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According to the no-hair theorem, astrophysical black holes are uniquely characterized by their
masses and spins and are described by the Kerr metric. Several parametric deviations from the
Kerr metric have been suggested to study observational signatures in both the electromagnetic
and gravitational-wave spectra that differ from the expected Kerr signals. Due to the no-hair
theorem, however, such spacetimes cannot be regular everywhere outside the event horizons, if they
are solutions to the Einstein field equations; they are often characterized by naked singularities or
closed time-like loops in the regions of the spacetime that are accessible to an external observer.
For observational tests of the no-hair theorem that involve phenomena in the vicinity of the circular
photon orbit or the innermost stable circular orbit around a black hole, these pathologies limit the
applicability of the metrics only to compact objects that do not spin rapidly. In this paper, we
construct a Kerr-like metric which depends on a set of free parameters in addition to its mass and
spin and which is regular everywhere outside of the event horizon. We derive expressions for the
energy and angular momentum of a particle on a circular equatorial orbit around the black hole
and compute the locations of the innermost stable circular orbit and the circular photon orbit.
We demonstrate that these orbits change significantly for even moderate deviations from the Kerr
metric. The properties of our metric make it an ideally suited spacetime to carry out strong-field
tests of the no-hair theorem in the electromagnetic spectrum using the properties of accretion flows
around astrophysical black holes of arbitrary spin.

I. INTRODUCTION

The no-hair theorem encapsulates the remarkable
property of general-relativistic black holes that these ob-
jects are fully and uniquely characterized by their masses
and spins and are described by the Kerr metric. Ac-
cording to the no-hair theorem, the Kerr metric is the
only stationary, axisymmetric, asymptotically flat vac-
uum spacetime in general relativity that has an event
horizon but no closed timelike curves outside of the hori-
zon [1, 2]. Mass M and spin J are the first two (Geroch-
Hansen) multipole moments of the Kerr spacetime, and
all higher order moments can be expressed in terms of
these two moments. The multipole moments consist of a
set of mass multipole moments Ml, which vanish if l is
odd, and a set of current multipole moments Sl, which
vanish if l is even. The no-hair theorem can then be
expressed by the relation [3]

Ml + iSl = M(ia)l, (1)

where a ≡ J/M is the spin parameter.
Despite a wealth of observational evidence for the exis-

tence of astrophysical black holes (see discussion in, e.g.,
[4]), a definite proof is still lacking. Several potential tests
of the no-hair theorem have been suggested using obser-
vations of gravitational waves from extreme mass-ratio
inspirals [5–10] and observations in the electromagnetic
spectrum of accreting black holes [11–14], of stars on an
orbit around Sgr A* [15, 16], and of pulsar black-hole
binaries [17]. For recent reviews, see [18].
Observational tests of this kind require a framework

that is based on spacetimes that deviate from the Kerr
metric by one or more parameters (e.g., [7–9, 19, 20]).

These spacetimes have a modified multipole structure
that is given by a relation of the form [7, 8]

Ml + iSl = M(ia)l + δMl + iδSl (2)

with deviations δMl and δSl.
Parametric deviations of the form (2) harbor a com-

pact object that is a general-relativistic black hole only
if all corrections δMl and δSl are equal to zero. Within
general relativity, measuring these parametric deviations
constitutes a null-test that investigates the nature of
compact objects [7, 21]. General relativity, however, has
been marginally tested in the regime of strong gravita-
tional fields (e.g., [22]), and astrophysical black holes
might not be Kerr black holes as predicted by the no-
hair theorem [11] (see, also, [23, 24]).
Because of the no-hair theorem, all parametric devia-

tions of the Kerr metric within general relativity have to
violate at least one of the prerequisites of this theorem.
Consequently, these spacetimes contain either singulari-
ties or regions with closed timelike curves outside of the
event horizon. The degree to which these pathologies
affect different proposed tests of the no-hair theorem de-
pends on the intended application. For all the currently
proposed metrics that deviate from the Kerr solution,
pathologies appear very close to the corresponding Kerr
event horizon [25]. As a result, they do not hamper tests
of the no-hair theorem that involve the orbits of objects
at large distances from the horizons, as is the case, e.g.,
for test with extreme mass-ratio inspirals [6] or obser-
vations of stars and pulsars around black holes [15, 17].
These pathologies, however, become prohibitive in cases
of tests that involve observations of the images of the in-
ner accretion flows [11, 12] or of X-ray observations of
quasi-periodic oscillations, of fluorescent iron lines, or of
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the continuum spectra of accretion disks [11, 13].

