fermi liquid theory. Semiconductors also have been studied in this context

predicting the dynamical generation of mass gap and metal-insulator quantum phase

transition at zero temperature [25]. Moreover it has been shown that string theory

in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is

holographic dual to conformally invariant composite Dirac fermion metal described by

a relativistic Fermi liquid theory [26]. Non-Fermi liquids are also studied from the

same perspective [27]. Detailed analysis of computations of the correspondence implies

the existence of a Fermi liquid operators in N = 4 SYM whose anomalous dimensions

behave similar to Fermi liquids in condensed matter systems [28]. Further analysis

of the gravitational dual of the Fermi liquid in the N = 4 super Yang-Mills theory

coupled to fundamental hypermultiplet at nonvanishing chemical potential have been

studied in [29]. Here an interesting checking on the structure of the zero sound and

the first sounds was verified. More recently, in Ref. [30], it is was found an interesting

description of the physical properties of holographic metals near charged black holes in

anti-de Sitter space, and the fractionalized Fermi liquid phase of the lattice Anderson

model.

In the present work, we introduce noncommutativity between spatial coordinates,

in order to avoid unitarity and causality problems. Namely, the noncommutativity

will be defined in R
d
⋆ ×R: We have d noncommutative spatial coordinates that satisfy

[x̂i, x̂j ] = iΘij, where Θij is antisymmetric and real. The time t is considered as a

commutative coordinate, so we require that Θ0i = 0. For the study of the field theory

in this space one usually think of a deformation in the product in the space of functions,

i.e., the noncommutative space R
d
⋆ can be regarded as the algebra over the usual Rd

with a deformation of the product of functions into the Moyal star product, defined by

(φ1 ⋆ φ2)(x) = exp (
i

2
Θµν∂yµ∂

z
ν)φ1(y)φ2(z)|y=z=x. (1)

One property of this product is that the quadratic part of the action in a field theory,
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up to a total divergence, is exactly the same as that in the commutative case. There-

fore the propagators remain the usual ones, while the noncommutativity modifies the

interactions.

Some earlier papers on noncommutative field theory in the context of condensed

matter systems have been collected in the book [7], mainly on the FQHE. For more pa-

pers see, for instance, [31, 32, 33, 34]. Renormalization group flow in noncommutative

Landau-Ginzburg theory for thermal phase transitions of Bose fluids was presented in

[35]. The aim of this paper is to discuss renormalization group flow in the noncommu-

tative Fermi liquid theory. Recently some non-relativistic systems in noncommutative

spaces have been discussed in references [36, 37, 38, 39, 40]. The study of the renormal-

ization group flow in the noncommutative Gross-Neveu model of interacting fermions

has been carried out in [41]. Moreover, a superconducting vortex liquid system in the

lowest Landau level approximation was studied from the view point of the noncommu-

tative field theory in [42]. We expect that our study of renormalization group flow for

noncommutative Fermi liquids could shed more light on the above topics and subjects.

The present paper is organized as follows: in section 2 we give an overview of the

Fermi liquid theory in order to introduce the notation and conventions. In section 3 we

introduce the noncommutative deformation of the Fermi liquid theory, in particular,

the tree-level renormalization is carried out. Section 4 is devoted to the study of the

one-loop renormalization in two spatial dimensions. Conclusions and final remarks are

compiled in section 5.

2 Overview of the Normal Fermi Liquid Theory

We will understand by a normal Fermi liquid a system of non-relativistic weakly in-

teracting fermions in, say, 3 + 1 dimensions. The first description for this system was

proposed by Landau, and it is of a phenomenological nature [13]. The main assumption

of the Landau approach to Fermi liquid, is that there exists a one to one correspon-

dence between the electrons in a non-interacting gas of fermions and some elementary

excitations of the interacting system known as quasiparticles. These excitations are
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characterized by its energy E(p). Starting from the assumption that the ground state

of the weakly interacting system can be generated adiabatically from some eigenstate

of the ideal system. The effective interactions will be reflected in the behavior of the

quasiparticles, as effective particles, i.e. free particles dressed with the interaction.

The quasiparticle picture makes sense only very near from the Fermi surface, i.e.

it is relevant only for excitations at very low temperature. It is well known that

many materials behave as a Fermi liquid at temperatures much below the Fermi en-

ergy. Moreover if we consider a pure system at zero temperature, the life-time of the

quasiparticles changes as the inverse of the square of E − EF , where EF is the Fermi

energy.

Let n(p) be the distribution function of quasiparticles, this function must be defined

in such a way that the energy of the Fermi liquid E is determined in a unique way and

the ground state corresponds to the distribution function in which all states inside the

Fermi surface are occupied. In the ideal system the relation between the energy of any

state and their corresponding distribution function is given by

E =

∫

p

n(p)
p2

2m

d3p

(2π~)3
. (2)

Once the interaction is taken into account the last relation is modified, now this

can be expressed through a functional relation E[n(p)], whose form depend of the

distribution of all particles in the liquid, and in general, we cannot know it explicitly.

