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The extragalactic background light (EBL) observed at multiple wavelengths is a promising tool
to probe the nature of dark matter. This radiation might contain a significant contribution from
gamma-rays produced promptly by dark matter particle annihilation in the many halos and subhalos
within our past-light cone. Additionally, the electrons and positrons produced in the annihilation
give energy to the cosmic microwave photons to populate the EBL with X-rays and gamma-rays.
To study these signals, we create full-sky maps of the expected radiation from both of these con-
tributions using the high-resolution Millennium-II simulation of cosmic structure formation. Our
method also accounts for a possible enhancement of the annihilation rate by a Sommerfeld mecha-
nism due to a Yukawa interaction between the dark matter particles prior to annihilation. We use
upper limits on the contributions of unknown sources to the EBL to constrain the intrinsic prop-
erties of dark matter using a model-independent approach that can be employed as a template to
test different particle physics models. These upper limits are based on observational measurements
spanning eight orders of magnitude in energy (from soft X-rays measured by the CHANDRA satel-
lite to gamma-rays measured by the Fermi satellite), and on expectations for the contributions from
non-blazar active galactic nuclei, blazars and star forming galaxies. To exemplify this approach, we
analyze a set of benchmark Sommerfeld-enhanced models that give the correct abundance of dark
matter, satisfy constraints from the cosmic microwave background, and fit the cosmic ray spectra
measured by PAMELA and Fermi without any contribution from local substructure. We find that
these models are in conflict with the EBL constraints unless the contribution of unresolved sub-
structure is small and the dark matter annihilation signal dominates the EBL. We conclude that
provided the collisionless cold dark matter paradigm is accurate, even for conservative estimates of
the contribution from unresolved substructure and astrophysical backgrounds, the EBL is at least

as sensitive a probe of these types of scenarios as the cosmic microwave background. More generally,
our results disfavor an explanation of the positron excess measured by the PAMELA satellite based
only on dark matter annihilation in the smooth Galactic dark matter halo.

PACS numbers: 95.35.+d,95.85.Nv,95.85.Pw

I. INTRODUCTION

A broad class of particles known as Weakly Interact-
ing Massive Particles (WIMPs), are the best studied and
arguably the most favored candidates to be the primary
component of cosmic dark matter. The most prominent
example of such particles is the neutralino that arises
naturally in supersymmetry (SUSY); for recent reviews
on neutralino dark matter see [1, 2]. WIMPs can ex-
plain the observed abundance of dark matter in a nat-
ural way and because they behave as cold dark matter
(CDM) they are also favored by the prevailing ΛCDM
cosmology, which is the most successful model of struc-
ture formation to date. Furthermore, most WIMPs are
particularly appealing because they offer a relatively high
chance of detection in the near future, through: i) direct
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detection experiments on Earth looking for the recoil of
ordinary matter by scattering of WIMPs, and ii) indirect
searches that look for standard model particles produced
in the annihilation of WIMPs.
A number of observations in recent years have high-

lighted anomalies that might be caused by dark mat-
ter annihilation. The excess of positrons in cosmic rays
above 10 GeV reported by the PAMELA experiment [3] is
one of these observations, and although other astrophys-
ical sources, such as pulsars [4] and supernova remnants
[5], could explain the signal, the possibility of dark mat-
ter annihilation remains attractive and has motivated a
significant number of papers on the topic. It is how-
ever necessary to invoke large annihilation rates and spe-
cific annihilation channels to explain the anomalies with
dark matter annihilation alone [6]. These rates are or-
ders of magnitude larger than the ones obtained assum-
ing the standard values for the annihilation cross section
that give the correct relic density of dark matter. Due
to their higher densities, substructures in the local dark
matter distribution can boost the annihilation rates, but
not to the required level [7]. The non-linear collapse of



2

collisionless dark matter halos leads to the formation of
caustics, which due to their high density could signifi-
cantly increase the annihilation rate. However, this in-
crease is actually much less significant than previously
thought [8, 9]. In the inner parts of halos, it is essen-
tially negligible and can not be invoked to explain the
high annihilation rates required to explain the PAMELA
measurements.

Alternatively, an elegant solution may lie in an en-
hancement of the annihilation cross section by a Som-
merfeld mechanism produced by the mutual interaction
between WIMPs prior to their annihilation [10–12]. This
enhancement could easily be large enough to explain the
anomalous excess of cosmic ray positrons.

The annihilation rate can however not be arbitrarily
large either as it is constrained by different observables.
For example, dark matter annihilation can ionize and
heat the photon-baryon plasma at recombination, creat-
ing perturbations in the Cosmic Microwave Background
(CMB) angular power spectrum [13–15]. It can also alter
the relic abundance of dark matter significantly [16, 17],
and produce important µ− and y−type distortions of
the CMB [17, 18]. All these observables hence con-
strain the degree to which the Sommerfeld mechanism
can enhance the cross section. Nevertheless, it is possi-
ble to satisfy all these constraints and at the same time
explain the positron excess measured by PAMELA [19].

An additional set of observations with the potential to
constrain the annihilation cross section can come from
the analysis of the extragalactic background radiation at
multiple wavelengths. The annihilation of WIMPs can
manifest itself as a cosmic background radiation with
gamma-ray photons being produced promptly in all ex-
tragalactic sources with high dark matter density [20–
28]. This gamma-ray radiation is complemented towards
lower energies by a diffuse extragalactic background in
photons that were not produced directly in the annihi-
lation but gained energy via inverse Compton scattering
off the energetic electrons and positrons produced during
the annihilation [29–31].

The data collected by several telescopes over the last
decades have given us a measurement of the extragalactic
radiation background from soft X-rays to hard gamma-
rays (e.g. [32]). In this broad energy range, most of
the radiation is expected to be produced by astrophysi-
cal mechanisms different from dark matter annihilation.
This has been partially confirmed by accounting for the
radiation of known sources and by estimating the con-
tribution of an expected population of sources yet to be
observed. This combined set of observations and expecta-
tions puts strong constraints on the contribution of dark
matter annihilation, being specially stringent in the soft-
X-ray regime where∼ 90% of the emission comes from X-
ray point sources, mostly Active Galactic Nuclei (AGN)
[33], and on the gamma-ray regime where blazars and
star-forming galaxies are expected to contribute signifi-
cantly to the background radiation, at the level of ∼ 70%
[34, 35].

The hypothetical background radiation coming from
(or being up-scattered in) all dark matter halos and their
subhalos within our past light cone has been studied by
different authors in the past using analytic approaches to
model cosmic structure formation. An approach based
directly on high-resolution numerical simulations is how-
ever desirable since it more accurately captures the non-
linear phase of the evolution, even though the simula-
tion imposes a resolution limit for smallest structure. It
is then possible to construct simulated sky-maps of the
background radiation that give a more complete descrip-
tion of the signal. Such an approach was developed in [36]
to analyze the extragalactic gamma-ray radiation pro-
duced in situ by annihilation using the state-of-the-art
Millennium II simulation [37]. In this paper, we extend
this approach to include the contribution from CMB pho-
tons scattered by the electrons and positrons produced
during annihilation.
By using this approach we are also able to easily in-

clude a velocity-dependent annihilation cross section via
a Sommerfeld mechanism. Typically, the enhancement is
inversely proportional to the local velocity dispersion of
dark matter particles. Since our method is based on aver-
age values of the annihilation rate inside halos and their
subhalos, the Sommerfeld enhancement is simply given
by the mean velocity dispersion in each halo (subhalo),
which is available in the simulation and can be measured
accurately.
The paper is organized as follows. In Section II, we

outline the formalism to calculate the extragalactic back-
ground radiation coming from in situ and up-scattered
photons. A description of the Sommerfeld enhancement
model we used and its implementation is given in Sec-
tion III. The observational upper limits and main results
of our work on the cosmic background radiation are pre-
sented in Section IV. Finally we present a summary and
conclusions in Section V.

II. ANNIHILATION RADIATION FORMALISM

Our goal is to analyze the cosmic dark matter anni-
hilation background (CDMAB), or more specifically, the
radiation produced by dark matter annihilation in all ex-
tragalactic sources integrated over all redshifts along the
line-of-sight of a fiducial observer, located at z = 0, for
all directions on its two-dimensional full sky. To this end,
we first define the local photon emissivity:

E =
fWIMP

2
Eρχ(~x)

2S(σvel(~x)), fWIMP =
dN

dE

〈σv〉0
m2

χ

(1)
where mχ and ρχ are the mass and density of WIMPs,
〈σv〉0 is the thermally averaged product of the constant
s-wave annihilation cross section and the velocity in the
absence of Sommerfeld enhancement, and dN/dE is the
differential photon yield per annihilation. The velocity
dispersion dependent factor S(σvel) boosts the value of
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〈σv〉0 through a Sommerfeld mechanism (see section III).
We note that for consistency, the value of 〈σv〉0 should
also give the correct dark matter relic density.
The CDMAB is given by the specific intensity, the en-

ergy of photons received per unit area, time, solid angle
and energy range:

I =
1

4π

∫

E(E0(1 + z), z)
dr

(1 + z)4
e−τ(E0,z), (2)

where the integral is over the whole line of sight, r is
the comoving distance and E0 is the photon energy mea-
sured by the observer at z = 0. Note that E is evaluated
at the blue-shifted energy (1+z)E0 along the line-of-sight
to compensate for the cosmological redshifting. The ex-
ponential term with an effective optical depth τ(E0, z)
takes into account the absorption of photons by the mat-
ter and radiation field along the line-of-sight. The rele-
vant processes of photon absorption and their treatment
are described in Appendix B.
In this work, we focus on two different contributions

to the differential photon yield per annihilation event
dN/dE. In the following, we describe these contributions
that we refer to as in situ and up-scattered photons.

A. In situ photons

The in-situ photons are directly created due to the
annihilation process. They are in the gamma-ray en-
ergy range and are produced by three mechanisms: (i)
continuum emission following the decay of neutral pions
produced during the hadronization of the primary an-
nihilation products; (ii) monoenergetic lines for WIMP
annihilation in two-body final states containing photons;
(iii) internal bremsstrahlung when the final products of
annihilation are charged, leading to the emission of an
additional photon in the final state. Process (i) is domi-
nant at most gamma-ray energies, but processes (ii) and
(iii) produce distinctive spectral features intrinsic to the
annihilation phenomenon. This in situ contribution to
the CDMAB has been studied in detail before by differ-
ent authors. In this work we follow the analysis of [36],
extending their results to lower energies as described be-
low.

