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We study the compression of information present in the correlated perturbations to the luminosity
distance in the low-redshift (z < 0.1) supernovae Ia due to peculiar velocities of these supernovae.
We demonstrate that the näıve compression into angular velocity power spectrum does not work
efficiently, due to thickness of the spherical shell over which the supernovae are measured. Instead, we
show that measurements can be compressed into measurements of f2P (k), where f is the logarithmic
rate of growth of linear perturbations and P (k) is their power spectrum. We develop an optimal
quadratic estimator and show that it recovers all information for ΛCDM models for surveys of
N ∼ 10, 000 or more supernovae. We explicitly demonstrate robustness with respect to the assumed
fiducial model and the number of power spectrum bins. Using mock catalogues of SNe Ia we estimate
that future low redshift surveys will be able to probe σ8 to 6% accuracy with 10, 000 SNe Ia.

PACS numbers: 98.80.-k, 98.80.Es, 98.80.Bp

I. INTRODUCTION

Since the earliest studies of supernovae, it has been
suggested that type Ia (SNe Ia) might be used as stan-
dard candles for cosmological measurements. In the sub-
sequent years many studies using SNe Ia revealed that
the expansion of the universe is accelerating [1, 2]. From
SNe Ia observational data one could measure cosmolog-
ical parameters describing the homogeneous expansion
of the universe through measurements of the luminosity
distance such as matter and dark energy densities and
equation of state parameters [3–9].

But density inhomogeneities cause additional scatter
to SNe Hubble flow [10–22]. In the recent years it has
become apparent that the correlations between these pe-
culiar velocities of the supernovae are significant at low
redshifts (z < 0.1) [23, 24] and thus present an opportu-
nity to measure cosmological parameters that affect the
growth of perturbations in the Universe such as ampli-
tude and shape of the matter power spectrum.

But extracting any additional information from the
correlations induced by peculiar-velocities comes at an
expense of computing Nsn ×Nsn correlation matrix and
its inverse on every likelihood evaluation. To complicate
matters even further, each matrix element consists of an
oscillatory integrals thus adding to the cost of the over-
all computing time. In this paper we asses whether a
data compression method can be found that will provide
both efficiency and simplified form of the cosmological
information carried by the peculiar velocity correlation
matrix. This will also provide a physical insight into
what is that the peculiar velocities of supernovae Ia are
measuring.

Through the paper we assume the correlated part of
peculiar velocities is described by the linear theory and
that small scale virial velocities can be described by sin-
gle parameter describing the velocity dispersion. While
this is probably not a good approximation for realistic
surveys of thousands of supernovae (after all, supernovae
don’t measure velocities at random positions and the real

Universe is not linear), it nevertheless provides a good
simple framework for studying an efficient information
compression.

The paper is structured as follows. In Section II we
discuss the background theory required to describe corre-
lations in the luminosity distances to nearby supernovae
sourced by correlated large-scale velocities. In Section III
we discuss the angular power spectrum of the projected
velocities as a candidate for data compression. In Section
IV we discuss the power spectrum multiplied by a factor
describing the growth of fluctuations at mean redshift as
our proposed method for data compression. We conclude
in Section V.

Throughout the paper we assume that unless noted
otherwise, the variables have their usual meaning.

II. CORRELATIONS OF PECULIAR
VELOCITIES

The luminosity distance dL to a distant SN at redshift
z is defined by

F =
L

4πd2
L

, (1)

where F is the measured flux and L the intrinsic lumi-
nosity of the supernovae. In the Friedmann-Robertson-
Walker (FRW) metric, the luminosity distance is related
to the comoving distance to an object at redshift z as

dL(z) = (1+z)


1√
k

sin(χ(z)
√
k) k > 0

χ(z) k = 0
1√
−k sinh(χ(z)

√
−k) k < 0

, (2)

where k is the geometrical curvature of the universe and
we have introduced χ(z) as the comoving distance to a
distant object at z as

χ(z) =

∫ z

0

dz′

H(z′)
. (3)
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Astronomers prefer the flux relation (Eq. (1)) rewritten
in terms of the magnitudes as

m−M = 5 log10

(
dL

Mpc

)
+ 25, (4)

where m and M stand for the apparent and absolute
magnitude respectively.