For the latter tests and for moderately spinning black
holes, the singularities or closed time-like loops appear
far inside the location of the photon orbit and the lo-
cation of the ISCO, both of which dominate the obser-
vational characteristics of black holes. These pathologies
can, therefore, be handled by imposing an artificial cutoff
with an inflow boundary condition at some radius in the
exterior spacetime, between the location of the patholo-
gies and the location of the photon orbit or ISCO. For
rapidly spinning black holes, however, the radius of the
ISCO becomes comparable to the radius of the horizon
and imposing such an artificial cut-off is no longer pos-
sible. This limits the applicability of current parametric
deviations of the Kerr metric for several observational
tests of the no-hair theorem in the electromagnetic spec-
trum to only moderately spinning black holes [25].

Performing tests of the no-hair theorem with obser-
vations of phenomena that occur in the vicinity of the
circular photon orbit or the ISCO around a black holes
requires that we use a metric that is free of such patholo-
gies for arbitrary values of the spin. However, finding a
metric of this kind is a highly nontrivial task. Introduc-
ing small parametric deviations to individual elements of
the metric in an arbitrary manner routinely leads to the
pathologies discussed above. In order for such a space-
time to describe a black hole, it can no longer be a solu-
tion of the Einstein equations, because otherwise it would
render the no-hair theorem false. To date, however, black
hole metrics for theories that obey the Einstein equiva-
lence principle [26] are only known for static black holes
(e.g., [27, 28]), for slowly rotating black holes with par-
ity violations [23], or in Einstein-Dilaton-Gauss-Bonnet
gravity [29].

In this paper, we construct such a Kerr-like black hole
metric which suffers from no pathologies up to the max-
imum value of the spin and which contains a set of pa-
rameters that measure potential deviations from the Kerr
metric in the strong-field regime. In order to achieve this
in a regular manner, we start by introducing a paramet-
ric deviation to the Schwarzschild metric, following Ref.
[27]. We then apply the Newman-Janis algorithm [30],
as in Ref. [8], in order to generate a metric for a spinning
black hole.

We take special care to retain several properties that
make the Kerr metric unique in performing ray-tracing
calculations in general relativity. Our metric shares the
same non-zero metric elements with the Kerr solution,
which allows for a straightforward implementation for
calculations of ray tracing with existing geodesic algo-
rithms and an intuitive interpretation of observables. We
likewise obtain constraints for some of the parameters of
our metric from observational limits on modifications of
general relativity in the weak-field regime as well as from
the requirements of asymptotic flatness.

For the particular case of only one deviation parame-
ter, we show that our metric is regular everywhere outside
the horizon for the entire range of allowable spins up to

a maximum value, which depends on the deviation. It
can, therefore, be used to study astrophysical phenom-
ena arbitrarily close to the event horizon and to test the
no-hair theorem in the electromagnetic spectrum even
with rapidly spinning black holes. We also derive expres-
sions for the energy and angular momentum of a particle
on a circular equatorial orbit around the central black
hole and compute the locations of the innermost stable
circular orbit (ISCO) and the circular photon orbit as a
function of spin and the deviation parameter.
In Section 2, we construct our new metric. We con-

strain the set of free parameters in Section 3 and analyze
the properties of our metric in Section 4. We summarize
our conclusions in Section 5.

II. CONSTRUCTION OF A KERR-LIKE BLACK

HOLE METRIC

In this section, we construct a new class of Kerr-like
black hole metrics which describe a stationary, axisym-
metric, and asymptotically flat vacuum spacetime. In
addition to the mass and spin of the black hole, this
spacetime depends on a set of parameters that measure
potential deviations from the Kerr metric. Our spacetime
reduces smoothly to the Kerr metric if the deviations are
dialed to zero.
Our starting point is a Schwarzschild-like metric with

the line element [27]

ds2 = −f [1 + h(r)]dt2 + f−1[1 + h(r)]dr2

+ r2(dθ2 + sin2 θdφ2) (3)

in Schwarzschild coordinates (t, r, θ, φ), where M is the
mass of the central object and

f ≡ 1− 2M

r
. (4)

A metric of this form is both stationary and spheri-
cally symmetric and reduces to the Schwarzschild metric
in the case h(r) = 0. As in [27], we do not modify the
angular part of the metric for simplicity and in order to
retain spherical symmetry. Unlike [8, 9], since we inter-
ested in constructing a black hole spacetime that is free
of pathologies outside of the event horizon, we do not re-
quire our metric to be a vacuum solution of the Einstein
equations. Similarly, we do not require full integrability
of geodesic motion in our metric (unlike [20]). While this
property is critical for the design of waveforms for obser-
vations in the gravitational-wave spectrum, it may only
simplify ray-tracing calculations for applications in the
electromagnetic spectrum, but it is not a necessity.
We choose the function h(r) to be of the form

h(r) ≡
∞
∑

k=0

ǫk

(

M

r

)k

. (5)

