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In dynamic spacetimes in which asymmetric gravitational collapse/expansion is

taking place, the timelike geodesic equation appears to exhibit an interesting prop-

erty: Relative to the collapsing configuration, free test particles undergo gravitational

“acceleration” and form a double-jet configuration parallel to the axis of collapse.

We illustrate this aspect of peculiar motion in simple spatially homogeneous cos-

mological models such as the Kasner spacetime. To estimate the effect of spatial

inhomogeneities on cosmic jets, timelike geodesics in the Ricci-flat double-Kasner

spacetime are studied in detail. While spatial inhomogeneities can significantly

modify the structure of cosmic jets, we find that under favorable conditions the

double-jet pattern can initially persist over a finite period of time for sufficiently

small inhomogeneities.
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I. INTRODUCTION

Astrophysical jets are generally associated with cosmic systems that have undergone

some form of gravitational collapse. In fact, the direction of the double-jet configuration

of high-energy outflows is commonly presumed to coincide with the axis of rotation of the

central gravitationally collapsed source. Similar double-jet patterns have been found in the

recent analytic studies of the motion of free test particles relative to comoving observers

in certain time-dependent solutions of Einstein’s gravitational field equations [1, 2]. In the

spatially homogeneous Kasner spacetime, for instance, gravitational collapse occurs along

one spatial axis, while there is expansion along the other two spatial axes. It can be shown

that free test particles exhibit peculiar acceleration up and down parallel to the collapse

axis leading to a double-jet configuration. Indeed, in time, peculiar velocities diminish to

zero along expanding directions and approach the velocity of light along the contracting

direction [2]. It is therefore worthwhile to investigate the robustness of these results in the

presence of spatial inhomogeneities as in the double-Kasner spacetime. We find that for

small inhomogeneities the double-jet feature involving peculiar acceleration indeed persists

over a finite time interval. Furthermore, in view of the current interest in “dark flow”, this

work contributes to the theoretical study of bulk flows associated with peculiar motions in

spatially inhomogeneous and anisotropic cosmological models.

Consider a spacetime in which the proper distance along one spatial axis decreases to zero

asymptotically (i.e., for t → ∞), while the proper distance along each of the other two spatial

axes tends asymptotically to infinity. Let us introduce a family of fundamental observers in

such a spacetime with four-velocity vector field Uµ = (−gtt)
−1/2δµ0 and orthonormal tetrad

field λµ
(α) with λµ

(0) = Uµ. We consider only positive square roots throughout. It is natural

to express the four-velocity vector of a free test particle, uµ = dxµ/dτ , with respect to the

fundamental observers via uµ = u(α)λµ
(α). Here τ is the proper time along the test particle’s

world line. Studying u(α) as a function of time, we have found that there are timelike

geodesics moving up and down parallel to the axis of collapse such that u(0), the Lorentz

factor of the free test particle relative to the observer family, tends to infinity as t → ∞.

The remarkable gravitational “acceleration” to the speed of light is an observer-independent

feature of the double-jet configuration. This feature was first demonstrated in a Ricci-flat

rotating cylindrically symmetric spacetime [1].
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The timelike geodesic equation in the spacetime of Ref. [1] has the structure of gravito-

magnetic jets; that is, there are special timelike geodesics for a fixed value of the cylindrical

radial coordinate that propagate along helical paths up and down parallel to the axis of

cylinder, which is also the axis of rotation for this gravitational field. The speeds of free

test particles that follow the special geodesics with respect to the fundamental observers

(that are spatially at rest) tend to the speed of light as t → ∞. Gravitomagnetic jets are

attractors.

We emphasize that in Ref. [1], the physical spacetime domain in which gravitomagnetic

jets occur is free of matter and singularities. The boundaries of this domain are excluded

due to the inadmissibility of circular cylindrical coordinates. It is most likely that without

cylindrical symmetry, an analytic treatment of gravitomagnetic jets would not have been

possible. Indeed, the main result—namely, the existence of a gravitational mechanism for

the acceleration of free test particles to the speed of light—has nothing to do with the

physical limitations of cylindrical symmetry. This follows from our recent study of cosmic

jets in Kasner spacetimes [2]; that is, we show that similar results hold for the standard

Kasner models of anisotropic cosmology.

The purely gravitational mechanism for jet formation that we describe in Ref. [2] works

as gravitational collapse is taking place; once a relatively stationary situation is established

after the collapse, our mechanism ceases to function. We expect that other, basically electro-

magnetic, mechanisms would then take over to maintain the jet that has just been formed.

More precisely, the various rays of high-energy particles that our gravitational mechanism

originally produces may get confined and collimated where magnetic fields are strong. The

initial double-jet configuration is then sustained over time by the various MHD mechanisms

that have been discussed in connection with astrophysical jets. The end result very much

depends on the MHD aspects of the astrophysical environment. Either our initial streams

of high-energy particles simply disperse via collisions every which way as cosmic rays or are

confined, collimated and sustained by the MHD environment, or a combination of both. The

central “engine”, in this approach, is whatever mechanism that sustains the jet in a given

environment.

In previous work on tidal dynamics [3–9], the relative behavior of a congruence of

geodesics has been studied. Moreover, tidal gravitational acceleration of ultrarelativistic

particles has been considered in a general context but via geodesic deviation within the
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small-deviation approximation [4–9]. To study tidal acceleration/deceleration, imagine a

congruence of timelike geodesics in a gravitational field; then, choosing one path in the con-

gruence as representing the world line of our reference observer, we can express the motion of

the other members of the congruence with respect to the local frame of the fiducial observer.

A naturally invariant description of relative motion can be obtained by establishing a Fermi

coordinate system in the neighborhood of the reference observer. The equation of motion of

a nearby geodesic with arbitrary relative velocity (less than c) with respect to the fiducial

observer is the generalized Jacobi equation. Indeed, the generalized Jacobi equation in a

Fermi system has been employed to illustrate the concept of “critical speed” given by c/
√
s,

where s = 2 for linearized gravity in Fermi normal coordinates—a review of this approach

is contained in Ref. [9]. This circumstance is compared in Ref. [9] with electrodynamics

(s = 1), and, as expected, it is found that the corresponding critical speed is c. When the

relative speed of the neighboring geodesics exceeds the critical speed c/
√
2 ≈ 0.7c, gravi-

tational tidal forces can behave in a manner that is contrary to Newtonian expectations.

This can lead, in certain circumstances, to the tidal acceleration of ultrarelativistic (i.e.,

v > c/
√
2) particles. The resulting gravitational acceleration mechanism has been exten-

sively discussed in the stationary exterior field of Kerr black holes in connection with the

speed of astrophysical jets [4–9]. Instead of a single fiducial observer involved in the spatial

neighborhood of free test particles, however, one can consider a whole family of observers

associated with the ambient medium that perform pointwise measurements along the path

of the free particles. That is, instead of tidal acceleration, we are interested here in peculiar

acceleration, namely, the acceleration of free test particles relative to the comoving observers

of the ambient medium. Hence, we adopt a completely different approach here; in the present

treatment, we deal with exact pointwise calculations within the context of certain specific

dynamic spacetimes. The critical speed turns out to be c in this exact treatment, which

proves to be formally similar to electrodynamics.

To see how this comes about, imagine an arbitrary timelike geodesic world line W with

unit tangent vector uµ = dxµ/dτ , where τ is the proper time along W. We use units such

that c = 1 in what follows; moreover, the signature of the metric is +2. Let Λµ
(α) be a

smooth orthonormal tetrad frame field associated with an arbitrary congruence of fiducial

observers. In particular, along W we can write uµ = u(α)Λµ
(α). Clearly, u(α) = uµΛµ

(α)

is coordinate independent, but it does depend on the background congruence of fiducial
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observers. In particular, any “acceleration” or “deceleration” that could be deduced from

the study of u(α) would depend on the background observers, since a geodesic particle has

indeed a vanishing acceleration vector; that is, Aµ = Duµ/dτ = 0. The covariant derivative

of uµ along W vanishes; hence,

du(α)

dτ
Λµ

(α) + u(α)DΛµ
(α)

dτ
= 0. (1)

The rate of variation of the tetrad frame along W can be expressed as

DΛµ
(α)

dτ
= Φ(α)

(β)Λµ
(β), (2)

where Φ(α)(β) is antisymmetric due to the orthonormality of the frame field. It follows from

Eqs. (1) and (2) that

du(α)

dτ
= Φ(α)

(β)u
(β). (3)

This result is formally analogous to the Lorentz force law. Just as electromagnetic acceler-

ation of charged particles can be investigated using the Lorentz force law, the gravitational

acceleration of free test particles relative to the congruence of reference observers can in

principle be studied using Eq. (3). At any given event along the geodesic, the other observer

families that one could imagine are related to the fiducial family by the elements of the

Lorentz group. It is therefore essential in the study of this type of gravitational “accelera-

tion” relative to an observer family to focus on observer-independent features. In fact, the

divergence of u(0), the Lorentz factor of the free test particle relative to the congruence un-

der consideration, along the trajectory is the observer-independent feature that is the main

focus of our work. That is, the measured speed of the test particle approaches the speed of

light and this is an invariant property that is independent of any observer as a consequence

of local Lorentz invariance. This divergence occurs in Ref. [1] and is the central feature of

gravitomagnetic jets.