The perturbed FRW metric leads to the effect of pecu-
liar velocities and those in turn lead to the perturbations
in luminosity distance given by [23–25]

δdL
dL

=
dmeL − dthL

dthL
= x̂ ·

(
v − (1 + z)2

H(z)dthL
(v − vo)

)
,

(5)

where dmeL and dthL stand for measured luminosity dis-
tance and theoretical prediction for unperturbed space-
time, given by Eq. (2). Velocities v and vo are pecu-
liar velocities of the source and the observer respectively.
Projection of peculiar velocities along the line of sight (x̂)
is the only component we can measure. Redshift z on the
right-hand side of the equation stands for the observed
redshift.

Since the peculiar velocities result from some ini-
tial Gaussian matter perturbations, the peculiar veloc-
ity measurements are drawn from a distribution with
zero mean and nonzero variance. The later can be writ-
ten in the form of correlation function as ξ(x1,x2) =
〈(v(x1) · x̂1)(v(x2) · x̂2)∗〉 for two SN at comoving po-
sition x1,2. The correlation function of projected pecu-
liar velocities has been computed in a number of studies
[24, 26]. The result, assuming linear perturbation theory,
can be written as

ξ(x1,x2) = sin θ1 sin θ2ξ⊥(x, z1, z2)+

+ cos θ1 cos θ2ξ‖(x, z1, z2), (6)

where x12 ≡ x1 − x2, x = |x12|, cos θ1 ≡ x̂1 · x̂12 and
cos θ2 ≡ x̂2 · x̂12. The projections of the correlation func-
tion are given by [24, 26]

ξ‖,⊥ = D̄′(z1)D̄′(z2)

∫ ∞
0

dk

2π2
P (k)K‖,⊥(kx), (7)

where D̄(z) is the normalized growth function (D̄(z) =
D(z)/D(z = 0)) and derivatives are with respect to con-
formal time (′ = d/dη, a(t)dη = cdt). P (k) is the mat-
ter power spectrum and integration kernels are given by

K‖(x) = j0(x)− 2j1(x)
x and K⊥(x) = j1(x)

x .
Correlations in the peculiar velocity lead to correla-

tions in the luminosity distance fluctuations which can
be written as [24]

Cv(i, j) =

(
1− (1 + z)2

H(z)dL

)
i

(
1− (1 + z)2

H(z)dL

)
j

ξ(xi,xj).

(8)

The total correlation matrix is a sum of peculiar velocity
correlation matrix and uncorrelated scatter σ2

i and can
be written as [24]

Cij = Cv(i, j) + δijσ
2
i . (9)

The diagonal parts of the matrix given by [24]

σ2
i =

(
ln 10

5

)2

(σ2
m + σ2

mi) +

(
1− (1 + z)2

H(z)dL

)2

i

σ2
v ,

(10)

where σmi stands for observational errors on apparent
magnitudes, which are a property of the dataset and
vary from supernova to supernova. The remaining two
parameters are σm, which is intrinsic magnitude scatter
describing deviations of supernova luminosities from the
perfect standard candles, while σv is the small scale ve-
locity dispersion due to uncorrelated small scale peculiar
velocities.

III. PROJECTED VELOCITY ANGULAR
POWER SPECTRUM

Measurements of the SNe are most commonly trans-
formed into luminosity distances or, in case of pecu-
liar velocities, into luminosity distance fluctuations. But
there is no apparent reason why not to work with the
projected peculiar velocity field instead [22]. Since we
are interested in the velocity perturbations along the line
of sight, the projected peculiar velocity field seems more
natural as well. Those velocity perturbations can be un-
derstood as perturbations relative to the expansion of the
universe in physical coordinates, or as perturbations with
respect to the comoving grid.