The Kerr metric can be obtained from the
Schwarzschild metric by the Newman-Janis algorithm
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[30], which is based on a complex coordinate transfor-
mation. Through this procedure the effect of rotation
can be incorporated into a static spacetime in a natural
way. In the following, we apply the Newman-Janis algo-
rithm to the Schwarzschild-like metric given by Eq. (3)
in order to construct a Kerr-like metric that depends on
the mass M , spin a, and the set of parameters ǫk.
First we perform a transformation to Eddington-

Finkelstein coordinates choosing a set of new coordinates
(u′, r′, θ′, φ′), where

u′ = t− r − 2M ln

(

r − 2M

2M

)

, (6)

r′ = r, θ′ = θ, φ′ = φ, (7)

which yields a metric g̃µν of the form

ds2 = −f [1 + h(r)]du2 − 2[1 + h(r)]dudr

+ r2(dθ2 + sin2 θdφ2). (8)

In expression (8) we have dropped the primes for brevity.
We express the metric g̃µν given by Eq. (8) in con-

travariant form in the Newman-Penrose formalism [31]

g̃µν = −lµnν − lνnµ +mµm̄ν +mνm̄µ (9)

using a complex null tetrad

Zµ
s = (lµ, nµ,mµ, m̄µ), s = 1, 2, 3, 4 (10)

with legs

lµ = δµr , (11)

nµ =
1

1 + h(r)

[

δµt − 1

2

(

1− 2M

r

)

δµr

]

, (12)

mµ =
1√
2r

(

δµθ +
i

sin θ
δµφ

)

, (13)

m̄µ =
1√
2r

(

δµθ − i

sin θ
δµφ

)

. (14)

This tetrad is orthonormal obeying the conditions

lµm
µ = lµm̄

µ = nµm
µ = nµm̄

µ = 0, (15)

lµl
µ = nµn

µ = mµm
µ = m̄µm̄

µ = 0, (16)

lµn
µ = −1, mµm̄

µ = 1. (17)

Now we allow for the radius r to take on complex values
and rewrite the legs of the null tetrad in the form

lµ = δµr , (18)

nµ =
1

1 + h(r, r̄)

[

δµt − 1

2

(

1− M

r
− M

r̄

)

δµr

]

, (19)

mµ =
1√
2r

(

δµθ +
i

sin θ
δµφ

)

, (20)

m̄µ =
1√
2r̄

(

δµθ − i

sin θ
δµφ

)

, (21)

where an overbar denotes complex conjugation and

h(r, r̄) ≡
∞
∑

k=0

[

ǫ2k + ǫ2k+1

M

2

(

1

r
+

1

r̄

)](

M2

rr̄

)k

. (22)

Next we perform a complex coordinate transformation
defining a new set of coordinates (u′, r′, θ′, φ′) by the re-
lations

u′ = u− ia cos θ, (23)

r′ = r + ia cos θ, (24)

θ′ = θ, φ′ = φ. (25)

We transform the tetrad in the usual way,

Z ′µ
s =

∂x′µ

∂xν
Zν
s , (26)

and obtain

lµ = δµr , (27)

nµ =
1

1 + h(r, r̄)

[

δµt − 1

2

(

1− 2Mr

Σ

)

δµr

]

, (28)

mµ =
1√
2r

[

ia sin θ (δµt − δµr ) + δµθ +
i

sin θ
δµφ

]

, (29)

m̄µ =
1√
2r̄

[

−ia sin θ (δµt − δµr ) + δµθ − i

sin θ
δµφ

]

,(30)

where

Σ ≡ r2 + a2 cos2 θ, (31)

h(r, θ) ≡
∞
∑

k=0

(

ǫ2k + ǫ2k+1

Mr

Σ

)(

M2

Σ

)k

, (32)

and, again, we have dropped the primes.
From these expressions, we recover the contravariant

metric with the use of Eq. (9) and perform a transfor-
mation to coordinates (t′, r′, θ′, φ′) given by the implicit
relations

du = dt′ +
r′2 + a2

∆′
dr′, (33)

r = r′, θ = θ′, (34)

dφ = dφ′ − a

∆′
dr′, (35)

where

∆ ≡ r2 − 2Mr + a2. (36)

In the case that the function h(r, θ) vanishes, the met-
ric derived in this fashion is the usual Kerr metric in
Boyer-Lindquist coordinates with mass M and spin a.
For nonzero values of the function h(r, θ), however, the
resulting metric contains the off-diagonal element

g̃rφ =
aΣ sin2 θ

∆
h(r, θ) (37)

in addition to the usual frame-dragging element g̃tφ.
In order to eliminate the element g̃rφ, we apply another

transformation to new coordinates (t′, r′, θ′, φ′) given by
the implicit relations

dt = dt′ + F (r′, θ′)dr′, (38)

r = r′, (39)

θ = θ′, (40)

dφ = dφ′ +G(r′, θ′)dr′ (41)