In conformity with the standard practice in relativistic cosmology, in this work we consider

explicitly the motion of free test particles relative to the background comoving observers.

Moreover, in the simple examples that we study in this paper, instead of solving Eq. (3),

it is more convenient first to solve the geodesic equation for uµ and then investigate the

behavior of

u(α) = uµλµ
(α) := γ(1,v), (4)
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where v is the peculiar velocity of the free test particle relative to the family of fundamental

observers and γ is the corresponding Lorentz factor.

II. PECULIAR VELOCITIES

To illustrate the behavior of peculiar velocities in spatially homogeneous spacetimes,

consider a Bianchi type I model with a metric of the form

ds2 = −dt2 +X2dx2 + Y 2dy2 + Z2dz2, (5)

where X , Y and Z are functions of time t. This spacetime is spatially homogeneous with

three spacelike commuting Killing vector fields ∂x , ∂y and ∂z [10, 11].

The gravitational field equations are

Rµν −
1

2
gµνR = 8πGTµν , (6)

where Tµν is due to the presence of a perfect fluid with density ρ and pressure P ,

Tµν = (ρ+ P )UµUν + Pgµν , (7)

and the cosmological constant is assumed to be zero. It follows that in comoving coordinates

with Uµ = δµ0, we have

ẊẎ

XY
+

Ẏ Ż

Y Z
+

ŻẊ

ZX
= 8πGρ, (8)

Ÿ

Y
+

Z̈

Z
+

Ẏ Ż

Y Z
= −8πGP, (9)

Z̈

Z
+

Ẍ

X
+

ŻẊ

ZX
= −8πGP, (10)

Ẍ

X
+

Ÿ

Y
+

ẊẎ

XY
= −8πGP. (11)

Detailed discussions of the solutions of these equations for dust can be found, for instance,

in section 5.4 of Ref. [12] and section 12.15 of Ref. [13]. The timelike geodesics, each with

four-velocity uµ = dxµ/dτ , are such that the components of uµ along Killing vector fields

are constants; hence,

X2dx

dτ
= C1, Y 2 dy

dτ
= C2, Z2 dz

dτ
= C3, (12)
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where C1, C2 and C3 are constants of the motion. Moreover, since uµ is a unit vector, we

find,

dt

dτ
=

(

1 +
C2
1

X2
+

C2
2

Y 2
+

C2
3

Z2

)1/2

, (13)

where τ is assumed to increase with t along the world line.

When C1 = C2 = C3 = 0, we have uµ = Uµ, so that these timelike geodesics coincide

with the fundamental comoving observers. The orthonormal tetrad frame associated with

particles of the ambient perfect fluid (“fundamental observers”) is then given by λµ
(0) = Uµ

and

λµ
(1) = (0,

1

X
, 0, 0), λµ

(2) = (0, 0,
1

Y
, 0), λµ

(3) = (0, 0, 0,
1

Z
). (14)

We are interested in the peculiar velocity of a free test particle with (C1, C2, C3) 6= 0 relative

to the ambient medium. It then follows from Eq. (4) that γ = dt/dτ , which is given by

Eq. (13), and

γvx =
C1
X

, γvy =
C2
Y
, γvz =

C3
Z
. (15)

Let m > 0 be the mass of a free test particle and P(α) = mu(α) be its peculiar four-

momentum. It is a consequence of Eq. (15) that in general along the x axis, P(x) ∝ X−1,

and similarly along the y and z axes. As is well known, a similar relation holds in the

Friedmann-Lemaitre-Robertson-Walker (“FLRW”) models and expresses the law of decay

of peculiar velocities as the universe expands (see Appendix A). Suppose, however, that

along one axis—say, the x axis—the universe contracts such that X → 0; then, P(x) → ∞.

It follows that in this case the peculiar speed of the free test particle approaches the speed

of light. This issue will be treated in this section in a couple of special cases of interest.

Let us first consider the behavior of timelike geodesics in the standard Kasner metric [14]

ds2 = −dt2 +
( t

t0

)2p1
dx2 +

( t

t0

)2p2
dy2 +

( t

t0

)2p3
dz2, (16)

p1 + p2 + p3 = p21 + p22 + p23 = 1. (17)

This empty universe model is a solution of Eqs. (8)–(11) with ρ = P = 0. Here t0 is the

cosmic time at the present epoch. Henceforth, we will measure time in units of t0; therefore,

unless specified otherwise, we will formally set t0 = 1 in what follows. We assume that

p1 < p2 < p3; that is,

−1

3
≤ p1 ≤ 0, 0 ≤ p2 ≤

2

3
,

2

3
≤ p3 ≤ 1. (18)
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In this standard expanding anisotropic cosmological model [10, 15, 16], Cartesian coordi-

nates are admissible for t ∈ (0,∞), t = 0 at the cosmological singularity and (−g)1/2 = t.

Integrating dτ = dt/γ along a timelike geodesic in the Kasner spacetime and choosing the

integration constant such that τ = 0 at t = 0, we find that in general as t goes from 0 to

∞, τ monotonically increases from 0 to ∞ as well. Furthermore, as cosmic time t increases,

the Kasner universe contracts along the x axis while expanding along the y and z axes. It

follows that as t → ∞, vx → C1/|C1|, vy → 0 and vz → 0. However, for free test particles

with C1 = 0, v → 0 as t → ∞ . Thus in general—that is, except for a set of measure

zero—all timelike geodesics asymptotically form a double-jet configuration, relative to co-

moving observers, that is parallel to the axis of collapse. Moreover for t → 0, vx → 0 and

γ → ∞. Thus in general peculiar velocities diminish to zero along expanding directions and

increase up to the speed of light along contracting directions. These results are all the more

remarkable because—except for the sign of C1—they do not depend significantly on the ini-

tial conditions for geodesic motion. In particular, in expanding directions, the magnitudes

of the initial velocities of the free test particles do not affect the end result [2].

It is interesting to consider, in Kasner spacetime, null geodesics, each with tangent vector

kµ = dxµ/dζ , where ζ is an affine parameter along the path. Then, as before, we have that

t2p1
dx

dζ
= N1, t2p2

dy

dζ
= N2, t2p3

dz

dζ
= N3, (19)

where N1, N2 and N3 are constants of the null geodesic motion. From kµkµ = 0, we find

dt

dζ
= (N2

1 t
−2p1 +N2

2 t
−2p2 +N2

3 t
−2p3)1/2, (20)

where t is assumed to increase with ζ along the world line. It follows from an explicit

comparison of Eqs. (19)–(20) with the corresponding relations for timelike geodesics that

timelike geodesics approach null geodesics for t → ∞ as well as for t → 0; indeed, these

features have been discussed in detail in Ref. [2] in terms of the notions of speed-of-light

attractor and repellor, respectively.

Let us next turn to an examination of timelike geodesics in the Einstein-de Sitter model,

which is a solution of Eqs. (8)–(11) for P = 0 and ρ = 1/(6πGt2). The metric is

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (21)

where a(t) = (t/t0)
2/3 and t0 denotes the present cosmic epoch. The universe in this model

expands from a singular state at t = 0 to t = ∞. Similarly, along any timelike geodesic the
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proper time τ goes from τ = 0 to τ = ∞, once the integration constant is so chosen that

τ = 0 at t = 0. The peculiar momentum of a free particle, P(t), pointwise measured by

a comoving observer that the particle passes at cosmic epoch t, is proportional to 1/a(t).

Thus in time the peculiar velocities monotonically decay, so that the free particles tend to

a state of rest relative to the Hubble flow for t → ∞, while for t → 0, a → 0 and hence

γ → ∞.

There is a particularly simple way of illustrating peculiar acceleration in the case of the

Einstein-de Sitter universe. The idea is to display typical particle orbits using the standard

conformal time diagram representation (see, e.g., Ref. [17]). The conformal time η is defined

by the relation dt = a(t)dη. Then, η = 3t
2/3
0 t1/3, η0 = 3t0 and the metric can be expressed

in the form

ds2 = a2(η)[−dη2 + dr2 + r2(dθ2 + sin2θdφ2)], (22)

where a(η) = (η/η0)
2. We can focus on radial motion with respect to a fiducial fundamental

observer without loss of generality because of isotropy and homogeneity. As follows from

the above considerations, there is a constant of the motion given by

C = a2
dr

dτ
, (23)

where C2 = C2
1 + C2

2 + C2
3 , so that the special value C = 0 corresponds to the fundamental

comoving observers. Expressing Eq. (13) for this case in conformal time and using Eq. (23)

result in the equation for the orbits in the form

(

dη

dr

)2

= 1 + b2η4, (24)

where b = C−1η−2
0 . This is an elliptic equation which can be reduced to Weierstrass form by

using the auxiliary variables σ = η2 and u = br. Then σ(u) = ℘(u; h2, h3) is a Weierstrass

elliptic function which solves the equation

σ′(u)2 = 4σ(u)3 − h2σ(u)− h3 (25)

with h2 = −4b−2 and h3 = 0. Representative solutions for η(r) =
√

σ(br) are shown in

Fig. 1.

