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In the Cadassian universe, one can explain the acceleration of the universe without introducing
dark energy component. However, it is hard to get the dynamical equations of this model from the
action principle. Recently, works on the relation between thermodynamics and gravity indicate that
gravity force may not be a fundamental force. In this paper, we shall study the thermodynamics of
the Cardassian universe, and it might be the origin of this cosmological model. We find that the
corresponding entropy obeys ordinary area law when the area of the trapping horizon is small, and
it becomes a constant when the area is going to be large in the original and modified polytropic
Cardassian models, while it has a maximum value in the exponential one. It seems that the Cardas-
sian universe only contains finite information according to the holographic principle, which states
that all the information in the bulk should be encoded on the boundary of the bulk.

PACS numbers: 98.80.-k

I. INTRODUCTION

Recently, the relation between the laws of thermody-
namics and that of gravity has aroused great interest. In
Hawking’s work [1], it shows that black holes have ther-
mal radiation with a temperature determined by its sur-
face gravity due to the quantum effect, which implies that
these two branches of physics may have underly relations,
namely, they are unified. The authors in ref. [2] proposed
a unified first law of black hole dynamics and relativistic
thermodynamics in spherically symmetric general rela-
tivity, see also [3–5]. By using the unified law in the
framework of Friedmann-Robertson-Walker (FRW) uni-
verse, the authors in [6] find the relation between the
Friedmann equation and the first law of thermodynamics
on the “inner” trapping horizon. They also find that the
Clausius relation holds for the Gauss-Bonnet and Love-
lock theory by treating the higher derivative terms as
an effective energy-momentum tensor, but the Clausius
relation never holds for the scalar-tensor theory, which
implies that this is a system with non-equilibrium ther-
modynamics. These results indicate that the gravity may
be not one of the fundamental forces and it is only an-
other view of thermodynamics. In this spirit, we can
regard the thermodynamics law as the fundamental law
and it will give the corresponding gravity theory. Thus,
one can study the thermodynamics of some cosmological
models to pursue their origins. For related discussions,
see also [7–13].

Up to now, there are many kinds of dark energy mod-
els and modified gravity theories proposed to explain the
current accelerating expansion of the universe, which has
been confirmed by the observations like Type Ia super-
novae (SNe Ia), CMB and SDSS et al. The dark en-
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ergy models assume the existence of an energy compo-
nent with negative pressure in the universe, and it dom-
inates and accelerates the universe at late times. The
cosmological constant seems the best candidate of dark
energy, but it suffers the fine tuning problem and coin-
cidence problem, and it may even have the age problem
[14]. To alleviate these problems, many dynamic dark
energy models were proposed, see [15]. However, people
still do not know what is dark energy.

Since the Einstein general gravity theory has not been
checked in a very large scale, then one does not know
whether this gravity theory is suitable or not for studying
the observational data like SNe Ia, and maybe the accel-
erating expansion of universe is due to the gravity theory
that differs from the general gravity. Thus, many modi-
fied gravity theories like f(R), DGP et al. are proposed
to explain the accelerating phenomenology. The Cardas-
sian model is a kind of model in which the Friedmann
equation is modified by the introduction of an additional
nonlinear term of energy density and in this model one
does not need dark energy component also. However, one
can not directly find its origin from the first principle.

As we mentioned before, the gravity may be not a fun-
damental theory, and one can at least study the thermo-
dynamics of a cosmological model to pursue its origin.
So, in this paper, we will study the thermodynamics of
the Cardassian universe, and regarded it as its origin.
We find that the corresponding entropy obeys ordinary
area law S = A/(4G) on the trapping horizon when A is
small, where A is the the area of the trapping horizon,
and it becomes a constant when A is going to be large in
the original (OC) [16] and modified polytropic Cardas-
sian model (MPC) [17], while it has a maximum value
in the exponential model (EC) [18, 19]. It seems that
the Cardassian universe only contains finite information
according to the holographic principle, which states that
all the information in the bulk should be encoded in the
boundary of the bulk.

