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We study spherical black-hole solutions in Einstein-aether theory, a Lorentz-violating gravitational
theory consisting of General Relativity with a dynamical unit timelike vector (the “aether”) that
defines a preferred timelike direction. These are also solutions to the infrared limit of Hořava–Lifshitz
gravity. We explore parameter values of the two theories where all presently known experimental
constraints are satisfied, and find that spherical black-hole solutions of the type expected to form
by gravitational collapse exist for all those parameters. Outside the metric horizon, the deviations
away from the Schwarzschild metric are typically no more than a few percent for most of the
explored parameter regions, which makes them difficult to observe with electromagnetic probes,
but in principle within reach of future gravitational-wave detectors. Remarkably, we find that the
solutions possess a universal horizon, not far inside the metric horizon, that traps waves of any speed
relative to the aether. A notion of black hole thus persists in these theories, even in the presence of
arbitrarily high propagation speeds.

PACS numbers: 04.50.Kd, 04.70.Bw,

I. INTRODUCTION

Lorentz invariance is believed to be a fundamental
symmetry of physical theories. Indeed, there are severe
observational constraints on Lorentz-violating effects in
the matter sector [1, 2]. On the other hand, in the
much more weakly coupled gravitational sector such con-
straints are generically far weaker. Therefore, it is inter-
esting to test Lorentz symmetry further in gravitational
phenomena.

To do that in a well-defined way one must consider
some candidate Lorentz-violating (LV) gravitational the-
ory as a low energy effective theory. To violate Lorentz
symmetry and still be manifestly diffeomorphism invari-
ant, such a theory should include, apart from the metric,
some dynamical field that can define a preferred frame at
the level of the solution. A unit timelike vector field is an
example which breaks local boost but not local rotation
symmetries. The most general theory one can construct
by coupling this field to general relativity (GR) at sec-
ond order in derivatives is called Einstein-Aether theory
(æ-theory) [3–5]. The vector field is referred to as the
aether.

Apart from providing a test bed for constraining
Lorentz violations in the gravitational sector, æ-theory
is an interesting theoretical laboratory to explore pre-
ferred frame effects without having to give up diffeomor-
phism invariance. Seen as a low energy effective field
theory [6], it can be thought of as encapsulating LV ef-
fects that might arise in a more fundamental quantum
gravity theory. Its viability as a low energy effective the-
ory of gravity has be extensively tested against various
different observations, and up to date there seems to be a
significant portion of the parameter space for which the
predictions agree with all current experimental evidence
(see Ref. [5] for a review).

Recently, another proposal for a LV gravity theory has

received a lot of attention, Hořava–Lifshitz (HL) grav-
ity [7]. This is not supposed to be just an effective field
theory. There is hope that it can constitute instead an
actual UV completion of general relativity, as it appears
to be power-counting renormalizable. This is achieved by
adding higher order spatial derivatives, without adding
higher order time derivatives, which lead to a suitable
modification of the propagator. In HL gravity this in-
volves the existence of a preferred spacelike foliation of
spacetime, which is described by a scalar field.

The dynamics of this scalar (or the lack thereof) can
lead to various problems in restricted versions of the
theory such as instabilities, over-constrained evolution,
and strong coupling at low energies [8, 9]. However, as
pointed in Ref. [10], the dynamical behavior of the scalar
is drastically improved when one consistently includes in
the action all the possible operators that are allowed by
the symmetry of the theory. There is only one of these
operators at low energies, and its presence suffices to en-
sure dynamical consistency and to push strong coupling
to sufficiently high energies, so that the theory makes
sense as an effective theory. Strong coupling at high en-
ergies, which would still be a threat for UV completeness,
persists in general [11, 12], but it appears to be avoided
by assigning a specific hierarchy to the scales suppress-
ing the lower and higher order operators [13]. There are
many things to be worked out before HL gravity can
be considered a viable UV complete gravity theory, such
as renormalizability beyond power-counting, renormal-
ization group flow of the various running couplings (so
far infrared (IR) viability hinges on the hope that several
parameters will run or can be tuned to desired values),
various phenomenological aspects and constraints, etc.
However, to date it certainly constitutes an interesting
candidate.

Given that æ-theory is a quite generic effective theory
of LV gravity with a single preferred local timelike direc-
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tion, it is reasonable to expect that the low energy limit
of HL gravity will bear some resemblance to it. Indeed,
it was remarked in Ref. [13] (see also Ref. [14]) and then
fully demonstrated in Ref. [15] that, in the limit where
higher than second order operators can be neglected, HL
gravity is equivalent to æ-theory with the extra condition
that the aether is hypersurface orthogonal at the level of
the action. Therefore, the IR limit of HL gravity can be
understood as a limiting version of a well studied the-
ory (some, though not all results carry over), which also
gives hope that HL can be viable from the IR perspective.
On the other hand, æ-theory, or at least some version of
it, acquires some more robust theoretical motivation as
a low energy limit of a potentially UV complete gravity
theory.

One of the results that carry over between the two the-
ories is spherically symmetric solutions. This is because
all spherically symmetric aether fields are hypersurface
orthogonal and, hence, all spherically symmetric solu-
tions of æ-theory will also be solutions of the IR limit of
HL gravity [15]. The converse holds for solutions with
a regular center [16], but without this condition there
may be additional HL solutions. Here we do not ad-
dress that possibility, and instead focus entirely on black
hole solutions to æ-theory. Such solutions are interesting
mathematically as black holes “dressed” by the aether.
They can also be used in comparing these theories with
observations of astrophysical black holes (though only as
a first step since our solutions are non-rotating).

Motivated by this last point, our intention is to find,
for each set of coupling parameters that meet current
observational constraints, the unique static, spherically
symmetric, vacuum, asymptotically flat black hole solu-
tion of æ-theory that forms from collapse. Since different
modes travel with different speeds in both æ-theory and
HL gravity, the definition of a “black hole” in these theo-
ries is potentially ambiguous. At the outset, our working
definition will be that a black hole possesses both a met-
ric horizon and a spin-0 mode horizon. We find, however,
that in all of the several cases we have checked these solu-
tions actually possess a “universal horizon,” not far inside
the metric horizon, that traps modes of any speed.

We determine the black hole solutions numerically (us-
ing Mathematica), because analytic solution of the equa-
tions does not appear to be feasible. As will be explained
below, the restriction to black holes that form from col-
lapse amounts to the requirement that the horizon for
the superluminal spin-0 mode, which lies inside the met-
ric horizon, is nonsingular. Our analysis generalizes the
results of Ref. [17] which focused on a restricted, non-
viable, choice of coupling parameters in the action, and
the results of Ref. [18], which considered observationally
viable coupling parameters, but did not impose regular-
ity of the spin-0 horizon. Though other work has been
done on black hole solutions in HL gravity, it was not
in the same version of the theory considered here, but
in versions which either impose projectability (the lapse
function is forced to be space-independent), e.g. Ref. [19],

or consider only a reduced set of terms in the action,
e.g. Refs. [20–22].1 In contrast, as explained above, we
include the complete set of terms in the IR limit. This
changes the nature of the black hole solutions.

The rest of the paper is organized as follows. In section
II we briefly review æ-theory and HL gravity, as well as
their relation. In section III we discuss the characteris-
tics of generic spherically symmetric, asymptotically flat,
black hole solutions and explain how the problem of gen-
erating numerical solutions can be set up. In section IV
we summarize the various constraints we will take into
account in order to restrict the parameter space in both
æ-theory and HL-gravity. We present and discuss nu-
merical results in section V. Section VI contains our
conclusions.

In this paper, we denote spacetime indices by Greek
letters, and spatial indices by Latin letters. We also
adopt the spacetime signature (+−−−) and set c = 1.