As can be understood from that figure, the fundamental observer congruence is stable in

the future direction and it is attracting a space-filling family of orbits. It is also apparent that
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FIG. 1: Conformal time diagrams of the Einstein-de Sitter model showing free particle orbits.

Lightlike geodesics would be at 45 degrees. Vertical lines are worldlines of fundamental observers.

The curved lines are examples of non-comoving free orbits. The behavior as t → 0 (corresponding to

η → 0) shows the (negative time) acceleration towards the speed of light relative to the fundamental

observers (or equivalently the homogeneous hypersurfaces). Left panel: Orbits corresponding to

one value of the parameter b are shown. Right panel: The family of orbits which is attracted to

the fiducial observer at r = 0 in the limit t → 0 is shown. These orbits have different values of b

corresponding to different initial distances from the fiducial observer.

there is no acceleration in that direction. In the past direction, the situation is essentially

the opposite, the flow is unstable and there is relative acceleration to the speed of light,

v → 1, as discussed above. In particular, in this case, the same family of orbits that is

attracted in the future direction is repelled in the past direction.

We note in the examples above that the proper time can be chosen to be zero, say, at t = 0,

so that the free particle encounters a curvature singularity when the peculiar acceleration

to the speed of light occurs at a finite proper time along the geodesic. This circumstance

appears necessary, since otherwise the geodesic could have been extended. The phenomenon

of peculiar acceleration to the speed of light may possibly be used as a way of characterizing

certain spacetime singularities. In short, if it occurs at a finite proper time of the relevant

geodesic, it implies that the geodesic cannot be continued to that limit and beyond. This

therefore indicates that the spacetime is timelike geodesically incomplete in the terminology
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of Ref. [12]. It is clear that the singularity is nontrivial in the sense that it cannot be removed

by extending the spacetime in some way. The more detailed nature of such a singularity is

an interesting question that is beyond the scope of the present investigation.

We have thus far considered peculiar velocities in simple spatially homogeneous cosmo-

logical models. In the rest of this paper, we study peculiar velocities in a simple spatially

inhomogeneous Kasner-like spacetime. It would be interesting to make a general study of

peculiar velocities in spatially inhomogeneous cosmological models, as cosmological inhomo-

geneities tend to mimic dark energy—see [18] and the references cited therein.

III. DOUBLE-KASNER SPACETIME

To investigate the occurrence of cosmic double-jet configurations in the process of gravi-

tational collapse, it is necessary to consider a realistic scenario involving a collapsing system.

However, the actual physical situation involving a collapsing configuration of matter is ex-

tremely complicated to model properly; therefore, it is useful to consider exact solutions

of Einstein’s field equations that exhibit this property. Imagine, for simplicity, the Kasner

metric (16) such that the metric coefficients also involve functions of spatial coordinates

(x, y, z). While in this case, at every point in space, simultaneous collapse and expansion do

occur along the spatial axes, they do so in a spatially inhomogeneous manner. This has the

consequence that along a timelike geodesic in such a spacetime, as t varies monotonically

with proper time τ by assumption, the peculiar motion involves metric functions that con-

tain x(τ), y(τ) and z(τ) as well. The influence of spatial inhomogeneities may then totally

dominate the collapse/expansion scenario. We show that this is indeed the case in certain

situations via a detailed examination of the geodesics of double-Kasner spacetime.

Consider, for simplicity, the diagonal spacetime metric

ds2 = −e2q0xdt2 + g21dx
2 + g22dy

2 + g23dz
2, (26)

where q0 is a constant parameter and for i = 1, 2, 3, we define

gi := eqixtpi, (27)

so that spatial inhomogeneity is introduced here via exponential dependence of the metric

coefficients upon the x coordinate. Here pi are constants satisfying Eq. (17) as before and
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qi are given by

q0 + q2 + q3 = q1, (28)

q20 + q22 + q23 = q21, (29)

q0(p2 + p3) = q2(p2 − p1) + q3(p3 − p1). (30)

The coordinates (t, x, y, z) in this double-Kasner spacetime satisfy Lichnerowicz admissibility

conditions once t ∈ (0,∞) and each spatial coordinate takes values in the open interval

(−∞,∞). There is a cosmological curvature singularity at t = 0 as in Kasner spacetime and

(−g)1/2 = t exp (2q1x); moreover, the spacetime contains two spacelike commuting Killing

vector fields ∂y and ∂z. The connection coefficients for metric (26) are given in Appendix B.

It is possible to show that this spacetime is Ricci-flat. Following the work of Kasner [14],

it is natural to look for solutions of Einstein’s field equations such that the metric tensor

depends only on two coordinates, such as, for instance, t and z. Assuming separability, such

two-variable Kasner-type Ricci-flat solutions were found and discussed in Ref. [19]. In our

case, the metric tensor depends on separable functions of t and x and is thus related to

solutions of Ref. [19]; in fact, it belongs to Case B of Harris - Zund solutions [19]. Moreover,

Harris and Zund showed that for normal parameters such solutions are algebraically general

(Petrov type I), just as in the Kasner case [19]. The present Harris - Zund solution, essentially

in the form of equations (26)–(30), was later given explicitly in Appendix 1 of Ref. [20].

Further discussion of such multi-variable solutions is contained in section 17.3 of Ref. [10].

It is a simple consequence of the algebraic relations (28)–(30) that if q0 = 0, then the

spacetime is either flat or Kasner. Moreover, if q1 = 0, then metric (26) simply reduces

to the standard Kasner metric. Thus we assume in what follows that q0 6= 0 and q1 6= 0.

Now let q̂0 = q0/q1, q̂2 = q2/q1 and q̂3 = q3/q1; then, it follows from Eqs. (28) and (29)

that the constants q̂ := (q̂0, q̂2, q̂3) satisfy the same algebraic relations given in Eq. (17) for

p := (p1, p2, p3) and can be parameterized in the same way. The relationship between p and

q̂, as discussed in detail in Appendix C, is marked by reciprocity. Once p is chosen, then

Eqs. (28)–(30) determine q̂, thus leaving the metric still dependent upon one free parameter

q1, which could be positive or negative. Now under the parity transformation x → −x,

the metric remains invariant if the q’s are replaced by −q’s, which leaves q̂ invariant; to

remove the ambiguity in the sign of q1 with no loss in generality, we assume henceforth that

q1 > 0. Moreover, we note that metric (26) is invariant under the exchange of y with z if
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simultaneously we exchange p2 with p3 and q2 with q3. This exchange invariance will be

used in what follows.

It is useful to introduce a dimensionless radial coordinate ξ defined by

eq1x = ξ, (31)

so that as x ∈ (−∞,∞), we have ξ ∈ (0,∞). Under such a transformation, metric (26)

takes the form

ds2 = −ξ2q̂0dt2 +
1

q21
t2p1dξ2 + ξ2q̂2t2p2dy2 + ξ2q̂3t2p3dz2. (32)

We recall that Kasner metric (16) is the standard timelike form of the Kasner solution, while

its spacelike form may be written as [17]

ds2 = −x2p1dt2 + dx2 + x2p2dy2 + x2p3dz2. (33)

Here, Cartesian coordinates are admissible for x ∈ (0,∞), x = 0 is a curvature singu-

larity and (−g)1/2 = x. It follows that double-Kasner metric (32) is indeed a nonlinear

superposition of the timelike and spacelike forms of the Kasner metric. In the form (32),

the double-Kasner metric belongs to Case A of the Harris - Zund classification [19]. We

note that certain other “double-Kasner” metrics have also been considered in Ref. [21] and

Ref. [22]; in the former, in spacetimes of lower symmetry and in the latter, in 5D spacetime.

In the Kasner case, the three parameters cannot all be equal. If two are equal, then either

p = (1, 0, 0), in which case the spacetime is flat or p = (−1/3, 2/3, 2/3), which corresponds

to the non-flat plane-symmetric case. Otherwise, the three parameters are all different and

take values within the open interval (−1/3, 1), with one negative and two positive. Let us

now consider in a similar way metric (32) by treating the special cases of p and q̂. We first

notice that p and q̂ cannot be equal in curved spacetime. That is, p = q̂ leads to p1 = 1 or

q̂0 = 1 or indeed both, since with p = (1, 0, 0), we find q̂ = (1, 0, 0); then, in terms of the

radial coordinate ξ defined in Eq. (31), the double-Kasner metric reduces in this case to

ds2 = −ξ2dt2 +
1

q21
t2dξ2 + dy2 + dz2, (34)

which turns out to represent flat spacetime. Let us briefly digress here and mention a

generalization of this case such that p1 = q̂0; indeed, it can be shown that for a non-flat

spacetime, we must in general assume that p1 6= q̂0. For instance, a double-Kasner spacetime
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with p = (0, 1, 0) and q̂ = (0, 0, 1) is flat. The other five special cases are not flat and can

be expressed as:

1. p = (0, 1, 0), q̂ = (
2

3
,
2

3
,−1

3
), (35)

2. p = (−1

3
,
2

3
,
2

3
), q̂ = (

3

7
,
6

7
,−2

7
), (36)

3. p = (
2

3
,−1

3
,
2

3
), q̂ = (

6

7
,−2

7
,
3

7
), (37)

4. p = (
3

7
,
6

7
,−2

7
), q̂ = (−1

3
,
2

3
,
2

3
), (38)

5. p = (
6

7
,−2

7
,
3

7
), q̂ = (

2

3
,−1

3
,
2

3
). (39)

Here we have taken into account the exchange invariance as well as the fact that q0 6= 0 and

that for a non-flat spacetime q0 6= q1.