Nevertheless if n(p) is very close to the distribution function of the ground state it is

convenient make a Taylor expansion of E[n(p)] around this state and we get to the

first order

E = E0 +

∫

p

E(p)δn(p) d3p

(2π~)3
, (3)

where E0 is a fixed ground state energy and E(p) is the functional derivative of E with

respect to distribution function and it is also a functional of n(p). If δn(p) describes

a state with an additional quasiparticle with momenta p, the energy of this state is

E0 +
∫
p
E(p)d3p/(2π~)3, then E(p) is related to the energy of the quasiparticle. On

the Fermi surface E(p) is associated to the Fermi energy EF which at zero temperature
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corresponds to a chemical potential µ|T=0 = EF = E(pF ).

Near the Fermi surface we can expand E(p) around it as

E(p) = EF + vF · (p− pF ) + · · · (4)

where vF = ∇pE|p=pF
. In the case when these excitations correspond to real particles

of the system we have that vF = pF/m.

2.0.1 Interaction of Quasiparticles

We remark that when the distribution function is changed, for instance, by adding a

quasiparticle, it changes not only the total energy of the system, but also it changes

the energy of the quasiparticles E . This is because E is a functional of the density.

Since the total energy of the system is not the simple sum of the individual energy of

each quasiparticle, it is necessary to consider an expansion to second order as follows

E − E0 =

∫

p

(E(p)− µ)δn(p) +
1

2

∫

p,p′

f(p,p′)δn(p)δn(p′), (5)

where the sub-indices of the integrals stand for the integration variables. The coefficient

f(p,p′) is the second functional derivative of the energy respect to density functional

and is known as the interaction term of the quasiparticles. (It vanishes for the ideal

Fermi gas.) For low energy excitations, the variations δn(p) and δn(p′) for the two

quasiparticles are non-zero only for p and p′ near the Fermi surface. For this reason the

function f(p,p′) is, in practice, evaluated only on the Fermi surface |p| = |p′| = |pF |,
so it depends only on the directions of p and p′ and the spin σ and σ′, respectively, of

the quasiparticles.

In the Landau’s theory, the deviation from equilibrium state of the Fermi liquid

is studied through the Boltzmann transport equation, with the usual conditions, that

the de Broglie wave length of the quasiparticle must be small in comparison with the

characteristic wave length where the distribution function varies considerably. Further-

more we can see that the collision of the quasiparticles produces ordinary hydrodynamic

sound waves. However it is also found that when the system is at zero temperature

there must exist another type of “sound waves”, to which the collision of quasiparticles
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is not relevant. What is relevant is the change in shape of the Fermi surface at different

spacetime points. This sound waves are known as zero sound waves (ZS).

Fermi liquid theory has been studied also from the view point of the quantum field

theory by using the canonical formalism, recovering the Landau’s Fermi liquid theory

in the normal phase as well as in the superfluid phase [11, 13]. In this formalism the

four-point proper vertex is related with the zero sound waves. This part of the vertex

function is called zero sound channel (ZS), and this is the most important process to

recover the phenomenological theory of the Fermi liquid.

From an effective theory perspective Polchinski [16] was able to recover the Landau’s

theory of Fermi liquid. In this work a system of interacting fermions was studied from

the symmetries, respected by the possible terms in the action of the system. In this

context we are interested in the computation of the possible modifications that arise

in a theory of interacting fermions in noncommutative space.

3 Noncommutative Fermi Liquid Theory

Though normally space noncommmutativity is considered as originated from small

distance physics, it is well known to lead non-local properties such as the UV/IR

mixing. We are interested in a non-relativistic effective theory, which is defined with

a UV cutoff Λ such that the degrees of freedom with p = |p| > Λ do not enter the

description of the system. It is reasonable to study the nontrivial effects induced by

noncommutativity on large distance physics. In favor of this idea, we note that working

at low energies do not prevent the emergence of new characteristics in noncommutative

theories [37], because of the UV/IR mixing. From the view point of the particles, we

may also argue that at low energies, the effective interactions between particles are not

genuinely point-like. Moreover, as mentioned in the book [21], the electrons can be

considered as effectively non-local particles due to their Fermi statistics. Therefore, it

is legitimate to examine non-local effects arising from space noncommutativity on the

interactions in the effective theory.
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3.1 The Effective Action

In this subsection we briefly overview the effective action. We adopt the euclidean

formulation of the functional integral formalism. For a system of interacting fermions

the partition function is given by

Z[η, η†] =

∫
[dψ][dψ†] exp

(
− S0 − SI +

∫
ψ†η +

∫
η†ψ

)
, (6)

where η and η† are the sources, ψ and ψ† are the fermionic fields which we take as

Grassmann variables. S0 is the free action and SI is the interacting term.

For the usual Fermi gas the two-point function is given by

G(x,y) =

∫
dd+1P

(2π)d+1

exp
{
i
[
P · (x− y) + iω(τx − τy)

]}

iω −
(

P2

2m
− µ

) . (7)

For a liquid of fermions, it is usual to assume that a substantial change occurs, in

the weakly interacting theory, in the propagator G(x,y), which is of the form:

G(x,y) =

∫
dd+1P

(2π)d+1

exp
{
i
[
P · (x− y) + iω(τx − τy)

]}

iω − (E(P)− EF )
. (8)

Since we are interested only in correlations at low energy, let us define two sets of

variables [16, 17, 35]:

φ< = φ(P) for 0 < P < Λ/s,

φ> = φ(P) for Λ/s ≤ P ≤ Λ. (9)

Our action can be divided into two parts, corresponding to fast modes φ> and slow

modes φ<, so that the total action is given by

S[φ<, φ>] = S0(φ<) + S0(φ>) + SI(φ<, φ>). (10)

