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On large scales, comparable to the horizon, the observable clustering properties of galaxies are
affected by various General Relativistic effects. To calculate these effects one needs to consistently
solve for the metric, densities and velocities in a specific coordinate system or gauge. The method
of choice for simulating large scale structure is numerical N-body simulations which are performed
in the Newtonian limit. Even though one might worry that the use of the Newtonian approximation
would make it impossible to use these simulations to compute properties on very large scales, we
show that the simulations are still solving the dynamics correctly even for long modes and give
formulas to obtain the position of particles in the conformal Newtonian gauge given the positions
computed in the simulation. We also give formulas to convert from the output coordinates of N-body
simulations to the observable coordinates of the particles.

PACS numbers: 98.80.-k,98.80.Jk,98.62.Py,98.65.-r

I. INTRODUCTION

The study of the fluctuations in the distribution of
matter in the universe and its evolution through cosmic
history has become one of the major tools in cosmol-
ogy. The properties and time evolution of the large scale
structure depend on the cosmological parameters and on
the initial conditions for the hot Big Bang. Many of the
parameters of the currently favored cosmological model
have been determined by matching the observed proper-
ties of the distribution of mass through cosmic history
with the model calculations.
Galaxies serve as tracers of the underlying matter dis-

tribution. Significant efforts have been made to un-
derstand their connection [1–4] and generate estimates
for cosmological parameters from the recovered matter
power spectrum [5]. In the last decades, redshift surveys
such as the Sloan Digital Sky Survey (SDSS) [6] and the
Two degree Field Galaxy Redshift Survey (2dFGRS) [7]
have resulted in detailed maps of the large scale distri-
bution of galaxies across very large volumes. The future
promises even larger surveys as a result of efforts to im-
prove measures of the so-called baryon acoustic oscilla-
tion signal in the clustering of matter to further constrain
the properties of the dark energy [8, 9]. Surveys are be-
ginning to probe scales comparable to the horizon at the
redshift of the galaxies being observed.
Until recently, predictions for observables in galaxy

surveys had been done entirely in the Newtonian limit.
Matsubara [10] included gravitational lensing effects on
the correlation functions of galaxies and quasars as ap-
plied to SDSS. More recently, work by Yoo et al. [11], Yoo
[12] made a more detailed treatment of General Relativis-
tic effects. These become relevant as the scales probed by
the survey approach the horizon scale. The overdensity
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in the galaxy distribution δobs is given by:

δobs = b (δm − 3 δz) +A+ 2D + (vi −Bi)ei + Eije
iej

− (1 + z)
∂

∂z
δz − 2

1 + z

Hr
δz − δz − 5p δDL − 2 κ

+
1 + z

H

dH

dz
δz + 2

δr

r
, (1)

where H is the Hubble constant, δz, δr, δDL are the fluc-
tuations in the redshift, distance along the line of sight,
luminosity distance relative to the unperturbed universe,
κ is the lensing convergence, p gives the slope of the
galaxy luminosity function, b is the bias, ei the direc-
tion of propagation of the photon and A, Bi, D and Eij

are metric components:

ds2 = −a2 (1 + 2A) dη2 − 2 a2Bi dη dx
i (2)

+ a2 [(1 + 2D)ḡij + 2Eij ] dx
idxj .

with ḡij the metric tensor for three-space in a homoge-
neous universe and η =

∫

dt/a(t) is the conformal time
in terms of the scale factor. These formulas exhibit many
of the relativistic effects that are common in calculation
of the anisotropies in the Cosmic Microwave Background
(CMB). For example the observed redshift of a source is
given by:
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where the prime indicates the derivative with respect to
conformal time, the vertical bar is the covariant deriva-
tive with respect to ḡij , rs = r(zs) is the comoving line of
sight distance to the source galaxies at zs and vie

i is the
line of sight peculiar velocity, ao and as are the values
of the scale factor at the time of observation and light-
emission respectively. The first square bracket represents
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the redshift-space distortion by peculiar velocities, frame
dragging, and gravitational redshift, respectively. The
first round bracket in the integral also represents the
gravitational redshift, arising from the net difference in
gravitational potential due to its time evolution for the
duration of photon propagation, and this effect is referred
to as the integrated Sachs-Wolfe (ISW) effect in the CMB
literature. The last terms in the integral represent the
tidal effect from the frame dragging and the ISW effect
from the time evolution of the primordial gravity waves.
The complete set of formulas needed to predict the

