
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Second law violations in Lovelock gravity for black hole
mergers

Sudipta Sarkar and Aron C. Wall
Phys. Rev. D 83, 124048 — Published 28 June 2011

DOI: 10.1103/PhysRevD.83.124048

http://dx.doi.org/10.1103/PhysRevD.83.124048


DZ10589

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Second Law Violations in Lovelock Gravity for Black

hole Mergers

Abstract

We study the classical second law of black hole thermodynamics, for Lovelock the-
ories (other than General Relativity), in arbitrary dimensions. Using the standard
formula for black hole entropy, we construct scenarios involving the merger of two
black holes in which the entropy instantaneously decreases. Our construction involves
a Kaluza-Klein compactification down to a dimension in which one of the Lovelock
terms is topological. We discuss some open issues in the definition of the second law
which might be used to remove this entropy decrease.

1 Introduction

The basic motivation for studying black hole thermodynamics is to gain insight into the
quantum nature of gravity. Irrespective of the true microscopic theory of quantum gravity,
one expects semiclassical gravity to be a low energy effective description. On general grounds,
the action of such an effective theory should consist of classical Einstein-Hilbert action plus a
series of additional covariant, higher order terms. These terms typically arise due to quantum
renormalization effects. However, it is also possible to add them to the action classically,
in order to study their effect on classical black hole thermodynamics.1 Such a study might
impose restrictions on the form of these classical terms—if so, it would suggest that horizon
statistical mechanics somehow places nontrivial constraints on the form of the low energy
action.

In classical General Relativity, the analogue of the second law of thermodynamics is
the “area theorem”, which asserts that the area A of a black hole can not decrease in any
classical process [1, 2]. Once quantum effects are included, the classical version of the second
law is replaced by a generalized version [3], saying that A/4G~ plus the exterior matter
entropy is non-decreasing. However, in this work, we will consider only the classical second
law neglecting all the quantum effects of the matter fields outside the horizon.

The area theorem in General Relativity depends on the null convergence condition:
Rijk

ikj > 0, for any null vector ki. For General Relativity, this condition is implied by

1In string theory, there are also string corrections to the Einstein-Hilbert action at O(~0)
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Einstein’s equation together with the null energy condition. Once one ventures beyond Gen-
eral Relativity, the Einstein equation has corrections, so it is not possible to establish an
area increase theorem for such theories. However, one also needs to add corrections to the
Bekenstein formula A/4G~ in order to get an entropy which satisfies the “first law” (re-
ally the Clausius relation) dE = TdS. One expects that these two corrections combine to
produce a classical second law in terms of the corrected entropy. For example, this is what
happens in f(R) gravity [4].

The Wald Noether charge method [5, 6] can be used to derive a horizon entropy S
satisfying the first law in any classical diffeomorphism invariant theory of gravity. In this
approach, the entropy can be expressed as a local geometrical quantity Q integrated over
a spacelike cross-section of a Killing horizon. The integral of Q is the Noether charge of
diffeomorphisms under the Killing field, which is a boundary term. In general, this Noether
charge has several ambiguities [6, 7], but for a stationary horizon with a regular bifurcation
surface, none of these ambiguities matter and Wald’s method uniquely prescribes the black
hole entropy. This entropy S then satisfies the first law for any first order perturbation
to the spacetime. However, any proof of classical second law requires going beyond the
stationary setting and analyzing a truely dynamical situation. Then the ambiguity in defining
S matters, and presumably at most one of the possible choices of S—the one that actually
corresponds to the entropy—will obey a second law.

In this paper, we will analyze the second law for Lovelock gravity, perhaps the next sim-
plest classical gravity theory after f(R), for which no second law has yet been established.
There is a particularly simple way to resolve the Wald ambiguities in this theory in order to
obtain an entropy for black holes (often uncritically accepted as the Wald entropy for Love-
lock black holes). We will establish that for any Lovelock theory (except General Relativity),
the classical second law can be violated in certain black hole mergers.