B. Up-scattered photons

The up-scattered photons originate in differently pro-
duced background photons that gain energy due to their
interactions with particles produced in the annihilation
of dark matter. We concentrate exclusively on Inverse
Compton (IC) scattering as the mechanism contribut-
ing to the up-scattering of these photons, and on the
CMB as the main photon background. There are addi-
tional backgrounds, like stellar and infrared light, that
are dominant close to galactic discs in the center of rel-
atively massive halos. However, most of the CDMAB

comes from the integrated effect of low mass halos and
subhalos (see Appendix C). In these places, the stellar
component is rather small and the mean number density
of starlight and infrared photons is much lower than that
of the CMB.
Electrons and positrons are the annihilation byprod-

ucts participating in the scattering. These particles
are quite energetic and have therefore usually a large
γ = 1/

√

1− (v/c)2 factor. This implies that they can
up-scatter low energy photons to significantly higher en-
ergies, because of the γ2-dependence of the peak energy
of up-scattered photons. In this process, CMB photons
increase their energy into the X-ray and low gamma-ray
regimes [29].
The differential electron (and positron) yield that is

relevant for the IC up-scattering of the CMB photons
is found by solving a diffusion equation that takes into
account the diffusion and energy losses of these particles:

∂

∂t

dne

dEe
= ∇

[

De∇
dne

dEe

]

+
∂

∂Ee

[

be
dne

dEe

]

+Qe, (3)

where dne/dEe is the equilibrium electron spectrum,
De = De(Ee, ~x) is the diffusion coefficient, be = be(Ee, ~x)
is the energy loss term and Qe = Qe(Ee, ~x) = Ee/Ee[77]
is the source function. Spatial diffusion due to scattering
on the inhomogeneities of the ambient magnetic field can
be neglected. This is because spatial diffusion is only
relevant at relatively small scales, within a few kpc of
the center of dark matter halos [38]. However, we are
interested in a cosmological background radiation where
most of the signal in a given area in the sky comes from
unresolved sources far away, where spatial diffusion is
clearly irrelevant. In this case, the steady-state solution
to Eq. (3) can be approximated by:

dne

dE
(Ee, z) ≈ 1

be(Ee, z)

∫ mχ

Ee

dE′

e Qe(Ee, ~x)

=
〈σv〉0
2

(

ρχ(~x)

mχ

)2

S(σvel(~x))
dñe

dE
(Ee, z). (4)

The energy loss rate, be(Ee, z), for electrons and
positrons receives contributions from different interac-
tion processes: IC scattering with ambient photons,
synchrotron radiation in the ambient magnetic field,
Coulomb scattering with free electrons, ionization of
atoms and bremsstrahlung radiation in interactions with
the ambient matter field. As we explain in Appendix
A, among all these cooling processes we only consider
the first one since it dominates the photon energy range
we are ultimately interested in. The energy loss term in
Eq. (4) is hence given by Eq. (A1).
We further assume that the electrons and positrons

produced in the annihilation process lose energy and
reach equilibrium instantaneously (in a cosmological time
frame), scattering the CMB photons at the same redshift
at which the annihilation takes place (e.g. [39]). These
up-scattered photons have a differential photon spectrum
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given by:

dNIC

dE
(E, z) =

∫

dEe
dñe

dE
(Ee, z) P̃IC (E,Ee, z) , (5)

where the IC power per scattered photon energy is:

P̃IC (E,Ee, z) = c

∫

dẼ nCMB(Ẽ, z)σKN(E,Ee, Ẽ). (6)

Here, nCMB(Ẽ, z)dẼ is the number density of CMB pho-

tons in the energy range (Ẽ, Ẽ + dẼ) at redshift z:

nCMB(Ẽ, z)dẼ =
8π

(hc)3
Ẽ2dẼ

exp[Ẽ/(kB T0(1 + z))]− 1
, (7)

where T0 = 2.725 K is the CMB temperature today,
which increases with redshift like (1+ z)T0. Finally, σKN

is the differential Klein-Nishina cross-section for IC scat-
tering

σKN(E,Ee, Ẽ) =
3σT

4Ẽ

(

mec
2

Ee

)2

G (q,Γe) , (8)

where σT is the Thomson cross-section, me the electron
mass, and

G (q,Γe) =

[

2q ln q + (1 + 2q)(1− q) +
(Γeq)

2 (1− q)

2 (1 + Γeq)

]

,

(9)
with

Γe =
4ẼEe

(mec2)2
, q =

E

Γe (Ee − E)
. (10)

Note that the Klein-Nishina cross-section depends on
the increased energy of the up-scattered photon E, the
energy of the original CMB photon Ẽ, and on the
energy Ee of the electron that does the IC scatter.
The limits for the various integrals above are given by
the kinematic constraint of the IC scattering requiring
1/[4(Ee/(mec

2))2] < q < 1.

III. SOMMERFELD ENHANCEMENT

We include in our analysis a scenario where the anni-
hilation is enhanced by the Sommerfeld mechanism (e.g.
[10–12, 40]), restricting it to the case where the interac-
tion between WIMPs prior to annihilation is mediated by
a scalar boson of mass mφ through a Yukawa potential
with coupling constant αc (e.g. [41]). This case encom-
passes the large majority of the models that are typically
used in the literature to account for the Sommerfeld en-
hancement, including the most common of these where
S ∝ 1/σvel (the so-called “1/v” boost). Even in models
with nearly-degenerate interacting states and/or multi-
ple force carriers, while the details of the enhancement
differ, the general features remain similar. The enhance-
ment saturates at sufficiently low velocities due to the

finite range of the Yukawa interaction. For certain com-
binations of αc and mφ, resonances associated with zero-
energy bound states appear [78]. Close to these reso-
nances, the enhancement gets significantly larger for low
velocities and scales as 1/σ2

vel. In this case, the enhance-
ment also saturates eventually due to the finite lifetime of
the states. Regardless of the values of the parameters, the
boost to the cross-section disappears for velocities com-
parable to the speed of light. This argument has often
been invoked to infer that the dark matter relic density
is unaffected by the Sommerfeld enhancement, but it has
been shown recently that this assumption is not correct
[17].
A detailed description of the Sommerfeld model stud-

ied here has been presented elsewhere (e.g. [12, 41]). For
the purposes of this work, we follow the description of
[17] and mention that the enhancement S(σvel) to the
s-wave contribution to the annihilation rate is given by:

〈σv〉 = 〈σv〉0S(σvel),

S(σvel) =

(

1

2σ3
vel

√
π

∫ 1

0

S(β)β2e−β2/4σ2

vel dβ

)

, (11)

where β = vrel/c is the relative velocity between the an-
nihilating pair[79].
For definiteness, we choose two sets of parameters

that fall within currently favored regions of the param-
eter space (e.g. [41]): case i) off-resonance: mφ/mχ =
5 × 10−4, αc = 3 × 10−2 and case ii) near-resonance:
mφ/mχ = 2.98 × 10−4, αc = 3 × 10−2. The former is
representative of the standard “1/v” boost with a max-
imum enhancement Smax ∼ 2000 for σvel,max ∼ 10−5.
The latter is a typical resonance case with S ∝ 1/σvel at
intermediate velocities and S ∝ 1/σ2

vel at low velocities
up to a saturation Smax ∼ 106 for σvel,max ∼ 6× 10−7.
By solving the Schrödinger equation for s-wave anni-

hilation in the non-relativistic limit, we obtain S(β) for
the two cases chosen above, and use Eq. (11) to get the
average annihilation boost S(σvel) for each halo. Since
we can estimate the change on the values of Smax and
σvel,max for a different set of parameters, the results we
obtain later using these representative cases serve us to
analyze the whole range of possibilities that are expected
for a Sommerfeld mechanism produced by a Yukawa po-
tential.
The Sommerfeld enhancement alters the relic density

of dark matter [16, 17]. During freeze-out, while the Som-
merfeld enhancement is generally O(1), it is not negligi-
ble and can consequently have an O(1) effect on the relic
density (requiring a reduction of the underlying annihi-
lation cross section to compensate). After kinetic de-
coupling of the dark matter from the radiation bath,
the typical velocities of the dark matter particles de-
crease rapidly: even for non-resonant (but unsaturated)
enhancement, the enhanced annihilation rate keeps pace
with the universe’s expansion, and for resonant enhance-
ment the dark matter annihilations can actually recouple

(depending on the relative temperatures of freeze-out,
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kinetic decoupling and saturation of the enhancement),
greatly reducing the relic density. Once the enhancement
saturates, the annihilation rate no longer keeps pace with
the expansion rate, and the comoving density of dark
matter remains fixed. In all cases there is a significant
effect on the relic density, and in order to produce the
correct abundance today, the value of the annihilation
cross-section before the onset of the enhancement needs
to be smaller than for the case without Sommerfeld en-
hancement.
This result is relevant because it implies that any parti-

cle physics model without enhancement chosen to satisfy
the observational bounds on the abundance of dark mat-
ter needs to be revised once the enhancement is included
to test whether or not it still gives the correct relic den-
sity. The fully consistent way to do so is to incorporate
the Sommerfeld enhancement into a Boltzmann code and
re-sample the parameter space of that particular model to
find allowed regions. Here, we follow a simpler approach.
According to [17], the value of 〈σv〉0 should be lower by
a factor between 1 and 10 compared to the case with-
out enhancement in order to get the correct relic density.
The precise reduction factor, fΩ, depends on the inten-
sity of the enhancement: fΩ ∼ 0.1 near resonances and
fΩ ∼ 0.5 off-resonance. Therefore, by multiplying 〈σv〉0
by the corresponding fΩ factor, we roughly take into ac-
count the effect on the relic density. In this way, a model
without enhancement that gives the correct relic density
with 〈σv〉0 will also give the right relic abundance with
Sommerfeld enhancement, provided its annihilation cross
section in the early Universe is chosen to be fΩ〈σv〉0.