Since the peculiar velocity field is a scalar function
on a sphere, it is natural to consider its angular power
spectrum. Using expansion over spherical harmonics we
get

v(z) · r̂z =

∞∑
`=0

+∑̀
m=−`

a`m(z)Y`m(θ, φ), (11)

where we kept the dependence of the expansion on red-
shift z, i.e. we consider infinitely thin spherical shells
at redshift z. Y`m are spherical harmonic functions that
satisfy orthonormal relation∫

dΩY`m(θ, φ)Y ∗`′m′(θ, φ) = δ``′δmm′ . (12)

Using the assumption of Gaussian initial perturbations
we can relate angular auto and cross power spectra to
the expansion coefficients (a`m) as

〈a`m(z)a∗`′m′(z′)〉 = C`(z, z
′)δ``′δmm′ . (13)
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FIG. 1. The luminosity distance fluctutations angular power
spectrum plotted as `(` + 1)D`/2π vs ` for three different
redshifts: z = 0.05 (solid), z = 0.1 (dashed) and z = 0.01
(dot-dashed). The angular power spectrum has dimensionless
units.

In the linear theory, these are given by

C`(z, z
′) = D̄′(z)D̄′(z′)

2

π
·

·
∫ ∞

0

dkP (k)

(
∂j`(kχ)

χ∂k

)(
∂j`(kχ

′)

χ′∂k

)
,

(14)

for two SNe at the redshifts z and z′, where D̄ is the
growth factor, j` are spherical Bessel functions, χ(′) =
χ(z(′)) and P (k) matter power spectrum. The detailed
derivation can be found in the Appendix.

The angular power spectrum of luminosity distance
fluctutations are exactly the same as in Eq. (14) save
for the prefactors and can be written as

D`(z, z
′) =

(
1− (1 + z)2

H(z)dL(z)

)
·

·
(

1− (1 + z′)2

H(z′)dL(z′)

)
C`(z, z

′). (15)

Both angular power spectra have dimensionless units.
This is due to the fact that velocity in all our calculations
is in the units of the speed of light.

Figure (1) shows the auto-power spectrum D`(z, z) for
different values of redshift. As expected and also shown
in the literature [22], numerical simulations are in good
agreement with above result (Eq. (14)) only for small `
(` < 100), where linear regime is still valid.

Although the formalism is appealing, is the angular
power spectrum actually a useful compression method
for the low-redshift supernovae? If we want to describe
all peculiar velocities of supernovae at low redshifts using
a single power spectrum, the slices at different redshifts
would essentially need to be describing the same velocity
field. In order to check this assumption, we look at the

FIG. 2. The cross correlation coefficient r(z) (Eq. 16) with
respect to reference redshift zm = 0.016528. The coefficient is
plotted for four low multipoles: ` = 2 (solid), ` = 3 (dashed),
` = 4 (dot-dashed) and ` = 5 (dotted).

cross-correlation coefficient given by

r(z, z′) =
C2
` (z, z′)

C`(z, z)C`(z′, z′)
. (16)

In Figure Figure (2) we plot r(z, z′) while fixing z′ =
0.016, a median redshift of a typical low-z SNe dataset
used in [17]. We see that the ’correlation length’ of ve-
locities in redshift is only about δz = 0.01 and hence to
describe all correlations between z = 0.0 and z = 0.1,
we would need about 10 angular power spectra, together
with a large covariance matrix that will describe not only
the errors and their covariances at one redshift, but also
those at neighbouring redshifts. This makes this ap-
proach clearly suboptimal and hence we turn the direct
estimation of the three-dimensional power spectrum.

IV. EFFECTIVE POWER SPECTRUM
MEASUREMENTS

In any data compression technique, we try to put con-
straints on quantities that are as close to the data as
possible and as independent of the underlying theoreti-
cal assumptions, while at the same time still capturing
most of the information in the full dataset. Although
the covariance matrix of perturbations to the luminosity
distance depends on a number of cosmological dependent
pre-factors, in addition to the underlying power spectrum
P (k), we show that, in the limit of supernovae being
at sufficiently low redshifts, the data effectively measure
P (k)f2, where f is the logarithmic growth rate, regard-
less of which fiducial cosmology one adopts.