4

with the functions

F (r′, θ′) ≡ − g̃rφ
g̃tt

(

g̃tφ
g̃tt

− g̃φφ
g̃tφ

)

−1

, (42)

G(r′, θ′) ≡ g̃rφ
g̃tφ

(

g̃tφ
g̃tt

− g̃φφ
g̃tφ

)

−1

. (43)

Finally (dropping the primes), we arrive at the follow-
ing metric gµν given by the line element

ds2 =−[1 + h(r, θ)]

(

1− 2Mr

Σ

)

dt2 − 4aMr sin2 θ

Σ
[1 + h(r, θ)]dtdφ +

Σ[1 + h(r, θ)]

∆ + a2 sin2 θh(r, θ)
dr2 +Σdθ2

+

[

sin2 θ

(

r2 + a2 +
2a2Mr sin2 θ

Σ

)

+ h(r, θ)
a2(Σ + 2Mr) sin4 θ

Σ

]

dφ2, (44)

which reduces to the Kerr metric in Boyer-Lindquist co-
ordinates in the case h(r, θ) = 0 and to the generalized
Schwarzschild metric given by Eq. (3) if a = 0.
The metric gµν that we have constructed in this man-

ner is both stationary and axisymmetric. As we will ar-
gue in the following, the nontrivial dependence of our
metric on the function h(r, θ) ensures the preservation
of the properties of the Kerr metric that are critical for
observational tests of the no-hair theorem. In general
relativity, the Einstein tensor of our metric is nonzero
unless h(r, θ) vanishes. Therefore, we regard our metric
as a vacuum spacetime of an appropriately chosen set of
field equations which are unknown but different from the
Einstein equations for nonzero h(r, θ). For observational
tests of the no-hair theorem in the electromagnetic spec-
trum, the field equations are not needed explicitly [32],
and we only require a spacetime and the validity of the
Einstein equivalence principle (c.f., [26]), which governs
the motion of particles in that spacetime.
We justify the nature of our metric in Section 4, where

we show that its properties are very similar to the ones of
the Kerr metric. In particular, we compute the location
of the event horizon. The requirement of asymptotic flat-
ness imposes restrictions on the function h(r, θ), which we
will address in the next section.

III. CONSTRAINTS ON THE FUNCTION h(r, θ)

In this section, we constrain the form of the function
h(r, θ) given by Eq. (32) by the requirements that the
metric gµν given by Eq. (44) is asymptotically flat and
consistent with observational weak-field constraints on
deviations from the Kerr metric. The resulting metric,
then, is suitable for the exploration of the strong-field
regime in the vicinity of black holes.
In Newtonian gravity and at a large distance from the

source, the potential of an extended body approaches
that of a spherical body of equal mass. Similarly, in gen-
eral relativity, stationary and asymptotically flat space-
times are Schwarzschild-like in the limit of large radii in
an appropriately chosen coordinate system, i.e., they fall

off as 1/r or faster [33]. In that particular gauge, such
metrics are of the asymptotic form (e.g., [34])

ds2 =−
[

1− 2M

r
+O

(

r−2
)

]

dt2

−
[

4a

r
sin2 θ +O

(

r−2
)

]

dtdφ

+

[

1 +O
(

r−1
)

][

dr2 + r2dΩ2

]

, (45)

where we used the notation

dΩ2 = dθ2 + sin2 θdφ2. (46)

Asymptotically flat spacetimes with a slower fall-off in-
volve gravitational radiation [35] and, thus, cannot be
stationary.
A similar argument must hold for more general space-

times that are not necessarily a solution of the Einstein
equations. For r ≫ M and r ≫ a, our metric given by
Eq. (44) has the asymptotic form

ds2 ≈−
[

1− 2M

r
+ h(r)

]

dt2

− 4a[1 + h(r)]

r
sin2 θdtdφ

+

[

1 +
2M

r
+ h(r)

]

dr2 + r2dΩ, (47)

where h(r) is given by Eq. (5). Therefore, the func-
tion h(r) must be of order O(1/rn) with n ≥ 2, and we
conclude that ǫ0 = ǫ1 = 0.
Limits on the parameter ǫ2 of the next leading-

order term in the function h(r) can readily be obtained
from the observational constraints on weak-field devia-
tions from general relativity in the parameterized post-
Newtonian (PPN) framework [36]. In the PPN approach,
the asymptotic spacetime is expressed as

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ, (48)

where

A(r) = 1− 2M

r
+ 2(β − γ)

M2

r2
, (49)
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FIG. 1. Event horizon of a non-Kerr black hole in the xz-plane for values of the spin (left) a = 0.4M , (middle) a = 0.7M , and
(right) a = 1.0M and several values of the parameter ǫ3. For positive values of the parameter ǫ3, the event horizon has a more
prolate shape than the horizon of a Kerr black hole with the same spin, while for negative values of the parameter ǫ3, the shape
is more oblate. In the case a = M , the event horizon has a dumbbell shape if ǫ3 = −1 and is not closed if ǫ3 = 1.