Finally, let us note that there is a homothetic Killing vector field here just as in Kasner

spacetime. We recall that in the non-flat case, p1 6= 1 and q0 6= q1. Consider the coordinate

transformation (t, x, y, z) → (t̃, x̃, ỹ, z̃) given by

t = eω0 t̃, x = x̃+ ω1, y = eω2 ỹ, z = eω3 z̃, (40)

where ω0 is a constant parameter and

ω1 =
1− p1
q1 − q0

ω0, (41)

ω2 = (q0 − q2)ω1 + (1− p2)ω0, (42)

ω3 = (q0 − q3)ω1 + (1− p3)ω0. (43)

Then metric (26) changes only by a constant factor, namely,

ds2 = e2(ω0+q0ω1)ds̃2. (44)

The homothetic generator can be easily deduced from the above considerations.

IV. SINGULARITIES OF THE DOUBLE-KASNER SPACETIME

A Ricci-flat spacetime has four algebraically independent scalar polynomial curvature

invariants. They can be expressed as (cf. chapter 9 of [10])

I1 = RµνρσR
µνρσ − iRµνρσR

∗µνρσ, (45)

I2 = RµνρσR
ρσαβRαβ

µν + iRµνρσR
ρσαβR∗

αβ
µν . (46)
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For the double-Kasner spacetime represented by metric (26), I1 and I2 are both real and

are given by

I1 = −16p1p2p3t
−4ξ−4q̂0 − 16q0q1q2q3t

−4p1ξ−4 − 8q21t
−2(1+p1)ξ−2(1+q̂0)K(p, q̂), (47)

I2 = 48p21p
2
2p

2
3t

−6ξ−6q̂0 − 48q20q
2
2q

2
3t

−6p1ξ−6

+ 24q41t
−2(1+2p1)ξ−2(2+q̂0)L1(p, q̂)− 24q21t

−2(2+p1)ξ−2(1+2q̂0)L2(p, q̂). (48)

Here we have employed the radial variable ξ defined in Eq. (31); moreover, to simplify

the above invariants for the double-Kasner spacetime, we have made extensive use of the

relations given in Appendix C. The expressions for K, L1 and L2 are in general complicated

and are given in Appendix D.

Double-Kasner spacetime is a nonlinear superposition of two different Kasner spacetimes

that are usually characterized as timelike and spacelike—cf. Eq. (32), where we temporarily

set q1 = 1. We note that for the standard timelike Kasner spacetime,

I1 = −16p1p2p3t
−4, I2 = 48p21p

2
2p

2
3t

−6. (49)

Similarly, for the spacelike Kasner spacetime,

I1 = −16q̂0q̂2q̂3ξ
−4, I2 = −48q̂0

2q̂2
2q̂3

2ξ−6. (50)

These invariants can be recognized as the components in the “nonlinear superpositions”

given in Eqs. (47) and (48).

It follows from these curvature invariants that the double-Kasner spacetime has curvature

singularities at t = 0 and ξ = 0, as expected. These can be generally characterized as

spacelike and timelike, respectively. Moreover, it follows from Eqs. (47) and (48) that for

p1 < 0, there is an additional curvature singularity at t = ∞; similarly, for q̂0 < 0, there

is an additional curvature singularity at ξ = ∞. It is important to note that the physical

spacetime domain under consideration in this paper is free of any singularities; in fact,

curvature singularities occur at the boundaries of the admissible intervals of t and ξ.

V. TIMELIKE GEODESICS

We consider a free test particle with four-velocity vector uµ = dxµ/dτ as before. The

component of this vector along a Killing vector field is a constant of the motion; there-

fore, g22dy/dτ = C2 and g23dz/dτ = C3, where C2 and C3 are integrals of geodesic motion.
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Moreover, we find from uµu
µ = −1 that

eq0x
dt

dτ
=

[

1 + g21(
dx

dτ
)2 +

C2
2

g22
+

C2
3

g23

]1/2

, (51)

where we have assumed that t increases with τ along the geodesic world line. The geodesic

equation for x can be written as

d2x

dτ 2
+ 2

p1
t

dt

dτ

dx

dτ
+ (q1 + q0)(

dx

dτ
)2 =

1

g21

[

− q0 + (q2 − q0)
C2

2

g22
+ (q3 − q0)

C2
3

g23

]

. (52)

Here we have used Eq. (51) as well as the connection coefficients for metric (26) given in

Appendix B. It is useful to define a new function W given by

W = t2p1e(q1+q0)x
dx

dτ
. (53)

Then the autonomous system of equations that we must numerically integrate is

dt

dτ
= e−q0x

[

1 + e2(q1−q0)x
W 2

g21
+

C2
2

g22
+

C2
3

g23

]1/2

, (54)

dx

dτ
= e(q1−q0)x

W

g21
,

dy

dτ
=

C2

g22
,

dz

dτ
=

C3

g23
, (55)

dW

dτ
= e−(q1−q0)x

[

− q0 + (q2 − q0)
C2

2

g22
+ (q3 − q0)

C2
3

g23

]

. (56)

Let us now imagine the fundamental observers in this spacetime with tetrad field λµ
(α),

where for i = 1, 2, 3,

λµ
(i) =

1

gi
δµi, λµ

(0) = e−q0xδµ0. (57)

It follows that the Lorentz factor of the free particle γ and its velocity v as measured by the

fundamental observers are given in terms of the system (54)–(56) by

γ = eq0x
dt

dτ
(58)

and

γvx = g1
dx

dτ
, γvy = g2

dy

dτ
, γvz = g3

dz

dτ
. (59)

If the q’s all vanish, W = C1 is a constant and system (54)–(56) reduces to the timelike

geodesic equation for the standard Kasner spacetime, as expected. In that case, one of the

p’s is negative (“collapse”) and the other two are positive (“expansion”), resulting in an

asymptotic double-jet pattern along the direction of collapse. However, the situation is gen-

erally different for the spatially inhomogeneous double-Kasner spacetime with nonvanishing

q’s as demonstrated by the following numerical results.
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VI. NUMERICAL RESULTS

In integrating the system of equations (54)–(56), we must first fix the p’s, q’s and the

specific momenta along the y and z directions given respectively by C2 and C3. Starting

from initial conditions at τ = 0 specified by t(0) = t0 = 1, x(0) = x0, y(0) = 0, z(0) = 0 and

W (0) = W0, we numerically integrate forward in proper time such that t → ∞ and backward

to t = 0. Let us note that in our dynamical system, the equations for t(τ), x(τ) andW (τ) are

the primary coupled ordinary differential equations. This is due to translational invariance

along the y and z directions; moreover, we can always choose the initial values of y and z

at the origin of (y, z) plane without any loss in generality.

There are an infinite number of possible choices of p’s and q’s; once p is chosen, the two

possible q̂ vectors can be algebraically determined, as discussed in Appendix C. We then

define q0 = q̂0ǫ, q1 = ǫ, q2 = q̂2ǫ and q3 = q̂3ǫ. Here, ǫ is dimensionless, since ǫ = ct0q1 and

c = t0 = 1 in accordance with our Kasner conventions; in fact, ǫ ∈ [0,∞) is such that for

ǫ = 0 we recover the standard timelike Kasner metric. Thus ǫ is a measure of how close

the double-Kasner metric is to the original Kasner metric; moreover, ǫ−1 is a parameter

that represents the extent of spatial inhomogeneities in the x direction. It is important

for the theory of cosmic double-jet configurations to recognize that for sufficiently small

ǫ, 0 < ǫ << 1, general continuity arguments connect the double-Kasner geodesics to the

Kasner geodesics over finite intervals of proper time. The primary autonomous differential

equations can be expressed as

dt

dτ
= ξ−q̂0

[

1 +W 2t−2p1ξ−2q̂0 + C2
2 t

−2p2ξ−2q̂2 + C2
3 t

−2p3ξ−2q̂3
]1/2

, (60)

dξ

dτ
= ǫWt−2p1ξ−q̂0, (61)

dW

dτ
= −ǫξ q̂0−1

[

q̂0 + (q̂0 − q̂2)C
2
2 t

−2p2ξ−2q̂2 + (q̂0 − q̂3)C
2
3 t

−2p3ξ−2q̂3
]

; (62)

furthermore, dy/dτ = C2t
−2p2ξ−2q̂2 and dz/dτ = C3t

−2p3ξ−2q̂3. For W 6= 0, the primary

differential equations can also be written as

dt

dξ
=

tp1ξ−q̂0(W 2 + U)1/2
ǫW

, (63)

d

dξ
W 2 = −∂U(t, ξ)

∂ξ
, (64)
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where U is given by

U(t, ξ) = t2p1ξ2q̂0(1 + C2
2 t

−2p2ξ−2q̂2 + C2
3 t

−2p3ξ−2q̂3). (65)

Equation (64) can be simplified in certain situations, thereby leading to the application of

the effective potential method in one-dimensional motion—see, for instance, Eqs. (67) and

(68) in Case 1 below.