IV. EXTRAGALACTIC CDMAB

The procedure we follow to construct the simulated
sky maps of the contribution of dark matter annihilation
to the X-ray and gamma-ray extragalactic background
radiation is essentially an extension of the one discussed
in [36]. For a detailed description of the map-making
technique we used, we hence refer the reader to section
5.1 of that paper.
According to Eq. (1), the local annihilation rate de-

pends on the square of the local density of dark mat-
ter. For the computation of the cosmological background
from an N-body simulation, it is more reliable to use
analytically integrated quantities over whole dark mat-
ter halos (based on scaling laws tested with extremely
high-resolution simulations of MW-like halos [42]) in-
stead of trying to use individual simulation particles di-
rectly, which are subject to stronger resolution effects
and numerical noise [36]. Using this method, each pixel
in our sky maps receives contributions of all interven-
ing resolved halos and subhalos along its corresponding
past light cone. Additionally, we add the expected con-
tribution of unresolved structures down to the damping
scale limit of WIMPs (10−6M⊙, see sections 5.2-5.4 of
[36]). Since we are exploring the case with Sommerfeld

FIG. 1: Photon yield for dark matter annihilation in the X-
ray and gamma-ray energy range for a ∼ 185 GeV neutralino
annihilating into bb̄. The contributions from in-situ and up-
scattered CMB photons are shown with solid red and blue
lines, respectively. For reference, the in-situ and equilibrium
electron yields from annihilation are shown with dashed red
and green lines respectively (the equilibrium spectrum as de-
fined in Eq. (4) was scaled by a factor of 10−16 to show it
in the same figure). Also shown in the figure with a black
dotted line is the total photon yield from benchmark model 1
of Table 1, see section IVC.

enhancement in this paper, the formulae given in [36]
need to be altered accordingly. In Appendix C we de-
scribe how we accomplish this.

The signal depends of course on the value of the pho-
ton yield dN/dE as well, which contains contributions
from in situ and up-scattered photons. These are de-
termined by the intrinsic properties of WIMPs. As an
example, we take a neutralino with a main annihilation
channel into bb̄. In particular, we use a benchmark point
within the minimal supergravity (mSUGRA) framework
(model L in Table I of [36]). This benchmark point has
mχ ∼ 185 GeV with annihilation into bb̄ with a 99%
branching ratio, and 〈σv〉 ∼ 6.2 × 10−27cm3s−1. It be-
longs to the so-called “bulk region” within the mSUGRA
5-dimensional parameter space that is consistent with
current constraints on the relic density of neutralinos (if
neutralinos make up for all the observationally inferred
dark matter density). We obtain the photon, electron
and positron yields for this model using the numerical
code DarkSUSY [43, 44] with the interface ISAJET [45].

In Fig. 1, we show the final photon yield spectrum
for dark matter annihilation in the X-ray and gamma-
ray energy range for the example just described. The
contributions from in situ and up-scattered CMB pho-
tons are shown with solid red and blue lines, respec-
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tively. For reference, the in situ and equilibrium elec-
tron (positron) yields from annihilation are shown with
dashed red and green lines, respectively [80]. The main
bump and secondary peak that are clearly shown for the
in situ photons correspond to the two main mechanisms
mentioned in section IIA, neutral pion decay and internal
bremsstrahlung, respectively. The figure shows clearly
that although in this case the largest photon yield is in
the gamma-ray regime, there is a significant amount of
X-ray radiation produced by IC scatter of the CMB pho-
tons. The contribution from up-scattered CMB photons
is the dominant feature for other particle physics models.
As an example of this we show in Fig.1 the total photon
yield for one of a set of benchmark models that we use
later in section IVC. The shape and normalization for
this benchmark model 1 (see Table 1) are representative
of all the benchmark models we will use.

Fig. 2 shows the contribution from dark matter anni-
hilation to the X-ray and gamma-ray extragalactic back-
ground radiation for the particular SUSY model de-
scribed above. The case without Sommerfeld enhance-
ment is shown within the light-gray shaded region. This
region is bracketed by the maximum and minimum val-
ues of the extrapolation for unresolved subhalos, which
encompasses the astrophysical uncertainties in the con-
tribution by low-mass subhalos that can not be re-
solved by the Millennium II simulation (see Appendix C).
The medium-gray and dark-gray shaded regions are for
the cases with Sommerfeld enhancement, off- and near-
resonance, respectively.

According to Fig. 2, any model with a photon yield
similar to the one we used as an example (see Fig. 1), and
with a mass ∼ 200 GeV and 〈σv0〉 ∼ 6 × 10−27cm3s−1,
could be ruled out, depending on how relevant the con-
tribution from unresolved halos and subhalos is. Any
significant Sommerfeld enhancement is clearly ruled out
by absolute measurements of the background in this case.

It is important to note that the Sommerfeld mechanism
is of relevance for neutralinos only for masses &TeV in
the case of a minimal SUSY model like mSUGRA (e.g.
[12, 40]). In this case, the force carriers responsible for
the enhancement are the W and Z gauge bosons [81].
Therefore, boosts of order ∼ 1000 or even larger are only
possible for neutralinos with much higher masses than
the model we have chosen as an example in Figs. 1 and
2. The net effect of a higher neutralino mass in the in-
put photon and positron (electron) spectra is a shift of
the X-ray and gamma-ray peaks shown in these figures
towards higher energies. Nevertheless, the dN/dE spec-
trum shown in Fig. 1 is generic for any model with a
WIMP annihilating mainly into bb̄. If such a generic
model allows the inclusion of a new scalar boson respon-
sible of the Sommerfeld enhancement, then the formalism
described in Section III is applicable and Fig. 2 shows the
expected level of enhancement of the CDMAB due to this
mechanism.

The symbols shown in Fig. 2 represent inferences for
the extragalactic X-ray and gamma-ray background ra-

FIG. 2: CDMAB spectrum including in-situ and up-scattered
CMB photons (gamma-rays from annihilation and CMB pho-
tons up-scattered to X-ray energies by electrons and positrons
of the annihilation) for the cases of no-enhancement (light-
gray), enhancement away from a resonance (medium-gray)
and near a resonance (dark-gray). The upper and lower lim-
its of each stripe bracket the uncertainty in the extrapolation
of unresolved subhalos in the simulation. All cases are for
a model with annihilation mainly into bb̄, mχ ∼ 185 GeV
and 〈σv〉0 ∼ 6.2× 10−27cm3s−1. They all give approximately
the correct relic density. Observations from soft X-rays to
gamma-rays are marked with red to violet, following approx-
imately a rainbow color pattern: red symbols [46], red arrows
(Chandra, [33]), orange symbols (INTEGRAL, [47]), yellow
symbols (SWIFT BAT, [32]), yellow arrows [48], green area
(SMM, [49]), light blue (COMPTEL, [50]), blue (EGRET,
[51]), violet (Fermi-LAT, [52]), violet arrows [34, 35]. The
points with error bars are absolute measurements with 2σ or
1σ errors. The arrows pointing downwards are best estimate
upper limits of the unresolved component of the signal, that
is, the signal that can not be accounted for by already known
or expected sources.

diation based on observational data as described in the
following.

A. Observations

We are interested in measurements of the cosmic back-
ground radiation in an energy range going from soft X-
rays to gamma-rays: 0.1 keV ≤ E0 . 100 GeV. Because
for E0 < 1 keV the signal is completely dominated by
galactic and local emission that varies with time and po-
sition, estimates of the extragalactic emission at these
energies have not been possible [33, 53]. In the range
1 keV ≤ E0 ≤ 200 keV, the extragalactic X-ray back-
ground has been studied in detail by satellites such as
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CHANDRA, SWIFT and INTEGRAL. We take the ab-
solute measurements obtained using the latter two satel-
lites according to the analysis of [46] (red symbols in
Fig. 2), [47] (orange symbols) and [32] (yellow symbols).
At intermediate energies, 300 keV ≤ E0 ≤ 30 MeV, the
measurements come from the Solar Maximum Mission
(SMM) [49] and COMPTEL [50]. These measurements
are shown with green and light blue points, respectively.
Finally, observations based on EGRET [51] and recently
on Fermi [52] have estimated the cosmic background in
gamma-rays from 40 MeV to 100 GeV. These estimates
are shown with dark blue and purple symbols, respec-
tively.

The observational data we have described above give
a measurement of the total extragalactic X-ray and
gamma-ray background radiation. Over the full energy
range, most of the signal is expected to come from pho-
tons produced by different astrophysical sources in mech-
anisms that are unrelated to dark matter annihilation.
The contribution from the latter is likely to be a sub-
dominant component of the total signal, which is espe-
cially true at lower energies. Upper limits to the emission
that have not been accounted for by known sources for
E0 < 8 keV, have been found using CHANDRA data (red
arrows) [33]. Approximately less than 10% of the inte-
grated specific intensity is unresolved between 1 keV<
E0 < 8 keV. For hard X-rays (10 keV ≤ E0 ≤ 200 keV),
most of the emission is expected to come from Compton-
thin Active Galactic Nuclei (AGN). We use the model
presented in [48] to put a conservative upper limit on the
unresolved component of the emission at these energies
(yellow arrows)[82]. The modeling in the MeV range is
more uncertain. According to some analyses, blazars are
thought to contribute significantly to the radiation [54],
but others argue for non-blazar AGNs as the main con-
tributors to the MeV radiation [55]. We will not attempt
to model the contribution of these sources due to this
controversy, but we note that the constraints on the con-
tribution of dark matter annihilation to the MeV back-
ground are expected to be significantly lower than those
seen in Fig. 2. Recently, the Fermi-LAT collaboration
has estimated the blazar contribution to the gamma-ray
background in the 0.1− 100 GeV energy range. Its total
specific intensity in this energy range (i.e. its integrated
flux between these energies) down to the minimum de-
tected source flux is ∼ 16% of the derived value for the
cosmic gamma-ray background [34]. We use the energy
spectrum given by these authors (see their Table 6 and
Fig. 20) to account for the blazar contribution noting that
this is a conservative estimate since undetected sources
certainly contribute to the signal, see below. Star form-
ing galaxies are also expected to be a significant source
of gamma-rays in this energy range. We use the model
by [35] to include this contribution (see their Fig. 1),
which accounts for ∼ 53% of the total specific inten-
sity. We note that the energy spectrum of the contri-
bution of star forming galaxies to the cosmic gamma-
ray background (as plotted in Fig. 2, i.e. E0I) peaks

at E0 ∼ 0.3 GeV, dominating over the blazar spectrum,
and drops more steeply towards higher energies than the
total background. At E0 & 10 GeV blazars dominate
over star forming galaxies with a spectrum shallower than
the observed background. In this way, both populations
combined account for ∼ 86% (∼ 46%) of the measured
specific intensity at E0 ∼ 0.3 GeV (E0 ∼ 70 GeV). Over
the whole 0.1− 100 GeV energy range, they account for
∼ 69% of the total integrated flux. Based on this, the
corresponding upper limits on the contribution from ad-
ditional sources are shown with violet arrows in Fig. 2.
We should comment on the uncertainties associated