II. Æ-THEORY AND HL GRAVITY: BRIEF
OVERVIEW

The most general action for æ-theory, up to total
derivative terms and setting aside matter couplings, is

Sæ =
1

16πGæ

∫ √
−g (−R+ Læ) d4x (1)

where R is the 4D Ricci scalar of the metric gab, g is the
determinant of the metric and

Lae = −Mαβ
µν∇αuµ∇βuν , (2)

with Mαβ
µν defined as

Mαβ
µν = c1g

αβgµν + c2δ
α
µδ

β
ν + c3δ

α
ν δ

β
µ + c4u

αuβgµν . (3)

The ci are dimensionless coupling constants, and it is as-
sumed that uµ is constrained to be a unit timelike vector,
gµνu

µuν = 1. This constraint can be explicitly imposed
with a Lagrange multiplier term λ(gµνu

µuν − 1) in the
action. Note that since the covariant derivative ∇αuµ
involves derivatives of the metric through the connection
components, and since the unit vector is nowhere vanish-
ing, the terms quadratic in ∇u also modify the kinetic
terms for the metric. One consequence of this is that the
constant Gæ is related to Newton’s constant, as defined
in the Newtonian limit, by [25]

GN =
Gæ

1− (c1 + c4)/2
. (4)

Varying the action (1) with respect to the metric yields

Gαβ = Tæ
αβ (5)

1 The solutions found in Ref. [23] for HL gravity had been found
earlier in Ref. [24] as solutions to æ-theory and are not actually
black hole solutions.
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where Gαβ = Rαβ −Rgαβ/2 is the usual Einstein tensor.
Tæ
αβ denotes the aether stress-energy tensor

Tæ
αβ = ∇µ

(
J

µ
(α uβ) − Jµ(αuβ) − J(αβ)u

µ
)

+c1 [(∇µuα)(∇µuβ)− (∇αuµ)(∇βuµ)]

+
[
uν(∇µJµν)− c4u̇2

]
uαuβ

+c4u̇αu̇β −
1

2
Lægαβ , (6)

where

Jαµ = Mαβ
µν∇βu

µ (7)

and u̇ν = uµ∇µuν . Variation with respect to uµ yields

(∇αJαν − c4u̇α∇νuα) (gµν − uµuν) = 0 . (8)

The Lagrange multiplier λ has been eliminated from
these equations by solving for it using the aether field
equation.

Suppose now we want to impose the restriction that the
aether be hypersurface orthogonal. Locally, this amounts
to saying that there exists a function T for which

uα =
∂αT√

gµν∂µT∂νT
, (9)

where we have taken into account the unit constraint on
the aether. If this form for the aether is substituted into
the action (1), then one obtains a new theory, with fewer
degrees of freedom, which is in fact identical to the IR
limit of HL gravity. It appears from (2) and (9) that the
resulting action would lead to equations of motion with
fourth-order derivatives, and non-polynomial dependence
on the derivatives. However, we can choose T itself to be
the time coordinate t, in which case we have

uα = δTα (gTT )−1/2 = NδTα , (10)

where N = (gTT )−1/2 is the lapse function. Moreover,
the equation of motion that would come from variation
of T is identically satisfied when the metric and matter
equations of motion are imposed, hence this gauge choice
can be made before varying T (see Ref. [15] for more
details).

This hypersurface-orthogonal æ-theory action then
takes the form

Sh.o.æ =
1

16πGH

∫
dTd3xN

√
hL2 (11)

with

L2 = KijK
ij − λK2 + ξ(3)R+ ηaia

i, (12)

where Kij is the extrinsic curvature of each constant T
surface hij is the induced spatial metric, (3)R its Ricci
curvature, and

ai = ∂i lnN (13)

is the spatial projection of the acceleration of the normal
congruence, i.e. the acceleration of the aether flow. The
correspondence of the various parameters is2

GH
Gæ

= ξ =
1

1− c13
, λ =

1 + c2
1− c13

, η =
c14

1− c13
, (14)

where we use the notation cij = ci + cj .
Note that the coupling constants c1, c3 and c4 enter

only through the combinations c13 and c14. This can
be traced to a redundancy in the terms of the action
when the aether is hypersurface orthogonal. This is rel-
evant both for HL gravity, and for æ-theory in spherical
symmetry, since any spherically symmetric vector field is
hypersurface orthogonal. The twist ωα = εαβγδu

β∇γuδ
vanishes for any such vector field. For a unit vector field,
the square of the twist is given by

ωαω
α = −(∇αuβ)(∇αuβ) + (∇αuβ)(∇βuα)

+(uβ∇βuα)(uµ∇µuα). (15)

As far as solutions with zero twist are concerned, any
multiple of ωαω

α can be added to the action (1) without
changing the solutions. For example, adding c1ωαω

α re-
sults in new couplings c′1 = 0, c′3 = c13, and c′4 = c14.
This shows that the hypersurface orthogonal solutions
depend only on c2, c13, and c14. Alternatively, one can
subtract c4ωαω

α from the action, eliminating the c4 term.
We will do this in the calculations that follow.

Having fixed the T coordinate up to global
reparametrization (under which uα (9) is invariant), the
symmetry of the theory is reduced to that of “foliation
preserving diffeomorphisms,” i.e. space-independent time
reparametrization together with time-dependent spatial
diffeomorphisms,

T → T ′(T ), xi → x′i(xi, T ). (16)

Under these transformations N ′dT ′ = NdT , and a′i = ai.
The action (11) is the most general one that is invariant
under these symmetries and involves no more than two
derivatives of N and gij .

As already mentioned, the above theory is the IR limit
of HL gravity. The full HL action is of the form

SHL =
1

16πGH

∫
dTd3xN

√
h( L2 +

1

M2
?

L4 +
1

M4
?

L6) ,

(17)
where M? is a new mass scale, and L4 and L6 include all
the foliation preserving diffeomorphism invariant scalar
functions of ai and hij of 4th and 6th order in the spa-
tial derivatives, respectively. The presence of 6th order
operators is crucial for power counting renormalizability

2 A rescaling of the spatial metric can be used to set ξ = 1 in the
absence of matter, as sometimes done in the literature. This is
no longer possible once matter is present.
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[7]. On the other hand, in the absence of extra symme-
tries, radiative corrections will generate all possible terms
up to this order [9, 10]. In particular, the term aia

i in
L2 is crucial for the improved dynamical behavior of the
theory [10].

It has been argued that if the mass M? lies somewhere
between roughly 1010GeV and 1016GeV the theory can
both avoid strong coupling, and satisfy gravitational con-
straints and generic LV constraints in the matter sector
[16] (the need to alleviate strong coupling imposes the
upper bound [11, 13] which is competing with the lower
bounds coming from LV violations, as first pointed out
in Ref. [11]). Thus, at low energy one expects to be able
to neglect the higher order operators in L4 and L6, so
in this sense the action (11) is the low energy limit of
the action (17). We can thus say that the low energy or
IR limit of HL gravity is equivalent to æ-theory with a
hypersurface orthogonal aether.

It is worth mentioning that, since L4 and L6 contain
higher spatial derivatives of the fields, a theory described
by action (17) can have solutions that are perturbatively
far from solutions of the theory described by action (11)
and which diverge asM? goes to infinity, if the derivatives
of the fields are large enough. That is, theory (17) can
have more solutions than theory (11) when contributions
coming from L4 and L6 are important.

III. STATIC, SPHERICALLY SYMMETRIC,
ASYMPTOTICALLY FLAT, REGULAR BLACK

HOLES

A. Horizons and field redefinition

In this section we briefly review the field and coupling
constant redefinitions that we perform in order to sim-
plify our calculations. Such redefinitions closely follow
those used in Ref. [17], to which we refer for a more de-
tailed discussion.

Æ-theory possesses spin-2, spin-1 and spin-0 propagat-
ing degrees of freedom, whereas HL gravity has only spin-
2 and spin-0 modes. However, once spherical symmetry
has been imposed, only the spin-0 mode is relevant. The
squared speed (at low energies for HL gravity) of this
mode, defined relative to the aether rest frame, is [26]

s2
0 =

c123(2− c14)

c14(1− c13)(2 + c13 + 3c2)
. (18)

Since different modes propagate at different speeds there
will be multiple (causal) horizons. In fact for each of
these modes the corresponding horizon will be a null sur-
face of the effective metric

g
(i)
αβ = gαβ + (s2

i − 1)uαub , (19)

where si is the speed of the spin-i mode. See Ref. [17]
for a more detailed discussion.

The action (1) is invariant under the combined metric
and aether field redefinition

g′αβ = gαβ + (σ − 1)uαuβ , (20)

u′α =
1√
σ
uα , (21)

provided that the ci are replaced by new parameters c̃i
which are functions of the initial ci (see Ref. [27] for the
exact correspondence). By choosing σ = s2

0 we can make
the spin-0 horizon coincide with the metric horizon of the
redefined metric. This will help to simplify the calcula-
tions.