The autonomous system of ordinary differential equations for timelike geodesics has sin-

gularities at t = 0 and ξ = 0. The family of solutions of this system depends continuously on

proper time τ as well as the parameter ǫ. These solutions converge uniformly to the solution

with ǫ = 0 on every finite time interval. That is, once a finite interval of proper time is

chosen, then for a sufficiently small ǫ, the geodesics of double-Kasner spacetime behave as

the geodesics of Kasner spacetime at least up to the end of this fixed time interval.

We are interested in the main characteristics of peculiar motion in the double-Kasner

spacetime; therefore, it is useful to mention for future reference that in terms of the radial

coordinate ξ,

γvx = Wt−p1ξ−q̂0, γvy = C2t
−p2ξ−q̂2, γvz = C3t

−p3ξ−q̂3. (66)

A complete numerical analysis of timelike geodesic motion in the double-Kasner spacetime

is beyond the scope of our investigation. To simplify matters, we therefore limit our attention

to the five special cases listed in Eqs. (35)–(39), which will be treated in turn below. We hope

that our approach captures the main features of peculiar motion that could be of interest

in connection with cosmic jets.

A. Case 1: p = (0, 1, 0) and q̂ = (23 ,
2
3 ,−1

3 )

The temporal dependence of the metric in this special case simply consists of expansion

along the y axis; moreover, the corresponding curvature invariants considered in Sec. IV

essentially reduce to those of the spacelike form of the Kasner metric. In fact, theses curva-

ture scalars are given in Case 1 by q41I1 and q61I2, where I1 and I2 are the spacelike Kasner

invariants given in Eq. (50).

Numerical experiments involving forward integration in time indicate in this case the

dominant attractive character of the timelike singularity at ξ = 0 corresponding to x = −∞.
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In finite proper time, all timelike geodesics appear to approach this singularity with a peculiar

velocity that approaches the velocity of light. To see this analytically, let us find dW/dξ

from Eqs. (61) and (62). In this case, the result is

−W
dW

dξ
=

2

3
ξ

1

3 + C2
3ξ. (67)

Numerical experiments indicate that ξ = 0 at t = ts > 1, τ = τs > 0 and W = Ws < 0.

Integrating Eq. (67), we find

W 2 + (ξ
4

3 + C2
3ξ

2) = W 2
s . (68)

It follows that if W0 > 0 at ξ(0) > 0, then a free test particle will move such that its x

component of motion monotonically increases and W monotonically decreases until x, or

equivalently ξ, reaches its maximum value where W = 0. At this point, the test particle

stops along the x axis and changes direction such that subsequently W < 0 and the particle

falls toward the timelike singularity at ξ = 0. It then follows from Eq. (66) that

γ = ξ−
2

3

(

W 2
s +

C2
2

t2

)1/2

(69)

and as ξ → 0, γ → ∞ and

vx → − ts|Ws|
(C2

2 + t2sW
2
s )

1/2
, vy →

C2

(C2
2 + t2sW

2
s )

1/2
, vz → 0, (70)

so that v → 1.

Using Eq. (68), it is possible to reduce the differential equations for the world line to

quadratures in this case. It then follows from these results in the case of backward integration

in time that as t → 0, ξ approaches a finite nonzero number and

vx → 0, vy →
C2

|C2|
, vz → 0. (71)

Indeed, it is clear from Eq. (69) in this case that γ → ∞ as t → 0. It is important

to recall here that the results for geodesic motion in the spatially inhomogeneous double-

Kasner spacetime are not in general expected to be consistent with the general notion,

developed for spatially homogeneous spacetimes in Sec. II, that peculiar velocities decrease

to zero along expanding directions and increase up to the speed of light along contracting

directions. However, throughout this section, our numerical results for backward integration

in time generally agree with those in Kasner spacetime, since ξ generally approaches a finite
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nonzero value as t → 0. To see the influence of spatial inhomogeneities on peculiar velocities,

we henceforth concentrate on forward temporal integration.

These analytic results illustrate a feature that is ubiquitous in the numerical results of

forward integration in the other cases as well, except for Case 4, where q̂0 < 0. Therefore,

let us assume that q̂0 > 0 and we set C2 = C3 = 0 for the sake of simplicity. As we integrate

forward from τ = 0, we soon encounter the ξ = 0 singularity at t = ts > 1, τ = τs > 0 and

W = Ws < 0. Thus near ξ = 0, under the square root in Eq. (60), we can neglect the first

term (i.e., unity) in comparison to the second; hence,

dt

dτ
≈ −Wt−p1ξ−2q̂0, (72)

dξ

dτ
= ǫWt−2p1ξ−q̂0. (73)

Thus,
dξ

dt
≈ −ǫt−p1ξ q̂0. (74)

Integrating this relation near the singularity results in

ξ1−q̂0 ≈ ǫ(1− q̂0)t
−p1
s (ts − t). (75)

Similarly consistent results can be obtained for τ and W near the singularity. From Eq. (66),

we find that as ξ → 0, γ diverges; indeed, near ξ = 0,

γ ≈ (−Wst
−p1
s )ξ−q̂0, (76)

so that vx → −1, since vy = 0 and vz = 0.

For the sake of completeness, it is important to compare and contrast here the timelike

motion of a test particle along the x direction, discussed above, with that of a light ray.

The equation of motion of the light ray follows from Eq. (32) and ds2 = 0, namely, dξ/dt =

±ǫt−p1ξ q̂0. We find that if the light ray is initially moving along the positive x direction,

then integrating the equation of motion with the upper sign implies that it will continue to

do so and x → ∞ as t → ∞. On the other hand, if the light ray is initially moving in the

negative x direction, then integrating the equation of motion with the lower sign implies

that it reaches the singularity at x = −∞ in a finite interval of time, essentially as in the

treatment presented above.
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B. Case 2: p = (−1
3 ,

2
3 ,

2
3 ) and q̂ = (37 ,

6
7 ,−2

7)

This case is particularly interesting as the direction of collapse coincides with the direc-

tion of spatial inhomogeneities in the double-Kasner spacetime. Thus for sufficiently small

ǫ, we expect that test particles following timelike geodesics would exhibit a double-jet con-

figuration parallel to the x axis as in Kasner spacetime. This turns out to be true only if we

limit our considerations to finite intervals of proper time. Beyond that, the singularity at

ξ = 0 is expected to dominate the motion as discussed in Case 1. This duality has interesting

consequences to which we now turn.

Let us first recall that for ǫ = 0, free test particles with nonzero peculiar velocity form an

asymptotic Kasner double-jet pattern parallel to the x axis as t → ∞. To simplify matters,

we assume that C2 = C3 = 0, so that we have geodesic motion only in the x direction.

Moreover, let us suppose that ǫ, 0 < ǫ << 1, is fixed. Then, a free test particle with a

positive peculiar velocity characterized by W0 > 0 is expected to move along the positive x

direction and experience peculiar acceleration just as in the Kasner spacetime. Numerical

experiments show that this is indeed the case, as illustrated in figure 2, but that peculiar

acceleration along the positive x axis later changes to deceleration. The particle decelerates

for a while until it stops (γ = 1) at a finite proper time and reverses course, moving along

the negative x direction until it eventually reaches the singularity x = −∞ (ξ = 0) after a

long but finite proper time with its peculiar speed approaching unity (γ → ∞). To see how

this comes about, we note that Eq. (62) can be written in this case as

dW

dτ
= −3

7
ǫξ−

4

7 . (77)

Let us define a new parameter τ ′ along the geodesic world line such that dτ ′ = ξ−4/7dτ , so

that τ ′ increases with proper time τ along the path. It follows from Eq. (77) that −dW/dτ ′ is

a positive constant that is much less than unity; therefore, W monotonically decreases along

the path. This means that even when W is initially positive, W0 > 0, it will eventually turn

negative in finite proper time and then the general argument presented in Eqs. (72)–(76)

can be employed to show that the free test particle should stop at some time and then fall

back toward the dominant singularity at x = −∞. An example of this general behavior is

given in Fig. 2 for W0 = 1. If W0 is negative, the corresponding test particle simply moves

along the negative x direction and inevitably ends up at the x = −∞ (ξ = 0) singularity
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with its peculiar velocity approaching the velocity of light, in accordance with the analysis

contained in Eqs. (72)–(76).

When we allow C2 and/or C3 to be nonzero, the motion is in general more complicated

due to the extra degrees of freedom; in fact, an interesting oscillatory behavior can in general

occur that will be discussed in the last part of this section.

We conclude that even when spatial inhomogeneities are turned on, as in the double-

Kasner spacetime, the Kasner double-jet pattern can survive over a finite time interval

under favorable circumstances, but it is then significantly modified by the presence of spatial

inhomogeneities.