to the contribution of blazars and star forming galaxies.
For the latter, these are connected to the gamma-ray lu-
minosity function of galaxies which is ultimately related
to the time-dependent global star formation rate den-
sity. The possible behaviors of the gamma-ray luminosity
function and the most relevant sources of uncertainty in
the model (more importantly the cosmic star formation
rate and the normalization given by the inferred gamma-
ray luminosity of the Milky-Way) have been considered
by [56] using a similar modeling to that of [35]. The
authors find that star forming galaxies account for be-
tween 10% to 90% of the EBL measured by FERMI at
E0 ∼ 0.3 GeV (see Fig. 1 of [56]) with a spectral shape
very similar to the model we have chosen here. Since
the contribution from star forming galaxies is quite un-
certain and since the fiducial model we use lies closer to
the upper value of this contribution, we explore below
the effects that a lower contribution has in our results
(see section IVC). If the observed count distribution of
blazars is extrapolated to zero flux then their contribu-
tion to the total observed signal between 0.1 GeV and
100 GeV is ∼ 23(±9)% (including statistical and system-
atic uncertainties) [34]. As we mentioned before, this
percentage drops to ∼ 16(±9)% when only sources down
to the minimum flux are considered. At E0 ∼ 0.3 GeV
the minimum contribution from blazars to the measured
specific intensity is ∼ 7% (including uncertainties). Tak-
ing the lower limits of all these uncertainties into account,
star forming galaxies and blazars would contribute min-
imally by ∼ 17% at E0 ∼ 0.3 GeV, a factor of 5 lower
than the estimate we use here.

B. Constraints on particle physics models

With the procedure we have previously outlined, we
can compare the prediction of any given particle physics
model with the observational upper limits shown in
Fig. 2. The model gives a photon and a positron (elec-
tron) input spectra from the annihilation, and our map-
making code produces a simulated map for a prescribed
energy. A full spectrum can be then produced once maps
at different energies are constructed.
It is possible however to present robust limits on the

part of the signal that only depends on the intrinsic prop-
erties of WIMPs, namely fWIMP in Eq. (1). This can be
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done by noting that there exists a redshift z∗ along the
line-of-sight for which Eq. (2) can be written as:

I(E0) =
c

8π
E0fWIMP(E0(1 + z∗))

∫

ρ2χ(~x, z)S(σvel(~x, z))

(1 + z)3
e−τ(E0,z)

H(z)
dz, (12)

where H(z) is the Hubble parameter [83]. In general, we
do not know the value of z∗, it is model dependent. Nev-
ertheless, we can safely approximate the upper limit of
the integral in Eq. (12) by z = 4 in the case of the lowest
X-ray energies and by z = 1 for the higher gamma-ray
energies (and values in between for intermediate ener-
gies). This is because ∼ 90% of the signal is produced
for z < 4 (z < 1) in the former (latter) case. The relevant
redshift range is significantly smaller at higher energies
where photon absorption plays an important role. This
approximation is good enough for any model with a pho-
ton yield spectrum dN/dE similar to the one depicted
in Fig. 1. More generally, for any model with a photon
yield that is monotonically decreasing with energy, the
large majority of the signal at any given energy would
come from relatively low redshifts, since the contribution
from higher redshifts would correspond to higher-energy
(and hence less abundant) initial photons. This is true
because the astrophyiscal part of the specific intensity
that goes in the integrand of Eq. (12), excluding the ab-
sorption factor, is essentially flat with redshift (see for
example Fig. 1 of [52]). Thus, we can use the observed
upper limits on the unaccounted contribution to I(E0),
and the values of this same quantity predicted by a ref-
erence particle physics model to estimate upper limits on
fWIMP(E0(1 + z∗)):

fWIMP(E0(1 + z∗)) ≤ fREF
WIMP(E0(1 + zREF))

IOBS(E0)

IREF(E0)
,

(13)
where the values associated with the reference model are
given with a superscript REF. The values of z∗ and zREF

are in the interval (0, 4) for E0 ∼ 10−5 GeV and in the
interval (0, 1) for E0 ∼ 10 GeV. By choosing zREF = 0, so
fREF
WIMP is evaluated at the measured energy rather than
the (higher) effective energy of injection, we obtain a con-
servative constraint, since this function is monotonically
decreasing with respect to energy. Taking a higher value
for zREF will strengthen the bound. By choosing z∗ = 0,
we evaluate fWIMP at the lowest possible energy for the
purpose of comparing to the limit: this is not conserva-
tive for models where fWIMP is a monotonically falling
function of energy, in the sense that taking a larger z∗

leads to a weaker limit, but since the signal is dominated
by the lowest redshifts, the resulting uncertainty is quite
small. We denote the upper bound on fWIMP(E) ob-
tained by setting z∗ = zREF = 0 by fMAX

WIMP(E).
We take as a reference model the example we have used

throughout the text, and compute fMAX
WIMP for the cases

without enhancement, and with Sommerfeld boost, off-
resonance and near-resonance. The exclusion regions we

FIG. 3: Limits on the value of fWIMP for dark matter an-
nihilation according to observations of the cosmic X-ray and
gamma-ray background radiation. The light-gray, medium-
gray and dark-gray areas mark exclusion regions for the case
with no Sommerfeld enhancement, off- and near-resonance
enhancement, respectively, in the case where the contribution
of unresolved substructures to the signal is minimal. The
dashed lines show how these regions are extended if this con-
tribution is maximal. The area between the limit of each
shaded region and its corresponding dashed line encompasses
the uncertainty on the contribution of unresolved subhalos.
The symbols with error bars in the bottom show the theoret-
ical uncertainty on the construction of this figure from Fig. 2;
see text for details. The thick magenta line is for the SUSY
model we have used as an example: a ∼ 185 GeV neutralino
annihilating into bb̄ with 〈σv〉0 = 6× 10−27cm3s−1.

obtain are shown in Fig. 3 with the light-gray, medium-
gray and dark-gray regions, respectively, for these three
cases, assuming a minimum extrapolation for the con-
tribution of unresolved substructures to the simulated
maps. The dashed lines show how these exclusion limits
are extended if a maximum extrapolation is taken. The
right- and down-wards error bars in the figure mark the
uncertainty in the values of z∗ and zREF, respectively.
As mentioned before, the amplitude of the uncertainty
depends on the value of the observed energy, being lower
for higher energies. The thick magenta line shows the
value of fWIMP for our reference case.
The validity of a given model can be tested directly

using Fig. 3 without the need of computing the CDMAB
for this model. Keep in mind that for the cases with
Sommerfeld enhancement, the value of 〈σv〉0 in fWIMP is
the value of the s-wave annihilation cross section without
Sommerfeld enhancement.
Once a specific model is chosen, dN/dE is calculated

and Fig. 3 can be used to produce constraints on 〈σv〉0
as a function of WIMP mass. As an example, we take a
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FIG. 4: Constraints on the local value of the thermally aver-
aged annihilation cross section (assuming a MB velocity dis-
tribution with σvel = 150 kms−1) as a function of WIMP mass
for annihilation into µ+µ− final states. These constraints
come from observations of the cosmic X-ray and gamma-ray
background radiation. The violet contour shows the 2σ best
fit region of this model to the PAMELA positron data as
presented in [52]. The other line styles and colors are as in
Fig. 3.

model with annihilation into leptons, specifically µ+µ−

with a branching ratio of 100%. Models such as this
are typically used in the literature to explain the anoma-
lous abundance of positrons in cosmic rays above 10 GeV
reported by the PAMELA satellite [6]. We use Dark-

SUSY [43] to compute the in situ positron (electron) and
photon spectra. The resulting total photon yield has
a very similar shape to the black dotted line shown in
Fig. 1, which is by the way shared by all the bench-
mark models we describe in section IVC. For this case,
and for mχ > 100 GeV, the up-scattered photons con-
tribute dominantly to the background radiation. In-
stead of showing constraints on 〈σv〉0 we show in Fig. 4
the constraints on 〈σv〉H = S(σvel = 150kms−1)〈σv〉0,
which is a thermal average over a Maxwell-Boltzmann
(MB) velocity distribution with a velocity dispersion of
150 km s−1(5× 10−4 c). This roughly corresponds to the
estimated local dark matter one-dimensional velocity
dispersion. For both cases of Sommerfeld enhancement
we are considering: S(σvel = 150 km s−1) ∼ 230. With
this choice, we can compare the constraints coming from
the extragalactic background radiation with the local val-
ues of 〈σv〉 that better fit the PAMELA data for an expla-
nation of the positron excess based solely on dark matter
annihilation. The violet contour in Fig. 4 shows the 2σ
best fit region according to [52]. For this particular model
with annihilation into µ+µ− with a branching ratio of

100%, the constraints we find do not favor an explanation
of the PAMELA data based only on dark matter annihi-
lation for mχ > 260 GeV (a similar conclusion was found
in [29, 52]). A large saturated Sommerfeld enhancement
(Smax > 2000) essentially rules out this possibility.
We note that any model tested using Fig. 3 also needs

to be checked for consistency with the correct relic den-
sity. Contrary to Fig. 2 that was used to exemplify a
case where a specific model gives the correct dark matter
abundance with and without enhancement (recall that
for the former we multiplied the value of 〈σv〉 without
enhancement by a factor fΩ to accomplish this, see end
of section III), the upper limit on fWIMP in Eq. (13) de-
liberately does not take this into account. In this way, the
upper limits on the cases with and without Sommerfeld
enhancement in Figs. 3-4 are not related to each other
through their values of 〈σv〉0.