observed clustering properties of galaxies on very large
scales can be found in Yoo et al. [11]. It is clear that the
calculation requires consistently solving the GR dynam-
ics in a particular coordinate system or gauge. On the
other hand N-body simulations are the method of choice
to compute predictions for the large scale distribution of
galaxies but these simulations are done in the Newtonian
limit. It is appropriate to ask how the output of simula-
tions can be used to compute the different terms in Eqn.
(1) and even whether this can be done at all given that
the simulations are run using Newtonian dynamics.
The drive on the observational side to map larger and

larger volumes of the Universe and the exponential in-
crease in computer power have also resulted in numerical
simulations of ever increasing size. Typical cosmologi-
cal simulations evolve the particles starting at z ∼ 100,
when the size of the horizon is ∼ 1.5Gpc. Box sizes vary
and can be as large as ∼ 0.5 − 3Gpc comoving and the
number of particles are of order ∼ 109 − 1010. Exam-
ples of some of the biggest simulations to date are the
Millennium Simulation [13] run in a box of comoving
size 500h−1Mpc, the Marenostrum Numerical Cosmol-
ogy Project [14] and the Hubble Volume project [15] run
in a box of 3000× 3000× 30 Mpc. Further examples are
found in Colberg et al. [16], Park et al. [17] and recently
in Cai et al. [18]. Some of these simulations are started
at an initial time when the horizon actually lies within
the box. Clearly, we need a way to match cosmological
N-body simulations with the general relativistic variables
in Eqn. (1).
In addition to asking how to use the outputs of numer-

ical simulations to compute the various terms in Eqn. (1)
one may wonder if numerical simulations are solving the
correct dynamical equations. We might suspect that the
Newtonian simulations are working in the so-called con-
formal Newtonian gaug, in which the line element is given
by

ds2 = a2(η)[−(1 + 2φN )dη2 + (1− 2φN )δijdx
idxj ] (4)

in the absence of anisotropic stress and where φN coin-
cides with the Newtonian potential only on small scales.
In fact, the analogue of the Poisson equation in the con-
formal Newtonian gauge reads:

∇2φN − 3H(φ′N +HφN ) = 4πGa2δρN (5)

and thus differs from the standard Poisson equation on

large scales. Here, H = a′/a is the conformal Hubble
parameter.

From Eqn. (5), it might appear that simulations are
not solving correctly for the gravitational potential for
scales comparable to or larger than the horizon. Previ-
ous work on this subject has focused on comparing the
General Relativity equations to the Newtonian equations
up to some given order in perturbation theory [19]. We
will show in this work that a more direct approach is pos-
sible. We will analyze the situation in detail and conclude
that N-body simulations are solving for the potential cor-
rectly but that the location of the particles needs to be
corrected if they are to be interpreted as the particle co-
ordinates in the conformal Newtonian gauge. Finally we
will give formulas to recover observable coordinates di-
rectly in terms of the output of N-body simulations.

II. EVOLUTION EQUATIONS

As structure in the Universe develops the density con-
trast becomes larger and larger exceeding unity at the so
called non-linear scale. Properly modeling this process
on small scales, of order the non-linear scale or smaller
requires numerical simulations. However, because the
primordial curvature fluctuations, the seeds for structure
formation, are so small, the non-linear scale is signifi-
cantly smaller that the horizon. As a result perturba-
tions in the space time remain very small, of order 10−5

or smaller1.

Thus, to study structure formation we need only con-
sider small perturbations to the FRW metric and we can
stay to linear order on those perturbations. In this pa-
per we choose to work in the conformal Newtonian gauge
with the line element given by:

ds2 = a2(η)[−(1 + 2ψN)dη2 + (1− 2φN )δijdx
idxj ] (6)

where ψN represents the Newtonian potential and φN ,
the Newtonian curvature.

We stress that we are assuming that metric pertur-
bations are small but we are not treating the density
perturbations using perturbation theory. The structure
formation process also results in peculiar velocities for the
particles. Because the non-linear scale is well inside the
horizon, these peculiar velocities are small, much smaller
than the speed of light. In fact at the non-linear scale
peculiar velocities are of order the Hubble velocity for
points separated by a distance of order the non-linear
scale. As a result the kinetic energies of particles do not
source gravity in an appreciable way.