Finally, backward numerical integration in the case under consideration in this subsection,

namely, x0 = 0,W0 = 1 and C2 = C3 = 0, is consistent with the result that as t → 0, γ → 1

and vx → 0, while vy = vz = 0 by assumption. That is, the motion is in this case confined

to the x direction, which expands as t → 0 and, as expected, we find that vx → 0. The

same result can be obtained from a straightforward mathematical analysis of our dynamical

system near t = 0. The geodesic equations of motion are simplified by considering the

dominant terms for t → 0; in fact, this can be done for all the subsequent cases discussed in

this section.

C. Case 3: p = (23 ,−1
3 ,

2
3) and q̂ = (67 ,−2

7 ,
3
7)

In this case, the Kasner limit (for ǫ = 0) involves a double-jet pattern along the y axis.

Following our general approach, we set ǫ = 10−3 and numerically integrate the equations of

motion forward in time with x0 = 0, W0 = 0, C2 = ±1 and C3 = 0. As expected, the result

of the integration is similar to the Kasner case over a certain initial time interval, but later

the motion along the negative x direction toward the timelike singularity at x = −∞ takes

over and γ tends to infinity. That is, as ξ → 0, v2x + v2y → 1, while vz = 0. The situation

in the descent toward the singularity is essentially analogous to the analysis contained in

Eqs. (72)–(76) for q̂0 > 0. The numerical results for γ are presented in Fig. 3.

When we numerically integrate the equations of motion backward in time, we find that

as t → 0, vx → 1, vy → 0, while vz = 0. Thus γ → ∞ and the peculiar velocity of a free test

particle approaches the velocity of light toward the cosmological singularity at t = 0. This

conclusion is in agreement with a detailed theoretical analysis of the equations of motion in
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FIG. 2: Plot of the Lorentz factor γ versus proper time τ for the peculiar motion of a free test

particle along the x direction in Case 2. The initial conditions at τ = 0 are x0 = 0 and W0 = 1;

moreover, ǫ = 10−3 and C2 = C3 = 0. Thus at τ = 0 we have γ =
√
2 ≈ 1.4. The figure shows

that the initial peculiar acceleration reaches a peak around τ = 50 and then turns to deceleration.

Further numerical integration shows that the particle eventually stops at around τ = 50000, reverses

course and accelerates toward the ξ = 0 singularity with γ → ∞.
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FIG. 3: Plot of the Lorentz factor γ versus proper time τ for the peculiar motion of a free test

particle in the (x, y) plane in Case 3. Note that initially γ =
√
2 ≈ 1.4 at ξ = 1, but in time γ → ∞

as the ξ = 0 singularity is approached. The initial conditions at τ = 0 are x0 = 0 and W0 = 0;

moreover, ǫ = 10−3, C2 = ±1 and C3 = 0.

Case 3 near t = 0.
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D. Case 4: p = (37 ,
6
7 ,−2

7) and q̂ = (−1
3 ,

2
3 ,

2
3)

This case is qualitatively different from the other cases as q̂0 < 0, which means that an

analysis similar to that contained in Eqs. (72)–(76) for forward integration does not apply

here; that is, forward integration in time is not dominated by the singularity at ξ = 0. The

Kasner limit (for ǫ = 0) involves a double-jet pattern along the z axis, which we expect

can persist here for a finite interval of time when ǫ is sufficiently small. Our numerical

experiments indicate similar qualitative behavior for ǫ ∼ 10−3 as for ǫ ∼ 1. Therefore, we

set ǫ = 1 and integrate the equations of motion forward in time with x0 = 0, W0 = 0,

C2 = 0 and C3 = ±1. The initial peculiar acceleration later turns to deceleration until

the peculiar velocity of a free test particle approaches a constant terminal velocity vector

whose magnitude is always less than the speed of light. The corresponding behavior of γ is

presented in Fig. 4. If the initial value of W is negative, W0 < 0, the free test particle’s

initial movement along the negative x direction comes to a halt after a while, the particle

reverses course and, as before, approaches ξ = ∞ with a terminal peculiar speed that is less

than unity. The existence of the turning point in this case appears to imply that there is

a barrier blocking the particle’s access to the ξ = 0 singularity. For large ξ, ξ → ∞, the

asymptotic behavior of the equations of motion can be worked out in this case, and we find

that t ∼ ξ7/3, τ ∼ ξ2 and W ∼ ξ2/3.

Let us recall here that when q̂0 > 0, the only timelike singularity is the one at ξ = 0. This

strongly attracts free test particles, which can reach ξ = 0 in finite values of proper time.

When q̂0 < 0, however, there is an additional timelike singularity at ξ = ∞. Indeed, our

numerical results in this case seem to indicate that the new singularity at ξ = ∞ is dominant

for q̂0 < 0, while the ξ = 0 singularity is inactive. Moreover, the ξ = ∞ singularity seems to

be somehow weaker in terms of its attractive character: free test particles approach ξ = ∞
with proper times that go to infinity and terminal peculiar speeds that are less than the

speed of light.

This case brings out a certain generic behavior of timelike geodesics for q̂0 < 0. To

illustrate this point, let us set C2 = C3 = 0 for the sake of simplicity and assume that as

ξ → ∞, the asymptotic behaviors of t, τ and W are given by

t ∼ ξκ1, τ ∼ ξκ2, W ∼ ξκ3. (78)

A detailed analysis of the autonomous system (60)–(62) reveals that this assumption is valid
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FIG. 4: Plot of the Lorentz factor γ versus proper time τ in Case 4. The initial conditions at τ = 0

are x0 = 0 and W0 = 0; moreover, ǫ = 1, C2 = 0 and C3 = ±1. Note that γ is initially
√
2 ≈ 1.4

and approaches a finite terminal value as τ → ∞.

with κ1, κ2 and κ3 all positive and given by

κ1 =
1− q̂0
1− p1

, κ2 = 1 + p1κ1, κ3 = q̂0 + p1κ1. (79)

Moreover, it is possible to show that the motion along the x direction reaches a terminal

peculiar speed as ξ → ∞ with Lorentz factor γ∞,

γ∞ =
(

1− q̂0
κ3

)1/2

. (80)

The result of the integration of the equations of motion backward in time is that as t → 0,

vx → −1, vy = 0 and vz → 0. This means that the peculiar velocity of a free test particle

approaches the velocity of light and γ → ∞ as t → 0. This result is consistent with a

detailed analytic treatment of the equations of motion in this case near t = 0.

E. Case 5: p = (67 ,−2
7 ,

3
7 ) and q̂ = (23 ,−1

3 ,
2
3 )

It is interesting to point out that if in this case we switch p and q̂, we get Case 3. There

is a similar connection between Cases 2 and 4. Case 1 stands alone, however, since switching

p and q̂ in this case leads to Kasner spacetime.

Let us note that the Kasner limit (ǫ = 0) in this case involves a double-jet pattern along

the y axis, as in Case 3. Therefore, just as in Case 3, we set ǫ = 10−3 and integrate the

equations of motion forward in time with x0 = 0, W0 = 0, C2 = ±1 and C3 = 0. Though
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the details are different, the end result of forward integration is qualitatively the same as in

Case 3; in fact, this is also the case when we integrate the equations of motion backward in

time toward t = 0.

F. Concluding Remarks

We conclude this section with some general observations. Starting from the present

cosmic epoch t = t0 = 1 and integrating the geodesic equations backward to t = 0, we have

found that the behavior of double-Kasner peculiar velocities near the cosmological singularity

is essentially the same as in Kasner spacetime. Therefore, we turn to forward integration

(t : 1 → ∞). Here, beyond the initial Kasner double-jet configuration, our limited numerical

results for late-time peculiar motion in the double-Kasner spacetime depend significantly

on whether q̂0 is positive or negative. For q̂0 > 0, there seems to be a strong source of

gravitational attraction at the timelike curvature singularity ξ = 0. We note that for the

double-Kasner metric, gtt = −ξ2q̂0, so that gtt → 0 as ξ → 0 for q̂0 > 0. In this limit,

furthermore, the peculiar velocity approaches the velocity of light. On the other hand, for

q̂0 < 0, gtt → 0 as ξ → ∞; in this case, ξ = ∞ also happens to be a timelike curvature

singularity according to the results of Sec. IV. Qualitatively, for q̂0 < 0, the ξ = 0 singularity

is somehow inactive and the dominant attractive influence is exerted by the singularity at

ξ = ∞, which results in uniform peculiar motion at late times (τ → ∞ and ξ → ∞).