C. Benchmark models fitting the cosmic ray

excesses

In addition to the reference µ+µ− model, we investi-
gate benchmark models recently presented in [19], which
produce the correct thermal relic density, fit the cosmic
ray (CR) excesses measured by PAMELA and Fermi, and
are currently allowed by bounds on Smax from the cosmic
microwave background. Whereas our previous reference
models demonstrate the effect of Sommerfeld enhance-
ment on the EBL constraints in a broad class of scenar-
ios, these benchmarks allow us to test specific proposed
models, and compare our bounds to those from the cos-
mic microwave background. The parameters characteriz-
ing these models are summarized in Table I; see [19] for
further details [84].
The benchmarks feature dark matter masses in the

1-1.7 TeV range, with nearly-degenerate excited states
δ ∼ 0.1− 1 MeV above the ground state. Both Sommer-
feld enhancement and annihilation to Standard Model
final states occur via vector mediators with masses mφ

ranging from 200− 900 MeV. These models were chosen
to fit the CR data with no contribution from local sub-
structure, so they are not perfectly consistent with the
assumptions of this work. However, the Sommerfeld en-
hancement in these models saturates at relatively high
velocities in order to evade constraints from the CMB,
and thus we expect the substructure boost to the locally
measured CR signals to be only a factor of ∼ 1.5 − 5,
based on the results of [57]. We neglect this effect in
the following discussion; if the local substructure boost
is substantial then these benchmarks would also signifi-
cantly overpredict e+e− cosmic rays, and are less inter-
esting for direct comparisons to data.
Since these benchmark models have lower values of

Smax than the off-resonance case we considered in Fig. 3,
we simply scale-down the upper limits of the latter to the
appropriate value of each benchmark model. We note
that although S(σvel) does not have the same shape for
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Benchmark no. Annihilation Channel mφ (MeV) mχ (TeV) αc δ (MeV) Smax〈σv〉0
3×10−26cm3 s−1

1 1:1:2 e± : µ± : π± 900 1.68 0.04067 0.15 530

2 1:1:2 e± : µ± : π± 900 1.52 0.03725 1.34 360

3 1:1:1 e± : µ± : π± 580 1.55 0.03523 1.49 437

4 1:1:1 e± : µ± : π± 580 1.20 0.03054 1.00 374

5 1:1 e± : µ± 350 1.33 0.02643 1.10 339

6 e± only 200 1.00 0.01622 0.70 171

TABLE I: Particle physics parameters and saturated annihilation cross sections for benchmark points.

FIG. 5: Ratio of the observed bound on fWIMP to the value
predicted by the model, for each of the six benchmarks in Ta-
ble I: 1=red, 2=green, 3=blue, 4=yellow, 5=violet, 6=cyan.
Energies where the ratio is less than 1 are ruled out. For the
purposes of this figure, we assume minimal contribution from
unresolved substructure.

the benchmark models than for the Yukawa case, the pre-
vious approximation is good enough because most of the
signal comes from structures that are already in the sat-
urated regime. In any case, this approximation actually
underestimates the signal from the benchmark models
because S(σvel) is larger in the intermediate velocity dis-
persions than in the Yukawa case for the same value of
Smax.

We find that these benchmarks are in conflict with
Fermi measurements in the energy range ∼ 0.3−20 GeV,
even in the case of minimal contribution from unresolved
substructure, if the current best estimates of contribu-
tions from blazars and star-forming galaxies to the EBL
are subtracted from the data. The conflict is maximal at
E ∼ 300 MeV, where it is a factor of ∼ 7 − 10. Fig. 5
displays the ratio fOBS

WIMP/f
MOD
WIMP for these models. With

a larger contribution from unresolved substructure, all
the benchmarks can be ruled out independent of astro-

physical contributions to the EBL.

There are several effects that could ameliorate this
conflict, in addition to the small substructure correction
mentioned already. The uncertainty on the estimation
of fWIMP, as shown in Fig. 3, can alleviate the tension
slightly (by less than a factor of 2); a potentially larger
effect is the uncertainty in the subtraction of astrophysi-
cal contributions to the EBL. If our best estimate for the
contribution of astrophysical sources is too high (by a
factor of up to ∼ 5, as discussed previously), then in the
case of minimal contribution from unresolved (sub)halos
the tension diminishes significantly. In this case however,
dark matter annihilation would need to be dominantly re-
sponsible for the EBL in the energy range observed by
Fermi, unless other effects reduce the dark matter signal.

Star forming galaxies dominate the astrophysi-
cal gamma-ray background model we have used for
0.3 GeV . E0 . 10 GeV, whereas blazars dominate at
higher energies. The contribution of the former to the to-
tal observed signal is particularly important to constrain
the role of dark matter annihilation. To illustrate this,
we translate the constraints on fWIMP given in Fig. 3 to
constraints on the value of the annihilation cross section
at saturation by taking the value of 〈σv〉sat = Smax〈σv〉0
as a free parameter limited by the Fermi measurements
and the astrophysical background. Fig. 6 shows these
constraints as a function of fFermi

SF (E > 0.1GeV), the
contribution of star forming galaxies to the observed in-
tegrated flux between 0.1 GeV and 100 GeV. We show
the constraints only for the case of minimal contribu-
tion of unresolved subhalos. The six benchmark models
appear with the same colors as in Fig. 5. As a refer-
ence, the values of 〈σv〉sat that fit the cosmic ray ex-
cesses for these models are marked with arrows next to
the vertical axis on the right side. The other two mod-
els we have used throughout the paper are also included
in the figure: mχ = 185 GeV annihilating into bb̄ (ma-
genta line) and mχ = 1.5 TeV annihilating into µ+µ−

(black line). For the benchmark models and for the
µ+µ− model, the constraint on 〈σv〉sat decreases rapidly
with fFermi

SF (E > 0.1GeV), because these models are con-
strained at E0 ∼ 0.3 GeV where the contribution from
star forming galaxies peaks. Even assuming only a 5%
contribution of star forming galaxies (recall that we have
used 53% as a fiducial value), the constraints on 〈σv〉sat
still exclude the values needed by these models to fit the
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FIG. 6: Constraints to the annihilation cross section at sat-
uration as a function of the contribution from star forming
galaxies to the observed integrated flux between 0.1 GeV and
100 GeV as measured by Fermi. The values above the lines
are excluded. We have taken the model given in [35] to get the
spectral shape of this contribution. We show the six bench-
mark models of Table 1, setting 〈σv〉sat as a free parameter,
with the same colors as in Fig. 5. The small arrows next to
the vertical axis on the right side mark the corresponding val-
ues of 〈σv〉sat for these benchmarks as given in Table 1. We
also show the results for a model with annihilation into µ+µ−

and a mass of 1.5 TeV (black line), and the model we used as
reference in Figs. 1-3: a 185 GeV neutralino annihilating into
bb̄ (magenta line). As in Fig. 5 we have assumed a minimal
contribution from unresolved substructures. Blazars are as-
sumed to contribute by a fixed amount (16%) in the energy
range measured by Fermi [34].

cosmic ray excesses. The bb̄ model is more independent
of the star forming contribution since this model is con-
strained at E0 ∼ 10 GeV, where blazars dominate.

We would like to mention that the model we
have used to include the contribution from star
forming galaxies assumes that the Milky-Way
gamma-ray specific intensity has a power law
energy spectrum with an exponent of −2.7 for
E ≥ 0.6 GeV [35], which seems to be too steep
at high energies according to the recent analysis
of the Fermi-LAT collaboration that points to an
exponent close to −2.5 for E ≥ 10 GeV (see Table
I and Fig. 3 of [58]). Assuming a shallower spec-
trum for the Milky-Way gamma-ray specific in-
tensity would result in a contribution of star form-
ing galaxies to the EBL with a shallower spectrum
as well, making it more relevant at higher energies
that it is in the model we have used in this work,
and slightly strengthening the derived constraints
in Figs. 2,3 and 5 at high energies. Nevertheless,

the most relevant uncertainty is the overall con-
tribution of star forming galaxies discussed in the
previous paragraph and whose effects are shown
in Fig. 6.
We have assumed a low-mass cutoff of 10−6 M⊙: ki-

netic decoupling can occur quite late in models of this
type [59], leading to a higher cutoff of up to 0.1− 1 M⊙

[60]. However, we estimate that a change of five orders of
magnitude in the low-mass cutoff will affect the final re-
sult by a factor of only 2−6, and the high end of this range
will only be attained for non-minimal contributions from
unresolved (sub)halos (i.e., scenarios that are presently
in conflict with even the unsubstracted data, for these
benchmark models). If the slope we have assumed for
the central density profile of the halos is steeper than re-
ality, this could also affect our limits by a factor of a few:
the NFW profile we have chosen lies between the Moore
and Burkert profiles considered by [29], and the difference
between those profiles modifies the gamma-ray signal by
roughly an order of magnitude. The presence of signifi-
cant dark matter self-interactions and nearly-degenerate
excited states in models of this type can lead to disrup-
tion of low-mass halos and the depletion of central den-
sity cusps (see e.g. [61, 62] and references therein); while
these effects could potentially reduce the tension with
the EBL data, their inclusion is beyond the scope of our
current analysis.
We therefore see that in a CDM scenario, in the con-

text of current structure formation models, the EBL can
robustly act as a more sensitive probe of Sommerfeld-
enhanced dark matter annihilation scenarios than the
cosmic microwave background. Removing tension with
the EBL for the benchmark models we have tested seems
to demand minimal contributions to the signal from un-
resolved substructure, and in addition either dark matter
structure formation must be modified from a pure colli-
sionless CDM scenario, or the contribution to the EBL
from blazars and galaxies must be at the low end of cur-
rent estimates.

V. SUMMARY AND CONCLUSIONS

A positive detection of a non-gravitational signature
of dark matter would be a breakthrough in our under-
standing of this still mysterious form of matter. Cur-
rent experiments on Earth looking for signals of inter-
actions between dark and ordinary matter intensify the
efforts to reach the necessary sensitivities to either largely
constrain the parameter space of minimal SUSY theories
that predict the favorite dark matter candidate, the neu-
tralino, or to find a definite signal [63].
The existence of dark matter could also be confirmed

through the detection of ordinary matter produced dur-
ing the annihilation of WIMPs in regions of high dark
matter density. This annihilation is expected to produce
a population of gamma-ray photons that would make
dark matter halos visible in the gamma-ray sky. The
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cumulative effect of these gamma-rays produced outside
our galactic halo creates a cosmic background that adds
up to the one produced by other sources such as blazars
and star forming galaxies.

This hypothetical background radiation is also popu-
lated at lower energies by a fraction of the original CMB
photons that on their journey towards us are scattered
by energetic electrons and positrons produced during the
annihilation of WIMPs. They gain energy in the process
and reach us as X-ray and gamma-ray photons.