As explained in the previous section, when spherical
symmetry is imposed the aether is hypersurface orthog-
onal, so has vanishing twist. Thus by making use of Eq.
(15) it is possible to set c4 to zero without loss of general-
ity. It is worth stressing that this procedure has to come
after the field redefinition described previously to make
the spin-0 horizon coincide with the metric horizon. If
the order were to be reversed, the field redefinition would
regenerate a c4 term.

B. Asymptotics, regularity and parameters of
solutions

We find it convenient to work in Eddington-
Finkelstein-like coordinates with the line element

ds2 = F (r)dv2 − 2B(r)dvdr − r2dΩ2 , (22)

as these coordinates are regular at both the metric and
the spin-0 horizon, as well as in the interior region of the
black hole. We stress that from Eq. (22) it follows that
the radial coordinate has a geometric meaning, namely
4πr2 is the area of a symmetry sphere. The aether field
can be written in the form

uα∂α = A(r)∂v −
1− F (r)A2(r)

2B(r)A(r)
∂r , (23)

where we have imposed the unit constraint. For static,
spherically symmetric solutions these ansätze for the
metric and the aether can be adopted without loss of
generality. Surfaces of constant v are null, and if we
think of v as increasing in the future direction at fixed
r, it is an ingoing null coordinate. The timelike vector u
is then future pointing provided A > 0. The Lagrangian
(2) is even in u, hence in any solution we can also replace
u by −u, which amounts to replacing A by −A. Thus, a
black hole with aether flowing in can also be viewed as a
white hole with aether flowing out.

In GR, according to Birkhoff’s theorem, there is a
one parameter family of spherically symmetric solutions,
namely the Schwarzschild solutions, labeled by the mass.
These solutions are asymptotically flat, and static. In
æ-theory there is a scalar mode, corresponding to ra-
dial tilting of the aether, so that Birkhoff’s theorem does
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not apply. Not only are spherical solutions not generally
static, but even if we restrict to static, spherical solutions,
they are not necessarily asymptotically flat. In fact, as
shown in Ref. [17], there is a three parameter family of
such solutions, and imposing asymptotic flatness reduces
this to a two parameter family. That is, for each mass,
there is a one parameter family. As explained below, we
will fix this parameter by the condition that the spin-
0 horizon, i.e. the outermost trapped surface for spin-0
waves, be nonsingular.

A series expansion for the static, spherically symmet-
ric, asymptotically flat solutions was previously found for
the case c3 = −c1 [17], and we have found that this series
remains valid with no restriction on c3. The result, given
in terms of the inverse radial coordinate x = 1/r, is

F (x) = 1 + F1x+
1

48
c14F

3
1 x

3 + · · · (24)

B(x) = 1 +
1

16
c14F

2
1 x

2 − 1

12
c14F

3
1 x

3 + · · · (25)

A(x) = 1− 1
2F1x+A2x

2 +(
− 1

96
c14F

3
1 +

1

16
F 3

1 − F1A2

)
x3 + · · ·(26)

where F1 = F ′(x = 0) and A2 = A′′(x = 0), and where v
is scaled to set F (x = 0) = 1. No more free parameters
seem to appear at higher orders, so the asymptotically
flat solutions are determined by the two free parameters
F1 and A2. The parameters c2 and c3 enter at higher
orders in 1/r. Their absence at lower orders is presum-
ably related to the fact that they do not appear at all
in solutions whose aether is everywhere aligned with the
timelike Killing vector [24] .

We will restrict attention in this paper to the values
of the coupling coefficients ci in the action for which
presently known observational bounds are all met. Even
though section IV is devoted to a discussion about these
bounds and the restrictions they will bring to the parame-
ter space, we anticipate here the discussion of a particular
constraint: the vacuum Čerenkov constraint [28], which
amounts to the requirement that the speed of the spin-
0 mode be greater than or equal to the speed of light
(c = 1) defined by the metric cone. This means that the
spin-0 horizon lies inside the metric horizon. If matter
is minimally coupled to the metric then the matter can-
not propagate beyond the metric cone, and the spin-0
horizon is hidden from view, except by gravitational and
aether signals. Nevertheless, we shall require that the
spin-0 horizon be regular, simply because the evidence
we have indicates that when a black hole forms in a col-
lapse process, the spin-0 horizon is in fact nonsingular.
This evidence amounts to the argument that nothing sin-
gular is happening in the fields at that point, bolstered by
numerical simulations for a few examples [29], although
a general proof has not been given. If instead collapse
does not automatically impose this condition, a black
hole would have “hair” determined by the parameter A2

in Eq. (26).

Having imposed asymptotic flatness, and a regular
spin-0 horizon, there remains a one parameter family of
solutions, i.e. one solution for each value of the total
mass. Equivalently, the solutions can be parametrized
by the horizon radius. If we adopt units for the radial
coordinate in which the horizon radius is unity, this leaves
a unique solution. This is the solution we are character-
izing in the present paper, as a function of the couplings
ci.

C. Equations and constraints

In this section we discuss the set of equations to be
integrated. The equations to be solved are the general-
ized Einstein equations (5), for which we introduce the
notation

Eµν ≡ Gµν − Tµνæ = 0 , (27)

and the aether field equations (8), for which we introduce
the notation

Æµ = 0 . (28)

Given the spherical symmetry and staticity, many of
these equations are redundant or trivial, and it suffices
to impose

Evv = Evr = Err = Eθθ = Æv = 0, (29)

each of which must hold at every value of r. (In partic-
ular, Ær is proportional to Æv so need not be separately
imposed.) All these equations involve second derivatives
of F and A (but not B) with respect to r. However, note
that there are only three functions to be solved for, F , B,
and A, so only three equations are needed to determine
a solution, given initial data. In fact, among these five
equations, two independent combinations are initial value
constraint equations, relating the functions and their first
derivatives. The constraint equations automatically hold
at all values of r, if they are imposed at one value of r, as
a consequence of the remaining “evolution” equations.

To clarify the distinction between constraints and evo-
lution equations in both æ-theory and HL gravity, it is
useful to recall how that distinction comes about in GR
in the general case (i.e., in the absence of symmetries).
In the absence of matter, the field equations of GR are
given by the vanishing of the Einstein tensor, Gµν = 0.
Because of diffeomorphism invariance, there are four free
functions in the time evolution of the metric, which is
therefore not uniquely determined from initial data. This
means that not all of the Einstein equations can be evo-
lution equations. Indeed, the Einstein tensor satisfies the
contracted Bianchi identity

∇µGµν = 0 , (30)

which holds independently of any field equations and can
also be seen as a consequence of the diffeomorphism in-
variance of the Einstein–Hilbert action. Expanding this
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equation in components in a coordinate system (t, xi) one
has

∂tG
tν + ∂iG

iν + ΓG -terms = 0 . (31)

This identity implies that if Gµν = 0 at some initial
“time” t0, then Gtν = 0 also holds at t = t0 + δt. Thus if
the equations Gtν = 0 are imposed at some initial time
t0, they are satisfied in the whole spacetime when the
remaining equations hold. Moreover, the quantities Gtν

involve only initial values. This follows from the fact that
if a given field component appears in Gµν with up to n
time derivatives, then Eq. (31) – being an identity that
holds for all metrics independent of field equations – im-
plies that Gtν has no more than n − 1 time derivatives
of that field component. Thus the equations Gtν = 0 are
initial value constraint equations.

The discussion of initial value constraint equations can
be extended to cover the case when matter is coupled to
the metric. We will discuss that extension explicitly here
just for the case when the “matter” corresponds to the
aether degrees of freedom in æ-theory. The correspond-
ing Einstein equation (27) involves second time deriva-
tives of the aether field uµ in Tµνæ [see Eq (6)]. These
arise from the variation of the metric in the Christof-
fel symbols occurring in the covariant derivatives of the
aether field. The equations Etν = 0 are therefore clearly
not initial value equations, even though the on-shell iden-
tity ∇µEµν = 0 implies that if they hold initially they
continue to hold as a result of the remaining equations.3

Instead, to identify true initial value constraint equations
we need to find a true identity, analogous to the Bianchi
identity, that holds independent of any field equations.