1 On sufficiently small scales baryons can collapse to form relativis-

tic objects such as neutron stars or black holes around which the

space time metric fluctuations are large. This has negligible ef-

fects on the length scales considered in this paper
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Note that because we are considering perturbations
around the FRW metric so at lowest order the source
for the gravitational potentials in δρ as opposed to the
full ρ. The kinetic energy corrections are of order ρv2. It
is still true that ρv2 ≪ δρ on every scale. Thus it is safe
to ignore the the peculiar motions as a source of gravity.
These terms are of course also neglected in numerical
simulations run using the Newtonian approximation, but
this is a negligible source of error. Including these terms
is necessary if one wants to study the back-reaction of
cosmological perturbations on to the expansion of the
Universe [20], but we are not interested in this problem
here.
In the standard Newtonian approximation terms of or-

der ρφ are also dropped as sources of gravity. This re-
quires a little bit more thought in our case. Again at
lowest order the source of gravity is δρ but this is no
longer much larger than ρφ on sufficiently large scales.
Thus we need to keep this term. However it is only ρ̄φ
that needs to be kept as of course δρ≫ δρφ on all scales.
We will now summarize the evolution equations under
these approximations.

A. Einstein equations

In the conformal Newtonian gauge the Einstein equa-
tions Gµν = 8πGTµν are reduced to:

∇2φN − 3H(φ′N +HψN ) = −4πGa2(T 0
0 − T̄ 0

0 ), (7)

[φ′N +HψN ],i = 4πGa2T 0
i , (8)

φ′′N +H(2φ′N + ψ′
N ) + (H2 + 2H′)ψN (9)

−
2

3
∇2(φN − ψN ) =

4πGa2

3
(T i

i − T̄ i
i ),

∂i∂j [(φN − ψN ),ij −
1

3
δij∇

2(φN − ψN )] = (10)

8πGa2∂i∂j(T
i
j −

1

3
δijT

k
k ).

where ,i indicates derivatives with respect to the i co-
ordinate and the background Friedmann equation for a
flat Universe with cosmological constant Λ has been sub-
tracted,

3H2

2a2
= −4πGT̄ 0

0 +
Λ

2
,

H2 + 2H′ = −
8πGa2

3
T̄ i
i .

(11)

B. Application to non-relativistic particles

As we mentioned already when studying structure for-
mation we are primarily interested in non-relativistic

matter. Equation (10) for i 6= j implies that the
anisotropic stress is of order ρv2 and thus negligible in
our approximation. As a result φN = ψN . The gravita-
tional potential satisfies:

∇2φN − 3H(φ′N +HφN ) = −4πGa2(T 0
0 − T̄ 0

0 ). (12)

The energy-momentum tensor for a set of cold dark mat-
ter particles with mass ma [21] is given by:

T µν = (−g)−1/2
∑

a

ma
uµau

ν
a

u0a
δD(~x− ~xa) (13)

where uµa is the comoving velocity of the particles, dxµ/dη
and g is the determinant of the metric. To linear order
in the metric and to second order in the three-velocities,
vi, this is given by u0a = a−1 (1− ψN + v2a/2) and
uia = a−1via. The 00 component of the stress-energy ten-
sor is related to the density of particles and since metric
perturbations are small, we can expand in powers of φN
and remain to linear order. To order v2a, the 00 compo-
nent is

T 0
0 = −a−3

∑

a

ma(1 + 3φN + v2a)δD(~x− ~xa(η)). (14)

As discussed we will neglect the v2 term but need to keep
the φN as φN ρ̄ is not negligible on large scales. We obtain

T 0
0 = −a−3(1 + 3φN )

∑

a

maδD(~x− ~xa(η)) (15)

where only the φN ρ̄ piece of the term proportional to φN
ever makes any difference. Replacing in equation (12),

∇2φN − 3H(φ′N +HφN ) +
3

2
H2 = (16)

4πGa2ρ(1 + 3φN ) +
Λa2

2

where ρ(~x, η) = a−3
∑

amaδD(~x − ~xa(η)) is the density
obtained by näıvely counting particles in cells at each
time step. Given the positions of the particles, Eqn. (16)
can be solved to obtain the Newtonian potential.
The positions and velocities of the particles are ad-

vanced using the geodesic equation:

d2~xa
dη2

+ (H− 3φ′N )
d~xa
dη

= −∇φN (~xa). (17)

Notice that the term 3φ′Nd~xa/dη is always negligible.