To find an explanation for this type of late-time behavior, we must turn to the other

half of the double-Kasner geometry. Let us recall here that the double-Kasner solution

is a certain nonlinear superposition of the standard timelike Kasner solution (16) and the

spacelike Kasner solution given by

ds2 = −ξ2q̂0dt2 + dξ2 + ξ2q̂2dy2 + ξ2q̂3dz2. (81)

This is a static Ricci-flat solution of general relativity with commuting Killing vector fields ∂t,

∂y and ∂z. The admissibility conditions restrict the radial coordinate ξ such that ξ ∈ (0,∞);

moreover, there exists a curvature singularity at ξ = 0. The motion of a free test particle

in this spacetime is such that the components of the four-velocity vector of the particle uµ

along the Killing vectors are constants of the motion; that is, u · ∂t = −E0, u · ∂y = E2 and

u · ∂z = E3. Here E0 > 0 is the constant specific energy of the particle, while, as before,
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E2 and E3 are constant specific momenta. The geodesic equation of motion for the radial

coordinate ξ of the test particle then follows from u · u = −1; that is,

(dξ

dτ

)2

+ V(ξ) = −1, (82)

where V is the effective potential given by

V(ξ) = − E2
0

ξ2q̂0
+

E2
2

ξ2q̂2
+

E2
3

ξ2q̂3
. (83)

For q̂0 > 0, the effective potential is such that the motion can be either confined within

the interval (0, ξmax] and may then be described as a “fall” toward ξ = 0, or it can be

oscillatory within the interval [ξmin, ξmax]. Here ξmin and ξmax are turning points such that

0 < ξmin < ξmax, or the turning points could coincide, in which case ξ would be fixed at the

minimum of the effective potential. Only the fall toward the curvature singularity ξ = 0

is available for E2 = E3 = 0. On the other hand, for q̂0 < 0, the effective potential for

ξ : 0 → ∞ is monotonically decreasing from +∞ to −∞, so that radial motion in ξ is

confined within the interval [ξmin,∞) and may be described as “escape” to infinity. These

possibilities for radial motion may be compared and contrasted with geodesic motion in

exterior Schwarzschild spacetime. Furthermore, we note that ∂t · ∂t = −ξ2q̂0, so that the

timelike Killing vector becomes null at the endpoints that we have discussed here: the

curvature singularity ξ = 0 for q̂0 > 0 and ξ = ∞ for q̂0 < 0.

It remains to discuss the possibility of oscillatory motion within the interval [ξmin, ξmax].

Let us assume, for instance, that q̂2 > q̂0 > 0 and q̂3 < 0; then, oscillatory motion is possible

for E2 6= 0. Moreover, we expect time-dependent oscillatory peculiar motion in the more

general context of the double-Kasner spacetime. To see an example of this behavior, we

return to Case 2 above and assume that ǫ = 1, x0 = −1 and W0 = 0; moreover, we set

C2 = 1 and C3 = 2. The time-dependent oscillatory character of the Lorentz factor for

peculiar motion in this case is illustrated in Fig. 5. We intuitively expect the turning points

to be time-dependent in this case; in fact, in time ξmin approaches the singularity at ξ = 0

in the case depicted in Fig. 5.

VII. DISCUSSION

From the spatially homogeneous examples discussed in Sec. II of this paper, one may

draw some tentative conclusions (compare, in particular, Fig. 1). As a general remark,
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FIG. 5: Plot of the oscillatory Lorentz factor γ versus proper time τ in Case 2. The initial

conditions at τ = 0 are x0 = −1 and W0 = 0; moreover, ǫ = 1, C2 = 1 and C3 = 2. Note that

the Lorentz factor is initially γ ≈ 2.97. The components of the peculiar velocity are all oscillatory

with increasing amplitudes for vx and vy and decreasing amplitude for vz. In fact, vz tends to zero

as ξmin approaches zero.

the occurrence of jets requires peculiar acceleration; therefore, jets occur in more special

situations compared to peculiar acceleration itself, which is consequently a more general

phenomenon. Restricting attention first to peculiar acceleration, we need some basic ingre-

dients to describe it, and to characterize its properties. To begin with, we must define an

appropriate background field of observers. This is because to define peculiar acceleration as

such, we need some reference background, since only relative accelerations are possible when

gravitational interactions are involved. In typical physical situations, there is, in most cases,

a preferred observer family. For example, in spatially homogenous (non-tilted) models, such

as Kasner spacetime, the preferred family corresponds to the normals of the homogeneous

hypersurfaces (see Sec. II).

As for the observed objects, it is natural to consider them as members of a test field

of geodesics. It is the peculiar velocity and acceleration of this test field with respect to

the background observers that is the subject of investigation here. The relative velocity

can be identified with the peculiar velocity in the astrophysical sense. Therefore, let v

be the peculiar velocity of a free test particle relative to the background observer family.

Then our findings indicate that along any expanding axis v → 0 as expansion tends to

infinity, while along any contracting axis v → ±c as contraction tends to zero. Relating this
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behavior to the background flow, it appears that if in an expanding direction the flow is

stable (corresponding to attraction) then there is no acceleration. Whereas, in a contracting

direction, if the flow is unstable (repulsion), then there is acceleration.

In the gravitational collapse of an astrophysical object such as a star, the peculiar mo-

tion of free test particles would be referred to the collapsing medium, so that at first sight

peculiar acceleration might appear as a simple kinematic effect of relative motion. However,

the limiting situation of peculiar acceleration to the speed of light—emphasized in [1] and

[2]—is observer-independent and seems to us to indicate true transfer of energy from the

gravitational field to the free test particles in analogy with the electromagnetic accelera-

tion of charged particles. Indeed, this gravitational transfer of energy is expected to be a

general feature of expanding or contracting geodesic congruences in spacetimes that have

no timelike Killing vector field; in these gravitational fields, energy gain is associated with

collapse and energy loss is associated with expansion. The energy loss in the context of an

expanding FLRW model has been discussed by Harrison [23]. We have emphasized energy

gain in connection with gravitational collapse. However, in realistic collapse scenarios of

astrophysical interest involving jets and cosmic rays, it remains to see if the gravitational

energy gain associated with peculiar acceleration is in fact significant. This important prob-

lem is beyond the scope of our investigation. Instead, we have concentrated in this work on

the simpler problem of the behavior of peculiar motions in the spatially inhomogeneous and

anisotropic double-Kasner spacetime.

The double-Kasner metric reduces to the standard timelike Kasner metric when the

inhomogeneity parameter ǫ is zero. Thus when ǫ is sufficiently small, 0 < ǫ << 1, we expect

on the basis of continuity arguments that the Kasner double-jet pattern of peculiar motions

would persist over a finite time interval. This general behavior is indeed confirmed by our

numerical work. At late times, however, a significant feature of peculiar motions is that the

jets tend to move toward either x = −∞ (ξ = 0) or x = ∞ (ξ = ∞) depending on whether

q̂0 > 0 or q̂0 < 0, respectively. For q̂0 > 0, it follows from forward integration in proper

time that at late times the dominant aspect of the peculiar motions in the double-Kasner

spacetime is the strong gravitational attraction toward the timelike curvature singularity

at x = −∞ (ξ = 0) with a peculiar velocity approaching the velocity of light. On the

other hand, for q̂0 < 0, we find jets moving toward another timelike curvature singularity at

x = ∞ (ξ = ∞) with uniform terminal speeds that stay well below the speed of light. We
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have shown that these aspects are associated with the other (spacelike) Kasner geometry

that is part of the double-Kasner gravitational field. In these considerations the x axis

is distinguished from the other spatial axes in double-Kasner spacetime, since all spatial

inhomogeneities occur along the x direction.

Finally, it is interesting to note that recent measurements of large-scale peculiar velocities

of clusters of galaxies have been interpreted in terms of an anomalously rapid bulk flow in a

common direction (“dark flow”)—see [24–27] and the references cited therein. If confirmed,

this dark flow would indicate a significant departure from the presumed large-scale spatial

homogeneity and isotropy of the standard FLRW cosmology.
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Appendix A: peculiar velocities in FLRW models

The spatial isotropy and homogeneity of the FLRW universe imply that in the standard

(t, χ, θ, φ) coordinates about any point in space as origin of spherical polar coordinates

(r, θ, φ)—with r = R0χ,R0 sinχ or R0 sinhχ, respectively, for flat, closed or open models—

the geodesics issuing from this spatial origin are purely radial. Here R0 is the radius of

curvature at the present epoch. Therefore, the geodesic equations are such that θ and φ are

fixed while

dt

dτ
=

(

1 +
D2

a2

)1/2

, (A1)

R0
dχ

dτ
=

D

a2
, (A2)

where D is a dimensionless constant of integration and a, a(t0) = 1, is the scale factor. Thus

with respect to the natural tetrad frame of the fundamental observer at the spatial origin,

the nonzero components of u(α) are given by u(t) = −dt/dτ and u(χ) = D/a. It follows that

γ =
(

1 +
D2

a2

)1/2

, γv =
(D

a
, 0, 0

)

. (A3)
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Hence as a → 0, v2 → 1. In particular, this proves that in general P(t) ∝ a(t)−1, which is

the law of variation of peculiar velocities in standard cosmological models [28].

