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Abstract

We study a flat brane solution in an effective 5D action for cascading gravity in six dimensions,

and propose a mechanism to screen extrinsic curvature in the presence of a large tension on the

brane. The screening mechanism leaves the bulk Riemann-flat, thus making it simpler to generalize

large extra dimension dark energy models to higher codimensions. By studying an action with cubic

interactions for the brane-bending scalar mode, we find that the perturbed action suffers from

ghostlike instabilities for positive tension. The solution can be made ghost-free for sufficiently

small negative tension, though the connection to 6D cascading gravity is less clear in this case.
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I. INTRODUCTION

The problem of cosmic acceleration and its possible explanation as a cosmological constant

have led to a wide variety of models in theoretical physics. Higher-dimensional theories of

dark energy, in which our Universe is viewed as a 4D brane living in a higher-dimensional

bulk, offer an interesting proposal towards understanding dark energy as a manifestation

of the presence of extra dimensions of space-time. Much progress has been made in this

field using the braneworld picture in which all standard model particles are confined to

a 4D brane, while gravity is free to explore the bulk [1–3]. This makes it possible to

have cosmologically large extra dimensions [2, 4, 5]. The Dvali-Gabadadze-Porrati (DGP)

model [6], in particular, takes this idea to the extreme and considers our 4D Universe to be

embedded in an empty 5D bulk of infinite extent. Despite being observationally disfavored

[7–10]1, the normal branch of the DGP model is perturbatively ghost-free, in contrast to

the self-accelerating branch [14–19], and thus represents a perturbatively consistent infrared

modification of gravity in which the graviton has a soft mass.

Infinitely large extra dimensions also offer a promising arena for realizing Rubakov and Sha-

poshnikov’s proposal [20] for addressing the cosmological constant problem, namely that

brane tension could curve the extra dimensions while leaving the 4D geometry flat. While

tantalizing, this idea immediately fails if the extra dimensions are compactified, since 4D

general relativity, and hence standard no-go arguments [21], apply below the compactifica-

tion scale. Moreover, obtaining a flat 4D geometry with compact extra dimensions requires

canceling the brane tension against other branes and/or bulk fluxes [22]. The situation

is more promising if the extra dimensions have infinite volume. The weakening of gravity

as it enters the higher-dimensional regime (combined with an intrinsic curvature term on

the brane) at least suggests that vacuum energy, by virtue of being the longest-wavelength

source, might only appear small because it is degravitated [23–25].

The generalization of large extra-dimension dark energy models to higher codimensions

is important not only for the cosmological constant problem but also for their possible

1 Also see [11–13], in which the authors studied DGP-like models with a non-vanishing bulk cosmological

constant.
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embedding into string theory [23, 26]. Previous attempts of such a generalization have been

found to give rise to a divergent brane-to-brane propagator and ghost instabilities around

flat space [27, 28]. Furthermore, for a static bulk, the geometry for codimension N > 2 has

a naked singularity at a finite distance from the brane, for arbitrarily small tension [23].

The cascading gravity framework [29–34] avoids these pathologies by embedding the 4D

brane within a succession of higher-dimensional branes, each with their own intrinsic cur-

vature term. The brane-to-brane propagator is regulated by the intrinsic curvature term of

the higher-dimensional brane. Meanwhile, in the simplest codimension-2 case, consisting of

a 4D brane embedded in a 5D brane within a 6D bulk, the ghost is cured by including a

sufficiently large tension Λ on the (flat) 4D brane:

Λ ≥ 2

3
m2

6M
2
4 , (1)

where m6 ≡ M4
6/M

3
5 , and MD denotes the Planck mass in D dimensions. This stability

bound was first derived through the decoupling limit M5,M6 → ∞, keeping the strong-

coupling scale Λ6 = (m4
6M

3
5 )1/7 fixed. In this limit, the 6D framework reduces to a local

theory on the 5D brane, describing weak-field 5D gravity coupled to a self-interacting scalar

field π. The bound (1) was confirmed in [34] through a complete perturbation analysis in

the full 6D set-up.

The codimension-2 solution exhibits degravitation: the brane tension creates a deficit angle

in the bulk, leaving the geometry flat. Since the deficit angle must be less than 2π, the

tension is bounded from above:

Λ ≤ 2πM4
6 . (2)

Since M6 is constrained phenomenologically to be less than ∼ meV, this upper bound is

unfortunately comparable to the dark energy scale. Given its geometrical nature, however,

this is likely an artifact of the codimension-2 case and is expected to be absent in higher

codimensions. This motivated [33] to study the codimension-3 case, consisting of a 4D brane

living on a 5D brane, itself embedded in a 6D brane, together in a 7D bulk space-time. In

the limit of small tension on the 4D brane, such that the weak-field approximation is valid,

[33] showed that the bulk geometry is non-singular everywhere (away from the brane) and

asymptotically flat, with the induced 4D geometry also flat.