Such an identity can be found by using the diffeomor-
phism invariance of the full æ-theory action.4 One finds

∇µ(Eµν − uµÆν) = Æµ∇νuµ, (32)

where the normalization of the aether field equation is
defined by δS/δuµ = 2Æµ. This identity can be used to
argue, in a way identical to that used for vacuum GR,
that

Etν − utÆν = 0 (33)

are initial value constraint equations.
The reasoning presented above applies as well to the

static, spherically symmetric case, with the role of t-
evolution replaced by r-evolution. Hence we now define
the constraint equations as

Cν ≡ Erν − urÆν = 0 . (34)

3 Note that Gtν − 8πT tν = 0 are indeed initial value constraint
equations in settings where the matter stress tensor Tµν has
fewer derivatives than the matter equations of motion.

4 The precise origin of this identity, and its generalization to other
theories with tensor matter, will be explained in a forthcoming
publication.

It follows from the reasoning just given that, once im-
posed at a single initial radius, these equations are au-
tomatically satisfied at all r provided that the remaining
field equations hold. Also, they depend only on initial
data (with respect to r-evolution). To exploit this struc-
ture, we therefore replace the set of equations (29) by the
equivalent set

Evv = Eθθ = Æv = 0, Cv = Cr = 0 . (35)

The first three equations can be recast in the form

F ′′ = F ′′(A,A′, B, F, F ′) (36)

A′′ = A′′(A,A′, F, F ′) (37)

B′ = B′(A,A′, B, F, F ′), (38)

which is a system of ordinary differential equations
(ODEs) that can be numerically integrated with respect
to r. These equations will be our “evolution” equations.
The constraint equations Cv = Cr = 0, instead, depend
only on A, A′, B, F and F ′. Therefore they simply im-
pose algebraic constraints on the data at the “initial”
radius r0, and are automatically preserved by the evolu-
tion equations for any other r.

D. Numerical implementation

As explained in section III B, imposing asymptotic flat-
ness, together with the condition that there is a regular
spin-0 horizon, will lead to a one parameter family of so-
lutions. These describe black holes, because for the the-
ory parameters that we consider there will be a metric
horizon outside the spin-0 horizon. We begin the inte-
gration at the location of the spin-0 horizon, where the
regularity condition can be imposed directly on the ini-
tial data, as was done in Ref. [17]. To conveniently im-
plement this procedure, as in Ref. [17], we first make a
field redefinition so that the spin-0 metric, Eq. (19) with
si = s0, is the new metric. (This induces a change in
the coupling parameters, which we keep track of.) Then
the spin-0 horizon coincides with the metric horizon at
r = rH , which is defined by the condition

F (rH) = 0 . (39)

We adopt units in which rH = 1, so the one-parameter
family is represented with just a single solution to be
found. After finding the solution, we then make the in-
verse of the field redefinition (20) to express the solution
in terms of the original metric that is assumed to be mini-
mally coupled to the matter fields, and the corresponding
aether field.

To impose regularity of the horizon we proceed as fol-
lows. The evolution equation for B′ [Eq. (38)] turns out
to have the structure

B′ = b0/F + b1 + b2F, (40)
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where b0,1,2 are functions of (A,A′, B, F ′). Therefore, B′

diverges at rH unless

b0(A,A′, B, F ′)|H = 0 . (41)

(Here and below, we shall denote quantities evaluated at
rH using the subscript H, e.g. FH ≡ F (rH).) Once the
constraint in Eq. (41) is imposed, both the metric and
aether are regular at the horizon.

The system of evolution equations (36)–(38) re-
quires a five dimensional space of initial conditions,
(A,A′, B, F, F ′)H , but we also have to impose the con-
straint equations Cr = Cv = 0. Once we impose the
horizon and regularity conditions Eqs. (39) and (41), the
constraint equation Cr = 0 is automatically satisfied at
rH , as it is proportional to F . The other constraint equa-
tion Cv = 0, however, is not trivially satisfied at rH , and
further restricts the initial conditions:

Cv(A,A′, B, F ′)|H = 0 . (42)

Together with the other conditions in Eqs. (39) and (41),
this cuts the space of initial conditions from five down to
two dimensions. This is further reduced to one dimension
by choosing to scale the coordinate v so as to have BH =
1. We can then parametrize the space of initial data with
the value of A on the horizon, AH .

A generic value of AH will not lead to an asymptot-
ically flat solution. As in Ref. [17], we seek the value
of AH leading to asymptotic flatness using a “shooting
method”. In practice, we integrate out from rH starting
with different values of AH , until we find both a value of
AH that gives FA2 > 1 far away from the horizon, and
one which instead gives FA2 < 1. This is sufficient to
“bracket” the asymptotically flat solution, which as can
be seen from Eqs. (24)–(26) satisfies limr→∞ FA2 = 1.
(Note that the quantity FA2 is invariant under rescal-
ings of r and v, which justifies its use in our code, where
we choose specific scalings for these coordinates). Once
the two bracketing values of AH have been identified, a
simple bisection procedure will yield the asymptotically
flat black hole with higher and higher accuracy.

In principle this completes the description of our in-
tegration procedure. However there are some complica-
tions that affect how it is actually implemented in our
code. We now describe these complications and the im-
plementation.

First, the value of AH does not uniquely fix all the
initial conditions through Eqs. (39), (41) and (42), since
the latter two are quadratic in F ′H and A′H . These can
be linearly combined to obtain a linear equation for F ′H ,
but when replacing the solution into Eq. (41) or (42)
one obtains a quartic equation in A′H . Thus one AH
determines four values for A′H (and F ′H , which depends
on A′H).

Since F must asymptote to a positive value at spatial
infinity to achieve asymptotic flatness, we can readily dis-
card the branches that give F ′H < 0, otherwise F would
then have another zero (i.e., another horizon, possibly

singular) outside rH . However, this still does not select a
unique branch, and we are typically left with at least two
branches that can potentially give an asymptotically flat
black hole with no horizons outside rH . We find, how-
ever, that for any given set of the theory’s parameters,
only one branch seems to give rise to an asymptotically
flat black hole, the other branches failing to give a viable
bracketing interval for AH . Because the branch that gives
the asymptotically flat solution is typically not the same
(as labeled by Mathematica) as the parameters of the
theory are varied, in practice we proceed in the follow-
ing manner. We start off with a theory parametrically
close to GR, where we can easily identify the branch that
evolves to an asymptotically flat solution, that being the
branch that gives a value of F ′H close to the GR value
F ′H = 1/rH = 1. [The other branches give instead very
large values for F ′H , and they fail at providing a brack-
eting interval for A(rH).] We then gradually move away
from GR, varying the coupling parameters ci by a small
amount, and identifying the branch that is closest to the
one that worked for the previous values of ci. While this
procedure might in principle miss the existence of an-
other branch of asymptotically flat black hole solutions,
that seems unlikely in view of the tests that we conducted
on the remaining branches, none of which seems to pro-
duce such solutions.

Another difficulty stems from the regularity condition
(41). While this equation ensures that B′ is non-singular
on the horizon, Eq. (40) can potentially be affected by
numerical inaccuracies when evaluated very close to the
horizon. This is because both b0 and F are zero on the
horizon, but are non-zero (albeit small) at radii r very
close to rH . As a result, B′ will not be calculated ac-
curately at such radii, due to the finite machine accu-
racy of any calculator. While it might be possible to
overcome this problem by cranking up the number of
significant digits used by the code, a more elegant and
robust approach is to integrate the evolution equations
perturbatively near the horizon, i.e. to expand them in
a series in r − rH and solve them analytically order by
order, as in Ref. [17]. We did so up to seventh order
in r − rH using Mathematica, and used this perturba-
tive solution from rH = 1 to rin = 1.001. The error
of the perturbative solution at rin = 1.001 is therefore
O(rin − rH)8 ∼ 10−24, comparable to the machine accu-
racy (we use 22 significant digits for our real numbers,
which is possible using Mathematica). We can then inte-
grate the evolution equations numerically from rin up to
very large radii (r ∼ 104 or larger) using Mathematica’s
default ODE integrator (which automatically switches
between backward differentiation formulas and Adams
multistep methods depending on the equations’ stiffness).
Because the evolution equations (36)–(38) are lengthy
and complicated, we evaluate their right-hand sides with
22 significant digits in order to minimize the impact of
round-off errors, and we set the accuracy and the pre-
cision goal of the ODE integrator to 10−15. As a con-
firmation that the integration is performed accurately,
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we check that the constraints Cv and Cr are preserved
to within 10−12 or better. More specifically, the dimen-
sionless quantities |Cvr2| and |Crr2| remain smaller than
10−12 during the whole evolution.