In this work, we have used the state-of-the-art Millen-
nium II simulation [37] that follows the formation and
evolution of structure formation in a ΛCDM cosmology,
to produce simulated sky maps of this conjectured cos-
mic background. Our method includes the signal coming
from all halos and subhalos resolved in the simulation as
well as a careful extrapolation to account for the contri-
bution of unresolved structures that are expected to exist
all the way down to masses of about ∼ 1 Earth mass, that
correspond to the damping mass limit of one of the most
studied type of WIMPs: ∼ 100 GeV neutralino.

This paper extends the analysis of [36] by including:
i) the X-ray and soft gamma-ray contribution to the
background radiation by CMB photons that gain energy
through Inverse Compton scattering of the electrons and
positrons produced during annihilation [85]; ii) a detailed
treatment of a Sommerfeld mechanism that enhances the
annihilation cross section, leading to a significantly larger
annihilation rate from dark matter structures with low
velocity dispersions. The Sommerfeld enhancement has
been invoked to explain the anomalous excess of cosmic
ray positrons above 10 GeV reported by the PAMELA
satellite (e.g. [11]). We present results using this en-
hancement for two sets of parameters chosen to represent
typical cases: i) an off-resonance case where the boost to
the annihilation cross section scales as 1/σvel, and ii) a
near-resonance case where the boost goes as 1/σ2

vel.

We have found that observational upper limits on
the unknown contributions to the X-ray and gamma-ray
background radiation put significant constraints on the
contribution from dark matter annihilation (see Fig. 2
for a comparison with a particular model). These upper
limits are especially stringent in the gamma-ray regime
due to recent measurements reported by the Fermi-LAT

experiment, together with well-founded expectations for
the contributions of blazars and star-forming galaxies
[34, 35, 52].

We introduced a model-independent way to give
constraints on the intrinsic properties of WIMPs by
“factoring-out” the astrophysical part of the signal,
namely, the one that depends on the density field of dark
matter, which is accurately given by the N-body simu-
lation we have used. The constraints we obtain for the
remaining “particle physics” factor (fWIMP, see Eq. 1),
appear on Fig. 3. This figure can be used as a template
to test whether or not a given particle physics model vi-
olates the observational constraints. Although for the
case with Sommerfeld enhancement we only presented

two particular cases, Fig. 3 can still be easily used to
scale the constraints up or down for other realizations of
these types of models.

By selecting a particle physics model and comput-
ing the photon yield dN/dE (composed by in situ and
up-scattered CMB photons, see sections II A, II B and
Fig. 1), it is possible to give direct constraints for the an-
nihilation cross section as a function of WIMP mass. We
show an example of this in Fig. 4, where a model annihi-
lating into µ+µ− final states was chosen. For this particu-
lar model, the constraints we obtain disfavor the scenario
where the positron excess measured by the PAMELA
satellite is explained by dark matter annihilation alone
(of course, there could still be some subdominant DM
contribution to the signal). Furthermore, we have pre-
sented constraints on specific “benchmark” Sommerfeld-
enhanced models selected to fit the cosmic ray spectra
measured by PAMELA and Fermi without any contri-
bution from local substructure, while obtaining the cor-
rect relic density and respecting bounds from the cosmic
microwave background. We find that these models are
in conflict with our constraints, even in the case of min-
imal contributions from unresolved substructure. This
tension could diminish significantly if the contribution to
the cosmic gamma-ray background from blazars and star
forming galaxies is quite low (current uncertainties are
still large, particularly in the latter, and put a minimum
value of 17% of the observed signal at E ∼ 0.3 GeV which
is a factor of 5 lower than the estimate we have used
here, see the last paragraph of section IVA). Another
interesting possibility to reconcile these models lies in
taking into account the role of self-interactions between
dark matter particles, inherent in the models, in the for-
mation and evolution of dark matter structures (this can
lead for example to the formation of central density cores
in low-mass halos [61]).

The main sources of uncertainty in our modelling from
the astrophysical part of the signal are, in order of im-
portance: i) the contribution of unresolved substructures,
which is uncertain by roughly two orders of magnitude;
ii) the concentration of dark matter in the inner part of
halos. In this work we have used a NFW density profile.
If an Einasto profile is used instead, which is currently
favored by high resolution simulations of single halos, the
annihilation rate for each halo is increased by 50% [36];
iii) the value of the minimum mass of bound halos made
of WIMPs; iv) the approximations used for electron and
positron losses, and photon absorption (see Appendices
A and B).

It is worth mentioning that the fine-grained
structure of dark matter halos is predicted to be
a superposition of streams with very small in-
ternal velocity dispersions. If the annihilation
cross section is independent of the velocity disper-
sion, then the contribution of these fundamental
streams and their associated caustics to the anni-
hilation rate is essentially negligible [9]. However,
this could change dramatically in Sommerfeld-
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enhanced models due to the large boosts expected
in the streams. We explore this in appendix D
and find that despite the more prominent role of
streams in these type of models, their contribu-
tion is still significantly smaller than that of sub-
halos, due to the saturation of the enhancement
at low velocities, and can be safely neglected.
In spite of these uncertainties, and thanks to in-

creasingly better measurements of the cosmic X-ray and
gamma-ray background radiation, and to our better un-
derstanding of the contribution to it by AGNs, blazars
and star-forming galaxies, an analysis like ours produces
competitive constraints compared to those obtained in
other indirect searches, such as those based on dwarf
galaxies [64]. Our work can also be viewed as comple-
menting that of other works [29–31], that have presented
a similar analysis using analytical approaches to model
the astrophysical part of the signal instead of high reso-
lution N-body simulation, as we have done here.
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Appendix A: Energy losses for electrons and

positrons

The processes briefly summarized here are described
in detail in [65]. Since the CMB energy density scales
with redshift as (1 + z)4, the energy loss term due to IC
scattering with the CMB photons is given by:

be(Ee, z)ic ≈ 2.5× 10−17(1+ z)4
(

Ee

GeV

)2

GeV/s (A1)

The energy loss due to synchrotron radiation in the
ambient magnetic field B, which has a spatial and tem-
poral functional dependence, is given by:

be(Ee, z)syn ≈ 0.254× 10−17

(

B

1µG

)2 (
Ee

GeV

)2

GeV/s

(A2)
The magnitude of the magnetic field has large spatial
variations, going from ∼ 10µG in the cores of galaxy

clusters [66] to ∼ 0.1µG in the intergalactic medium in
clusters [67]. Thus, synchrotron losses are expected to
be comparable to IC losses only in the regions with the
strongest magnetic fields, such as the centers of galaxy
clusters. Although dark matter annihilation is copious
in high density regions such as these, the contribution
from subhalos and low-mass halos is in average more sig-
nificant than the one from the center of massive halos
associated to galaxy clusters. Furthermore, the strength
of the magnetic field is not expected to increase as rapidly
with redshift as the CMB energy density. This makes the
synchrotron losses less significant than the IC losses at
high redshifts.
The electrons and positrons produced in the annihila-

tion process also lose energy due to ionisation of neutral
atoms and Coulomb scattering with free electrons present
in the ambient field. The energy loss rate of both pro-
cesses is essentially independent of energy and is given
by:

be(Ee, z)ion ≈ 18.4× 10−17
( nH

cm−3

)

GeV/s (A3)

be(Ee, z)coul ≈ 55.4× 10−17
( ne

cm−3

)

GeV/s (A4)

where nH and ne are the local number densities
of neutral hydrogen and free electrons, respectively.
Bremsstrahlung radiation is another source of energy loss
that also depends on the local density of the ambient ion-
ized and neutral material. In the weak-shielding limit the
energy loss rate due to Bremsstrahlung is given by:

be(Ee, z)brem ≈ 15.1× 10−17

(

Ee

GeV

)

( ne

cm−3

)

GeV/s

(A5)
At high electron energies, the latter three processes are

subdominant relative to the IC losses due to the energy
squared dependence in Eq. (A1). At low energies they
become more significant but are nevertheless suppressed
by the average low density of the ambient medium. This
can be seen by noting that the minimum energies we are
interested in are those corresponding to the soft X-rays
(EIC & 10−7GeV) coming from the IC scatter of CMB
photons. An up-scattered CMB photon will have an av-
erage energy of: EIC ≈ 4/3(Ee/me)

2E [68], where Ee

and me are the energy and mass of the scattering elec-
tron, and E is the energy of the photon before the event,
thus for EIC ∼ 10−7 GeV the electron energies of rele-
vance are of the order of 0.25 GeV at z = 0. For these
energies, ionisation, coulomb and bremsstrahlung losses
dominate over IC losses only if the ambient density of
electrons and neutral hydrogen is & 10−2 cm−3. In the
local ISM ne ∼ 0.1 cm−3 [69]. In galaxy clusters the
average gas density is ∼ 10−3 cm−3 [38] and in dwarf
spheroidals like Draco it is ∼ 10−6 cm−3 [70]. Since the
largest contribution to the production of electrons and
positrons comes from the accumulated effect of annihila-
tion in low-mass halos and subhalos, which have clearly
low ambient densities of ordinary matter, we can safely
neglect the impact of these three processes of energy loss.
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They could be of relevance in the center of massive ha-
los at low redshift, but they are negligible for the overall
full-sky signal.

Appendix B: Photon absorption

For energies & 10 GeV measured at z = 0, the domi-
nant mechanism of photon absorption is that due to the
interaction between the gamma-ray photons produced in
the annihilation process and the lower energy starlight
photons produced in galaxies (i.e., pair production with
the ambient photon field). As mentioned in Section II,
this absorption is parameterised as an exponential term
with an effective optical depth τ(E0, z). We adopt the
most recent treatment of [71] to calculate the values of
the optical depth as a function of energy and redshift.
For this purpose, we take their fiducial 1.2 model and
make a bilinear interpolation following their Fig. 11.
For lower observed energies down to ∼ 10−6 GeV, the

Universe is basically transparent to photons produced
at any given redshift between z = 0 and z = 10 (e.g.
Fig. 3 of [31]). In this paper we are considering a range
of energies that extends slightly towards lower energies
(10−7 GeV). In this regime, photoionization and Comp-
ton scattering are important mechanisms of energy loss.
As can be seen from Fig. 3 of [31], τ ∼ 1 at these ener-
gies for photon sources located at z ∼ 7. This means that
these processes would suppress an important fraction of
photons coming from dark matter structures at z & 7.
However, most of the emission from annihilation comes
from sources at z . 3 (∼ 60% of the total emission at
these energies), which is a region essentially transparent.
Thus, we are ignoring these mechanisms noting that we
could be overestimating the predicted signal at the per-
cent level, which is clearly a minor effect for the purposes
of this work.