Then the partition function is given by

Z =

∫
[dφ>][dφ<]e

−S0(φ<)e−S0(φ>)e−SI(φ<,φ>), (11)

which can be rewritten as:

Z =

∫
[dφ<]e

−S′(φ<). (12)
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This defines the effective action S ′(φ<):

e−S′(φ<) = e−S0(φ<)

∫
[dφ>]e

−S0(φ>)e−SI (φ<,φ>). (13)

This expression can be further rewritten as

e−S′(φ<) = e−S0(φ<)
〈
e−SI(φ<,φ>)

〉
0>
, (14)

where 〈·〉0> stands for the average value with respect to the fast modes of the action

S0. This effective action can be computed through approximation methods by means

of the cummulant expansion, that relates the correlation function of the exponential

with the exponential of the correlations functions, i.e.

〈eΩ〉 = exp
{
〈Ω〉+ 1

2
[〈Ω2〉 − 〈Ω〉2] + · · ·

}
. (15)

We construct an effective action which defines new coupling functions between the

fields. These new functions must be compared with the original ones in the action,

but these quantities are defined in different kinematic regions, 0 < P < Λ/s and

0 < P < Λ, respectively. So it is necessary to rescale the momenta P′ = sP in the

effective action to recover the original scale. We also need to rescale the fields to define

the new fields:

φ′(P′) = ζ−1φ<(P
′/s), (16)

where we choose the real prefactor ζ so that the quadratic part of the action in terms

of the new fields have a fixed coefficient (independent of s).

In summary, the renormalization process goes in three steps: 1) Eliminate the fast

modes, that is to integrate out the momenta with values inside the interval [Λ/s,Λ]; 2)

Introduce a momentum scaling P → sP and recover the original cutoff Λ; 3) Introduce

the scaled fields φ′(P′) = ζ−1φ<(P
′/s) and rewrite the effective action in terms of the

new fields. The quadratic kinetic term of the action should have the same coefficient

as before.

In practice, one carry out the above renormalization procedure in two stages: First

we look at the free action and fix the coefficient by appropriate rescaling of the new

fields. In this way, we will be able to find the Gaussian fixed point, corresponding
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to an ideal non-interacting system. After that we examine how the interaction terms

scale under renormalization, and classify them as relevant, irrelevant or marginal terms

under the renormalization group flow.

In particular for our theory, the free action is given by

S =

∫ ∞

−∞

dω

∫ Λ

−Λ

ddP
(
ψ†
σ(P)iωψσ(P)− (E(P)− EF )ψ†

σ(P)ψσ(P)
)
, (17)

where σ is the spin index and EF is the Fermi energy that correspond to chemical

potential at zero temperature.

The first step is to integrate out the fields ψ and ψ† in the partition function within

Λ/s < P < Λ, which means integrating out the fast modes. We can see that this

results in a Gaussian integral, up to an irrelevant numerical factor.

In view of the facts that the ground state is determined by the Fermi surface, and

that when the energy goes to zero the momentum must go to the Fermi surface, it is

natural to write the momentum of our excitation as

P = k+ p, (18)

where k is a vector on the Fermi surface and p is normal to this surface.

As we are interested only in the region near to Fermi surface, the generic energy E
can be expanded in series as

E(P)− EF = p · vF (k) +O(p2). (19)

With this decomposition, we should scale the momentum as k → k, p → sp and

ω → sω. Making the substitution in the free action we find that the field scales as

s−3/2, i.e. ψ′(ω,k′,p′) = s−3/2ψ(ω,k,p).

We will focus on studying the Fermi liquid in a two dimensional plane (i.e. d = 2)

with a circular Fermi surface. For this case the momentum decomposition (19) is still

valid, but note that

|p| = |P| − |k|. (20)

Then, the integral measure in polar coordinates is PF dp dφ, where PF = |k|. As we are
interested only in the region close the Fermi surface, we only need to scale the radial
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component according the previous prescription. The free action becomes

S0 =

∫
dω

2π

∫
dφ

2π

∫
dp

2π
ψ†
σ(ω, φ, p)(iω − pvF )ψσ(ω, φ, p), (21)

where we replaced the measure Pdp by PFdp and absorbed a factor of
√
PF in each one

of the fermionic fields. With this scaling for the fields the free action is a fixed-point

action, and we can make the perturbative expansion around it.

3.2 Proper Form of the Noncommutative Interaction Term

The noncommutative interaction action that we study is the quartic interaction term,

which in the coordinate representation is given by

SI =

∫
dτ d2x d2y ψ†(x) ⋆ ψ(x) ⋆ V (x− y) ⋆ ψ†(y) ⋆ ψ(y). (22)

We note that we consider only noncommutativity between spatial coordinates, and our

potential is time independent. So we can write this integral as

SI =

∫
d2x dτx d

2y dτy ψ
†(x) ⋆ ψ(x) ⋆ V (x− y)δ(τx − τy) ⋆ ψ

†(y) ⋆ ψ(y). (23)

To make considerations of symmetry constraints simpler, we will work in momentum

space. The above expression can be rewritten as

SI =

∫

P

ψ†(P4)ψ(P3)ψ
†(P2)ψ(P1)V (P4,P3,P2,P1)e

− i
2
(P1∧P2+P3∧P4), (24)

where we write explicitly the star product as p ∧ q ≡ Θµνpµqν .