In a recent paper [35], we proposed a proxy theory for the full 6D cascading gravity model by
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covariantizing the 5D effective theory obtained through the decoupling limit. The resulting

action is a 5D scalar-tensor theory, describing 5D gravity and the brane-bending scalar

mode (denoted by π), coupled to a 4D brane. The scalar field is of the conformal galileon

type [36], with a cubic self-interaction term [14, 37]. Since our brane is a codimension-1

object in this case, the equations of motion are more tractable and allowed us in [35] to

derive a rich cosmology on the brane. A similar strategy was used in earlier work [38] to

construct an effective 4D covariant theory, which was shown to faithfully reproduce much

of the phenomenology of the full 5D DGP model. See [39–42] for related work.

The goal of this paper is to explore whether this effective framework also allows for flat

brane solutions with tension and, if so, whether such degravitated solutions are stable. In

particular, are the bounds (1) and (2) reproduced in the effective theory?

Remarkably, we find that our 5D theory allows for flat brane solutions for arbitrarily large

tension, with the bulk geometry being non-singular. The cascading origin of the theory is

essential to the viability of these solutions: if we let m6 → ∞, corresponding to turning

off the cubic scalar self-interaction, the bulk geometry develops a naked singularity a finite

distance from the brane, as in [43].

Our mechanism for screening the brane cosmological constant relies crucially on π. In order

for the theory to have a well-defined variational principle, the cubic self-interaction term

requires appropriate interactions for π on the brane, analogous to the Gibbons-Hawking-

York term for gravity. In the presence of brane tension, these scalar boundary terms screen

the tension, resulting in a flat geometry. This is the interpretation of our mechanism in

the Jordan frame, in which the scalar is non-minimally coupled to gravity. There is of

course a similar intuitive explanation in the Einstein frame. There, based on the Israel

junction conditions, one would expect that a large brane tension should imply large extrinsic

curvature, and hence large (i.e. super-Planckian) bulk curvature near the brane. Instead,

the scalar boundary terms effectively screen the tension, much like the screening of charges

in a dielectric medium, resulting in a small source for bulk gravity.

The screening mechanism we propose seems to resolve the problem with earlier self-tuning

attempts. A perturbative analysis of this mechanism, however, shows that it is difficult

to avoid ghosts in such a model for positive brane tension, while it is possible to obtain
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consistent ghost-free solutions for negative tension. We further find that the model is free

of gradient instabilities, and scalar perturbations propagate sub-luminally along the extra

dimension. It is also worth mentioning that we only consider solutions in which the bulk is

flat, hence we are working on a different branch of solutions than those studied in [35], and

our results are in no way contradictory to [34, 35].

We have organized our paper in the following way. After briefly reviewing cascading gravity

in Sec. II, we present the flat brane solution in Sec. III. In Sec. IV we discuss perturbations to

the screening solution around a flat background, and derive various conditions for stability,

both in the bulk and on the brane. We summarize our results and discuss future research

avenues in Sec. V.

A comment on our notation: We use the mostly positive signature convention. Indices

M,N, ... run over 0, 1, 2, 3, 5 (i.e. the 4 + 1D coordinates) and indices µ, ν, ... run over

0, 1, 2, 3 (i.e. the 3 + 1D coordinates). We denote the fifth dimensional coordinate by

y = x5.

II. OVERVIEW OF CASCADING GRAVITY

Consider a 6D cascading gravity model in which a 3-brane is embedded in a succession of

higher-dimensional branes, each with its own Einstein-Hilbert action [29, 30],

Scascade =

∫
bulk

d6x
√
−g6

M4
6

2
R6 +

∫
4−brane

d5x
√
−g5

M3
5

2
R5

+

∫
3−brane

d4x
√
−g4

(
M2

4

2
R4 + Lmatter

)
, (3)

where, as mentioned earlier, MD denotes the Planck mass inD dimensions. The gravitational

force law on the 3-brane “cascades” from 1/r2 to 1/r3 and from 1/r3 to 1/r4 as the Universe

transitions from 4D to 5D and ultimately to 6D at the crossover scales m−1
5 and m−1

6

5



respectively, where2

m5 =
M3

5

M2
4

, m6 =
M4

6

M3
5

. (4)

As mentioned in Sec. I, this theory allows for degravitated solutions — a 3-brane with

tension creates a deficit angle in the bulk while remaining flat. Furthermore, the theory is

perturbatively ghost-free provided the 3-brane tension is sufficiently large that (1) is satisfied.

In the decoupling limit M5, M6 →∞, with the strong-coupling scale

Λ6 = (m4
6M

3
5 )1/7 (5)

held fixed, we can expand the action (3) around flat space and integrate out the sixth

dimension [35, 37]. The resulting action is local in 5D and describes weak-field gravity

coupled to a scalar degree of freedom π:

Sdecouple =
M3

5

2

∫
bulk

d5x

[
−1

2
hMN(Eh)MN + πηMN(Eh)MN −

27

16m2
6

(∂π)2�5π

]
+

∫
brane

d4x

[
−M

2
4

4
hµν(Eh)µν +

1

2
hµνTµν

]
, (6)

where (Eh)MN = −�5hMN/2 + . . . is the linearized Einstein tensor. The scalar π is the

helicity-0 mode of the massive spin-2 graviton on the 4-brane and measures the extrinsic

curvature of the 4-brane in the 6D bulk space-time. An obvious advantage offered by the

decoupling theory is that the 3-brane now represents a codimension-1 object, which greatly

simplifies the analysis. On the other hand, its regime of validity is of course restrained to the

weak-field limit and therefore of limited interest for obtaining cosmological or degravitated

solutions.