III. INITIAL CONDITIONS

In addition to the evolution equations we need to find
the initial conditions. This can be done at early enough
time using linear theory. We define a growth function for
the potential such that in the linear regime

φN = bφ(η)φ
in
N . (18)
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Given that the spatial components of the stress tensor
for the dark matter are negligibly small, the gravitational
potential in the matter era satisfies

φ′′N + 3Hφ′N = 0. (19)

The solutions to this equation are well-known [22], giving
a constant and a decaying solution for the potential in the
linear regime, which in terms of Eqn. (18) is:

bφ = C1 +
C2

η5
(20)

where C1 and C2 are constants. The decaying mode is
absolutely negligible at the times of interest and without
loss of generality we choose C1 = 1.
We can replace the right-hand side of the geodesic

equation by the solution of the potential in the linear
regime,

d2~xa
dη2

+H
d~xa
dη

= −∇φinN . (21)

In a matter-dominated regime the homogeneous solutions
to Eqn. (21) are given by a constant vector and a decay-
ing solution,

~xh = ~B1η
−1 + ~B2. (22)

For the particular solution, we choose an ansatz

~xp = bδ(η) ~ψ1(~xin), as it is usually done in the
Zel’dovich approximation [23]. The labeling of bδ(η) as
such will become clear by the end of this section. The
equation to be solved is,

(b′′δ +Hb′δ)
~ψ1(~xin) = −∇φinN . (23)

The right-hand side of the last equation is independent
of time, which implies that b′′δ + Hb′δ = constant. The
actual value of the constant is arbitrary, since it can be

absorbed in ~ψ1(~xin). Thus, bδ ∝ η2. (Adding a constant
to this solution would not modify the subsequents steps of
our paper and is only linked to the choice of initial time.)
If we equate the factors that depend on the coordinates,
~ψ1(~xin) ∝ −∇φinN .
To give the complete solution for the position of the

particles we separate the constant vector ~B2 in two com-

ponents, ~B2 = ~xin + ~δxin(~xin), where ~xin are the posi-
tions of the particles if they started out distributed uni-
formly in a mesh. We discard the decaying term and give
the position of the particles as a function of time in the
linear regime,

~xa = ~xin + ~δxin(~xin) + bδ(η)~ψ1(~xin). (24)

To find the value of ~δxin(~xin), we resort to Poisson Eqn.
(16). We can evolve ρ(~x, η) by means of a transformation
of coordinates from the initial particle density:

ρ(~x, η) =
ρ̄

a3‖ ∂~x
∂~xin

‖
(25)

with ‖ ∂~x
∂~xin

‖ the Jacobian of the transformation and ρ̄
is the initial uniform background density. The transfor-

mation of coordinates is given by Eqn. (24), where ~δx,

bδ(η) and ~ψ1 are unknowns. Since the perturbations are
initially small, the density evolves as

ρ =
ρ̄

a3
(1−∇ · ~δxin − bδ(η)∇ · ~ψ1). (26)

We can define contributions to the density perturbation,
δ, as related to the displacement fields by

δin = −∇ · ~δxin, (27)

δZ = −bδ(η)∇ · ~ψ1. (28)

The physical meaning of bδ(η) now becomes clear, as it
is identified with the growth function of density pertur-
bations. Indeed, as we expect in the matter dominated
regime, we obtained that bδ(η) ∝ a(η) ∝ η2.
To determine δin, we replace Eqns. (26), (27) and (28)

in Eqn. (16) to obtain:

∇2φN − 3H2φN =
3

2
H2(3φN + δin + δZ). (29)

At the initial time the first term in the left-hand side
cancels with the rightmost term in the right-hand side
of the previous equation. We can solve for δin from the
remaining terms,

δin = −∇ · ~δxin = −5φinN . (30)

In terms of their Fourier components, while δink ∝
φinN,k, the Zel’dovich component dependency is δZ ∝

k2H−2φinN,k Well inside the horizon, in the limit kη ≫ 1,

δin becomes negligible as compared to δZ , the Newtonian
density perturbation. When kη ≪ 1 then |δink | ≫ |δZk |
and as anticipated we cannot neglect this term.