Before studying the scaling of the fields to classify the interaction potential, we need

to check the behavior of our action under the interchange of particles. Re-ordering

the terms in the integral (24), considering the rules of the Grassmann variables and

renaming of the variables, we have

SI =

∫

P

ψ†(P4)ψ
†(P3)ψ(P2)ψ(P1)V (P4,P3,P2,P1)e

[− i
2
(P1∧P4+P2∧P3)]. (25)

For the usual commutative case it is necessary to impose that the interaction po-

tential be antisymmetric with respect to their variables, in such way that the ac-

tion is invariant under the change of the order of the fields, i.e., V (P4,P3,P2,P1) =
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V (P3,P4,P1,P2) = −V (P3,P4,P2,P1) = −V (P4,P3,P1,P2). However for our

present case, we have an additional phase factor coming from space noncommutativity.

The presence of this factor makes the symmetry consideration in the noncommutative

case a bit more complicated.

If we exchange the labels of momenta P4 and P3, the integral must be unchanged:

SI =

∫

P

ψ†(P3)ψ
†(P4)ψ(P2)ψ(P1)V (P3,P4,P2,P1)e

− i
2
(P1∧P3+P2∧P4). (26)

Now, interchanging the fields with momentum labels P3 and P4, we need to introduce

a minus sign as follows

SI = −
∫

P

ψ†(P4)ψ
†(P3)ψ(P2)ψ(P1)V (P3,P4,P2,P1)e

− i
2
(P1∧P3+P2∧P4). (27)

Moreover, we can absorb the minus sign using the antisymmetry property of the in-

teraction potential and, for the usual case, we recover the original action. But in this

process we also have an additional phase factor, which is not the same as before, then

we need to add the two integrals in order to recover the symmetry of the action. Thus,

we are finally led to the action given by

SI =

∫

P

ψ†(P4)ψ
†(P3)ψ(P2)ψ(P1)UΘ(P4,P3,P2,P1), (28)

with

UΘ(P4,P3,P2,P1) =
1

2
V (P4,P3,P2,P1)

[
e−

i
2
(P1∧P4+P2∧P3) + e−

i
2
(P1∧P3+P2∧P4)

]
.

(29)

We have checked that with the additional phase term in UΘ, the above action SI has

the desired antisymmetry property.

As particular example we can simplify the bilocal potential V (x− y) by taking it

to be a local interaction coupling constant by assuming V (x − y) = gδ(x − y) and

substituting it in eq. (22) we get

SI = g

∫
dτ d2x d2y ψ†(x) ⋆ ψ(x) ⋆ δ(x− y) ⋆ ψ†(y) ⋆ ψ(y). (30)

In momentum space we have a similar expression to the previous one for the general

case. After reordering the fields we have

SI = g

∫

P

ψ†(P4)ψ
†(P3)ψ(P2)ψ(P1)e

− i
2
(P1∧P4+P2∧P3). (31)
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if we make the same procedure as earlier, and impose that the interaction coupling

should keep the symmetries of the full vertex with four external lines as in general

case, we find that this interaction term becomes

SI = −g
∫

P

ψ†(P4)ψ
†(P3)ψ(P2)ψ(P1)e

− i
2
(P1∧P3+P2∧P4). (32)

Then for compliance the requirements mentioned, we can see that it is necessary to

introduce two terms in the interaction term of the action, as has been proposed in

[43] as a generalization of the noncommutative interaction Lagrangian for fermions, in

analogy the case of the complex scalar fields [44] and we have

SI =
1

2
g

∫

P

ψ†(P4)ψ
†(P3)ψ(P2)ψ(P1)

[
e−

i
2
(P1∧P4+P2∧P3) − e−

i
2
(P1∧P3+P2∧P4)

]
, (33)

where the minus sign between the phase terms is characteristic of this particular case.

Because this term vanishes in the commutative case, as it should be, when there are no

internal degrees of freedom (as here we are discussing spinless fermions) [45]. Finally

we have seen that only with symmetry arguments of the Lagrangian, the additional

term in the interaction action arise in a natural way.

Therefore space noncommutativity leads to the appearance of additional phase

terms that multiply the quartic interaction. Following the renormalization group anal-

ysis [35], we keep the star product structure of this interaction term intact, and apply

renormalization group transformations only to the coefficient function V (P4,P3,P2,P1).

Consequently as we will see in Sec. 4, the interactions of the type (32) are already in-

cluded in the renormalization group flow from action (28).

The integral measure is given by

∫

P

=

[
3∏

i=1

∫ 2π

0

dφi

2π

∫ Λ

−Λ

dp

2π

∫ ∞

−∞

dω

2π

]
θ(Λ− |p4|), (34)

where p4 = |P4| − PF . In this measure we have incorporated the constraints on the

momenta due to energy and momentum conservation. While energy conservation does

not constrain the integration over the remaining energy variable, which can still take

any value, the same is not true for the momentum variables. The four momenta should

be restricted to be in a ring-shaped region of thickness 2Λ around the Fermi surface.
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If we choose freely three of the momenta, the fourth momentum could be outside this

region. To avoid this situation, we have introduced a Heaviside function for the fourth

momentum.