In [35], we proposed a proxy theory for the full 6D cascading gravity model by extending (6)

to a fully covariant, non-linear theory of gravity in 5D coupled to a 3-brane,

S =
M3

5

2

∫
bulk

d5x
√
−g5

[
Ω(π)R5 −

27

16m2
6

(∂π)2�5π

]
+

∫
brane

d4x
√
−g4

(
M2

4

2
R4 + Lmatter

)
. (7)

2 Strictly speaking, the 4D → 5D → 6D cascading behavior of the force law requires m−1
5 < m−1

6 , thereby

allowing for an intermediate 5D regime. If m−1
5 > m−1

6 , on the other hand, the scaling of the force law

transitions directly from 1/r2 to 1/r4 at the crossover scale m−1
6 .
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This reduces to (6) in the weak-field limit provided that Ω(π) ≈ 1 − 3π/2 for small π.

In [35], we chose Ω(π) = e−3π/2 and derived the induced cosmology on a moving 3-brane in

static bulk space-time solutions. Interestingly, this choice corresponds in Einstein frame to

the 5D generalization of the cubic conformal galileon [36], whose structure is protected by

symmetries. While the proposed covariantization of (6) is by no means unique, our hope is

that (7) captures the salient features of the 6D cascading gravity model, and furthermore

that the resulting predictions are at least qualitatively robust to generalizations of (7).

In this paper, we want to address whether (7) allows the 3-brane to have tension while

remaining flat. To parallel the corresponding 6D solutions, where the bulk acquires a deficit

angle while remaining flat, we will impose that the 5D (Jordan-frame) metric is Minkowski

space. For most of the analysis, we will leave Ω(π) as a general function, and derive con-

straints on its form based on stability requirements.

We work in the “half-picture”, in which the brane is a boundary of the bulk space-time.

In this case, the action (7) is not complete without the appropriate Gibbons-Hawking-York

(GHY) terms on the brane [44, 45], both for the metric and for π [46], to ensure a well-

defined variational principle. These were derived in flat space in [46] and around a general

backgroud in [35], and the complete 5D action is

S =
M3

5

2

∫
bulk

d5x
√
−g5Ω

(
R4 +K2 −KµνK

µν + 2K
LnΩ

Ω
− 2
�4Ω

Ω

)
− 27M3

5

32m2
6

∫
bulk

d5x
√
−g5(∂π)2�5π −

27M3
5

32m2
6

∫
brane

d4x
√
−q
(
∂µπ∂

µπLnπ +
1

3
(Lnπ)3

)
+

1

2

∫
brane

d4x
√
−q
(
M2

4

2
R4 + Lmatter

)
. (8)

Here qµν = gµν−nµnν is the 4D induced metric, and Kµν ≡ Lnqµν/2 is the extrinsic curvature

of the brane, where nα is the unit normal to the brane, and Ln is the Lie derivative with

respect to the normal. Note that we have added an extra factor of 1/2 in the brane action

so that the Israel junction conditions obtained using (8) match with those obtained in the

“full-picture”. The assumed Z2 symmetry across the brane guarantees that the bulk action

in y ≥ 0 is equal to that in y ≤ 0, while the bulk in (8) is defined only in y ≥ 0.
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Varying (8) with respect to the metric leads to the Einstein field equations,

ΩGMN = − 27

16m2
6

[
∂(M(∂π)2∂N)π −

1

2
gMN∂K(∂π)2∂Kπ − ∂Mπ∂Nπ�5π

]
− (gMN�5 −∇M∇N) Ω , (9)

where GMN is the 5D Einstein tensor, and parentheses around indices denote symmetriza-

tion: X(MN) ≡ (XMN + XNM)/2. The matter stress-energy tensor on the brane is defined

as

T (4)
µν ≡ −

2√
−q

δ(
√
−qLmatter)

δqµν
. (10)

Similarly, varying with respect to π gives us the π equation of motion,

(�5π)2 − (∇M∂Nπ)2 −RMN
5 ∂Mπ∂Nπ = − 8

27
m2

6Ω,πR5 , (11)

with Ω,π ≡ dΩ/dπ. We further obtain the Israel junction conditions at the brane position

by setting the boundary contributions to the variation of the action (8) to zero. Variation

with respect to the metric gives us the Israel junction condition

2M3
5 Ω

(
Kqµν −Kµν +

Ω,π

Ω
qµνLnπ

)
=

27M3
5

8m2
6

(
∂µπ∂νπLnπ +

1

3
qµν (Lnπ)3

)
+ T (4)

µν −M2
4G

(4)
µν , (12)

while varying with respect to π yields the scalar field junction condition

Ω,πK −
27

16m2
6

(
Kµν∂

µπ∂νπ + 2Lnπ�4π +K(Lnπ)2
)

= 0 . (13)

In the balance of this paper we seek flat brane solutions to the bulk equations (9) and (11),

with boundary conditions set by (12) and (13).