Using this set-up, we can then finely bracket the
asymptotically flat solution. (We stop our bisection ei-
ther when the value A(rH) giving an asymptotically flat
solution is determined to within 10−22 or when the two
bracketing solutions agree to within 10−15.) As final con-
firmation of the accuracy of our procedure, we rescale the
time v so that F approaches 1 asymptotically, and then
verify that our solution agrees well with the asympotic
solution (24)–(26).

IV. PARAMETER SPACE

Even after the parameter redefinition to eliminate c4
in æ-theory described in section II, one is left with a 3-
dimensional parameter space. Similarly, in HL gravity
one has to deal with a 3-dimensional parameter space a
priori. Scanning such a space is clearly a formidable task.
Fortunately, there are certain regions of the parameter
space which are far more interesting than others, as there
are a number of viability constraints that one can impose
on both theories, namely:

1. Classical and quantum-mechanical stability: all
propagating modes should be classically stable and
have positive energy (no tachyons, no ghosts).

2. Avoidance of vacuum Čerenkov radiation by matter
[28]: this requires that the squared speeds of the
propagating modes should be greater than or equal
to unity.

3. Agreement with GR at first post-Newtonian order:
(This implies, in particular, that all the constraints
coming from Solar system experiments are met.)
The parametrized post-Newtonian (PPN) parame-
ters of both æ-theory and low-energy HL gravity
are identical to those of GR with the exception of
those measuring preferred frame effects, α1 and α2

[16, 30]. These two parameters are constrained to
be below 10−4 and 10−7 respectively [31].

Note that constraints 2 and 3 refer implicitly to the met-
ric to which matter couples minimally. Hence we must
impose these constraints on the coupling parameters be-
fore making the field redefinition (20). In what comes
next we explore only the part of the parameter space
that satisfies all of the above constraints. Additionally,
we impose a stronger version of 3, namely α1 = α2 = 0,
so that the two theories are indistinguishable from GR
at the first order PPN level. (This requirement is reason-
able given that the bounds on α1 and α2 are very strong,
as mentioned above.)

The bound imposed on the ci by the above constraints
have been summarized in Ref. [5] for æ-theory. The con-

dition α1 = α2 = 0 translates to

c2 =
−2c21 − c1c3 + c23

3c1
, (43)

c4 = −c
2
3

c1
, (44)

which reduces the parameter space down to 2 dimensions.
In terms of c± = c1 ± c3, then constraints 1 and 2 are
satisfied in the region

0 ≤ c+ ≤ 1 , (45)

0 ≤ c− ≤
c+

3(1− c+)
. (46)

For practical purposes, and given that larger values are
unlikely to be compatible with strong field constraints
from binary pulsar systems [32], we will explore the part
of this region which also satisfies c− ≤ 1.

An important observational constraint that has not
been included in the list above is that related to grav-
itational radiation from binary pulsars. As shown in
Refs. [32, 33], when the preferred frame PPN parame-
ters α1 and α2 vanish, as assumed here, and when grav-
itational fields are everywhere weak or the coupling con-
stants ci are smaller than something of order ∼ 0.01−0.1,
all gravitational radiation is sourced by the quadrupole
Qij , as in GR. The net power radiated in all modes is then

given by (GNA(ci)/5)
...
Q

2
ij . Agreement with the damp-

ing rate of GR requires A(ci) = 1, which would impose
an extra relation between the ci. Even though we have
not used this constraint to further restrict the parameter
space, we present the curve A(ci) = 1 in some of the fig-
ures that follow, but only for c+ < 0.1, as for larger values
the damping rate for compact binaries is not accurately
given by this formula [32].

We now move to HL gravity. The PPN constraints
were worked out in Ref. [16], but a different parametriza-
tion (µ, α, β) of the action was used (what we denote here
as µ was actually denoted by λ′ in Ref. [16]). The relation
with the more common parametrization used in Eq. (11)
is given by

ξ =
1

1− β
, λ =

1 + µ

1− β
, η =

α

1− β
. (47)

The relation with the æ-theory parameters, given by (14),
is

α = c14, β = c13, µ = c2 . (48)

The condition α1 = α2 = 0 is satisfied when α = 2β, and
again the parameter space becomes 2-dimensional. Then
constraints 1 and 2 above are satisfied in the following 3
regions of the (µ, β) plane

0 < β < 1/3, µ >
β(β + 1)

1− 3β
, (49)

0 < β < 1/3, µ < −2 + β

3
, (50)

1/3 < β < 1,
β(β + 1)

1− 3β
< µ < −2 + β

3
. (51)
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(Note that the two last regions are actually connected,
forming one single region.) We will explore all of these
regions but for practical purposes we will restrict to |µ| <
10.

In terms of the (ξ, λ, η) set of parameters, the PPN
condition α = 2β becomes η = 2(ξ − 1), and Eqs. (49)-
(51) translate to

3λ− 1

2λ
> ξ > 1, λ > 1 or λ < 0 , (52)

ξ > 1, 0 < λ < 1/3 . (53)

V. NUMERICAL SOLUTIONS

A. Comparison to known black-hole solutions in
Æ-theory

As a first test of our code, we tried to reproduce the
æ-theory regular black-hole solutions studied in Ref. [17].
In that paper, Eling & Jacobson focused on æ-theories
with c3 = c4 = 0 in order to simplify the (very com-
plicated) field equations. Additionally, they imposed
the condition c2 = −c31/(3c21 − 4c1 + 2), which ensures
that s0 = 1, so that the metric horizon coincides with
the spin-0 horizon. After these simplifying assumptions
the preferred frame PPN parameter α1 vanishes. How-
ever, the observational bound on the second preferred
frame parameter, α2 < O(10−7), leads to the constraint
|c1|, |c2| < O(10−7). The values for c1 considered in
Ref. [17] where actually significantly larger, making the
theories considered there non-viable. (Even if one identi-
fies the theories studied in Ref. [17] with the “redefined”

Table I: Properties of regular black hole solutions with c3 =
c4 = 0 and c2 such that s0 = 1. GR corresponds to c1 = 0.
See text for explanation of the quantities shown.

c1 rg/rH F ′HA
2
H γff

0 1 n/a n/a
0.1 0.989489 2.09612 1.60280
0.2 0.978021 2.07168 1.57695
0.3 0.965229 2.03920 1.54768
0.4 0.950547 1.99652 1.51409
0.5 0.933044 1.94056 1.47484
0.6 0.911068 1.86668 1.42796
0.7 0.881313 1.76732 1.37024
0.8 0.835830 1.62834 1.29591
0.9 0.747519 1.41557 1.19212
0.91 0.733012 1.38702 1.17904
0.92 0.716505 1.35637 1.16523
0.93 0.697454 1.32324 1.15060
0.94 0.675075 1.28711 1.13502
0.95 0.648165 1.24724 1.11831
0.96 0.614764 1.20248 1.10023
0.97 0.571331 1.15094 1.08044
0.98 0.510382 1.08891 1.05834
0.99 0.410630 1.00689 1.03281
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Figure 1: The curvature radius on the horizon, in units of the
horizon’s circumference radius rH . More specifically, RH and
KH denote the Ricci and Kretschmann scalars evaluated on
the horizon.

theory of Sec. III A, they do not lead to viable theories
in the “physical” parameter space. One should mention,
however, that the purpose of Ref. [17] was to understand
the properties of regular æ-theory black holes in a simple
family of “test-theories”, even at the cost of sacrificing
their viability.)

Ref. [17] focused on theories with c1 > 0 (since c1 < 0
would give negative spin-0 mode energy), but found no
regular solutions for c1 > 0.7. Our code, instead, finds
regular black-hole solutions in the whole range 0 < c1 <
1. While it is not clear why the solutions for 0.7 < c1 < 1
were not found by the code of Ref. [17] — nor why they
were not produced in the gravitational-collapse simula-
tions of Ref. [29], which confirmed that no regular BHs
seemed to form in theories with c1 > 0.8 — our code pro-
duces, even in this region of the parameter space, regular
BHs that are very accurate solutions of the field equations
and that agree with the asymptotically flat analytical so-
lution (24)–(26) (see Sec. III D).