B(r) = 1 + 2γ
M

r
. (50)

In general relativity, β = γ = 1.
From the asymptotic form of the metric given by Eq.

(47), we identify

ǫ2 = 2(β − 1), (51)

γ = 1. (52)

The best current PPN contraint on the parameter β is
set by the Lunar Laser Ranging experiment and yields
[37]

|β − 1| ≤ 2.3× 10−4, (53)

if the weak equivalence principle is satisfied, which we as-
sume throughout the paper. Therefore, this limit implies
that

|ǫ2| ≤ 4.6× 10−4. (54)

For the remainder of this paper, we will set ǫ2 = 0 and
explore in some detail metrics with ǫk = 0 for k > 3. In
this case, the function h(r, θ) reduces to

h(r, θ) = ǫ3
M3r

Σ2
. (55)

The parameter ǫ3 is unconstrained by current observa-
tional tests of general relativity (c.f. [22]). Our metric
with this choice of h(r, θ), therefore, allows us to probe
the regime of strong-field gravity in parametric form.

IV. METRIC PROPERTIES

In this section, we analyze some of the properties of
the metric given by Eq. (44), and we choose the function

h(r, θ) according to Eq. (55) for simplicity. In partic-
ular, we determine the range of the parameters a and
ǫ3 for which our metric describes a black hole. A similar
analysis should be valid for all higher orders in M/r. Un-
less the parameter |ǫ3| is very small, we expect potential
strong-field deviations from the Kerr metric to be most
easily detectable at order (M/r)3.

A. Event Horizon

First, we calculate the location of the event horizon,
which occurs at the root of the equation

g2tφ − gttgφφ = 0. (56)

This equation can be rewritten in the form

(

1 + ǫ3
M3r

Σ2

)

w(r, θ;M,a, ǫ3) = 0, (57)

where w(r, θ;M,a, ǫ3) is a function of the radius r and
the angle θ, as well as of the mass M , spin a, and the
parameter ǫ3. This equation can have more than one root
leading to the presence of both an inner and an outer
horizon similar to the case of the Kerr metric. Since
in this paper we are only concerned with the exterior
spacetime, we will refer hereafter to the outer horizon
simply as the event horizon.
In Figure 1, we plot the event horizon in the xz-plane

for several values of the spin a and the parameter ǫ3.
The horizon is more prolate than the horizon of a Kerr
black hole with the same spin for positive values of the
parameter ǫ3, while it is more oblate for negative values of
the parameter ǫ3. In the case a = M , the event horizon
has a dumbbell shape if ǫ3 = −1 and is not closed if
ǫ3 = 1.
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In this paper, we are only interested in black holes, i.e.,
in compact objects for which the event horizon is entirely
closed. In the case a = 0, the event horizon is a sphere
with radius rh = 2M , if ǫ3 ≥ −8, or rh = (|ǫ3|)1/3M , if
ǫ3 < −8. For negative values of the parameter ǫ3, the
event horizon is always closed, because the first factor
in Eq. (57) vanishes at some r > 0 for all 0 ≤ θ < π.
For positive values of the parameter ǫ3, the first factor
in Eq. (57) is always positive, while the existence of a
root of the function w(r, θ;M,a, ǫ3) depends on the value
of the parameter ǫ3. For each value of the spin |a| > 0,
there exists a value of the parameter ǫ3 > 0 such that
the event horizon is no longer closed. A hole appears in
the event horizon around the equatorial plane within the
range θ = π/2± θhole, and the central object becomes a
naked singularity.

FIG. 2. Maximum values of the parameter ǫ3 versus the spin
a, for which the event horizon is entirely closed. The shaded
region marks the part of the parameter space where the cen-
tral object is a naked singularity. Outside of this region, the
central object is a black hole, which is described by its mass
M , spin a and the parameter ǫ3. The dashed line corresponds
to a Kerr black hole.

In Figure 2, we delineate the part of the parameter
space, within which the event horizon is closed, and the
central object is a black hole. The solid line marks the
upper limit on the parameter ǫ3 as a function of the spin,
for which the event horizon is still closed. The shaded
region corresponds to the excluded part of the parameter
space, where the central object is a naked singularity.
In principle, the parameter space can be expanded to
include values of the parameter |ǫ3| > 10. However, we
will not consider this case here, because this relatively
large range of the parameter ǫ3 should already suffice to
study strong-field deviations from the Kerr metric.