III. OBTAINING FLAT BRANE SOLUTIONS FOR ANY TENSION

In this section we seek flat 3-brane solutions to the above equations of motion. To mimic

the 6D situation where the brane remains flat but creates a deficit angle in a flat 6D bulk,

we impose that the 5D (Jordan-frame) geometry is Minkowski space:

ds2
bulk = ηMNdxMdxN = −dτ 2 + d~x2 + dy2 . (14)
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Similarly, the induced metric on the brane should also be flat. By Lorentz invariance, clearly

we can assume the brane to be at fixed position, y = 0, with the extra dimension therefore

extending from y = 0 to ∞. By symmetry, we also have π = π(y).

With these assumptions, the (5, 5) component of the field equations (9) and the π equation

of motion (11) are trivially satisfied, while the (µ, ν) components of (9) reduce to

π′′ =
Ω,πππ

′2

27π′2

16m2
6
− Ω,π

, (15)

where primes denote derivatives with respect to y. The junction conditions (12) and (13)

can similarly be used to obtain the brane equations of motion. The π junction condition

(13) is trivial for a flat bulk and the (µ, ν) components of (12) reduce to,

−Ω,π0π
′
0 +

9π′30
16m2

6

=
Λ

2M3
5

, (16)

where the subscript 0 indicates that the function is evaluated at the brane position y = 0.

We have further assumed that the matter energy-momentum tensor on the brane is a pure

cosmological constant Λ, which we allow to be of any size, performing no fine-tuning like

that usually required for the cosmological constant. In fact we would like Λ to be large (TeV

scale), since we know from particle physics experiments that such energy densities exist on

our 4D brane. Note that, although we neglect other matter for simplicity, its inclusion would

not affect our overall conclusions.

As a check, note that our junction condition (16) is consistent with the decoupling limit result

π′0 = Λ/3M3
5 obtained in [29, 34]. Indeed, in this limit Ω,π0 ≈ −3/2. Moreover, introducing

the canonically normalized πc = M
3/2
5 π, we see that the π′3 term drops out in the limit

M5 → ∞, m6 → 0 keeping Λ6 = (m4
6M

3
5 )1/7 fixed. Hence our junction condition (16)

reduces to the decoupling result in this limit.

It is easily seen that the bulk equation (15) allows for a first integral of motion

−Ω,ππ
′ +

9π′3

16m2
6

= constant . (17)

Comparing against the junction condition (16) immediately fixes the integration constant

in terms of Λ, and we obtain

−Ω,ππ
′ +

9π′3

16m2
6

=
Λ

2M3
5

. (18)
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Notice that for suitable Ω, (18) appears to admit a solution π(y) for arbitrarily large Λ.

For example, suppose that Λ is large and positive, and we choose Ω such that Ω,π → 0 at

large π so that the cubic interaction term dominates everywhere, then this leads to a linear

solution π(y) increasing monotonically with y:

π(y) '
(

8m2
6Λ

9M3
5

)1/3

y . (19)

Since π is non-singular for any finite y, the solution is well-defined everywhere. Therefore a

flat brane solution is allowed for any tension. Of course, consistency of the effective theory

requires that π′ �M5. Since π is suppressed by the tiny scale m6, this is a weak requirement:

π′

M5

'
(

8m2
6Λ

9M6
5

)1/3

=

(
8

9

m2
6

m2
5

Λ

M4
4

)1/3

� 1 , (20)

where in the last step we have used (4). Even with Λ ∼ M4
4 , this can be satisfied provided

m6 � m5. A linearly growing π(y) is also desirable from the point of view of quantum

corrections to the π Lagrangian. It is well-known that such corrections are of the form

(�π)n, that is, they always involve two derivatives per field, and hence vanish on a linear

background.

Note that the above remarks depend crucially on the cascading mechanism. If we let m6 →

∞, thereby effectively decoupling the sixth dimension and turning off the cubic π terms

in (8), then (18) reduces to −Ω′ = Λ/2M3
5 , with solution Ω = −(Λ/2M3

5 )y + c. For Λ > 0,

as assumed above, the integration constant c must be positive since Ω must always be

positive (since it is the coefficient of R5 in the action). Hence Ω inevitably vanishes at some

finite value of y in this case, indicating strong coupling. (In Einstein frame, this corresponds

to a naked singularity.) The cascading mechanism, therefore, is crucial in obtaining a flat

brane solution for positive tension.