In the special case of D = 4, this second law violation is already well known [8, 9]. In
this case, the only additional Lovelock term in the action (apart from the familiar Einstein-
Hilbert term) is topological, so the equation of motion is still the Einstein equation. Yet
the entropy has a correction term which is proportional to the Euler number of the horizon,
and this can lead to violations of the second law when the horizon topology changes through
black hole collapse or merger. However, since the theory obeys the Einstein equation, it
actually does obey a second law, if the entropy is taken to be the area instead of the Wald
entropy. One possible viewpoint is that there is an additional “topological” ambiguity in
the entropy S in addition to those ambiguities identified in Refs. [7, 6]. Since first order
perturbations to a black hole cannot change the topology, the addition of a topological term
to S cannot change whether the first law is satisfied or not. A similar analysis can be applied
to higher order Lovelock terms which are topological in D = 2n > 4 dimensions.

However, in D > 4, the Gauss-Bonnet action is not topological, and therefore can not
be viewed as an ambiguity in the entropy for first law purposes. We will show that even in
this non-topological case, the second law must be violated. The conceptual problem must
therefore be resolved in some other way.

The outline of the paper is as follows: In section 2 we describe the Lovelock action. In
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section 3 we discuss violations of the second law in topological Lovelock theories. In section
4 we consider Gauss-Bonnet theory in D = 5, which can be shown to have a second law
violation by means of a Kaluza-Klein dimensional reduction to a D = 4 theory. In section 5
we extend this argument to arbitrary Lovelock theories, and explain why the argument does
not apply to General Relativity. In section 6 we discuss possible ways to try to reconcile this
result with black hole thermodynamics.

Henceforth, we adopt natural units (G = c = ~ = 1)

2 Lovelock gravity

A natural generalization of the Einstein-Hilbert Lagrangian is provided by the Lanczos-
Lovelock Lagrangian [10], which is the sum of dimensionally extended Euler densities:

L(D) =

K
∑

m=1

cmL(D)
m , (1)

where cm’s are arbitrary constants and L(D)
m is the m-th order Lovelock term, given by

L(D)
m = 2−mδi1j1...imjm

k1l1...kmlm
Rk1l1

i1j1
...Rkmlm

imjm
, (2)

where Rij
kl is the D dimensional curvature tensor and the tensor δ...... is anti-symmetric in both

sets of indices. For D = 2m, L(D)
m is the Euler density of the 2m dimensional manifold.

The Einstein-Hilbert action is the specific case in which all the coefficients except c1 are
zero. The most important property of these Lanzcos-Lovelock Lagrangians is that they give
second order field equations. Also, these Lagrangians are free from ghosts when expanded
around flat spacetime [11].

We would like to first concentrate on the case m = 2, which in a general D dimensional
spacetime, is the action functional

I =
1

16π

∫

dDx
√
−g (R + αLGB) , (3)

where R is the D dimensional Ricci scalar, and LGB is the Gauss-Bonnet invariant of the
form

LGB = R2 − 4RijR
ij +RijklR

ijkl. (4)

For any diffeomorphism invariant theory of gravity described by a Lagrangian L, the
entropy of a stationary black hole with a regular bifurcation surface is given by Ref. [7, 6]

S = −1

8

∫

B

∂L
∂Rijkl

ǫijǫkl
√
σ dD−2x, (5)
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where the integration is over any (D−2)-dimensional spacelike cross-section B of the horizon,
and ǫij is the binormal on such a cross-section. The binormals are normalized as, ǫij ǫ

ij = −2.
For the action in Eq. (3), the entropy turns out to be [8]

S =
1

4

∫

B

(

1 + 2α (D−2)R
) √

σ dD−2x, (6)

where (D−2)R is the Ricci curvature associated with the (D − 2)-dimensional cross-section
of the horizon. An important reminder is the fact that the derivation of Eq. (6) is crucially
dependent on the existence of a stationary Killing field. The two expressions Eq. (5) and
Eq. (6) differ by Wald ambiguity terms which are quadratic in the extrinsic curvature of
the horizon, and which vanish for stationary black holes. For nonstationary black holes, it
is therefore unclear whether to use Eq. (5), Eq. (6), or some other choice of entropy. The
entropy defined by Eq. (6) has the advantage that it is simpler, since it depends only on the
metric of the horizon. The Gauss-Bonnet contribution to the entropy is also topological in
D = 4. However, we shall show below that this choice of entropy does not obey the second
law when black holes merge. (Eq. (5) does not obey a second law either; cf. section 6.)

We would like to investigate whether this expression for the black hole entropy obeys an
increase theorem, like the area theorem in General Relativity. An ideal and straightforward
approach would be to directly compute the change of this entropy along the congruence which
generates the horizon. In case of General Relativity, such a calculation is much simpler due
to the availability of null focussing equation and the field equation Rijk

ikj = 8πTijk
ikj .