3.3 Renormalization of the Interaction at Tree Level

Having obtained the complete form for the noncommutative interaction term, we pro-

ceed to perform the renormalization group analysis according to the procedure men-

tioned in the previous subsection. First we note that as we have the step function in

(34) depending on p4 we must study carefully the scaling of this function, because p4

depend not only on other p’s but also on PF [17]:

p4 = |(PF + p1)Ω1 + (PF + p2)Ω2 − (PF + p3)Ω3| − PF , , (35)

where Ωi is the unit vector in the direction of Pi, i.e., Ωi = i cosφi + j sinφi. Here φi

is the azimuthal angle of momentum Pi.

Making the scaling of the momentum, we find that the step function change as

θ(Λ− |p4|(p1, p2, p3, PF )) → θ(Λ− |p′4|(p′1, p′2, p′3, sPF )). (36)

Therefore, the step function θ, after the renormalization group transformation, does

not have the same dependence on the new variables as the θ function did before the

transformation, because PF → sPF .

In order to understand how to scale the interaction part properly, let us make a

smooth cut off for p4:

θ(Λ− |p4|) → e−p4/Λ. (37)

We rewrite (35) as

p4 = |PF (Ω1 +Ω2 −Ω3) + p1Ω1 + p2Ω2 − p3Ω3| − PF ,

and define Ω1 +Ω2 −Ω3 = ∆. In the previous expression, we can drop the terms of

order O(p), because in the regime that we are interested this gives a sum of order Λ

which will be smoothly suppressed by the exponential decay and p4 ≈ PF .
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Under the renormalization group, at tree level we have

3∏

i=1

∫ Λ

−Λ

dpi
2π

∫ 2π

0

dφi

2π

∫ ∞

−∞

dωi

2π
e−(PF /Λ)||∆|−1|UΘ(p, ω, φ)ψ

†ψ†ψψ

→
3∏

i=1

∫ Λ

−Λ

dp′i
2π

∫ 2π

0

dφi

2π

∫ ∞

−∞

dω′
i

2π
e−(sPF /Λ)|∆|−1|UΘ(

p′

s
,
ω′

s
, φ)ψ†ψ†ψψ.

(38)

We write

e−(sPF /Λ)||∆|−1| = e−(PF /Λ)||∆|−1|e−[(s−1)PF /Λ]||∆|−1|, (39)

so that the measure after and before of the transformation have the same factor

e−(PF /Λ)||∆|−1|. We can now compare the actions and identify the new quartic cou-

pling as

U ′
Θ(p

′, ω′, φ) = e−[(s−1)PF /Λ]||∆|−1|UΘ(
p′

s
,
ω′

s
, φ). (40)

Thus, we conclude that the only coupling that survives the renormalization group

transformation without decay corresponds to the cases in which

|∆| = |Ω1 +Ω2 −Ω3| = 1. (41)

Then we can analyze the renormalizability properties focusing on the cases that have

a non-trivial contribution. Such cases are those that satisfy the following angular

conditions [17]

Case I : Ω4 = Ω1, (hence Ω2 = Ω3) (42)

Case II : Ω4 = Ω2, (hence Ω1 = Ω3) (43)

Case III : Ω1 = −Ω2, (hence Ω3 = −Ω4). (44)

Thus for couplings obeying these conditions, we have

V ′(p′, ω′, φ) = V (
p′

s
,
ω′

s
, φ). (45)

It follows that the coupling function V is renormalized to a function that may depend

on φ but independent of p and ω, when the cutoff is reduced (i.e. s > 1).

15



We see that the tree-level fixed point is characterized by three independent functions

and not by a handful of couplings. They are given by

UΘ[φ4 = φ1;φ3 = φ2;φ2;φ1] = FΘ(φ1;φ2), (46)

UΘ[φ4 = φ2;φ3 = φ1;φ2;φ1] = F ′
Θ(φ1;φ2), (47)

UΘ[φ4 = φ3 + π;φ2 = φ1 + π] = VΘ(φ1;φ3). (48)

Now we are interested in studying how these restrictions affect the phase term. In

general we have

p ∧ q = Θ(pxqy − pyqx). (49)

By choosing polar coordinates with angle φ, it follows that

p ∧ q = Θpq [cos(φp) sin(φq)− cos(φq) sin(φp)] = Θpq sin(φq − φp). (50)

Then the phase is written as:

1

2

[
e−

iΘ
2
(P1P4 sin(φ4−φ1)+P2P3 sin(φ3−φ2)) + e−

iΘ
2
(P2P4 sin(φ4−φ2)+P1P3 sin(φ3−φ1))

]
. (51)

This, combined with the conditions for the angles, can be rewritten as

FΘ(φ1;φ2) = V (φ4 = φ1;φ3 = φ2;φ2;φ1)
1

2

[
1 + e−

iΘ
2
(P2P4 sin(φ1−φ2)+P1P3 sin(φ2−φ1))

]
,

(52)

F ′
Θ(φ1;φ2) = V (φ4 = φ2;φ3 = φ1;φ2;φ1)

1

2

[
1 + e−

iΘ
2
(P1P4 sin(φ2−φ1)+P2P3 sin(φ1−φ2))

]
,

(53)

VΘ(φ1;φ3) = V (φ4 = −φ3;φ3;φ2 = −φ1;φ1)
1

2

[
e−

iΘ
2
(P1P4 sin(φ3−φ1+π)+P2P3 sin(φ3−φ1+π))