Appendix C: The astrophysical factor, luminosity

from halos and subhalos

1. Resolved structures

The total annihilation luminosity (including in situ and
up-scattered photons) coming from a halo (or subhalo)
of volume V is given by:

Lh =

∫

V

E(~x) dV =
E

2
fWIMP

∫

V

ρχ(~x)
2S(σvel(~x)) dV

=
E

2
fWIMPL

′

h. (C1)

We assume that halos (or subhalos) have a NFW density
profile[86] [72], and an average boost factor S(σ̄vel) given
by the mean velocity dispersion of its particles. Thus:

L′

h = S(σ̄vel)

∫

ρ2NFW(r) dV = S(σ̄vel)
1.23V 4

max

G2rmax
, (C2)

where the last scaling relation was found by [42] with
rmax being the radius where the rotation curve reaches its
maximum Vmax. It is important to consider the impact of
numerical resolution on the values of rmax and Vmax. The
values of rmax are increasingly overestimated for smaller
structures whereas the opposite is true for Vmax [36, 73].
We have hence corrected these quantities following the
prescription of [36].

2. Unresolved structures

The previous description is used for all structures that
are resolved by the MS-II simulation. However, we want
to obtain predictions down to the minimum mass for
bound WIMP halos. For neutralinos this is . 1M⊕,
which clearly lies many orders of magnitude below cur-
rent simulations. For ∼ 100 GeV neutralinos, the damp-
ing mass lies in the range 10−8 − 10−4 M⊙, whereas for
∼ 1 TeV neutralinos, the range is 10−11 − 10−7 M⊙. For
simplicity, we assume that these reference values for neu-
tralinos are generically valid for other WIMPs and choose
a fiducial value of 10−6h−1M⊙ for all the cases we ana-
lyze in this paper, noting that the precise value of this
mass is a source of uncertainty in our results.
To incorporate these unresolved structures into our

maps, we follow an analogous procedure to the one de-
veloped in [36], that we briefly describe in the following,
dividing it into unresolved main halos and unresolved
subhalos.

a. Unresolved halos

The total annihilation luminosity coming from main
halos in a given mass range can be computed using the
function:

Fh(Mh) =

∑

L′
h

M̄h∆ logMh
, (C3)

where the sum is over all the luminosities L′
h of halos

(given by Eq. C2) with masses in the range: logMh ±
∆ logMh/2, and M̄h is the mean halo mass in each bin.
In the absence of Sommerfeld enhancement the function
Fh(Mh), henceforth called: FNSE

h (Mh), is a power law in
the intermediate to low mass regime (see Fig. 4 of [36]).
Once the Sommerfeld boost is applied to each main halo,
the power law behavior of Fh(Mh) is modified by the
function S(σ̄vel).
The minimum halo mass we can rely on to compute

Fh(Mh) is Mlim = 6.89×108 h−1M⊙ (100 simulation par-
ticles). Below this mass we need to extrapolate Fh(Mh)
using the information we have on S(σ̄vel), and on the
extrapolation made for FNSE

h (Mh). The value of Mlim

translates into a limiting value of σvel that we obtain
directly from the simulation data: σvel,lim(z = 0) ∼
3.4 × 10−5 [87]. Therefore, we obtain a fit to the power
law behavior of Fh(Mh) in the last resolved mass range
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of the MS-II and extrapolate this function down to the
damping mass limit taking into account the saturation of
S(σ̄vel).
The ratio of annihilation emission coming from all ha-

los contained in a cosmic volume VB with masses larger
than Mmin to the emission produced by a smooth homo-
geneous distribution of dark matter, with average density
ρ̄B, filling this volume is approximately given by:

f(Mh > Mmin) ∼
1

ρ̄2BVB

∫ ∞

Mmin

Fh(Mh)

ln 10
dMh. (C4)

For a given redshift, the ratio of the values of f(Mh >
Mmin) with and without enhancement below the satura-
tion mass is roughly given by Smax.
Using Eq. (C4), we estimate the contribution from the

unresolved main halos down to the damping mass limit
by assuming that the radiation from the missing halos
in the mass range 10−6 h−1M⊙ to ∼ 6.89 × 108 h−1M⊙

is distributed on the sky in the same way as the one
from the smallest masses we can resolve in the sim-
ulation, which we adopt as the mass range between
1.4 × 108 h−1M⊙ and ∼ 6.89 × 108 h−1M⊙ (halos with
20 to 100 particles). This assumption is justified because
the clustering bias seems to asymptotically approach a
constant value for low halo masses [37].
Using the extrapolated behavior of Fh(Mh) in Eq. (C4)

we compute the boost factor bh by which each halo in the
mass range 1.4−6.89×108 h−1M⊙ needs to be multiplied
such that the luminosity of the unresolved main halos is
accounted for as well:

b
(NSE,i,ii)
h =

f(10−6 h−1M⊙, 6.89× 108 h−1M⊙)a
f(1.4× 108 h−1M⊙, 6.89× 108 h−1M⊙)sim

∼ (60, 90, 2.4× 103) (C5)

Note that bh is effectively the ratio of f(Mh > Mmin)
computed analytically between the cutoff mass limit and
the 100 particle limit, and computed in the simula-
tion for the lowest resolved mass range. The super-
scripts (NSE, i, ii) are for the cases without Sommer-
feld enhancement, off-resonance (Smax = 2000) and near-
resonance (Smax = 106), respectively. The value of bh is
nearly independent of redshift up to z = 2.1. For higher
redshifts, the power law fit to Eq. (C3) is unreliable for
the extrapolation because the population of halos over
the resolved mass range becomes too small.

b. Unresolved subhalos

Cold dark matter halos contain numerous substruc-
tures that contribute significantly to their total annihi-
lation luminosity. For massive halos, this contribution
largely exceeds that of the smooth main halo. For a MW-
like halo the total luminosity from all its subhalos down
to the damping mass is between 2 and 2000 times larger
than its own smooth component [36].

The Sommerfeld mechanism increases the contribution
of substructures even further due to their low velocity
dispersion relative to that of their host. We now calcu-
late the contribution from unresolved subhalos following
an analogous procedure to the one described in [36]. It
follows a methodology similar to that of the previous sub-
section and rests on the analysis of the following quantity:

Fsub

(

Msub

Mh

)

=

(

Mh

L′
h

) ∑

L′

sub

M̄sub∆ logMsub
, (C6)

where Msub and L′
sub (given by Eq. (C2) are the mass

and luminosity of a given subhalo. The total luminosity
of all subhalos relative to that of their host is given by:

fsub(M
max
sub ,Mh) ∼

1

L′

h

∫ Mmax

sub

10−6

(

L′

h

Mh

) Fsub

(

Msub

Mh

)

ln 10
dMsub,

(C7)
where Mmax

sub is the mass of the most massive subhalo
within the host.
To simplify the analysis of Fsub in the case of Sommer-

feld enhancement, we approximate Fsub by:

Fsub∼
(

Mh

S̄(Mh)L′NSE
h

)

S̄(Msub)
∑

L′NSE
sub

M̄sub∆ logMsub
=

S̄(Msub)

S̄(Mh)
FNSE
sub

(C8)
where S̄(Mh) and S̄(Msub) are average enhancements
for Mh and for the subhalo mass range: logMsub ±
∆ logMsub/2, respectively. These averages are given by
the combination of σvel(M) and S(σvel), and we obtain
them directly by fitting the simulation data.
The average boost as a function of halo mass and red-

shift is well described by:

(S̄(Mh, z))(i,ii) = (Sh,0Gh(z)M
αSE

h

h )(i,ii), (C9)

where Sh,0 is a normalization factor and all redshift de-
pendence has been put into Gh(z) (recall that this de-
pendence comes from the σvel(Mh) relation).
For case i), there are two characteristic masses that

mark the transitions below which S → Smax and above
which S → 1. The characteristic masses are redshift
dependent and can be obtained by matching the three
regimes. For case ii), there are three such characteristic
masses marking the transition between saturation, S ∼
1/σ2

vel, S ∼ 1/σvel and S → 1. For both cases we find
that the fitting functions are a very good approximation
up to z = 2.1.
For subhalos we apply a similar procedure using:

(S̄(Msub, z;Mh))(i,ii) = (Ssub,0Gsub(z)M
αSE

sub

sub )(i,ii),
(C10)

which has the same functional form as Eq. (C9) but with
an implicit dependence on the mass of the host which
takes care of the fact that subhalos can only have Som-
merfeld boosts that are larger than those of their hosts.
Thus, if for example a host is saturated, all its subhalos
are saturated as well and we have S̄sub = S̄h. For this
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particular case it is easy to see that the contribution of
substructures to the luminosity of the halo is the same
as in the case without enhancement: fsub = fNSE

sub . To
obtain the parameters in Eq. (C10) we only analyze main
halos with more than 500 subhalos.
In both cases the different regimes are divided by tran-

sition subhalo masses analogous to the ones for hosts.
The fitting procedure is less reliable than in the case of
halos. In particular, the scatter on the slope of the power
law for a given redshift, measured with quartiles, is of the
order of 10%, and the median can change up to the same
amount between z = 0 and z = 2.1. The scatter of the
normalization at a given redshift is of the order of a fac-
tor of 2, and for different redshifts, its median can change
up to a factor of 4.
As for halos, we consider the subhalo population to be

complete down to Mlim = 6.89× 108 h−1M⊙. Below this
mass, we use Eqs. (C7-C10) to add the contribution of
unresolved subhalos to each of the resolved halos. The
value of Mmax

sub in Eq. (C7) is given by Mmax
sub = Mlim

if the halo has subhalos and Mmax
sub = fmaxMh, with

fmax = 0.05 otherwise. In the former case we distribute
the missing luminosity among all resolved subhalos, in
the latter we simply add it to the host. The precise value
of fmax has little impact on the results.
Considering resolved an unresolved subhalos we find

that a halo of 1012 h−1M⊙ has fsub ∈ (11, 1.04× 104) for
case i), and fsub ∈ (4.13 × 103, 6.86 × 106) for case ii),
that is ∼ 6, ∼ 3000 times more than in the case without
Sommerfeld enhancement, respectively.
Finally, we need to add the subhalo contribution to

all main halos with masses below Mlim. To do so, we
compute an overall boost factor bsub to the luminosity of
all main halos between the damping scale limit and Mlim:

bsub =
fboost(10

−6 h−1M⊙, 6.89× 108 h−1M⊙)

fno−boost(10−6 h−1M⊙, 6.89× 108 h−1M⊙)
(C11)

where fno−boost is given by:

fno−boost(10
−6 h−1M⊙, 6.89× 108 h−1M⊙) ≈

∫ 6.89×108

10−6

Fh(Mh)

ln 10
dMh (C12)

and fboost can be written as:

fboost(10
−6 h−1M⊙, 6.89× 108 h−1M⊙) ≈

∫ 6.89×108

10−6

[1 + fsub(fmaxMh,Mh)]
Fh(Mh)

ln 10
dMh. (C13)