Since for Gauss-Bonnet gravity, the entropy is no longer proportional to the horizon area,
but depends on the curvature of the cross-sections, the null focussing equation is not helpful
to study the evolution. As a result, instead of following a direct approach, we take a different
path, by constructing a black hole merger situation where this entropy function in Eq. (6) is
shown to decrease. That will serve as a counter example to the validity of classical second
law with this entropy.

3 Second Law Violation in Topological Theories

In four dimensions, the Gauss-Bonnet invariant is topological and does not affect the equation
of motion. The entropy of the two-dimensional horizon cross-sections can be obtained from
Eq. (6) by the Gauss-Bonnet theorem:

S =
A
4
+ 4παχ, (7)

where χ is the Euler number of the horizon slice (for spherical topology χ = 2). Now in four
dimensions, the Gauss-Bonnet term in the action has no effect on the equation of motion,
so α can be either negative or positive. On the other hand, in five dimensions, when the
Gauss-Bonnet term has non-trivial contribution, the negative sign for α leads to instability
and naked singularities [12]. Thus we will mainly focus on the case α > 0 even in four
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dimensions, since ultimately we are interested in applying the conclusions obtained from the
four dimensional set-up to a five dimensional spacetime via dimensional reduction. However,
a negative sign of α also leads to second law violations.

Next, we consider a concrete example of a topology changing process involving the merger
of two spherical black holes. Let the horizons be foliated by some parameter t such that t is
increasing towards the future on each horizon generator, at t = −∞ the horizon slices have
the topology of two spheres, while at t = +∞ the horizon slices have the topology of one
sphere. At some special value of t there is a transition between the two topologies, which
occurs at a single point. The location of this merger point depends on the choice of foliation.
If a classical second law holds analogous to the area increase theorem of General Relativity,
the entropy should be increasing no matter what foliation is used.

Comparing the entropy just before and after the merger, the area changes continuously,
but the Euler number suffers an instantaneous jump at the exact moment of topology change.
For α > 0, this jump decreases the entropy. Since all other contributions to the entropy
change continuously, there is no way to compensate for the instantaneous decrease of the
contribution from Gauss-Bonnet term. This leads to an instantaneous violation of the clas-
sical second law. This fact was first noticed in Ref. [8], and is also discussed in Ref. [9].
On the other hand, for α < 0, the second law can be violated when a black hole forms from
collapse, at the instant that the horizon first appears.

A similar problem arises for the m-th order Lovelock term in a D = 2m dimensional
spacetime. As in the case of Gauss-Bonnet in D = 4, any such Lovelock term adds a
contribution to the action proportional to the Euler number χ of the horizon. Since χ = 2
for any even-dimensional sphere, this can cause an instantaneous entropy decrease at the
moment of the black hole with spherical topology merger. Assuming that the black hole
merger happens at a single point, dimensional analysis reveals that the lower-order Lovelock
contributions to the entropy evolve continuously through the moment of black hole merger.
Therefore, nothing can compensate for the instantaneous decrease of entropy. Hence, it
follows that the second law is violated in any topological Lovelock theory.

4 Dimensional Reduction of 5D Gauss-Bonnet

Now we will utilize these four dimensional results to show a violation of the classical second
law in five dimensional Gauss-Bonnet gravity. Our strategy will be to start with D = 5-
dimensional spacetime, and compactify the fifth dimension to obtain an effective four dimen-
sional theory.2 We will then show that this theory violates the classical second law. Because
every solution of the compactified theory corresponds to a solution of the noncompactified
theory, and the operation of finding the Wald entropy from a Lagrangian commutes with
compactification, the noncompactified theory must also violate the second law.

2Why not simply collide two spherical black holes in D = 5? Because dimensional analysis shows that
there is no instantaneous change of the entropy when two 5 dimensional black holes merge at a single point.
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We will consider a spacetime which is a product of some four dimensional manifold with
a circle: M4 × S1, with all fields being translation-invariant going around each circle. This
dimensional reduction of higher dimensional Gauss-Bonnet gravity is studied in Ref. [13],
which showed that the effective four dimensional theory is described by a four-dimensional
Einstein-Maxwell-dilaton action with non-minimal coupling terms. Spacetime indices run
from a, b = {0, ..., 4}. We will set gαD = 0 for α = {0, ..., 3}, and g44 ≡ φ. This corresponds
to a Kaluza-Klein spacetime in which all vector excitations vanish. (The parity symmetry of
the fifth dimension will guarantee that any universe which begins without vector fields will
continue to evolve without producing them.)