This paper is organized as follows: In Section II, we
will give a briefly review on the unified first law and its
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application. In Section III, we will study the thermo-
dynamics of the Cardassian universe including the OC,
MPC and EC models, for recent works on the Cardas-
sian universe, see [20–23]. In the last section, we will give
some discussions and conclusions.

II. BRIEFLY REVIEW ON THE UNIFIED

FIRST LAW

Einstein equations can be written in a form called ”uni-
fied first law” based on the general definition of black
hole dynamics on trapping horizon, which was proposed
by Hayward [2–5] and developed by Cai et al [6–10]. In
the rest of this section, we will give a brief review on this
unified first law in the 3 + 1-dimensional spherical sym-
metric spacetime, in which the metric could be locally
written in the double-null form as

ds2 = −2e−fdξ+dξ− + r2dΩ2 , (1)

where dΩ2 is the line element of the 2-sphere with unit ra-
dius, r and f are functions of (ξ+, ξ−). So, each symmet-
ric sphere has two preferred normal directions, namely
the null directions ∂/∂ξ±, which will be assumed future-
pointing in the following. And also, we will assume the
spacetime is time-orientable. The expansions of the ra-
dial null geodesic congruence are defined by

θ± = 2r−1∂±r , (2)

where ∂± denotes the coordinates derivative along ξ±.
The expansion measures whether the light rays normal
to the sphere are diverging (θ± > 0) or converging
(θ± < 0), namely, whether the sphere is increasing or
decreasing in the null directions. Note that, although
the value of θ± will change with geometries, its sign
will not, and the only invariants of the metric and its
first derivative are functions of r and efθ+θ−, or equiv-
alently gab∂ar∂br = − 1

2e
fθ+θ−, which has an important

physical and geometrical meaning: a sphere is said to
be trapped (untrapped) if θ+θ− > 0(θ+θ− < 0), and if
θ+θ− = 0, it is a marginal sphere.
Considering non-stationary black holes, Hayward has

proposed that the future outer trapping horizons defined
as the the closure of a hypersurface foliated by future
or past, outer or innner marginal sphere is taken as the
definition of black holes, since the horizon possess various
properties which are often intuitively ascribed to black
hole including confinement of observers and analogues
of the zeroth, first and second law of thermodynamics.
However, in the case of FRW universe, one should take
the future inner trapping horizon defined by

θ+ = 0 , θ− < 0 , ∂−θ+ > 0 , (3)

as a system on which the thermodynamics will be estab-
lished, since the surface gravity is negative on the cosmo-
logical horizon.

In a spherical symmetric spacetime, one can obtain the
total energy inside the sphere with radius r by calculating
the Minsner-Sharp energy given by

E =
r

2G

(

1− gab∂ar∂br

)

=
r

G

(

1

2
− g+−∂+r∂−r

)

, (4)

which is a pure geometric quantity and has much bet-
ter properties than the other definitions of energy when
one consider the case of non-stationary spacetime. The
relation between the Minsner-Sharp energy and others
could be found in ref. [4] . There are also two invariants
constructed from the energy-momentum tensor T µν :

W = −1

2
gabT

ab = −g+−T
+− , (5)

which are called the work density, and Ψ called the energy
flux vector (also called the energy-supply vector), whose
components are

Ψa = T b
a∂br +W∂ar . (6)

Here and in the following, a, b denotes the two dimen-
sion space normal to the sphere. With the help of the
definition of Minsner-Sharp energy and the above two
quantities, one can write the (0, 0) component of Ein-
stein equations as a “unified first law” :

dE = AΨ +WdV , (7)

where A = 4πr2 and V = 4π
3 r3. This unified law contains

rich information, e.g. by projecting the unified first law
along the trapping horizon, we can obtains the first law
of black hole thermodynamics,which has the form [6]

〈dE, z〉 = κ

8πG
〈dA, z〉+ 〈WdV, z〉 , (8)

where κ defined by

κ =
1

2
∇a∇ar , (9)

is the surface gravity of the trapping horizion. Here z =
z+∂++z−∂− is a vector tangent to the trapping horizon,
and it should be noticed that by definition of the horizon
∂+r = 0, one has

za∂a(∂+r) = z+∂+∂+r + z−∂−∂+r = 0 (10)

on the trapping horizon, then

z−

z+
= −∂+∂+r

∂−∂+r
. (11)