To gain further insight, we can translate to the Einstein frame: gE
MN = Ω2/3ηMN . In this

frame, the brane extrinsic curvature is non-zero and is determined by the Israel junction con-

dition. Focusing on its trace for simplicity, and assuming Ω0 = 1 without loss of generality,

we have

KE =
4

3

(
9π′30

16m2
6

− Λ

2M3
5

)
. (21)

In the absence of the π′3 term (corresponding to m6 → ∞), the junction condition would

imply KE/M5 ∼ Λ/M4
5 . In turn, requiring that the curvature remains sub-Planckian, KE �
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M5, would in turn impose a bound on the tension: Λ < M4
5 [23]. (Phenomenologically, M5

must be less than ∼ MeV, so this bound would be rather stringent.) Instead, using (16)

and (20), we obtain

KE

M5

≈ Ω,π0

(
8m2

6Λ

9m2
5M

4
4

)1/3

. (22)

Again assuming m6 � m5, this allows a Planck-scale tension, Λ ∼ M4
4 , while keeping

KE � M5. In other words, the π′3 contribution in (21) neutralizes the dangerous Λ term,

leaving behind a much smaller curvature. This screening mechanism results in an effectively

weak source for bulk gravity. This, however, also suggests that π must be a source of negative

energy to screen positive tension on the brane. This is not surprising since galileons are

known to violate the usual energy conditions [47].

Thus at the background level our proposed screening mechanism displays many desirable

features. To be physically viable, the action (7) must be perturbatively stable around a flat

bulk solution. We study this issue in detail in the next section. Unfortunately, we will find

that the theory propagates ghosts around the large-tension solution (19). More generally,

the absence of ghost instabilities, combined with the requirement that the bulk solution is

well-defined everywhere, places stringent constraints on the form of Ω and the allowed values

of Λ that can be degravitated. In Sec. V we discuss possible ways to extend the framework

to relax the stability constraints.

IV. STABILITY

In this section we study the stability of the degravitated solutions described above, by

perturbing the complete Jordan frame action (8) to quadratic order around the flat bulk

metric (14). To do so, it is convenient to work in the Arnowitt-Deser-Misner (ADM) coor-

dinates [48] with y playing the role of a “time” variable,

ds2
(5) = N2dy2 + qµν(dx

µ +Nµdy)(dxν +Nνdy) , (23)

where N denotes as usual the lapse function and Nµ the shift vector. Focusing on scalar

perturbations, we use the gauge freedom to make qµν conformally flat

qµν = e2ζ(xµ,y)ηµν . (24)
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Moreover, we keep the brane at fixed position y = 0. (This of course does not completely

fix the gauge in the bulk, but is sufficient for our purposes.) We perturb the lapse function,

shift vector and scalar field respectively as

N = 1 + δN , (25)

Nµ = ∂µβ , (26)

π = π̄(y) + π̂(xµ, y) . (27)

Similarly, all functions of π (such as Ω(π)) evaluated on the background will be denoted by a

bar. (In particular, the background equations in Sec. III only hold for the barred quantities

π̄(y) and Ω̄(y).)

After some integration by parts, carefully keeping track of boundary terms, the complete

action at quadratic order is given by

Spert =
M3

5

2

∫
bulk

d5x Ω̄

[
6(∂ζ)2 − 6

(
δN +

Ω̄,π

Ω̄
π̂

)
(∂2ζ) + 12ζ ′2 + 8

Ω̄,π

Ω̄
π̂′ζ ′ + 8

Ω̄,ππ

Ω̄
π̄′π̂ζ ′

− 8
Ω̄,π

Ω̄
π̄′δNζ ′ − 2

Ω̄,π

Ω̄
δN∂2π̂ +

2

Ω̄
∂2β(Ω̄,ππ̄

′δN − 3Ω̄ζ ′ − Ω̄,ππ̂
′ − Ω̄,πππ̄

′π̂)

]

− 27M3
5

32m2
6

∫
bulk

d5x
[
2π̄′′(∂π̂)2 − 2π̄′2δN∂2π̂ + 8π̄′2 (π̂′ζ ′ − π̄′δNζ ′)

+ 2π̄′2∂2β(π̄′δN − π̂′)
]

+
M2

4

4

∫
brane

d4x[6(∂ζ)2]− 27M3
5

32m2
6

∫
brane

d4x[2π̄′(∂π̂)2] . (28)

Varying with respect to β and N yields the first-order momentum and Hamiltonian con-

straint equations, respectively,

δN =
π̂′

π̄′
− π̄′′

π̄′2
π̂ − 2Ω̄

π̄′Z
ζ ′ , (29)

∂2β = − 2Ω̄

π̄′Z
∂2ζ +

1

π̄′
∂2π̂ + 4ζ ′ , (30)

where we have defined

Z ≡ −2

3
Ω̄,π +

9π̄′2

8m2
6

. (31)

Since δN and β are Lagrange multipliers, either of the relations (29) and (30) can be
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substituted back into (28). The resulting quadratic action is

Spert =
M3

5

2

∫
bulk

d5x

[
−12Ω̄ζ ′2 +

12Ω̄2

Z2

(
Z2

2Ω̄
+
ZΩ̄,π

Ω̄
− 9π̄′′

8m2
6

)
(∂ζ)2

]
+ 3M3

5

∫
brane

d4x

[
Ω̄

π̄′
π̂∂2ζ − Z

4π̄′
(π̂∂2π̂) +

Ω̄2

π̄′Z
(∂ζ)2

]
+
M2

4

4

∫
brane

d4x[6(∂ζ)2]− 27M3
5

32m2
6

∫
brane

d4x[2π̄′(∂π̂)2] . (32)