The Einstein-Gauss-Bonnet Lagrangian can be writen as

L = R + α
(

Rab
cd ∗Ref

gh

)

, (8)

where we are using the notation

Rab
cd ∗Ref

gf =
1

22
δcdghabefR

ab
cdR

ef
gh. (9)

The dimensional reduction of the five dimensional curvature tensor gives

5Rcd
ab =

4Rcd
ab +

4ψcd
ab (10)

where we have defined

nψcd
ab = −2δ4[aδ

4[cφ−1 n∇b]
n∇d]φ, (11)

where n∇a refers to the covariant derivative operator internal to the n-dimensional space.
Using this, we perform a dimensional reduction of the Gauss-Bonnet Lagrangian:

5(R ∗R) = 4(R ∗R + 2R ∗ ψ + ψ ∗ ψ) , (12)

We also need to perform compactification of the Einstein part of the full action. The final
result for the effective four dimensional action is

I =
1

16π

∫

d4x
√

4g φ 4(R + ψ + α (R ∗R + 2R ∗ ψ + ψ ∗ ψ)) , (13)

where nψ = δabcdψ
cd
ab = −2φ−1 n∇2φ. Following the Wald formalism, any black hole solution

of this theory will have an entropy given by

S =
1

4

∫

B

d2x
√

σφ
(

1 + 2α 2R + 2ψ
)

, (14)

evaluated on any two dimensional horizon slice B. Unlike the case of four dimensions, here
we have to take α > 0; otherwise the original five dimensional theory will be unstable. Then
the term proportional to the integral of the two dimensional Ricci scalar of the horizon slice
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will suffer an abrupt decrease, leading to the violation of classical second law, whenever two
black holes merge with each other—provided that the term proportional to the integral of ψ
also varies smoothly across the merger.

The treatment of the ψ term is somewhat delicate, since it is defined using the derivatives
of φ at the horizon, but the horizon is not typically a differentiable manifold due to nons-
moothness that occurs as a result of horizon generators meeting. Since black hole generators
always meet whenever the topology of the horizon changes, there is the question of how to
define ψ at these singular points.

To make the question more concrete, let us take a specific example of two equal black
holes which collide head on. This solution is symmetric about rotations around the axis of
collision, and is pictured in Fig. 1. As the two black holes begin to merge, they each shoot
out horns which end in a nonsmooth point. These horns then merge at the point of joinder.
The reason for the instantaneous decrease in the entropy at the moment of the collision is
that the Ricci scalar 2R has a delta function component at the nonsmooth point. In order
to prove that the second law is violated, we need to show that the ψ field does not have a
counterbalancing delta function at the nonsmooth part of the horizon.

Figure 1: The head-on collision of two black holes, pictured on time slices before, at, and after the
moment of joinder. While the horizons may be smooth after the collision, before the collision each
of the two black holes must have a nonsmooth point.

Since the horizon is non-differentiable, in order to define ψ, we will view the horizon as
the limit of a smooth (or at least differentiable) surface. Suppose that the horizon H is
replaced with another surface H′ in which the nonsmooth point X and its neighborhood
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is replaced with a smooth surface L of characteristic length scale r. We can calculate the
entropy and then take the limit r → 0. Although the horizon is nonsmooth, the spacetime
M4 in which it is embedded should still be smooth at the horizon. The scalar fields φ should
also be smooth. Therefore, one can then apply dimensional analysis to the ψ integral:

∫

d2x
√

σφ ψ = −2

∫

d2x
√

σφ φ−1 2∇2φ. (15)

As the characteristic distance scale r varies over over short distances, the size of the integra-
tion measure d2x

√
σ should scale like r2. The integrand is composed of φ and its derivatives

on H′. Since H′ is a smooth submanifold of M4, on which φ should be smooth, it follows
that in the limit as r → 0, one expects the derivatives of the field on H ′ and M4 to be of
the same order:

lim
r→0

φ(L) = φ|X , (16)

lim
r→0

∇aφ(L) ∼ ||∇aφ||X, (17)

lim
r→0

∇a∇bφ(L) ∼ ||∇a∇bφ||X , (18)

and so on. From this it can be seen that in the r → 0 limit, the integrand converges to a
constant value. Therefore the entire ψ integral has no contribution localized at X . Then the
instantaneous decrease of the term involving the integral of 2R must lead to an instantaneous
violation of the classical second law.