The Kerr metric describes a black hole only for values
of the spin |a| ≤ M . In the case |a| > M , this spacetime
contains a naked singularity, and causality is violated at
every point in space due to the presence of closed timelike
curves [2, 38]. In our metric, the event horizon is not

closed if |a| > M , unless ǫ3 < −16|a|3/3
√
3. In this

case, our metric describes a superspinning black hole (c.f.
[40]). We will not consider this case either, because the
Kerr metric itself is unphysical in this spin range.
Analyzing the elements of our metric, we find that

gθθ > 0 throughout the spacetime and grr > 0, gφφ > 0
outside of the event horizon. Consequently, our (exterior)
spacetime is free of closed timelike curves, and causality
is satisfied.

FIG. 3. Radius of the ISCO as a function of the spin a
for several values of the parameter ǫ3. The radius of the
ISCO decreases with increasing values of the parameter ǫ3.
The shaded region marks the excluded part of the parameter
space.

B. Energy and Axial Angular Momentum for a

Particle on a Circular Equatorial Orbit

Here we derive expressions for the energy E and axial
angular momentum Lz of a particle on a circular equa-
torial orbit. Our derivation is similar to the ones in [39]
for the Kerr metric and in [11] for the quasi-Kerr metric.
Since our metric is stationary and axisymmetric, there

exist three integrals of the motion. For a particle with
4-momentum

pα = µ
dxα

dτ
, (58)
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FIG. 4. Radius of the circular photon orbit as a function of
the spin a for several values of the parameter ǫ3. The radius
of the circular photon decreases with increasing values of the
parameter ǫ3. The shaded region marks the excluded part of
the parameter space.

these constants are its rest mass µ, energy E = −pt, and
axial angular momentum Lz = pφ.
The Kerr metric (in Boyer-Lindquist coordinates) is

of Petrov-type D, which ensures the existence of a fourth
constant of the motion [38]. Our metric in the form given
by Eq. (44) with the function h(r, θ) chosen according to
Eq. (55) is of Petrov-type I, and the fourth constant is
lost. However, thanks to the reflexion symmetry of our
spacetime, equatorial trajectories are fully characterized
by the rest mass, energy, and axial angular momentum
alone.
We solve the equation

pαp
α = −µ2 (59)

in the equatorial plane for the radial momentum and in-
sert the constants of the motion. We obtain

(

dr

dτ

)2

≡ R(r)

≡ − 1

grr

(

gttE2 − 2gtφELz + gφφL2
z + µ2

)

, (60)

where gαβ is our metric given by Eqs. (44) and (55).
We solve the system of equations

R(r) = 0, (61)

d

dr
R(r) = 0 (62)

FIG. 5. Contours of constant radius of the ISCO for values
of the spin −1 ≤ a/M ≤ 1 and of the parameter −10 ≤ ǫ3 ≤

10. The radius of the ISCO decreases for increasing values
of the spin and the parameter ǫ3. The shaded region marks
the excluded part of the parameter space. The dashed line
corresponds to the parameter space for a Kerr black hole.

for the energy and axial angular momentum and find the
expressions

E

µ
=

1

r6

√

P1 + P2

P3

, (63)

Lz

µ
=± 1

r4P6

√
P3

[
√

M(r3 + ǫ3M3)P5

∓6aM(r3 + ǫ3M
3)
√

P1 + P2

]

. (64)

In these expressions, the upper signs refer to a particle
that corotates with the black hole, while the lower signs
refer to a counterrotating particle. The functions P1 to
P6 can be found in Appendix A.

In the Kerr limit, ǫ3 → 0, these expressions simplify to
the corresponding ones for the Kerr metric [39]

E

µ
=

r3/2 − 2Mr1/2 ± aM1/2

r3/4
√
r3/2 − 3Mr1/2 ± 2aM1/2

(65)

and

Lz

µ
= ± M1/2(r2 ∓ 2aM1/2r1/2 + a2)

r3/4
√
r3/2 − 3Mr1/2 ± 2aM1/2

. (66)
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FIG. 6. Equatorial radius of the event horizon, the circular
photon orbit, and the ISCO as a function of the spin a for
a value of the parameter ǫ3 = 2. The event horizon and
the circular photon orbit coincide at r ≈ 1.39M at a spin of
a ≈ 0.697M , while the ISCO reaches a value of r ≈ 1.60M .