One possibility is that the code of Ref. [17] was simply
not accurate enough: because of the lengthy field equa-
tions, rounding errors can propagate and lead to signif-
icant inaccuracies if one does not use a sufficient num-
ber of significant digits. (For this work, as stressed in
Sec. III D, we use real numbers with 22 significant dig-
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Figure 2: Fractional æ-theory deviation from GR for the di-
mensionless product ωISCOrg of the ISCO frequency and the
gravitational radius, in the viable region of the parameter
plane (see Sec. IV). The red dashed line extending up to
c+ ≈ 0.1 is the binary pulsar constraint c− ≈ 0.18c+.

its). To gauge the accuracy of the code of Ref. [17], we
compare the numerical solutions found there with those
that we find with our code. In particular we look at
three quantities that were used in Ref. [17] to charac-
terize the solutions, namely (i) the ratio rg/rH (which
equals 1 in GR), where rH is defined geometrically as the
proper circumference of the horizon divided by 2π, and
where rg is the “gravitational radius,” i.e. the param-
eter that appears in the asymptotic form of the metric,
F = 1 − rg/r + O(1/r2); in terms of the mass Mtot as
measured by a distant observer we have

rg = 2GNMtot; (54)

(ii) the combination F ′HA
2
H , which is invariant under a

rescaling of the coordinate time v → χv; (iii) the Lorentz
factor γff = uµuobs

µ of the aether, defined with respect to

a unit Killing energy radial observer at the horizon (uobs
µ

is tangent to a radial free-fall trajectory that starts at
rest at spatial infinity).

These quantities are reported in Table I as function of
c1 (GR corresponds to c1 = 0), for the solutions that we
find in the range 0 < c1 < 1. A comparison with Table I
of Ref. [17] shows that the values of rg/rH only agree up
to the third decimal digit for c1 ≤ 0.3. This difference
is much larger than our estimated error on rg/rH , which
is less than 2 parts in 1014 and which we obtain from
the bracketing procedure described in Sec. III D. This
suggests that our code might be more accurate than that
of Ref. [17], which could explain why we find solutions
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Figure 3: Same as Fig. 2, but for the maximum redshift of
a photon emitted by a source moving on the ISCO, zmax =
νemitted/νmeasured − 1. This maximum redshift is obtained for
a photon emitted “backward” with respect to the velocity of
the source.

up to c1 = 0.99.5

Although we find regular black holes up to c1 = 0.99,
we too do not find solutions for c1 ≥ 1. There is some
evidence that the would-be horizon becomes singular in
this case. Indeed, when c1 approaches 1, the Ricci scalar
R and the Kretschmann scalar K = RαβµνRαβµν evalu-
ated on the horizon grow rapidly, as shown in Fig. 1, and
at least KH appears to be diverging, suggesting that no
regular black-hole solutions exist when c1 = 1.

Lastly let us note that, as expected, the dimensionless
ratio rg/rH goes to the GR value (1) when c1 is small,
and decreases for larger c1. The deviations away from
GR can be very significant as can be seen from Table I,
but this is only because the theories under consideration
here do not satisfy the constraints of Sec. IV and are
therefore allowed to deviate significantly from GR. As
we will see in the next section, theories which satisfy all
the constraints available to date only allow regular BH
solutions that are very similar to the Schwarzschild BHs
of GR.

5 Our values for γff differ significantly from those reported in
Ref. [17], but we have determined that the latter were incor-
rectly computed without accounting for the non-standard nor-
malization of the metric function F (r) at infinity.



11

0.01

0.025

0.05

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

c+

c -

Figure 4: Same as Fig. 2, but for the impact parameter of
the circular photon orbit bph in æ-theory, normalized against
the gravitational radius rg. Note that the frequency of the
circular photon orbit is ωph = 1/bph.

B. Viable regular BHs in Æ-theory and HL gravity

In this section we focus on the regions of the parameter
spaces of æ-theory and HL gravity that satisfy all the ob-
servational constraints available to date, as described in
Sec. IV. To this purpose, we have considered 236 points
in the parameter plane (c+, c−) of æ-theory and 405 in
the parameter plane (β, µ) of HL gravity. Each of these
points corresponds to a different gravity theory, and for
each of them we have derived the regular asympotically
flat spherical BH solution as described in Sec. III D. To
characterize the solutions, we have then extracted, for
each of them, the following quantities (explicit expres-
sions for which can be found in the Appendix):

1. The dimensionless product ω
ISCO

rg: ω
ISCO

is the
orbital frequency of the innermost stable circular
orbit (ISCO), while rg is the gravitational radius
(54). The deviation of this quantity away from its
GR value (2 · 6−3/2) is a measure of how easily æ-
theory (or HL gravity) might be discriminated from
GR using the X-ray continuum spectra of accretion
disks [34, 35] (see also Ref. [36] on how to use these
spectra to detect generic deviations from GR black
holes) or using future gravitational-wave observa-
tions of stellar-mass black holes orbiting around a
supermassive black hole (these sources are known
as extreme mass-ratio inspirals, or EMRIs) [37].

2. The maximum redshift (measured at spatial infin-
ity) for a photon emitted by a source moving on the
ISCO, zmax = νemitted/νmeasured−1. The maximum
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Figure 5: Same as Fig. 2, but for the ratio rg/rH of the
gravitational radius rg to the horizon’s circumference radius
rH .

redshift comprises both the redshift due to gravi-
tational field of the black hole, and the Doppler
redshift, which is maximum for a photon emitted
“backward” (i.e., in the negative φ direction, if the
source moves in the positive φ direction). The de-
viation of this quantity away from its GR value
(3/
√

2 − 1), together with the value of the combi-
nation ω

ISCO
rg mentioned above, is a measure of

how easily a black hole in æ-theory (or HL gravity)
could be distinguished from a Schwarzschild black
hole using iron-Kα lines [38, 39] (see also Ref. [40]
on how to use iron-Kα lines to detect deviations
from GR black holes).

3. The dimensionless ratio bph/rg, where bph is the
impact parameter of the circular photon orbit.
The deviations of this quantity from GR (where

bph/rg = 3
√

3/2) tell us how easily one can test
æ-theory (or HL gravity) with gravitational lens-
ing experiments (see in particular Ref. [41] for spe-
cific attempts to use gravitational lensing to test
whether astrophysical black holes are really de-
scribed by GR). Also, bph is related to the fre-
quency of the circular photon orbit, ωph = 1/bph,
which in principle will be observable with future
gravitational-wave detectors because it regulates
the frequency of the black hole gravitational quasi-
normal modes, at least in the eikonal approxima-
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Figure 6: Fractional HL gravity deviation from GR for the
dimensionless product ωISCOrg of the ISCO frequency and
the gravitational radius,

in the viable region of the parameter plane (see Sec. IV).

tion [42–44].6

4. The ratio rg/rH . This quantity does not have a
direct observational meaning, but we compare it
to its GR value (unity) as a way to assess how the
near-horizon region of æ-theory (or HL gravity) dif-
fers from GR. This is probably not very important
from an observational point of view (because the
near-horizon region is hard to observe), but is nev-
ertheless conceptually interesting.

To summarize our results, we have used Mathematica
to produce contour plots for the relative deviations of
these quantities away from their GR values, as a function
of the theory’s parameters — (c+, c−) for æ-theory and
(β, µ) for HL gravity. The plots are shown in Figs. 2 to 5
for æ-theory and in Figs. 6 to 9 for HL gravity. The small
wiggles on some of the contours are simply a spurious
effect of the numerical procedure used to calculate them.