Let us summarize our conclusions. We started with a five dimensional Gauss-Bonnet
theory, and performed a dimensional reduction to get an effective four dimensional action.
Then we showed that any process involving the merger of two black holes results in a decrease
of the Wald entropy at least instantaneously. Since every solution of the compactified theory
corresponds to a solution of the original non-compactified theory, these solutions of five
dimensional Einstein-Gauss-Bonnet gravity have a violation of the classical second law. We
again stress that this violation has been shown only for one possible way to extend the entropy
formula from stationary solutions to this dynamical scenario. A conservative conclusion
might be that the Wald ambiguity should be resolved in some other way.

5 Dimensional Reduction of Arbitrary Lovelock The-

ories

Next, we would like to extend our result to higher order Lovelock theories. For example, the
m = 4 term would be

R ∗R ∗R ∗R. (19)

This term is topological in 2m dimensions. The corresponding Wald entropy is the (m−1)-th
Lovelock term evaluated on the horizon. Therefore, for any Lovelock theory in (2m + p)-
dimensions whose highest power term is m, one can compactify p of the dimensions into
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a torus in order to end up with a term in the action which is topological. The m = 4
contribution to the compactified entropy takes the form

S ∝
∫

B

d6x
√

6σ φ1φ2...φp
6(R ∗R ∗R + 3R ∗R ∗ ψ

+ 3R ∗ ψ ∗ ψ + ψ ∗ ψ ∗ ψ), (20)

where each ψ now includes a sum over the internal dimensions of the torus. As with the
Gauss-Bonnet term, we are resolving the Noether charge ambiguity by assuming that the
Lovelock entropy can be written entirely in terms of the metric on the horizon.

The first term in Eq. (20) leads to an entropy decline whenever two black holes with
spherical topology merge. To complete the argument, it is necessary to demonstrate that
none of the terms which involve ψ can counterbalance this decline as a result of the nons-
mooth points on the horizon of the merging black holes. As before, replace the nonsmooth
point with a smooth region with characteristic distance scale r. The integration measure
now scales like r(2m−2), each Riemann curvature tensor scales like r−2, and the φ terms scale
like r0. The conclusion is that only the topological Lovelock term can have a contribution
from the singular point in the r → 0 limit and the instantaneous violation of the classical
second law is inevitable.

Since the Einstein-Hilbert action is them = 1 Lovelock term, it is worth pointing out why
this argument does not apply to it, since the Einstein theory does satisfy the second law. In
order to construct a parallel argument for General Relativity, one would compactify all but
2-dimensions and then collide two 2 dimensional black holes. But it is impossible for black
holes to collide in two dimensions. For any timelike worldline caught between two colliding
black holes would have to fall across one or the other horizon, since no perpendicualar
direction is available to escape . But that would mean that the worldline would already be
inside the region of no escape, and thus the zone “in between” the black holes ought to have
already been included in the black hole interior region. Hence, there really was only one
black hole all along!

6 Conclusion and Open Issues

The conclusion of this article is that the proposed black hole entropy Eq. (20) does not
always increase during the merger of two black holes. However, there are a number of
different possible inferences that might be drawn. Most conservatively, it could be that
Lovelock black holes do have an increasing entropy, but that entropy is not given by Eq. (20)
but by some other fomula. Wald and Iyer only derive Eq. (20) up to ambiguity terms. These
ambiguity terms do not matter for stationary black holes, but they do affect the entropy
of nonstationary horizons, as when two black holes merge. All possible ways to resolve
the ambiguity obey the first law of black hole mechanics (which only concerns first order
variations away from a stationary solution), but not all choices obey a second law.
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However, because the merging black holes are nearly stationary well before and well after
the collision, the initial and final values of the entropy are the same no matter how the
ambiguities are resolved. So a different choice of Wald entropy can only remove a temporary
entropy decrease, not a permanent entropy decrease. In the case of nontopological theories
such asD > 4 Gauss-Bonnet, our compactification argument involves zooming in at the point
where the two black holes merge. It is unclear whether the entropy decrease is permanent
or not, so it may be that a different choice of Wald entropy would salvage the second law.
However we have not yet been able to find any choice of the entropy which does obey a
second law.