C. Innermost Stable Circular Orbit and Circular

Photon Orbit

From the expressions (63) and (64) for the energy and
axial angular momentum, we derive the locations for the
ISCO and the circular photon orbit. In order to obtain
the ISCO, we numerically solve the equation

dE

dr
= 0. (67)

The photon orbit occurs at the radius at which

E

µ
→ ∞,

Lz

µ
→ ∞, (68)

and the denominators in the expressions (63) and (64)
vanish. Compared to the denominator of the energy E/µ,
the denominator of the angular momentum Lz contains
the additional factor P6. This factor, however, has no
real roots, and we can determine the radius of the pho-
ton orbit uniquely. Similar calculations have also been
performed by [11, 41].
In Figures 3 and 4, we plot, respectively, the ISCO

and the circular photon orbit as a function of the spin for
several values of the parameter ǫ3. The radii of the ISCO
and of the circular photon orbit decrease with increasing
values of the parameter ǫ3. The shaded regions mark
the excluded part of the parameter space in accordance
with Figure 2. A spacetime with an ISCO or photon

FIG. 7. Radii of the (equatorial) event horizon and the pro-
grade circular photon orbit and ISCO as a function maximum
spin. The event horizon and the circular photon orbit coincide
for all values of the maximum spin. The prograde ISCO at
these values of the spin is located at slightly larger radii and
merges with the event horizon and the circular photon orbit
in the Kerr limit amax = M . For values of the maximum spin
smaller than (red dot) amax ≈ 0.270M , multiple ISCOs occur
(not shown).

orbit radius inside the shaded regions would have an open
event horizon. The solid lines along the boundary of the
excluded part correspond to the locations of the ISCO
and the circular photon orbit, respectively, for the range
of the parameter 0 ≤ ǫ3 ≤ 10. We do not calculate the
boundary for values of the parameter |ǫ3| > 10 explicitly
and estimate its location in both figures by a dashed line.

In Figure 5, we plot contours of constant radius of the
ISCO as a function of spin and the parameter ǫ3. The
radius of the ISCO decreases for increasing values of the
spin and the parameter ǫ3. The shaded region marks the
excluded part of the parameter space. The dashed line
corresponds to the parameter space for a Kerr black hole,
which depends only on the spin.

In the Kerr metric in Boyer-Lindquist coordinates, the
equatorial event horizon, the prograde circular photon
orbit, and the ISCO coincide at maximum spin a = M
even though their proper separation is distinct. For val-
ues of the spin exceeding this upper bound, the central
object is no longer a black hole. In our metric, the upper
bound depends on both the spin and the parameter ǫ3
as we have already shown in Figure 2. Along this curve,
the equatorial event horizon and the prograde circular
photon orbit merge within numerical accuracy, while the
prograde ISCO is located at a radius slightly outside of
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the event horizon.

We illustrate this behavior in Figure 6, where we plot
the equatorial radius of the event horizon, the circular
photon orbit, and the ISCO as a function of the spin
a for a value of the parameter ǫ3 = 2. At a spin of
a ≈ 0.697M , the circular photon orbit merges with the
event horizon at r ≈ 1.39M , while the ISCO reaches a
value of r ≈ 1.60M . For values of the spin larger than
the upper bound a ≈ 0.697M , the event horizon is no
longer closed.

In Figure 7, we plot the radii of the equatorial event
horizon and of the prograde circular photon orbit and
ISCO as a function of the maximum spin. The event
horizon and the circular photon orbit coincide for all val-
ues of the maximum spin reaching the asymptotic value
r = 2.0M in the limit amax → 0, ǫ3 → ∞. The prograde
ISCO at these values of the spin is located at slightly
larger radii and merges with the event horizon and the
circular photon orbit in the Kerr limit amax = M . For
values of the maximum spin smaller than amax ≈ 0.270M
(corresponding to a value of the parameter ǫ3 ≈ 32), the
prograde ISCO is no longer unique, and a second region
of stable circular orbits occurs between the origin and
the ISCO separated by a gap. This region is bound by
both another innermost as well as an outermost stable
orbit (“OSCO”). This region lies outside of the parame-
ter space that we consider in this paper (c.f., Figure 2).
A similar effect in other parametric spacetimes has also
been reported in Refs. [10, 13].

V. CONCLUSIONS

Thanks to the no-hair theorem, any parametric devia-
tion from the Kerr metric in general relativity does not
harbor a black hole and is often plagued with unphysical
properties that have to be excluded by imposing a cutoff
near but outside of the event horizon. Within general
relativity, tests of the no-hair theorem that are based on
observational signals originating from the vicinity of the
circular photon orbit or the ISCO are, therefore, limited

to the region outside of the cutoff, and, so far, it has been
unknown how to include rapidly spinning black holes in
such tests [25].
In this paper, we constructed a Kerr-like metric of a

rapidly spinning black hole, which depends on a set of
free parameters in addition to the mass and spin and
which reduces smoothly to the Kerr metric if all param-
eters vanish. We showed that this metric is stationary,
axisymmetric, and asymptotically flat and argued that it
describes a vacuum spacetime for a set of appropriately
chosen field equations. We used the current results from
Lunar Laser Ranging tests of weak-field general relativity
to constrain the set of free parameters.
For the case of one additional parameter, we showed

that our metric is regular and free of unphysical proper-
ties outside of the event horizon and that it can be used
to describe black holes up to the maximum value of the
spin a. For positive values of the free parameter, this
upper bound is a function of the deviation and smaller
than the Kerr value amax = M . Otherwise, the upper
bound coincides with the Kerr limit. For values of the
spin |a| > M and of the parameter ǫ3 < −16|a|3/3