+ e−
iΘ
2
(P2P4 sin(φ3−φ1)+P1P3 sin(φ3−φ1))

]
, (54)

or in a shorter form

FΘ(φ1;φ2) = V (φ4 = φ1;φ3 = φ2;φ2;φ1)
1

2

[
1 + e−

iΘ
2
[(P2P4−P1P3) sin(φ1−φ2)]

]
, (55)

F ′
Θ(φ1;φ2) = V (φ4 = φ2;φ3 = φ1;φ2;φ1)

1

2

[
1 + e−

iΘ
2
[(P1P4−P2P3) sin(φ2−φ1)]

]
, (56)

VΘ(φ1;φ3) = V (φ4 = φ3 + π;φ2 = φ1 + π)
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×1

2

[
e−

iΘ
2
[(P2P3+P1P4) sin(φ1−φ3)] + e−

iΘ
2
[(P2P4+P1P3) sin(φ3−φ1)]

]
. (57)

We notice that in the first two expressions the original antisymmetry of the in-

teraction potential is lost; nevertheless when we interchange, say, P1 and P2 the first

expression passes to the second. So the Fermi statistics is preserved. In the third

function interchanging two momenta is equivalent to adding an angle π to, say, φ1, and

the phase term is invariant.

4 One-Loop Renormalization of the Interaction

In the previous section we have seen that we can write the interaction term in the same

form as in the usual commutative case, absorbing the phase factors in the UΘ function;

then we can expand perturbatively as usual, resulting in the same type of diagrams.

The difference is that now we have extra interesting phase factors.

For consistency we must compute to second order in UΘ, which is equivalent to

working at second order in the cummulant expansion:

1

2
[〈(δS)2〉 − 〈δS〉2]. (58)

All disconnected diagrams are cancelled bf y the term 〈δS〉2, and the diagrams

having non-vanishing contribution are those shown in Fig. 1. The analytic expressions

are

dUΘ =

∫ ∞

∞

∫

dΛ

dωdK

4π2

∫ 2π

0

dφ

2π

UΘ(P4,K+ q,K,P1)UΘ(K,P3,P2,K+ q)

[iω − E(K)][iω −E(K+ q)]

−
∫ ∞

∞

∫

dΛ

dωdK

4π2

∫ 2π

0

dφ

2π

UΘ(P3,K+ q′,K,P1)UΘ(K,P4,P2,K+ q′)

[iω − E(K)][iω − E(K+ q′)]

−1

2

∫ ∞

∞

∫

dΛ

dωdK

4π2

∫ 2π

0

dφ

2π

UΘ(Q−K,K,P2,P1)UΘ(P4,P3,Q−K,K)

[iω −E(K)][−iω −E(Q−K)]
,(59)

where q = P1 − P4, q
′ = P1 − P3 and Q = P1 + P2. The subscript dΛ of the

integral indicates that both loop momenta in the diagram must be in the thin shell

being integrated. One of the internal line carries momentum K, which is restricted to

the region defined bf y Λ around the Fermi surface. Implicitly the momentum of the

17



other internal line is K+q in the ZS channel, K+q′ in the ZS’ channel, and Q−K in

the BCS channel, respectively. We also impose the same conditions for the momentum

variables P1,P2,P3,P4 to survive the renormalization at tree level.

Before discussing the contribution of each diagram, let us pay attention to the phase

factors in these integrals, since they contain the effects of space noncommutativity. We

notice that the phase term in the first integral is reduced to

1

2

{
cos

[
P1 ∧P4 +P2 ∧P3

2

]
+ cos

[
P1 ∧P4 −P2 ∧P3 + 2K ∧ (P1 −P4)

2

]}
. (60)

Analogously for the second integral we have

1

2

{
cos

[
P1 ∧P3 +P2 ∧P4

2

]
+ cos

[
P1 ∧P3 −P2 ∧P4 + 2K ∧ (P4 −P2)

2

]}
. (61)

And finally for the third integral the phase factor becomes

1

2

{
cos[K ∧ (P4 −P1) +

1

2
Q ∧ (P1 −P4)] + cos[K ∧ (P4 −P2) +

1

2
Q ∧ (P2 −P4)]

}
.

(62)

4.1 Case I

In this subsection we will analyze the first case (see Eq. (42)) that survives the renor-

malization group analysis, for the previous three channels: the ZS, the ZS’ and the BCS

ones, respectively, in the noncommutative theory. We can see that in all diagrams we

have planar and non-planar contributions, then we need to make a careful analysis of

each diagram under the renormalization conditions obtained at tree level.

For the condition that defines the function F (42), the phase factor in the first

integral ( or the ZS channel) is

cos

[
(P1P4 − P2P3)Θ sin(φ2 − φ1)

2

]
+cos

[
(P1P4 + P2P3)Θ sin(φ2 − φ1)

2
+ ΘKq sin(φq − φ)

]
.