Eq. (5) by itself, evaluated on a non-stationary horizon, seems like another natural pre-
scription for the entropy. Because it depends only on the curvature of spacetime, and not
to the extrinsic curvature of the horizon, it cannot change discontinuously. However, it does
not work for Einstein-Gauss-Bonnet gravity. In the case of a D = 5 black hole forming
from spherically symmetric collapse, the leading order contribution to the initial growth of
entropy turns out to be proportional to the time-time component of the Einstein tensor. But
in D = 5 Gauss-Bonnet gravity, this component of the Einstein tensor can take either sign.
Consequently this entropy does not increase either.

In the case of topological Lovelock theories, such as D = 4 Gauss-Bonnet, there is a
permanent decline in the entropy for sufficiently small colliding black holes.3 Therefore,
using a different choice of Wald entropy cannot save the topological theories. In order to
salvage the classical second law in this case, we propose that Wald’s formula for the entropy
is only valid up to the addition of topological terms. Topological terms in the entropy come
from topological terms in the action, but topological terms in the action do not affect the
equations of motion. Since the validity of a classical second law depends only on the equations
of motion, it therefore seems that the addition of a topological term to the action ought not
to affect the entropy. Furthermore, the addition of a topological term to the entropy does
not affect the validity of the first law, since all first order variations of a horizon preserve
the topology, and the first law is only concerned with changes in entropy. It would therefore
seem like one is free to add any topological term to the entropy in order to make it satisfy
a second law. For example, Einstein-Gauss-Bonnet does obey a second law, if one uses the
area instead of Eq. (20).

Another possible way to save the second law is to postuate corrections to the entropy
wherever the horizon is nonsmooth. Before the merger of two black holes, there are always
nonsmooth points on the horizon (see Fig. 1 and Ref. [2]). We have found a violation on
the assumption that the entropy of a nonsmooth surface is the same as the entropy of a
limit of smooth surfaces. However, if there are additional corrections to the entropy on a
nonsmooth horizon, the additional effect might save the second law. An analogy might be
the singular “pinch points” that arise when water droplets change topology; at these points
the hydrodynamic approximation breaks down and the dynamics depend on the microscopic

3As pointed out by the referee, this depends on the assumption that the entropy of two infinitely separated
black holes is the sum of the entropy of the two individual black holes.
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degrees of freedom [14]. (The simplest alternative prescription is to only include entropy
coming from the smooth parts of the horizon. This would prevent discontinuous changes in
the entropy, but it does not change the asymptotic past or future entropy and therefore fails
to save the second law, at least in topological theories.) One way to start investigating this
question would be to calculate the divergent corrections to the semiclassical entanglement
entropy at nonsmooth horizon points.

It might be that the validity of the second law depends in some important way on quantum
effects. For example, there might be quantum instabilities coming from the formation of
numerous low energy, large entropy black holes in the vacuum. It might be that unless the
Lovelock term is higher order in some small parameter (such as ~ or the string length), there
are large nonclassical effects which are present over the timescales on which the second law
decreases.

Another possibly relevant issue is that in dynamical situations, (nontopological) Lovelock
gravity has different characteristic surfaces for light and gravity, i.e. in curved spacetimes
a graviton can travel faster or slower than light [15, 16]. Assuming that there exists at
least one matter field that propagates along the lightcone, the true causal horizon would
be set by whichever of the two fields is moving outwards faster (which varies from location
to location). Hence the causal horizon may be different from the horizon naively obtained
from the metric. If this is the case, presumably one should formulate the classical second
law using the real causal horizon. This observation by itself is insufficient to save the second
law, but should be kept in mind for any attempts to prove a modified second law.

In view of these conclusions, one must search for an alternative expression for black
hole entropy for theories other than General Relativity, which differs from the usual Wald
entropy. The most important test for any such proposal depends on the validity of the
classical second law. However, one must also be prepared to accept another possibility: that
back hole thermodynamics is invalid when applied to gravity theories other than General
Relativity. (The second law can also be proven for a Wald entropy in f(R) gravity, but any
f(R) gravity is conformally equivalent to General Relativity coupled to scalar fields.) Other
theories might be unstable (the positive energy theorem has not been extended to a general
Lovelock theory and if such an extension is not possible, the validity of classical second law
remains unclear), or unable to arise from any UV complete quantum gravity theory.
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