√
3,

our metric describes a superspinning black hole.
We calculated expressions for the energy and angular

momentum of a particle on a circular equatorial orbit and
used them to obtain the locations of the ISCO and the
circular photon orbit, respectively. Both radii decrease
with increasing values of the spin and the deviation pa-
rameter. At the maximum value of the spin for a given
value of the deviation, the circular photon orbit merges
with the event horizon within numerical accuracy as in
the Kerr metric, and the ISCO is located slightly outside
of the horizon.
Our metric is, thus, fully applicable in the strong-field

regime arbitrarily close to the event horizon of a black
hole and an ideal spacetime for astrophysical tests of
the no-hair theorem that probe the immediate vicinity
of black holes and that do not rely on the field equations
explicitly.
We thank S. Hughes, L. Stein, S. Vigeland, and N.

Yunes for many useful discussions. This work was sup-
ported by the NSF CAREER award NSF 0746549.

Appendix A: Energy and Angular Momentum for a Particle on a Circular Equatorial Orbit

In this appendix, we give explicit expressions for the functions P1 to P6 that occur in the expressions (63) and (64)
for the energy and axial angular momentum, respectively, of a particle on a circular equatorial orbit:

P1 =a2Mr4
(

ǫ3M
3 + r3

)2

{

12ǫ3a
2M3

(

ǫ3M
3 + r3

)2

−r4
[

2ǫ3M
2r3

(

3r2 − 8M2
)

+ ǫ23M
5
(

40M2 − 48Mr+ 15r2
)

+ 4r6(3r − 5M)
]

}

(A1)

P2 =2

{

2r4
(

r20 ∓MP4

)

+Mr12
{

2r9
(

−12M2 + 16Mr − 7r2
)
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+ǫ3M
2(r − 2M)2

[

ǫ23M
6(5r − 12M)− 6ǫ3M

3r3(5M − 2r)− 3r6(8M − 3r)
]

}}

(A2)

P3 =r4
(

12ǫ3M
4 − 5ǫ3M

3r + 6Mr3 − 2r4
)2 − 8a2M

(

ǫ3M
3 + r3

)2 (

5ǫ3M
3 + 2r3

)

(A3)

P4 =

√

a2M (ǫ3M3 + r3)
6
(9ǫ23a

2M5 + 16ǫ3M3r4 − 6ǫ3M2r5 + 4r7) [a2 (ǫ3M3 + r3) + r4(r − 2M)]
2

(A4)

P5 =
(

ǫ3M
3 + r3

)

{

12ǫ3a
6M3

(

ǫ3M
3 − 2r3

)2 (

ǫ3M
3 + r3

)4
+ a4r4

(

ǫ3M
3 + r3

)2

(

−40ǫ43M
13 + 40ǫ43M

12r − 15ǫ43M
11r2 + 128ǫ33M

10r3 − 296ǫ33M
9r4 + 54ǫ33M

8r5 − 924ǫ23M
7r6

+276ǫ23M
6r7 − 36ǫ23M

5r8 − 880ǫ3M
4r9 + 304ǫ3M

3r10 − 24ǫ3M
2r11 − 112Mr12 + 16r13

)

−2a2r8
[

48ǫ53M
17 − 12ǫ53M

16r − 52ǫ53M
15r2 + 3ǫ43M

14r3(5ǫ3 + 88)− 720ǫ43M
13r4 + 298ǫ43M

12r5

−3ǫ33M
11r6(13ǫ3 + 480) + 516ǫ33M

10r7 + 2ǫ33M
9r8 − 6ǫ23M

8r9(3ǫ3 + 508) + 2292ǫ23M
7r10

−628ǫ23M
6r11 + 12ǫ3M

5r12(5ǫ3 − 134) + 1188ǫ3M
4r13 − 296ǫ3M

3r14 + 24M2r15(ǫ3 − 9) + 120Mr16

−16r17
]

− r14
(

ǫ3M
3 + 6Mr2 − 2r3

)2

(

96ǫ23M
7 − 76ǫ23M

6r + 15ǫ23M
5r2 + 72ǫ3M

4r3 − 44ǫ3M
3r4 + 6ǫ3M

2r5 + 12Mr6 − 4r7
)

}

∓4P4

[

a2
(

ǫ3M
3 − 2r3

)2 (

ǫ3M
3 + r3

)

+ 6ǫ3M
3r5

(

ǫ3M
3 + 6Mr2 − 2r3

)

]

(A5)

P6 =−ǫ23M
6 − 6ǫ3M

4r2 + ǫ3M
3r3 − 6Mr5 + 2r6 (A6)
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