Finally, we can obtain ~δxin by inverting Eqn. (27) in
Fourier space,

~δxin = −

∫

d3k

(2π)3
i~k

k2
δink e

i~k·~xin . (31)

In summary, to perform a cosmological simulation we
need to evolve the position and velocities of particles us-
ing Eqns. (17) and compute the potential using Eqns.
(7) and (15). At the initial time the cold dark matter
particles need to be displaced by an amount given in
Eqn. (31).

IV. COMPARISON TO NEWTONIAN

COSMOLOGICAL SIMULATIONS

Now that we have a consistent set of equations to solve
we can compare them to those used in cosmological sim-
ulations to determine whether these simulations can be
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used to study very long wavelength modes or if they re-
quire some change.
Cosmological Newtonian simulations solve for the po-

tential by means of the Poisson equation

∇2φsim = 4πGa2
ρ̄

a3
δsim (32)

and move particles according to Newton’s law expressed
in comoving coordinates,

d2~xa
dη2

+H
d~xa
dη

= −∇φsim. (33)

This evolution equation is identical to the geodesic equa-
tion (17) if the gravitational potential were computed
correctly (as mentioned before the term ∝ 3φN

′ is negli-
gible for modes both large and small compared to Hub-
ble). Thus if the gravitational potential is correct the
particle positions are updated properly.
It is important to determine if there are corrections

to the gravitational potential that become important on
large scales. The density that sources the Poisson equa-
tion in simulations is directly computed by counting par-
ticles in cells,

ρsim(~x, η) = ρ̄δsim = a−3
∑

a

maδD(~x− ~xa(η)). (34)

Even if the particle positions had been computed cor-
rectly, this “simulation density” differs from the density
in the conformal Newtonian gauge by a factor (1+3φN ).
Finally in standard cosmological simulation the parti-

cles are initially displaced making use of the Zel’dovich
approximation, which in the Newtonian case takes the
form,

~xa = ~xin + bδ(η)~ψ1(~xin). (35)

This differs from the displacements we calculated in the

previous section, it is missing the ~δxin.
Thus at first sight it appears that the gravitational po-

tential is not computed using the correct equation, that
the density contrast in missing a term and that the ini-
tial displacement of the particles is incorrect. We will
now show that in fact all these different “missing terms”
cancel each other so that the gravitational potential is
computed correctly. As a result particle positions are
also updated correctly.
Let us look at the situation more carefully. For com-

pleteness let us also include a cosmological constant and
start by restricting ourselves to the linear regime as in
any event the effects we are considering are only relevant
on very large scales. The relativistic Poisson equation
reads:

∇2φN − 3H(φ′N +HφN ) = (36)

3

2
H2(1 + ω)[3(φN − ζin) + δZ ]

where we have introduced the equation of state parame-

ter ω = p̄/ρ̄ and we have written−∇· ~δxin = δin ≡ −3ζin.

Notice that 3/2H2(1+ω) = 4πGρ̄dm with ρ̄dm the mean
density for the matter. The terms in brackets on the
right hand side correspond to the density contrast cal-
culated in the Newtonian simulations (δZ) and the two
missing corrections, the one proportional to φN and the
one coming from the missing initial displacements (ζin).
It is useful to consider the comoving curvature ζ de-

fined as:

ζ =
2

3

H−1φ′N + φN
1 + ω

+ φN . (37)

It is well known that this comoving curvature remains
constant in time on large scales. For completeness we
spell out the derivation in the appendix. Note that ζin de-
fined above is nothing other than the initial value for this
variable ζ. In the case of a perfect fluid ζ is constant on
all scales larger than the sound horizon, or k2c2s << H2.
In general what plays the role of c2s is just the typical ve-
locity dispersion that relates the magnitude of the spatial
components of the energy momentum tensor to the den-
sity. For the case at hand is the velocity dispersion of the
dark matter particles induced by the growth of pertur-
bations and thus ζ remains constant all the way to the
non linear scale.
The relativistic corrections to the Newtonian Poisson

equation, ∇2φN = 3/2H2(1 + ω)δZ , are evidenced from
subtracting this expression from Eqn. (36). Notice that
the difference between the relativistic terms in the right
and left hand sides of the Poisson equation is nothing
other than:

3H(φ′N +HφN ) +
9

2
H2(1 + ω)(φN − ζin) = (38)

=
9

2
H2(ζ − ζin).

Thus the additional terms in the relativistic Poisson
equation cancel each other for modes larger than the non-
linear scale. Furthermore, because the non-linear scale is
well inside the horizon once the cancellation begins to
fail the additional terms are very small, of order the ra-
tio of the non-linear scale to the horizon squared. Thus
the gravitational potential in Newtonian simulations co-
incides with the one in the conformal Newtonian gauge
even on very large scales and thus the dark matter par-
ticles are being displaced correctly.
We have showed that Newtonian N-body simulations

calculate the correct gravitational potential and displace
the particles correctly. The coordinates of the particles
however are not the coordinates in the conformal Newto-
nian gauge as they are missing the initial displacement.
Thus the dictionary between conformal Newtonian gauge
variables and numerical simulations is:

φN = φsim, (39)

~vN = ~vsim, (40)

~xN = ~xsim + ~δxin. (41)

Notice that the reason why the scheme worked was that
the “sound horizon” scale, the scale out to which ζ was
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constant in time, was well inside the horizon. This scale
is nothing other than the scale dark matter particles can
move since the time of the Big Bang as a result of the
peculiar velocities they have. Because the dark matter
particles are non-relativistic this distance is well inside
the horizon and the mistakes are negligible. Of course a
simulation based on Newtonian physics could not work
if particles are moving at an appreciable fraction of the
speed of light. In general if there is an additional rela-
tivistic component the Newtonian simulations would not
be computing things properly. The cosmological constant
did not cause any problem because even though it is in
some sense relativistic it is homogeneous so it does not
contribute to the perturbation of the stress tensor. Thus
as long as one is modeling non-relativistic components
or a relativistic component that does not cluster one is
safe using the Newtonian approximation. Such a Newto-
nian approximation would not work for example during
the radiation era where the effective sound speed of the
dominant component of the energy density is very close
to the speed of light.

V. THE COMOVING GAUGE

For completeness we will now show that Eqn. (12) can
be written making apparent gauge transformations be-
tween the comoving and the conformal Newtonian gauge.
In Eqn. (36), the factor ρ̄

a3 δ
Z is the density perturba-

tion in Newtonian simulations. The expression in brack-
ets is the conformal Newtonian gauge density perturba-
tion. Indeed rearranging the terms we have

∇2φN − 3H(φ′N +HφN ) = (42)

4πGa2[
ρ̄

a3
δZ + 3(φN − ζin)ρ(1 + ω)].

As long as ζ is constant, we can recognize in the right-
hand side the gauge transformation for the density per-
turbation between the comoving and the conformal New-
tonian gauge,

δρN = δρC + 3(φN − ζ)ρ(1 + ω). (43)

This is a well known relation [24] and in this context
it implies that the density perturbation that Newtonian
simulations are obtaining is the one in the comoving
gauge.

VI. OBSERVABLE COORDINATES

In an inhomogeneous universe, the observed positions
of the particles in the simulation are modified due to
effects such as the Sachs-Wolfe effect, gravitational lens-
ing and peculiar velocities. The net result is that pho-
tons from a source follow a path that is perturbed with
respect to the light-cone of an observer in a homoge-
neous universe. Consider a comoving observer in an in-
homogeneous universe with a velocity given by uµ =

((1 − ψN )/a, vi/a). The direction of observation is n̂,
defined by (θ, ϕ) in spherical coordinates, but due to the
perturbations to the photon path, the direction towards
the point reached by the photon geodesic is actually ŝ,
corresponding to (θ+δθ, ϕ+δϕ). We now take a particle
with coordinates ~xa(η) (already taking into account the

correction ~δxin) and we want to know where it crosses
the path of the photons going towards the observer.
Our aim in this section is to correct the positions of the

particles in the simulation according to the perturbations
in the light-cone and obtain their “observable” coordi-
nates. A given particle will be observed when it intersects
the light-cone of the observer at a certain η̃. The unper-
turbed photon path in parametrized by r(η) = η0−η and
constant angular coordinates that coincide with θa(η̃),
ϕa(η̃). The intersection will occur when [10, 12]

ra(η̃) = η0 − η̃ + 2

∫ η̃

η0

φNdη, (44)

θa(η̃) = θ + δθ = θ − 2

∫ r(η̃)

0

dχ
r(η̃)− χ

r(η̃)χ

∂φN
∂θ

, (45)

ϕa(η̃) = ϕ+ δϕ = ϕ− 2

∫ r(η̃)

0

dχ
r(η̃)− χ

r(η̃)χ sin2 θa(η̃)

∂φN
∂ϕ

.