Also note that by taking the Einstein equations ∂+∂+r =
−4πrT++, see ref. [4] and the definition of the surface
gravity in Eq. (9), one can easily finds

〈AΨ, z〉 = κ

8πG
〈dA, z〉 , (12)
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which is the Clausius relation in the version of black hole
thermodynamics, see the first term on the right side of
Eq. (8). The left side of the above equation is nothing
but the heat flow δQ, and the right side has the form
TdS, if one identities the temperature T = κ/2π and the
entropy S = A/4G. So, in Einstein theory, the “uni-
fied first law” also implies the Clausius relation, and this
relation is also hold in the Gauss-Bonet and Lovelock
gravity theories by treating the higher derivative terms
as an effective energy-momentum tensor. But, in the
scalar-tensor theory, this relation is no longer hold due
to some non-equilibrium thermodynamical properties. In
the next section, we will study the thermodynamics of the
Cardassian universe, and calculate the corresponding en-
tropy.

III. THERMODYNAMICS OF THE

CARDASSIAN UNIVERSE

The spacetime of the Cardassian universe is described
by the FRW metric, which could be written in the form
of

ds2 = habdx
adxb + r̃dΩ2 , (13)

where x0 = t, x1 = r and r̃ = a(t)r, which is the radius
of the sphere while a(t) is the scale factor. Defining

dξ± = − 1√
2

(

dt∓ a√
1− kr2

dr

)

, (14)

where k is the spacial curvature, the metric could be
rewritten as a double-null form

ds2 = −2dξ+dξ− + r̃2dΩ2 , (15)

then we get the trapping horizon r̃T by solving the equa-
tion ∂+r̃|r̃=r̃T = 0 as

r̃T =

(

H2 +
k

a2

)−1/2

, (16)

which has the same form of the apparent horizon. Thus,
one can get the surface gravity κ = −(1 − ǫ)/r̃T , where
we have defined

ǫ ≡
˙̃rT

2Hr̃T
. (17)

One can also check that ∂−r̃T < 0 indicating the trapping
horizon is future. By using Eq. (10) and after a direct
calculation, one can get z− = ǫ/(1 − ǫ) when z+ = 1 is
chosen. Then, in the (t, r) coordinates, the project vector
is given by z = ∂t − (1 − 2ǫ)Hr∂r.
In the Cardassian universe, the Friedmann equation is

modified as

H2 +
k

a2
=

8πG

3
g(ρm) =

8πG

3
(ρm + ρe) , (18)

where g is some function of the energy density of mat-
ter and we have defined the effect energy density ρe =
g(ρm)− ρm. Using the continuity equations, we can ob-
tain the effective pressure corresponds to the effective
energy density

pe = (ρm + pm)g′(ρm)− g(ρm)− pm . (19)

where the prime denotes the derivative with respect to
ρm. Then, we get the associated work density We and
energy-supply vector Ψe as

We =
1

2

[

2g − ρm + pm − (ρm + pm)g′
]

, (20)

Ψe =
1

2
(g′ − 1)(ρm + pm)(−Hr̃T dt+ adr) . (21)

Therefore, we obtain

δQe = 〈AΨe, z〉 =
κAHǫ

2πG

(

g′ − 1

g′

)

= T

(

g′ − 1

4Gg′

)

〈dA, z〉 ,
(22)

where we have used the relation

Ḣ − k

a2
= − 2ǫ

r̃2T
= −4πGg′(ρm + pm) . (23)

Here, we have also identified T = κ/2π. And, for the
heat flow of pure matter, we also have

δQm =
κ

8πG
〈dA, z〉 − 〈AΨe, z〉 =

T

4Gg′
〈dA, z〉 , (24)

So, when gm = ρm, the above equation reduces to the
Clausius relation in the unmodified Friedmann model.
In the following, we will focus on some concrete Car-
dassian models, namely, the original Cardassian model
(OC), the modified polytropic Cardassian model (MPC)
and the exponential model (EC). In these models, the
function g(ρm) takes different forms, which will reduce
to ρm in the early universe and differ from the unmod-
ified Friedmann universe at redshift z < O(1), during
which it will gives rise to accelerated expansion.