Note that the bulk action does not depend on π̂, consistent with the fact that it is pure

gauge from the bulk perspective. For consistency, its source at the brane position must

vanish. That is, we must set the variation of the brane action with respect to π̂ to zero,

thus obtaining

π̂ =

(
2Ω̄
Z

)
ζ

1− 9
4m2

6

π̄′2

Z

. (33)

Using this solution in (32) yields the complete ζ−action,

Sζ =
M3

5

2

∫
bulk

d5x

[
−12Ω̄ζ ′2 +

12Ω̄2

Z2

(
Z2

2Ω̄
+
ZΩ̄,π

Ω̄
− 9π̄′′

8m2
6

)
(∂ζ)2

]
− 3M3

5

∫
brane

d4x

(
1− 9π̄′2

4m2
6Z

)−1
9π̄′

4m2
6Z

2
(∂ζ)2 +

M2
4

4

∫
brane

d4x[6(∂ζ)2] . (34)

where we have set Ω̄ = 1 on the brane, without loss of generality. As a check, we have

repeated the bulk calculation in the Einstein frame, where the bulk geometry is warped,

and obtained the same result. This calculation is presented in the Appendix.

In order for bulk perturbations to be ghost-free, the coefficient of (∂ζ)2 must be negative:

Z2

2Ω̄
+
ZΩ̄,π

Ω̄
− 9π̄′′

8m2
6

< 0 . (35)

This inequality involves Ω̄, π̄′ and π̄′′. Using the background equations of motion (15)

and (18), we can eliminate π̄′ and π̄′′ in terms of Ω̄ and its derivatives, as well as the brane

tension Λ. Hence (35) reduces to a second-order differential inequality for Ω̄(π̄), which

constrains the allowed functions Ω(π) that can yield ghost-free solutions for a given value

of Λ. More precisely, since (18) is a cubic equation for π̄′, we obtain up to three allowed

differential inequalities for Ω̄(π̄). The physically-allowed Ω(π) should not only satisfy the

ghost-free inequality, but must also be positive-definite and well-defined for all y > 0 to

avoid strong coupling.
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We have studied this problem numerically. Since it is non-trivial to solve the differential

inequality directly, we have instead tried various forms for Ω(π) for different values of Λ,

and checked whether these forms satisfied the ghost-free condition (35) for each of the roots

of (18). For each root that satisfied (35), we then solved (18) for π̄(y), and hence checked

whether Ω̄(y) remained positive and well-defined everywhere. Some of the specific functional

forms we have tried include Ω = 1± 3π/2, e±3π/2 and 1− 3π/2 + 9π2/8.

For positive tension, Λ > 0, we were unable to find any Ω(π) that could simultaneously

satisfy the ghost-free condition and remain everywhere well-defined and positive. For large

tension, Λ�M4
6 , any real root of (18) inevitably violates the ghost-free condition (35). For

small tension, Λ � M4
6 , it is possible to satisfy the ghost-free inequality, but the resulting

Ω(y) either vanishes or becomes cuspy a finite distance from the brane. This is illustrated

in Fig. 1 for the case Ω(π) = 1 + 3π/2 and Λ = M4
6 .
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FIG. 1: In the left panel, we plot the quantity Z2

2Ω̄
+

ZΩ̄,π
Ω̄
− 9π̄′′

8m2
6

which appears in the ghost-free

condition (35) for Ω = 1 + 3π/2 and Λ = M4
6 . The three curves correspond to the three roots of

the cubic equation (18) in π̄′/m6. The ghost-free condition requires Z2

2Ω̄
+

ZΩ̄,π
Ω̄
− 9π̄′′

8m2
6
< 0, hence

only the black (solid) curve is free of ghost instabilities. In the right panel, we plot Ω̄(y) for the

ghost-free case. Since Ω̄ vanishes at finite y, corresponding to strong coupling, this solution is

unphysical. We have found similar results for all positive values of Λ and functional forms of Ω

that we have tried.

For negative tension, Λ < 0, on the other hand, it is possible to find suitable Ω(π) that

satisfy the ghost-free condition and are well-defined for all y > 0. Figure 2 illustrates this

for Ω = 1 + 3π/2 and Λ = −M4
6 . However, this is only the case for sufficiently small values
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of the tension, |Λ| .M4
6 . For large values |Λ| �M4

6 , either the ghost-free condition cannot

be satisfied or Ω(y) is ill-behaved. The existence of non-singular, ghost-free degravitated

solutions, albeit with negative tension, is certainly a welcome feature of our 5D covariant

framework. That said, these solutions do not connect to the parent 6D cascading framework,

where the deficit angle solution requires a positive tension source.
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FIG. 2: Same as Fig. 1, except that Ω = 1 + 3π/2 and Λ = −M4
6 . From the right panel, we

see that Ω̄(y) corresponding to the ghost-free branch is everywhere positive, hence this solution is

physically viable.