(46)
were η0 is the conformal time at the origin and the inte-
grals are taken along the unperturbed light-cone (Born
approximation).
The observed redshift of the particle is also different

from the one that we would measure in a homogeneous
universe. The transformation is given by conservation
of energy, Eqn. (3). This allows us to write the set of
observable coordinates of the particles as

zobs =
a(η0)

a(η̃)
[1 + V (s) − V (0)− φN (s) + φN (0)](47)

−2

∫ r(η̃)

0

dχ
dφN
dη

− 1,

θobs = θa(η̃)− δθ, (48)

ϕobs = ϕa(η̃)− δϕ. (49)

where V indicates the peculiar velocity projected on n̂.
The terms φN (0) and V (0) produced by the gravitational
potential and velocity of the observer contribute to the
monopole and dipole anisotropies making these terms in
practice not useful as cosmological probes.

VII. SUMMARY

We have given a dictionary for how to use the outputs
of numerical simulations run using Newtonian dynamics
to compute the clustering properties of matter even on
scales comparable to the horizon. We have shown that
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as long as there is a large separation between the length
scale at which the comoving curvature ζ starts to evolve
with time and the scale of the horizon, the output of cal-
culations based on Newtonian dynamics can be used even
on very large scales provided one reinterprets the coordi-
nates of the particles. In standard large scale structure
simulations this separation of scales results from the fact
that the non-linear scale is well inside the horizon, but
in general will occur if all species that cluster are non-
relativistic and the density perturbations are small. We
gave formulas to compute the coordinates of particles in
the conformal Newtonian gauge given the outputs of a
simulation and to correct their positions to observable
coordinates from the same outputs.
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Appendix: Conservation of the comoving curvature

Consider a cosmological fluid with energy-momentum
tensor

Tα
β = (p+ ρ)uαuβ + pδαβ (A.1)

and a given equation of state, p(ρ) and speed of sound,

c2s = dp
dρ . The evolution equation for the potential is

given by replacing in Eqn. (10).

φ′′N + 3Hφ′N + (2H′ +H2)φN = 4πGa2δp, (A.2)

where δpδij = −δT i
j are the pressure fluctuations. For

adiabatic perturbations, δp = c2sδρ, then

φ′′N + 3H(1 + c2s)φ
′
N − c2s∇

2φN

+[2H′ + (1 + 3c2s)H
2]φN = 0. (A.3)

In the previous equation, cs/H is the size of the sound
horizon. Consequently, the term of order c2sk

2, when
compared to terms of order ∼ H2 or ∼ c2sH

2, is only rel-
evant when the typical size of the perturbation is smaller
than the sound horizon.

Long wavelength solutions to Eqn. (A.3), character-
ized by kcsη ≪ 1, are easier to address in terms of a
conserved quantity, the comoving curvature, ζ, given by
[22],

ζ =
2

3

H−1φ′N + φN
1 + ω

+ φN . (A.4)

Following [22], to prove that the comoving curvature is
conserved we define define a new variable

u ≡ exp

[

3

2

∫

(1 + c2s)Hdη

]

φN . (A.5)

The evolution equation obtained for u from Eqn. (A.3)
is then,

u′′ − c2s∇
2u−

θ′′

θ
u = 0, (A.6)

where θ ≡ 1
a [

2
3 (1 − H′

H2 )]
−1/2. In the case of long wave-

length perturbations, the solution to the evolution equa-
tion is

u = A1θ +A2θ

∫

dη

θ2
(A.7)

where A1 and A2 are constants. It can be shown that

ζ =
2

3

√

8πG

3
θ2

(u

θ

)′

(A.8)

reduces to the same expression as Eqn. (A.4) and re-
mains constant outside of the sound horizon.
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