For the cases with Sommerfeld enhancement,
Eq. (C11) can be simplified by noting the follow-
ing. The integral in Eq. (C12) is dominated by the
mass range where the Sommerfeld enhancement is
already saturated, this is because Fh is always a
power law, monotonically increasing with mass, and
the saturation mass (Mh,sat) is relatively close to
Mlim and much larger than the damping mass. For

instance in case i), Mh,sat ∼ 7 × 108 h−1M⊙(1 + z)−1,
thus even at high redshifts, the contribution of the
unsaturated part is always negligible. In case ii),
Mh,sat ∼ 1.5× 105 h−1M⊙(1 + z)−0.8, which means that
the aforementioned contribution is larger than in case
i) but we still find it to contribute minimally to the
integral, less than 10%. Therefore, we can approximate
Eq. (C12) by: fno−boost ≈ Smaxf

NSE
no−boost, where fNSE

no−boost
is the value of Eq. (C12) in the case of no Sommerfeld
enhancement. For case i), a similar approximation
can be used to simplify Eq. (C13). It can be shown
that fsub ≈ fNSE

sub and since Fh ≈ SmaxF
NSE
h , then

fboost ≈ Smaxf
NSE
boost. Thus, for case i) we have that:

bsub
(i) ≈ bNSE

sub ∈ (2, 60) (C14)

where the numerical values were obtained for the case of
no enhancement in [36].
The case of resonant enhancement is more complex,

since the saturation mass is lower than in the non-
resonant case and thus the non-saturated regime has a
more relevant influence on fboost. However, we can show
that in general:

fboost ≤ Smaxf
NSE
boost. (C15)

To prove this we note that since fno−boost ≈
Smaxf

NSE
no−boost, thus fboost = fno−boost + [...] =

Smaxf
NSE
no−boost + [...]. Therefore to prove Eq. (C15) we

just need to show that:

∫ 6.89×108

10−6

fsubFh dMh ≤ Smax

∫ 6.89×108

10−6

fNSE
sub FNSE

h dMh.

(C16)
This is true because each subhalo in a host can be
enhanced by Smax at the most, that means that the
total luminosity of all these subhalos is bounded by
Smax: fsubL

′
h ≤ Smax(fsubL

′
h)

NSE. Since by definition
Fh ∼ ln(10)L′

hdNh/dMh, where dNh/dMh is the num-
ber of halos in the mass range Mh ± dMh, we have that:
fsubFh ≤ Smax(fsubFh)

NSE, which proves Eq. (C16). Af-
ter doing the calculation we find that:

bsub
(ii) ∈ (2, 42) (C17)

We take the range of values in Eqs. (C14-C17) as ex-
trema reflecting the uncertainties on the extrapolation
procedure. They should then bracket the true result.

Appendix D: Annihilation in fundamental streams

To compute the luminosity coming from anni-
hilation in streams, we use the methodology de-
scribed in [8, 9] that integrates the geodesic devi-
ation equation together with the N-body equa-
tions of motion to follow the evolution of the
fine-grained structure of dark matter halos. This
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FIG. 7: Differential (solid) and cumulative (dashed) radial
profiles of the annihilation luminosity for the smooth halo
component (red) and for the streams component (blue) for the
cases with and without Sommerfeld enhancement in the lower
and upper panels respectively. The former, is for the near-
resonance case described in section III that has a saturation
value of Smax ∼ 106.

method was applied to the Milky-Way size ob-
jects simulated by the Aquarius project in [9], we
took their results from one of these objects.
In Fig. 7, we show the spherically averaged ra-

dial profiles of the annihilation luminosity for the
smooth halo component (red), computed using
the local mean density, and for the fine-grained
intra-stream component (blue). The solid and

dashed lines are for the differential and cumula-
tive profiles respectively. The upper panel shows
the case without Sommerfeld enhancement and
the lower one the near-resonance case with a σvel-
dependent boost factor (Smax ∼ 106) as described
in section III.

Looking at the cumulative distribution in Fig. 7,
we see that at the virial radius, r200, the ratio
of the total intra-stream luminosity to the total
smooth luminosity is ∼ 10−3 in the case with no
enhancement. This ratio increases to ∼ 20 once
the extreme case of near-resonance enhancement
is included. Thus, due to the low velocity disper-
sion of dark matter particles in streams, the an-
nihilation rate in streams dominates over the rate
given by the smooth mean density contribution.
This contribution from streams remains neverthe-
less significantly smaller than the subhalo contri-
bution. Considering subhalos with masses down
to 10−6M⊙, the ratio of the total subhalo to
smooth luminosity for MW-like halos lies in the
range: 2−2×103 for the case without Sommerfeld
enhancement and 4 × 103 − 7 × 106 for the near-
resonance case (see section C2 b). The subhalo
contribution is at least 1000 times larger than the
stream contribution when the annihilation cross
section is not enhanced by a Sommerfeld mech-
anism. Once the latter is included, it boosts all
components (smooth, subhalos and streams) ac-
cordingly by a factor which is bounded by Smax.
Because the subhalo contribution is dominated
by the smallest unresolved subhalos and these
are essentially in the saturated regime, they are
boosted by the same amount as the streams, and
thus prevail as the dominant component of the
annihilation luminosity in a halo.
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L199 (2010), 1003.3647.

[57] M. Kamionkowski, S. M. Koushiappas, and M. Kuhlen,
Phys. Rev. D81, 043532 (2010), 1001.3144.

[58] A. A. Abdo, M. Ackermann, M. Ajello, and et al., Phys-
ical Review Letters 104, 101101 (2010), 1002.3603.

[59] J. L. Feng, M. Kaplinghat, and H.-B. Yu, Phys. Rev.
D82, 083525 (2010), 1005.4678.

[60] T. Bringmann, New J. Phys. 11, 105027 (2009),
0903.0189.

[61] A. Loeb and N. Weiner (2010), 1011.6374.
[62] N. F. Bell, A. J. Galea, and K. Petraki, Phys. Rev. D82,

023514 (2010), 1004.1008.
[63] J. L. Feng and D. Sanford, ArXiv e-prints (2010),

1009.3934.
[64] R. Essig, N. Sehgal, L. E. Strigari, M. Geha, and J. D.

Simon, Phys. Rev. D 82, 123503 (2010), 1007.4199.
[65] R. Schlickeiser, Cosmic Ray Astrophysics (2002).
[66] C. L. Carilli and G. B. Taylor, ARA&A 40, 319 (2002),

arXiv:astro-ph/0110655.
[67] P. P. Kronberg, R. Kothes, C. J. Salter, and P. Perillat,

ApJ 659, 267 (2007), 0704.3288.
[68] C. Longair, Astronomische Nachrichten 317, 156 (1996).
[69] S. Redfield and R. E. Falcon, ApJ 683, 207 (2008).
[70] S. Colafrancesco, S. Profumo, and P. Ullio, Phys. Rev. D

75, 023513 (2007), arXiv:astro-ph/0607073.
[71] R. C. Gilmore, P. Madau, J. R. Primack, R. S.

Somerville, and F. Haardt, MNRAS 399, 1694 (2009),
0905.1144.

[72] J. F. Navarro, C. S. Frenk, and S. D. M. White, ApJ
490, 493 (1997), arXiv:astro-ph/9611107.

[73] V. Springel, J. Wang, M. Vogelsberger, A. Ludlow,
A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and
S. D. M. White, MNRAS 391, 1685 (2008), 0809.0898.

[74] J. March-Russell and S. M. West, Physics Letters B 676,
133 (2009), 0812.0559.

[75] W. Shepherd, T. M. P. Tait, and G. Zaharijas, Phys. Rev.
D 79, 055022 (2009), 0901.2125.

[76] J. F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vo-



19

gelsberger, S. D. M. White, A. Jenkins, C. S. Frenk, and
A. Helmi, MNRAS 402, 21 (2010), 0810.1522.

[77] Here Ee is the local electron (and positron) emissivity,
analogous to the photon emissivity defined in Eq. (1).

[78] The related phenomenon of radiative capture into WIM-
Ponium, allowed for mφ < α2

cmχ/4, can increase the
effective enhancement factor substantially for small mφ

[74, 75].
[79] Unless otherwise stated, velocities are given in units of

the speed of light c.
[80] The equilibrium spectrum as defined in Eq. (4) was scaled

by a factor of 10−16 to show it in the same figure.
[81] Although the formalism required to compute the en-

hancement is more complicated than the one given in
section III, which is strictly valid for scalar boson carri-
ers, the results are qualitatively similar [12].

[82] Specifically, we take the obscured and unobscured
Compton-thin AGN contributions to the signal in this
energy range (red and blue solid lines in Fig. 5 of [48]).
We do not include the contribution from Compton-thick
AGN that has a more uncertain modeling. We note that
due to this, upper limits to the contribution of sources
other than AGN in this energy range are expected to be

lower than those shown in Fig. 2.
[83] Here we have changed the comoving distance r in Eq. (2)

for the redshift z and use the mean value theorem of in-
tegral calculus, which can be used because the remainder
integrand in Eq. (12) is always positive in the interval of
integration.

[84] A web application that computes the Sommerfeld
enhancement for this type of models is located at
http://astrometry.fas.harvard.edu/mvogelsb/sommerfeld/
(see the last paragraph of the Conclusions in [19] for a
description).

[85] Additional backgrounds such as starlight, infrared and
ultraviolet contribute as well, but we have neglected them
since the CMB is by far the largest of these background
populations.

[86] An Einasto profile seems to be favored over a NFW by
the most recent high-resolution N-body simulations (e.g.
[76]), using the former instead of the latter increases the
net annihilation rate in a halo by only 50% [36]. This ef-
fect is small compared to other uncertainties in our anal-
ysis.

[87] At z=0, σvel ∝ M0.34
v