(63)

But as (P1 − P4)bfΩ1 ≈ 0 this factor is reduced to

1 + cos[θKq sin(φq − φ)], (64)

and considering that q = P1−P4 ≈ 0, this diagram is reduced to the usual commutative

one.
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The phase factor for the ZS’ diagram is

1

2

{
cos

[
P1 ∧P3 +P2 ∧P4

2

]
+ cos

[
P1 ∧P3 −P2 ∧P4 + 2K ∧ (P4 −P2)

2

]}
. (65)

With the condition (42) this factor is reduced to

1

2
{1 + cos[P1P3Θ sin(φ1 − φ3) +Kq′Θ sin(φq − φ)]} . (66)

In this case one has q′ ≈ kF , thus the integral over the angle must be restricted to an

interval dΛ/kF . The integration is

1

2

∫
dω

2π

∫

dΛ

dK

2π

∫
dφ2π

V (φ1, φ)V (φ, φ3)[1 + cos[a+Kq′Θ sin(φq − φ)]]

[iω − E(K)][iω −E(K + q′)]
, (67)

where a = P1P3Θ sin(φ1 − φ3). This integral have two contributions: The first one is

planar, while the second one needs a careful study. As q′ ≈ kF , the poles of ω are in

different half-planes, then this integral becomes

1

2

∫
dω

2π

∫

dΛ

dK

2π

∫
dφ2π

V (φ1, φ)V (φ, φ3)[1 + cos[a+Kq′Θ sin(φq − φ)]]

E(K)− E(K + q′)
. (68)

Now observe that K is within an interval dΛ around Λ, so we can expand the cosine

in series for K around Λ, then we get

cos(a+ 2Kq′Θ sin(φq − φ)) ≈ cos(a+ q′ΘΛ sin(φq − φ))

− q′Θ(Λ−K) sin(φq − φ) sin(a+ q′ΘΛ sin(φq − φ)) +O(Θ2).

(69)

With this expansion, the integral over K from the first term in the expansion gives us a

term of order dΛ and the ω integral gives a denominator of order Λ due to the restriction

of the angle to the range dΛ/kF . Thus this integral is of order (dΛ/Λ)(dΛ/kF ); and

the β-function vanishes in the limit |dΛ|/Λ → 0.

The next term in the expansion is proportional to Θ; nevertheless, this term gives

a contribution proportional to dΛ after integration over K, so the contribution to

β-function is marginal. This conclusion is also valid for higher order terms in Θ.

For the BCS diagram, after using the condition (42), one can easily see that the

phase factor is of the form

1

2

[
1 + cos

(
K ∧ q′ − 1

2
Q ∧ q′

)]
. (70)
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This have the same form as the ZS’ diagram, and the integral limits are similar. So

the contribution to the β-function vanishes also in the limit dΛ/Λ → 0.

The analysis for the function FΘ indicates that for the case I, the space noncomm-

tutativity does not induce any relevant corrections and F is a fixed point to this order.

4.2 Case II

For the case II (see the condition (43)), we have the situation similar to that for the

case I, in view of interchanging P4 ↔ P3. This is expected, because the function F ′
Θ

allows one to recover the Fermi statistics.

4.3 Case III

In this case we take into account

the condition III (44) for each diagram, then for the ZS diagram the phase factor

becomes
1

2
{cos[P1P4Θ sin(φ4 − φ1) + cos[KqΘ sin(φq − φ)]} , (71)

and the phase factor for the ZS’ diagram is given bf y

1

2
{cos[P1P3Θ sin(φ4 − φ1] + cos[Kq′Θ sin(φq − φ)]} . (72)

For these diagrams the integral in ω gives a denominator of order Λ, and the

cosine function in the numerator can be expanded as above, then the contribution to

β-function vanishes.

However, for the BCS diagram the phase factor is found to be

1

2

{
cos[q ∧K +

1

2
Q ∧ q] + cos[q′ ∧K +

1

2
Q ∧ q′]

}
. (73)

For this diagram the angle is not restricted, so it can take any value. Also in this

diagram the integration over ω gives a denominator of order Λ. Then we focus on the

integration over K. Let us call the phase factor as P. The integral to calculate is

−1

2

∫ 2π

0

dφ

2π

∫

dΛ

dK

2π

V (φ1 − φ)V (φ− φ3)

E(K) + E(Q−K)
P. (74)
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We note that K is in the region around Fermi surface and so is Q − K. Thus we

can take the approximation E(K) ≈ vK and E(Q − K) ≈ v(Q − K), and therefore

E(K) + E(Q−K) ≈ vQ which is of order Λ. Then (74) gives

− 1

4Λ

∫ 2π

0

dφ

2π

∫

dΛ

dK

2π
V (φ1−φ)V (φ−φ3){cos(qKΘ sin(φ−φq))+cos(q′KΘ sin(φ−φq′))}.

(75)

As in the earlier cases we expand the cosine function around Λ so we have a similar

expression as (69) for each term in the phase factor. We will consider only the first

terms up to order Θ. Now the integration in K becomes easy and, for the same reason

as in the previous cases, the terms proportional to (dΛ)2 can be neglected, because

this kind of terms make the β-function vanish in the limit dΛ/Λ → 0. After we make

the change dΛ/Λ = dt, we have a usual commutative contribution with a factor of one

half, plus the modifications due to noncommutaivity; that is

dV (φ1 − φ3)

dt
= −1

2

∫ 2π

0

dφ

8π2
V (φ1 − φ)V (φ− φ3){cos[qΛΘ sin(φ− φq)]

−qΘΛ sin(φ− φq) sin[qΛΘ sin(φ− φq)] + (q ↔ q′)}. (76)

At this point it is convenient to express the functions V (φ) in terms of their Fourier

components (or angular-momentum modes):