Coming back to (34), there are other requirements that our degravitated solutions must

satisfy. To avoid gradient instabilities in the extra dimension, the coefficient of ζ ′2 must be

negative, which is automatically true since Ω > 0. Furthermore, from the ratio of the ζ ′2

and (∂ζ)2 terms we can infer the sound speed of propagation in the bulk:

c2
s =

−Z2

Ω̄

Z2

2Ω̄
+ ZΩ̄,π

Ω̄
− 9π̄′′

8m2
6

, (36)

which is of course manifestly positive once (35) is satisfied. Using this we can determine

whether the propagation of perturbations is sub- or super-luminal. For the ghost-free ex-

ample Ω = 1 + 3π/2 and Λ = −M4
6 shown in Fig. 2, c2

s is sub-luminal everywhere.

Finally, the coefficient of (∂ζ)2 on the brane must be negative, in order to avoid ghost

instabilities:

Z2
0 −

9m5π̄
′
0

2m2
6

(
1− 9π̄′20

4m2
6Z0

)−1

< 0 . (37)
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With m5 ≥ m6, for instance, this condition is satisfied for the negative-tension example of

Fig. 2. As a check, we can compare this ghost-free condition with the stability bound (1)

obtained both in the decoupling limit [29] and in the full 6D cascading framework [34]. In

the decoupling limit with Ω = 1 − 3π/2, where we expect agreement with the cascading

results, (37) indeed reduces to Λ > 2m2
6M

2
4/3.

Note that the absence of ghosts on the brane can always be achieved by adding a suitably-

large kinetic term for π on the brane, thereby modifying (37) to a trivial condition. This

intrinsic kinetic term would not affect the background solution nor the bulk perturbation

analysis. In this sense, the bulk ghost-free condition (35) is a more robust constraint on the

theory.

V. CONCLUSIONS

Cascading gravity is an interesting approach to understanding dark energy as a manifestation

of the presence of large extra dimensions. Unlike previous attempts, such as the DGP model,

the propagators in cascading gravity are free of divergences, and the model has been found

to be perturbatively ghost-free. Moreover, cascading gravity offers a promising arena for

realizing degravitation: both in the codimension-2 [29] and codimension-3 [33] cases, at

least for small brane tension, the bulk geometry has been shown to be non-singular and

asymptotically-flat, while the induced 4D geometry is flat.

In this paper, we have studied a recently-proposed effective 5D action of cascading gravity in

an attempt to obtain flat brane solutions. Our analysis has uncovered an intringuing screen-

ing mechanism that can shield bulk gravity from a large tension on the brane, resulting in

a small brane extrinsic curvature. The brane remains flat for arbitrarily large tension, while

the bulk is non-singular. Although this model offers an attractive mechanism to general-

ize extra-dimension dark energy models to higher codimensions without any fine-tuning, the

stability analysis imposes stringent constraints. The bulk solution is perturbatively unstable

for positive brane tension, while it is possible to find stable solutions for sufficiently small

negative brane tension.

Our model agrees with earlier work in the weak-field limit, hence we do not contradict results
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that cascading gravity is indeed ghost-free. It does, however, raise the interesting question

— is there a fundamental difference between a theory with large extra dimensions and an

effective 4D scalar-tensor theory of gravity? A complete answer to this question demands a

more detailed analysis, which we leave to future work.

To improve stability, we are currently investigating the impact of including higher-order

galileon terms for π in the bulk, generalizing the results of [36] to 5D. Preliminary results

show that these higher-order terms still allow for flat brane solutions, while greatly alleviating

the stability issues. In particular, ghost-free solutions are now possible with positive tension.

However, demanding that gravity on the brane is approximately 4D on sufficiently large

scales appears to impose an upper bound on the brane tension. The results of this ongoing

analysis will be presented in detail elsewhere.
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Appendix: Alternative analysis of scalar perturbations

In this appendix we present an alternative derivation of the bulk ζ-action in (34), by per-

forming the stability analysis in the Einstein frame: gE
MN = Ω2/3gJ

MN . We define a warp

factor aE(y) = Ω1/3(y) and a rescaled coordinate dyE = Ω1/3dy. Removing the subscripts

“E” for simplicity, the bulk metric in Einstein frame is

ds2
bulk = a2(y)(−dτ 2 + d~x2) + dy2 . (A1)
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The Einstein frame bulk action is given by

Sbulk =
M3

5

2

∫
bulk

d5x
√
−g5

[
R5 −

4

Ω

(
Ω2
,π

Ω
− 2Ω,ππ

3

)
(∂π)2 +

8Ω,π

3Ω
(�5π)

]
− 27M3

5

32m2
6

∫
bulk

d5x
√
−g5(∂π)2

[
1

Ω1/3
�5π −

Ω,π

Ω4/3
(∂π)2

]
. (A2)

Varying with respect to the metric yields the Einstein equations, M3
5GMN = T πMN , where

the π stress-energy tensor, T πMN = −(2/
√
−g5)δSπ/δg

MN , is given by,

T πMN =
2M3

5

3

Ω2
,π

Ω2

[
2∂Mπ∂Nπ − gMN(∂π)2

]
+

9M3
5

16m2
6

Ω,π

Ω4/3

[
gMN(∂π)4 − 4∂Mπ∂Nπ(∂π)2

]
− 27M3

5

16m2
6

Ω−1/3

[
∂(M(∂π)2∂N)π −

1

2
gMN∂K(∂π)2∂Kπ − ∂Mπ∂Nπ�5π

+
Ω,π

3Ω
∂Mπ∂Nπ(∂π)2

]
. (A3)