Two things are striking about these plots. First, the
deviations are largely controlled by a single parameter,
c+ in æ-theory and β in HL gravity. These two param-
eters are actually the same when the two theories are
identified [cf. Eq. (48)]. Second, the contours for the
four different quantities in æ-theory or HL gravity are

6 Quasi-normal modes of black hole solutions in æ-theory were
studied in Refs. [45, 46] under the assumption that the aether
remains unperturbed.
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Figure 7: Same as in Fig. 6, but for the maximum redshift of
a photon emitted by a source moving on the ISCO, zmax =
νemitted/νmeasured − 1, This maximum redshift is obtained for
a photon emitted “backward” with respect to the velocity of
the source.

very similar. This could be understood if, to a good ap-
proximation, the metric function F actually depended on
the two coupling parameters only via a single combina-
tion. This combination should reduce approximately to
c+ in the æ-theory case and to β in the HL gravity case
to explain the fact that the contours are almost vertical.
Using our numerical solutions, we have verified that this
is indeed the case. This may seem in contrast with the
presence of a term c14/r

3 in the asymptotic metric (24),
because the lines c14 =constant are very different from
the contours shown in Figs. 2-9. (In the case of ae-theory,
for instance, we have c14 = 2c+c−/(c+ + c−) when the
PPN parameters vanish, so the c14=constant lines are
much more horizontal than our contours.) However, we
have verified that while the c14/r

3 term is indeed present
in our numerical solutions, it is always negligible outside
the horizon. This is because that term is suppressed by
a factor 1/48 [cf. Eq. (24)] and because |c14| . 2 in
the part of parameter space that we explore, both in ae-
theory and HL gravity. Higher order terms in the 1/r ex-
pansion are, however, important, and are responsible for
producing the deviations from GR in the dimensionless
quantities plotted in the figures (the deviation of rg/rH
is also sensitive to the 1/r term).

As can be seen, the deviations from GR are quite
small. In æ-theory, they do not reach the 10% level un-
til c+ ≈ 0.7, while in HL gravity they remain less than
3% in most of the parameter space. Such small devia-
tions are probably undetectable with accretion disk spec-
tra, Iron Kα lines or gravitational lensing, at least with
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present data. The only exception might be the region
0.9 < c+ < 1 in the æ-theory parameter plane, where
the deviations from GR are larger than 20% and might
therefore be observable with these techniques, provided
that systematic errors in the data and astrophysical un-
certainties are properly understood. However, this region
is presumably already ruled out by observations of grav-
itational radiation damping from binary pulsars [32].

The size of the black hole modifications we have found
is comparable to the effects on neutron star structure
reported in Ref. [47]. (The solution outside a star, in
which the aether is aligned with the timelike Killing vec-
tor, is different from the black hole solution, in which the
aether flows inward.) There the maximum mass, surface
redshift, and ISCO frequency were computed for various
equations of state. Depending on the equation of state,
the maximum masses are about 6% - 15% smaller than
in GR when the æ-theory parameter c14 is equal to 1,
and the corresponding surface redshifts are roughly 10%
larger than in GR. The ISCO frequency, which is inde-
pendent of the equation of state, is only 4% smaller than
in GR. Thus, it also appears challenging to obtain useful
constraints from neutron star observations.

On the other hand, future gravitational-wave experi-
ments such as LISA will be able test deviations from the
Kerr metric with astonishing accuracy (∼ 10−6) using
extreme mass-ratio inspirals (EMRIs) [37]. While fur-
ther work is necessary to be ready to use LISA data for
testing æ-theory or HL gravity, such an accuracy is more
than enough (by orders of magnitude) to detect the de-
viations of æ-theory (HL gravity) from GR predicted by
our code, essentially in all of the parameter space. Ob-
servations of EMRIs with LISA could, therefore, allow
very strong constraints to be put on æ-theory and HL
gravity.

C. The interior solutions

In LV theories different modes generically propagate
at different velocities. Additionally, they no longer nec-
essarily satisfy linear dispersion relations, which means
that the limiting speed of short wavelength disturbances
can be infinite in the preferred frame. Indeed æ-theory
has the first of these characteristics and (full) HL gravity
has both of them, as we will discuss in more detail be-
low. In such theories a mode can potentially escape the
horizon defined by another mode, or there might not be
any horizons at all. It is therefore potentially of observa-
tional interest to study the interior behavior of the black
hole solutions. It is also in any case of mathematical and
fundamental interest. We present here some results for
this behavior.

In general, irrespective of the parameters (c+, c−) or
(β, µ) of the theory, the solutions that we have found al-
ways present a spacelike curvature singularity at r = 0,
where the Ricci scalar R and the Kretschmann scalar
RαβµνR

αβµν (as well as the metric function F ) diverge.
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Figure 8: Same as in Fig. 6, but for the impact parameter
of the circular photon orbit bph, normalized against the grav-
itational radius rg. Note that the frequency of the circular
photon orbit is Ωph = 1/bph.

The aether, to the contrary, presents an oscillatory be-
havior, as already noticed in Ref. [17]. To see this, we
have studied the Lorentz factor γr ≡ uαobsuα of the aether
as measured by the future directed observer orthogonal
to the (spacelike) hypersurface r = constant. In Figs.
10-12 we plot the corresponding boost angle

θr = arccoshγr, (55)

for three representative cases,7 as a function of r (which
plays the role of a time coordinate inside the horizon).

For the case in Fig. 10 (æ-theory with c− = 0.0018,
c+ = 0.01), after an initial transient, the boost angle
oscillates with roughly constant amplitude, and roughly
constant period when measured in terms of log r, thus
corresponding to an undamped oscillator. The case
shown in Fig. 11 (æ-theory with c+ = 0.99, c− = 0.01)
resembles instead a damped oscillator, while the case
shown in Fig. 12 (HL gravity with β = 0.4, µ = −1.8)
resembles, after an initial transient, an over-damped os-
cillator (i.e. one in which the damping is so strong that
it does not oscillate, but approaches the rest position ex-
ponentially).

This oscillatory behavior is reminiscent of that found
for the aether in (anisotropic) Bianchi type I (Kasner-

7 These cases seem qualitatively representative of the inner solu-
tions of all of the regular black holes that we studied, although
we have not yet performed a full parameter space scan like those
presented in the previous section.
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Figure 9: Same as in Fig. 6, but for the ratio rg/rH of the
gravitational radius rg to the horizon’s circumference radius
rH .

like) cosmologies with a cosmological constant, both in
HL and æ-theory [48]. This analogy is understand-
able, since the black hole interior also corresponds to an
anisotropic cosmology, although of a different symmetry
type and spatial curvature, and without a cosmological
constant. As remarked in Ref. [17], it is also reminiscent
of oscillations found in the interior of Einstein-Yang-Mills
black hole solutions [49]. Presumably the appearance
of oscillations can be understood from the cosmological
point of view as an attractor arising because of a “restor-
ing force” that tends to align the cosmological rest frame
with any other preferred frame defined by the other (non-
metric) fields.

There is an important causal implication of these os-
cillations, namely, they imply that the concept of a
black hole survives in these theories, as we now explain
[50]. In æ-theory, the spin-0, spin-1, and spin-2 per-
turbations generally all travel at different speeds, and
we have assumed they are all greater than or equal to
the metric speed of light in order to satisfy the vacuum
Čerenkov constraints. Such perturbations could there-
fore escape from a metric horizon, although they might
have deeper causal horizons trapping them. The same
will hold for the spin-0 and spin-2 perturbations in the
low energy limit of HL gravity. However, the situation
is quite different when the full HL theory is considered,
i.e. when the higher order terms in L4 and L6 (and pre-
sumably the corresponding higher order spatial deriva-
tive terms for matter fields) are also taken into account.
Because these terms contain higher spatial derivatives,
short wavelength perturbations can travel at arbitrarily
high speed relative to the aether. This raises the possi-
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Figure 10: The aether’s boost angle θr = arccoshγr with re-
spect to the future-directed observer orthogonal to the hyper-
surfaces r = const, as a function of radius and inside the met-
ric horizon (r = rH). This is for æ-theory with c− = 0.0018,
c+ = 0.01.

bility that in HL gravity signals can always escape from
anywhere inside a black hole, in which case the concept of
black hole really would not survive at all in HL gravity.

However, even at infinite speed, signals cannot travel
backward in time, i.e. backward across the constant T
hypersurfaces which are orthogonal to the aether (9).
These hypersurfaces define a universal causal structure in
HL gravity, and in hypersurface-orthogonal aether con-
figurations. When the boost angle (55) vanishes, the
aether is orthogonal to a constant-r hypersurface r = rc,
which therefore coincides with a constant-T hypersur-
face. Events at r < rc (which lie to the future of rc)
therefore can have no influence on events at r > rc, so
signals are trapped within the radius rc [50]. In fact the
oscillatory behavior means that there are many such sur-
faces inside the black hole. In the examples shown in
Figs. 10-12, the first such surface occurs quite close to
the metric horizon, as measured by r. We refer to the
outermost such surface as the “universal horizon”.