V (φ) =

∞∑

l=0

Vle
−ilφ, where Vl =

∫ 2π

0

dφ

2π
eilφV (φ). (77)

This finally leads to a flow equation for the angular momentum modes of V , in which

different modes are coupled. After integration we have a renormalization flow equation

∞∑

l=0

dVl
dt
e−il(φ1−φ3) = − 1

8π

∞∑

l,l′=0

VlVl′e
−i(lφ1−l′φ3)ei(l

′−l)φq

[
d

d xΘ
xΘJl′−l(xΘ)

]
+ (q ↔ q′),

(78)

where xΘ = qΛΘ. We see that in this renormalization flow equation, there are highly

non-trivial contributions from space noncommutativity, that affect the behavior of the

BCS instability.
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5 Concluding Remarks

In this paper we have used the renormalization group approach to study how non-

commutativity of spatial coordinates affects the low energy behavior of a system of

weakly interacting fermions. The physics of the Gaussian fixed point still corresponds

to the Landau theory, whose excitations are still the Landau quasiparticles, not the

bare particles, as in the ordinary Fermi-Landau liquids. But the properties of Landau

quasiparticles gets modified, in consistency with the UV-IR mixing, a general feature

of noncommutative field theory. In particular, we found that at one loop level, the

pairing instability in the BCS channel (say in d = 2 cases) gets modified through the

noncommutative corrections to the flow equation for the interaction function VΘ.

In our study we have considered the simplest case with a circular Fermi surface in

two spatial dimensions. It would be worth to analyze the more general cases. Also we

have concentrated on low-energy phenomena happening near the Fermi surface. We

expect that working away from the Fermi surface, one could have some new nontrivial

contributions from the noncommutative parameter. Some work in this regard is in

progress.

Finally, we would like to make the remark that in our analysis, we are interested

only in the one loop noncommuative corrections appearing in the low energy regime

of the weakly interacting theory. At this level the theory is stable, as we can see

from the fact that there are no corrections due to the noncommutativity in self energy.

Non-planar corrections in the BCS channel is expected to contribute to the two point

function at two loop, but going to higher loops is beyond the scope of the present

paper.
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CONACyT México Grant 45713-F. YSW was supported in part by US NSF through

Grant No. PHY-0756958.

22



References

[1] Pei-Ming Ho, Yong-Shi Wu, “Noncommutative Geometry and D-branes”, Phys.

Lett. B398 (1997) 52; [hep=th/9611233].

[2] Miao Li, “Strings from IIB Matrices”, Nucl. Phys. B499 (1997) 149; [hep-

th/9612222].

[3] A. Connes, M. R. Douglas, Albert Schwarz, “Noncommutative Geometry and Ma-

trix Theory: Compactification on Tori”, JHEP 9802 (1998) 003; [hep-th/9711162].

[4] N. Seiberg, E. Witten, “String Theory and Noncommutative Geometry”, JHEP

9909:032 (1999); [hep-th/9908142].

[5] M. R. Douglas, N. A. Nekrasov, “Noncommutative Field Theory”, Rev. Mod.

Phys. 73 (2002) 977; [hep-th/0106048].

[6] R. J. Szabo, “Quantum Field Theory on Noncommutative Spaces”, Phys. Rept.

378 (2003) 207; [hep-th/0109162].

[7] M. Li and Y.-S. Wu, Physics in Noncommutative World. Vol. 1: Field Theories,

Princeton, USA: Rinton Press (2002) 596 p.

[8] L. Alvarez-Gaume, M.A. Vazquez-Mozo, “General Properties of Noncommutative

Field Theory”, Nucl. Phys. B 668 293-321 (2003); [hep-th/0305093].

[9] S. Minwalla, M. Van Raamsdonk, N. Seiberg, “Noncommutative Perturbative Dy-

namics”, JHEP 0002:020 (2000), [hep-th/9912072].

[10] P. Nozières, Theory of Interacting Fermi Systems, W. A. Benjamin, inc., 1964.

[11] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, Quantum Field Theoretical

Methods in Statistical Physics, Pergamon Press, 1965.

[12] D. Pines, P. Nozières, The Theory of Quantum Liquids V. I, W. A. Benjamin, inc.,

1966.

23



[13] E. M. Lifshitz, L. P. Pitaevskii, Statistical Physics, part 2, Pergamon press, Oxford,

1986.

[14] V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical

Physics, D. Reidel Publishing Company, 1983.

[15] G. Benfatto, G. Gallavotti, “Perturbation Theory of the Fermi Surface in a Quan-

tum Liquid. A General Quasiparticle Formalism and One-Dimensional System”,

J. of Stat. Phys. 59 (1990) 541; “Renormalization-Group Approach to Theory of

Fermi Surface”, Phys. Rev. B 42 (1990), 9967.

[16] J. Polchinski, “Effective Field Theory on the Fermi Surface”, Proccedings of 1992

Theoretical Advanced Study Institute in Elementary Particle Physics, eds. J. Har-

vey and J. Polchinski (World Scientific, Singapore, 1993) [hep-th/9210046].

[17] R. Shankar, “Renormalization-Group Approach to Interacting Fermions”, Rev.

Mod. Phys. 66 1 (1994), 129.
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Figure 1: Diagrams contributing to one-loop in the four-point function.
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Figure 2: Configuration of momenta near Fermi surface with shell width 2Λ.
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