A. OC model

In this model, the function g(ρm) is given by

g(ρm) = ρm

[

1 +

(

ρm
ρc

)n−1
]

= ρm
[

1 + fo(ρm)
]

, (25)

where ρc is a character energy density in the Cardassian
universe and the parameter n is assumed to satisfy n <
2/3 to give rise to a acceleration of the universe. Here we
have defined the function fo(ρm) = (ρm/ρc)

n−1. Thus,
by using Eq. (24), the heat flow of pure matter is given
by

δQm =
T

4G(1 + nfo)
〈dA, z〉 = T 〈dSm, z〉 , (26)
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where the entropy is obtained by

dSm =
dA

4G(1 + nfo)
, (27)

which reduces to the usual relation dS = dA/4G in the
limit of fo → 0. However, when fo is large enough, the
entropy becomes a constant, which means there is no
heat flow of pure matter on the trapping horizon, but
this time dSe = dA/4G. From Friedmann equation (18),
we also have the following constraint equation

f
1

n−1
o (1 + fo) =

3

2GAρc
. (28)

Therefore, we get the entropy by integrating Eq. (27)

Sm = − 3

8G2ρc(n− 1)

∫

f
− n

n−1
o (1 + fo)

−2dfo

=
A

4G

(

1 + fo

)

2F1

[

2,
−1

n− 1
,
n− 2

n− 1
,−fo

]

, (29)

up to some integration constant. Here 2F1 is the hyperge-
ometric function and Eq. (28) gives the relation between
fo and A.
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FIG. 1: Top: The entropy of the original Cardassian universe
as the function of the surface area with parameter n = 0.1.
Bottom: The area of the trapping horizon with respect to
function fo with the same parameters.

To illustrate the relation between the entropy and the
surface area, we plot an example with parameter n = 0.1
in Fig. 1, in which it shows that when fo is small, the

entropy satisfies the usual area law S = A/4G, while
fo is large, it becomes a constant as we see in Eq. (27).
Actually, from Eq. (29), one can obtain that

Sm

∣

∣

fo→∞
=

3

8G2ρc
Γ

(

n− 2

n− 1

)

Γ

(

2n− 1

n− 1

)

, (30)

where Γ denotes Gamma functions.

B. MPC model

The modified polytropic Cardassian model can be ob-
tained by introducing an additional parameter q > 0
into the original Cardassian model, in which the func-
tion g(ρm) is given by

g(ρm) = ρm

[

1 +

(

ρm
ρc

)q(n−1)
]

1
q

= ρm
[

1 + fq(ρm)
]

1
q ,

(31)
where fq = (ρm/ρc)

q(n−1), and when q = 1, it reduces
to the original model. Thus, by using Eq. (24), the heat
flow of pure matter is given by

δQm =
T

4G(1 + nfq)(1 + fq)
1
q
−1

〈dA, z〉 = T 〈dSm, z〉 ,

(32)
where the entropy is obtained by

dSm =
dA

4G(1 + nfq)(1 + fq)
1
q
−1

, (33)

which also reduces to the usual relation dS = dA/4G in
the limit of fq → 0, and the entropy becomes a constant
when fq is large enough. From Friedmann equation (18),
we also have the following constraint equation

f
1

q(n−1)
q (1 + fq)

1
q =

3

2GAρc
. (34)

Therefore, we get the entropy by integrating Eq. (33)

Sm = − 3

8G2ρcq(n− 1)

∫

f
− 1

q(n−1)
−1

q (1 + fq)
− 2

q dfq

=
A

4G

(

1 + fq

)
1
q

2F1

[

2

q
,

−1

q(n− 1)
, 1− 1

q(n− 1)
,−fq

]

,

(35)

up to some integration constant. Here Eq. (34) gives the
relation between fq and A.
To illustrate the relation between the entropy and the

surface area, we plot an example with parameter n = 0.1
in Fig. 2, in which it shows that when fq is small, the
entropy satisfies the usual area law S = A/4G, while fq
is large, it becomes a constant as we see in Eq. (33). Also,
from Eq. (35), one can obtain that