Appendix B: Christoffel Symbols

The nonzero components of the connection—modulo their symmetry Γα
βγ = Γα

γβ—for

metric (26) are given by Γt
tx = q0,

Γt
xx =

p1
t
g21e

−2q0x, (B1)

Γt
yy =

p2
t
g22e

−2q0x, (B2)

Γt
zz =

p3
t
g23e

−2q0x. (B3)

Moreover, we have

Γx
tt = q0

e2q0x

g21
, Γx

tx =
p1
t
, (B4)

Γx
xx = q1, Γx

yy = −q2(
g2
g1
)2, Γx

zz = −q3(
g3
g1
)2. (B5)

Finally, we find that

Γy
ty =

p2
t
, Γy

xy = q2 (B6)

and

Γz
tz =

p3
t
, Γz

xz = q3. (B7)

Appendix C: Relations Involving p and q̂

We start with the defining properties of p and q̂, namely,

∑

i

pi = 1, q̂0 + q̂2 + q̂3 = 1, (C1)

∑

i

p2i = 1, q̂0
2 + q̂2

2 + q̂3
2 = 1. (C2)

For simplicity, the following consequences of Eqs. (C1) and (C2) are stated only for p with

the understanding that corresponding relations hold for q̂ as well.
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It follows from squaring Eq. (C1) and then using Eq. (C2) that

p1p2 + p1p3 + p2p3 = 0. (C3)

Next, from Eqs. (C1) and (C3) we find that for each i = 1, 2, 3,

p2i (pi − 1) = p1p2p3. (C4)

Squaring Eq. (C3) and then using Eq. (C1) results in

p21p
2
2 + p21p

2
3 + p22p

2
3 = −2p1p2p3. (C5)

Equations (C4) and (C2) imply that

∑

i

p3i = 1 + 3p1p2p3. (C6)

Similarly, it follows from Eq. (C5) and the square of Eq. (C2) that

∑

i

p4i = 1 + 4p1p2p3. (C7)

Multiplying Eqs. (C3) and (C5) together, and then using Eqs. (C1) and (C6), we get

p31p
3
2 + p31p

3
3 + p32p

3
3 = 3p21p

2
2p

2
3; (C8)

alternatively, one can cube Eq. (C3). We find from Eqs. (C3), (C5) and (C8), via division

by powers of p1p2p3 6= 0, that

∑

i

1

pi
= 0,

∑

i

1

p2i
= − 2

p1p2p3
,

∑

i

1

p3i
=

3

p1p2p3
. (C9)

Next, multiplying Eqs. (C2) and (C6) together, and then using Eqs. (C1), (C3) and (C5),

we find
∑

i

p5i = 1 + 5p1p2p3. (C10)

Similarly, multiplying Eqs. (C2) and (C7) together, and then using Eqs. (C2) and (C5), we

find
∑

i

p6i = 1 + 6p1p2p3 + 3p21p
2
2p

2
3; (C11)

alternatively, we can square Eq. (C6) and then use Eq. (C8).
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Finally, let us note that the connection between p and q̂, given by Eq. (30), can be

written as

p · q̂ = p1(1− q̂0) + q̂0. (C12)

This relation is invariant under the exchange of p and q̂, since the right-hand side of

Eq. (C12) can be written as q̂0(1 − p1) + p1. The general reciprocity between p and q̂ is

noteworthy. Excluding the flat spacetime case with p = q̂ = (1, 0, 0) given in Eq. (34), let

us introduce

α =
p2 − p1
p2 + p3

, β =
p3 − p1
p2 + p3

, (C13)

so that Eq. (C12) can be written as q̂0 = αq̂2 + βq̂3. It is interesting to note that

(α− β)2 + 2(α + β) = 3. (C14)

Once one member of the pair (p, q̂) is chosen, the other can be algebraically determined.

Suppose, for instance, that p has been fixed; then, one possible q̂ is given by

q̂0
′ =

1

2∆
(2αβ + α− 3β + 3), (C15)

q̂2
′ =

1

2∆
(−α2 + αβ − α + 6), (C16)

q̂3
′ =

1

2∆
(α2 − αβ − 2α+ β − 1), (C17)

where ∆ can be expressed as

∆ = αβ − α− β + 4. (C18)

There is, however, a second possible q̂, which is given by

q̂0
′′ =

1

2∆
(2αβ − 3α+ β + 3), (C19)

q̂2
′′ =

1

2∆
(β2 − αβ + α− 2β − 1), (C20)

q̂3
′′ =

1

2∆
(−β2 + αβ − β + 6). (C21)

We note that under the interchange of p2 with p3, or equivalently, of α with β, the first

possible q̂ = (q̂0, q̂2, q̂3) transforms into the second, but with q̂2 and q̂3 interchanged.

Let us now turn to a useful Kasner index parameterization due to Lifshitz and

Khalatnikov—see [29, 30] and the references cited therein. It is interesting to extend this

parameterization to double-Kasner spacetime. Introducing Σ(w),

Σ(w) = 1 + w + w2, (C22)
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we define parameters U and V as follows

p =
1

Σ(U)

(

− U, 1 + U, U(1 + U)
)

, (C23)

q̂ =
1

Σ(V )

(

− V, 1 + V, V (1 + V )
)

. (C24)

Using this parameterization, Eqs. (C1) and (C2) are automatically satisfied. On the other

hand, Eq. (C12), the relation between p and q̂, reduces to

(1 + 2V + UV )(1 + 2U + UV ) = 0. (C25)

For a given p, U is fixed and there are two possible solutions for V , namely,

V ′ = − 1

2 + U
, V ′′ = −1 + 2U

U
, (C26)

corresponding to q̂′ and q̂′′, respectively. That is, one can directly verify that the substitution

of V ′ for V in Eq. (C24) leads to Eqs. (C15)–(C17), where

α =
1 + 2U

(1 + U)2
, β =

U(2 + U)

(1 + U)2
. (C27)

Similarly, the substitution of V ′′ for V in Eq. (C24) leads to Eqs. (C19)–(C21). Explicitly,

we have

Σ1 q̂′ =
(

2 + U, (2 + U)(1 + U), −1− U
)

, (C28)

Σ2 q̂′′ =
(

U(1 + 2U), −U(1 + U), (1 + U)(1 + 2U)
)

, (C29)

where

Σ1 = 3 + 3U + U2, Σ2 = 1 + 3U + 3U2. (C30)

The same interchange property noted above is recovered in this parameterization when U is

replaced by 1/U .

Let us note here, for the sake of concreteness, that with our choice of Kasner p exponents,

namely, p1 ≤ p2 ≤ p3, U ∈ [1,∞); then, there are six possible permutations of the Kasner

q̂ exponents; for instance, V → −1 − V merely interchanges q̂0 and q̂2 in Eq. (C24), while

leaving q̂3 invariant. Such permutations divide the real V axis into six equivalent intervals

with endpoints that are given by the set {−∞,−2,−1,−1
2
, 0, 1,∞}—see Fig. 4 of Ref. [30].
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Appendix D: K, L1 and L2

The purpose of this appendix is to give the expression for K, which appears in the

Kretschmann scalar I1, as well as the expressions for L1 and L2, which appear in the

expression for I2 in Sec. IV.

The curvature tensor can be computed using the double-Kasner metric (26) and the corre-

sponding expressions for curvature invariants can be simplified using the relations involving

p, given explicitly in Appendix C, and similar ones involving q̂, but not the connection

between p and q̂. The results for K, L1 and L2 are then given by:

K(p, q̂) = p22(q̂0
2 − q̂0q̂2 + q̂2

2) + p2(−q̂0q̂2 + p3q̂2q̂3) + p21(1− q̂0)

− p1q̂0
2 − p1p2q̂2(1 + q̂2)− p1p3q̂3(1 + q̂3) + p1q̂0(1 + 2p2q̂2 + 2p3q̂3)

− p3q̂0q̂3 + p23(q̂0
2 − q̂0q̂3 + q̂3

2), (D1)

L1(p, q̂) = p21q̂0(q̂2
3 + q̂3

3)− p1q̂2
2q̂3

2 + p22q̂0q̂2
2(2− q̂2 + 2q̂3) + p23q̂0q̂3

2(2− q̂3 + 2q̂2)

+ q̂0(3p1q̂0 − 2p1 − q̂0)(p2q̂2
2 + p3q̂3

2), (D2)

and

L2(p, q̂) = p2p3(3p
2
1 − 2p1 − 1)q̂0

2 + p2(5p1p2p3 + 3p1p2 − 2p1p3 + 2p3)q̂2
2

+ p3(5p1p2p3 + 3p1p3 − 2p1p2 + 2p2)q̂3
2

+ 2p2p3(1− p21q̂0 − p23q̂2 − p22q̂3). (D3)

We note that these expressions are exchange invariant, namely, they remain the same under

the simultaneous exchange of p2 with p3 and q̂2 with q̂3.

Next, it is important to implement in Eqs. (D1)–(D3) the relation between p and q̂ given,

for instance, in Eq. (C12), via the Lifshitz-Khalatnikov parameterization of the double-

Kasner spacetime described in Appendix C. We recall that for a given p, there are two

possible values for q̂, given explicitly by q̂′ and q̂′′. The results for the Kretschmann scalar

can be expressed as

K(p, q̂′) = −4p1p3q̂0
′q̂2

′, K(p, q̂′′) = −4p1p2q̂0
′′q̂3

′′. (D4)

In a similar way, one can show that

L1(p, q̂
′) = 2p1p3q̂2

′2q̂3
′(3q̂0

′ − q̂3
′) (D5)
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and

L2(p, q̂
′) = 2p2p

2
3(3p1 − p2)q̂0

′q̂2
′. (D6)

Moreover, we find that

L1(p, q̂
′′) = 2p1p2q̂3

′′2q̂2
′′(3q̂0

′′ − q̂2
′′) (D7)

and

L2(p, q̂
′′) = 2p3p

2
2(3p1 − p3)q̂0

′′q̂3
′′. (D8)

A significant feature of these results is that they are all consistent with the interchange

property discussed in Appendix C.
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