For the metric (A1) with π ≡ π(y), the (5, 5) and (µ, ν) components of the Einstein equations

give us the following background evolution equations,

6H2 = ρ , (A4)

3H ′ = −(ρ+ p) , (A5)

where

ρ =
2

3

[(
Ω,π

Ω

)2

π′2 − 27

8m2
6

Ω−1/3

(
Ω,π

Ω
π′4 − 3Hπ′3

)]
, (A6)

p =
2

3

[(
Ω,π

Ω

)2

π′2 − 27

32m2
6

Ω−1/3

(
Ω,π

Ω
π′4 + 3π′2π′′

)]
. (A7)

Here H = a′/a is the 5D Hubble parameter, with y playing the role of a “time” variable.

To study scalar perturbations, we use ADM coordinates (23) and choose comoving gauge:

qµν = a2(y)e2ζ(xµ,y)ηµν and π = π(y). In this gauge we cannot assume that the brane is at

fixed position, but this is of no consequence here as we focus solely on bulk perturbations.

The action (A2) can be rewritten using ADM variables as

Sbulk = Sg + Sπ , (A8)
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with

Sg =
M3

5

2

∫
bulk

d5x
√
−q
[
NR4 +

1

N

(
E2 − EµνEµν

)]
,

Sπ =
M3

5

2

∫
bulk

d5x
√
−qN

[
−4

3

(
Ω,π

Ω

)2
π′2

N2

]

− 27M3
5

32m2
6

∫
bulk

d5x
√
−qN π′2

N2

[
Ω−1/3

(
2

3

π′

N
K − 8

9

Ω,π

Ω

π′2

N2

)]
, (A9)

where Eµν = (q′µν −DµNν −DνNµ)/2 = NKµν .

Expanded to second order in the perturbations, δN = N − 1 and δEα
α = Eα

α − 4H, the

scalar field action reduces to

Sπ =
M3

5

2

∫
bulk

d5x
√
−qN

[
3H ′

1

N2
+ 3(4H2 +H ′) +

1

2
M4(y)δN2 − M̂3(y)δEα

αδN

]
,

(A10)

where

M4(y) = − 27

8m2
6

Ω−1/3

(
−11

3

Ω,π

Ω
π′4 + π′2π′′ + 12Hπ′3

)
, (A11)

M̂3(y) = − 27

8m2
6

Ω−1/3π′3 . (A12)

Varying the complete bulk action with respect to Nµ and N gives us the momentum and

Hamiltonian constraint equations,

Dα

[
2

N
(Eδαβ − Eα

β)− M̂3δNδαβ

]
= 0 , (A13)

R4 −
1

N2
(E2 − EµνEµν)− 3

N2
H ′ + 3(4H2 +H ′) +M4δN − M̂3δEα

α = 0 . (A14)

For scalar perturbations, qµν = a2(y)e2ζ(xµ,y)ηµν and Nµ ≡ ∂µβ, the first-order solutions

to (A13) and (A14) are given by

δN =
6ζ ′

6H + M̂3
, (A15)

�4β =
6

6H + M̂3

1

a2
∂2ζ +

−36H ′ + 48HM̂3 + 4M̂6 − 6M4

(6H + M̂3)2
ζ ′ . (A16)

As usual, we only need to solve the constraint equations at first-order in the perturbations

to obtain the quadratic Lagrangian for ζ, since the second-order terms will multiply the
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unperturbed constraint equations, which vanish [49]. Also note that here �4β = qµνDµDνβ

whereas ∂2ζ = ηµν∂µ∂νζ.

The quadratic action for ζ is obtained by plugging back the solutions (A15) and (A16) into

the original action (A8), (A9). We find that all of the �4β terms add up to a total derivative,

hence the final Einstein frame ζ−action is

Sζ =
M3

5

2

∫
bulk

d5x a4

[
A(y)ζ ′2 +B(y)

1

a2
(∂ζ)2

]
, (A17)

where

A(y) =
6(18H ′ − 24HM̂3 − 2M̂6 + 3M4)

(6H + M̂3)2
, (A18)

B(y) =
6(18H ′ + 6HM̂3 + M̂6 + 3∂yM̂

3)

(6H + M̂3)2
, (A19)

and (∂ζ)2 = ηµν∂µζ∂νζ.

We can transform the action (A17) back to the Jordan frame by using the transformations

between Einstein frame variables (now denoted with a subscript “E”) and Jordan frame

variables: aE = Ω1/3, dyE = Ω1/3dy, and ζE = ζ. The result is

SJordan
ζ =

M3
5

2

∫
bulk

d5x

[
−12Ωζ ′2 +

12Ω2

Z2

(
Z2

2Ω
+
ZΩ,π

Ω
− 9π′′

8m2
6

)
(∂ζ)2

]
, (A20)

which matches with the bulk Jordan frame action in (34).
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