Sm

∣

∣

fq→∞
=

3

8G2ρc

Γ
(

1− 1
q(n−1)

)

Γ
(

2
q + 1

q(n−1)

)

Γ
(

2
q

) ,

(36)
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FIG. 2: Top: The entropy of the original Cardassian universe
as the function of the surface area with parameter n = 0.1
and q = 0.5(solid), 0.7(dotted), 1.0(dashed). Bottom: The
area of the trapping horizon with respect to function fq with
the same parameters.

so, when q = 1, it reduces to Eq. (30). Also, the top figure
in Fig. 2 indicates that for a given n, all the curves cross

the point
(

f̃ , 3
2Gρc

)

, where f̃ > 0 satisfies f̃
1

n−1 (1+ f̃) =

1.

C. EC model

In this model, the function g(ρm) is given by

g(ρm) = ρm exp

[

(

ρm
ρc

)−n
]

= ρmefe(ρm) , (37)

where fe(ρm) = (ρm/ρc)
−n. Again, by using Eq. (24),

the heat flow of pure matter is given by

δQm =
T

4Gefe(1 − nfe)
〈dA, z〉 = T 〈dSm, z〉 , (38)

where the entropy is obtained by

dSm =
dA

4Gefe(1− nfe)
, (39)

which also reduces to the usual relation dS = dA/4G in
the limit of fe → 0, and the entropy gets its maximum
value when fe = 1/n, see the following. From Friedmann

equation (18), we also have the following constraint equa-
tion

efef
− 1

n
e =

3

2GAρc
. (40)

Thus, the area has a maximum value

Amax =
3

2Gρc
(ne)−

1
n , (41)

when fe = 1/n. Therefore, we get the entropy by inte-
grating Eq. (39)

Sm =
3

8G2ρcn

∫

e−2fef
1
n
−1

e dfe

=
3

8G2ρcn21/n

[

Γ(1/n)− Γ(1/n, 2fe)

]

, (42)

up to some integration constant. Here Eq. (40) gives the
relation between fe and A.
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FIG. 3: Left: The entropy of the original Cardassian universe
as the function of the surface area with parameter n = 0.6
and the black point corresponds to the maximum point of the
area.

To illustrate the relation between the entropy and the
surface area, we plot an example with parameter n = 0.6
in Fig. 3, in which it shows that when f is small, the
entropy satisfies the usual area law S = A/4G, and it
reaches its maximum value at A = Amax when fe = 1/n.
Actually, from Eq. (42), one can obtain that

Sm

∣

∣

fq→0
≈ 3

8G2ρc
f

1
n
e ≈ A

4G
, (43)

where we have used the relation (40).
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IV. DISCUSSION AND CONCULSION

In this paper, we have studied the thermodynamics of
the Cardassian universe and calculated its corresponding
entropy, in particular, for the OC, MPC and EC Car-
dassian models and the thermodynamic law might be re-
garded as the origin of Cardassian model, since there is
some kind of correspondence between thermodynamical
behavior and gravitational equations. So, if one starts
from the basic law of thermodynamics, one can find the
dynamics of the Cardassian universe if and only if the
entropy-area relation is modified as Eqs.(29), (35) and
(42), in which, the entropy obeys ordinary area law on
the trapping horizon when the area is small, and it be-
comes a constant when area is going to be large in the
OC and MPC model, while it has a maximum value in
the EC model.
As we known that, the holographic principle states

that all the information in the bulk should be encoded in
the boundary of the bulk, so it seems that the Cardas-
sian universe could only contain finite information. This
may lead to a question that does the information in our
universe will be infinite or not? Of course, if the ordi-

nary area law S = A/(4G) is always valid, the entropy
will blow up when A goes to infinite value, in contrast
with the case of that in the Cardassian models, S finally
becomes a constant or gets its maximum value, when A
is large. We will make a further study on this interesting
topic [24].
It should be noticed that, the cosmological constant

will not change the area law S = A/(4G), because only
the derivative g′ emergences in Eq. (24) or (22), but
in general, different dynamic dark energy models will
change the law differently. So, the method we used in
this paper provides a new way to distinguash different
kinds of dark energy models.
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