The HL time function T therefore has a peculiar be-
havior in the black hole interior. A surface of constant
T that comes in from spatial infinity crosses the metric
horizon smoothly, but then, unlike the familiar Painlevé-
Gullstrand time coordinate, rather than running into the
singularity at r = 0 this surface dips down to the infi-
nite past, measured in the advanced time coordinate v,
at the universal horizon. This behavior of T happens de-
spite the fact that the aether vector and the geometry
are perfectly smooth all the way up to the singularity.
To understand what is happening, we note that spheri-
cal and time translation symmetry imply that T has the
form T (v, r) = h(v + f(r)), where f(r) is determined by
the metric and aether, and the function h is completely
arbitrary (other than that it be monotonic) on account
of the T -reparametrization symmetry of the theory, Eq.
(16). It turns out that the function f(r) diverges at the
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Figure 11: The same as in Fig. 10, but for æ-theory with
c+ = 0.99, c− = 0.01.

universal horizon (and at the similar surfaces inside it).
Thus, on a constant T surface, v → −∞ as the univer-
sal horizon is approached. Also, on an ingoing light ray
at constant v, the function T diverges unless h is chosen
properly. For instance, we could choose h to be minus the
inverse of f , in which case T remains finite and increasing
when approaching the universal horizon from the outside
at constant v.

A final important comment is that the solutions we
have been discussing apply only in the IR limit of HL
gravity, i.e. they neglect the effects of higher deriva-
tive terms in the HL action (17). Those terms will cer-
tainly strongly affect the solution in the black hole inte-
rior where the curvature becomes large. However, as re-
marked above, the universal horizon appears fairly close
to the metric horizon, in a region where one would expect
the IR limit of the theory to still be an excellent approxi-
mation for macroscopic black holes. Hence, there is good
reason to expect that sufficiently large black holes in the
full HL theory also possess a universal horizon.

VI. CONCLUSIONS

We have studied static, spherically symmetric, black-
hole solutions in Einstein-aether theory. These are also
solutions of the low-energy limit of Hořava–Lifshitz grav-
ity. We highlight below the most important steps in the
process of finding these solutions (setting aside technical
issues) and summarize their salient properties.

In general these spacetimes have both a metric hori-
zon and a horizon for the spin-0 mode of the aether, as
the latter travels at different speed than the speed of
light defined by the metric cone. The vacuum Čerenkov
constraint requires that the speed of the spin-0 mode be
greater than or equal to the speed of light, so we only
considered cases where the spin-0 horizon lies inside the
metric horizon. Additionally, we have imposed the con-
dition that the spin-0 horizon be regular, as this is what
is expected for black holes that form from gravitational
collapse.

Imposing this regularity condition and the condition
of asymptotic flatness leads to a one parameter family of
solutions for each set of the parameters of the theory. In
units where the horizon radius is 1 this yields a unique
solution for that set of theory parameters. We have gen-
erated this solution numerically. A crucial step towards
this has been the realization that a specific combination
of the field equations constitutes a set of constraint equa-
tions. Additionally, a suitable field redefinition has been
utilized in order to facilitate imposition of the condition
of regularity at the spin-0 horizon.

We have restricted attention to the regions of the
parameter space, both in Einstein-aether theory and
Hořava–Lifshitz gravity, where the following conditions
are satisfied: (i) stability and positive energy of all per-
turbations; (ii) avoidance of vacuum Čerenkov radiation;
(iii) exact agreement with the first post-Newtonian pre-
dictions of GR (vanishing preferred frame parameters).
(The regions of the parameter space where these condi-
tions are satisfied do not coincide for the two theories.)

We find that regular, asymptotically flat black-hole so-
lutions exist in all of the explored parameter regions sat-
isfying these observational constraints. In order to char-
acterize the solutions, we used three dimensionless quan-
tities that are in principle measurable by observations:
the product of the orbital frequency of the Innermost
Stable Circular Orbit (ISCO) with the gravitational ra-
dius, the maximum redshift of a photon emitted by a
source moving on the ISCO, and the ratio between the
impact parameter of the circular photon orbit and the
gravitational radius. As a fourth probe we used the ratio
between the gravitational radius and the horizon radius.

The deviations of these quantities from the values that
they have in general relativity are always quite small,
exceeding 10% (in Einstein-aether theory) and 3% (in
Hořava–Lifshitz gravity) only in restricted portions of
the parameter space. Therefore, they are expected to
be difficult, although perhaps not impossible, to detect
by electromagnetic observations such as accretion disk
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Figure 12: The same as in Fig. 10, but for HL gravity with
β = 0.4, µ = −1.8.

spectra, Iron Kα lines or gravitational lensing. However,
future gravitational-wave experiments, such as LISA,
would have more than sufficient accuracy to detect these
deviations from general relativity.

Last but not least, we considered the interior solution.
Inside the black hole the aether oscillates with respect to
the constant r surfaces, and there is a spacelike singular-
ity at r = 0. More importantly, it turns out that there
exists a universal horizon inside the metric and spin-0
horizons, i.e. a surface of constant r that is orthogonal
to the aether. No modes can escape from inside the uni-
versal horizon, even those satisfying modified dispersion
relations that could allow them to travel at arbitrarily
high speeds relative to the aether, as expected in Hořava–
Lifshitz gravity. The existence of this universal horizon
implies that the concept of a black hole, in the sense of a
region of spacetime where all signals are trapped, seems
to survive in these theories.
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Appendix: Quantities used to characterize the
solutions

The innermost stable circular orbit (ISCO) occurs at
the radius r = r

ISCO
where

−2rF ′2 + F (3F ′ + rF ′′) = 0. (A.1)

The ISCO frequency is

ω
ISCO

=

√
F ′

2r

∣∣∣∣∣
ISCO

. (A.2)

The redshift z = ν0/ν∞ − 1 of a photon emitted by a
source orbiting at the ISCO and measured at infinity is
given by

1 + z =
1− ωb√
F − ω2r2

∣∣∣∣
ISCO

, (A.3)

where b is the impact parameter of the photon, which is
defined as its angular momentum divided by its energy,
and which characterizes the direction of emission. For
instance, for a photon transverse to the orbit one has b =
0, while for photons emitted in the forward or backward
directions one has b = ±(r/

√
F )ISCO. The maximum

redshift zmax is therefore in the backward direction,

1 + zmax =
1 + ωrF−1/2

√
F − ω2r2

∣∣∣∣
ISCO

, (A.4)

and this is because the Doppler shift is maximized in this
case.

The circular photon orbit occurs at r = rph, where

−2F + rF ′ = 0. (A.5)

The impact parameter of the photon orbit is given by

bph =
r√
F

∣∣∣∣
ph

, (A.6)

while its frequency is ωph = 1/bph.
The relative Lorentz gamma factor between the aether

and the unit Killing energy observer at the horizon, which
corresponds to an observer that falls in radially from rest
at infinity, is

γff = uµu
µ
ff = AH +

1

4AH
, (A.7)

when the v coordinate is normalized so that F∞ = 1.
The relative gamma factor between the aether and the
unit (timelike) normal to the constant r surfaces inside
the metric horizon is

γr = − ur√
grr

(A.8)

from which we define the boost angle as θr = arccosh(γr).
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with Hořava-Lifshitz Gravity,” JHEP 0908, 015 (2009)
[arXiv:0905.2751];
A. A. Kocharyan, “Is nonrelativistic gravity possible?,”
Phys. Rev. D 80, 024026 (2009) [arXiv:0905.4204];
D. Blas, O. Pujolas and S. Sibiryakov, “On the
Extra Mode and Inconsistency of Horava Gravity,”
JHEP 0910, 029 (2009) [arXiv:0906.3046]; A. Wang
and R. Maartens, “Linear perturbations of cosmo-
logical models in the Horava-Lifshitz theory of grav-
ity without detailed balance,” Phys. Rev. D 81,
024009 (2010) [arXiv:0907.1748]; N. Afshordi, “Cuscu-
ton and low energy limit of Horava-Lifshitz gravity,”
Phys. Rev. D 80, 081502(R) (2009) [arXiv:0907.5201];
K. Koyama and F. Arroja, “Pathological behaviour
of the scalar graviton in Hořava-Lifshitz JHEP 1003,
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