Since the P (k) is a continuous function of the wave
vector k we will approximate it with a stepwise function
such that P (k) = const. for kα ≤ k < kα+1. With this
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in mind we can rewrite the parallel in perpendicular pro-
jections of correlation function of two SNe (i and j) as

ξ‖([kα, kα+1)) =D̄′(zi)D̄
′(zj)

P (kα)

2π2x

∫ kα+1x

kαx

K‖(y) dy

=D̄′(zi)D̄
′(zj)

P (kα)

2π2x
·

· (j1(kα+1x)− j1(kαx)) , (17)

ξ⊥([kα, kα+1)) =D̄′(zi)D̄
′(zj)

P (kα)

2π2x

∫ kα+1x

kαx

K⊥(y) dy

= D̄′(zi)D̄
′(zj)

P (kα)

4π2x
·

· (Si(kα+1x)− Si(kαx))− 2ξ‖,

(18)

where x = |xij |, xij = xi−xj and xi = χ(zi)x̂i (Eq. (3)),
D̄(z) is normalized growth function and j1 are spherical
Bessel functions of the first kind. We have also defined
integral sinus as Si(x) =

∫ x
0

sin z
z dz. Eqs. (17) and (18)

are valid only when x 6= 0. Because x is the norm of
the difference of two vectors to SN we will surely have
examples where x = 0 (peculiar velocity auto-correlation
functions). When taking x → 0 the above expressions
simplify to

ξ‖,⊥([k1, k2)) = D̄′(zi)D̄
′(zj)

P (k1)

6π2
(k2 − k1) . (19)

Parameters we want to constrain from the SNe Ia data
are values of matter power spectrum Pα, and two uncor-
related errors σm and σv and so Np = Nb + 2. We have
assumed that the absolute magnitude offset will be for all
our purposes completely constrained from all supernovae
data (including higher-redshift ones).

A. Mock catalogues

To test our method we created several mock catalogues
of SNe redshifts and their positions on the sky. For
those catalogues we calculated their synthetic observa-
tional data in the form of luminosity distance fluctua-
tions. We chose to model are synthetic data with fidu-
cial cosmological parameters (Ωm = 0.24, h = 0.7, w =
−1,ΩΛ = 1− Ωm). We computed the covariance matrix
give by Eq. (9) using reference linear matter power spec-
trum P ref (k) computed using CAMB[27]. We computed
eigenvalues λi and eigenvectors vλi of covariance matrix
and than, for each λi, draw a random number from a
Gaussian distribution with σ =

√
λi and add this num-

ber to the initially zero data vector in the direction of
the vλi . This procedure gave us at the end a data vec-
tor of luminosity distance fluctuations that was a linear
combination of every eigenvector.

Uncorrelated errors of apparent magnitudes were ran-
domly chosen from a uniform distribution between 0.05

and 0.2 mag. Moreover we assumed that any errors in the
redshift are negligible. Uncorrelated magnitude and pe-
culiar velocity scatter had fixed values of σm = 0.1 mag
and σv = 300 km/s.

B. Optimal quadratic estimator

Because of the simplified form of our correlation matrix
we chose the Newton iteration method for zero-finding of
the derivative of probability function L, given by [26]

lnL = −∆TC−1∆

2
− 1

2
ln (detC)−Nsn

2
ln 2π, (20)

where is ∆ the data vector and C the correlation ma-
trix given by Eq. (9). Our model depends on ap, p =
1, . . . , Np parameters and is thus multidimensional. The
correction to the parameters ap for Newton’s method is
then given by [26, 28]

δap = −
∑
p′

[
∂2 lnL(a)

∂ap∂ap′

]−1
∂ lnL(a)

∂ap′
. (21)

The common simplification is to replace the second
derivative of lnL with its ensemble average [26, 28]

Fpp′ ≡ −〈
∂2 lnL(a)

∂ap∂ap′
〉

=
1

2
Tr
(
C−1 C,pC

−1 C,p′
)
, (22)

known as the Fisher matrix. When taking the ensemble
average we assume that the underlying theory is correct
and that the following relation is true 〈∆ ∆T 〉 = C.

The correction to the parameter ap can then be written
as [26, 28]

δap =
1

2

∑
p′

(F−1)pp′ Tr
[(

∆ ∆T −C
) (

C−1 C,p′ C
−1
)]
.

(23)

This method is called the optimal quadratic estimator
(OQE) and is an iterative method. Although the OQE
uses the Fisher matrix instead of the matrix of second
derivatives, it converges to the same maximum. This is
true because both matrices (F and the matrix of second
derivatives) are invertible and for both we are in maxi-
mum when δap = 0. The only approximation comes in
using the Fisher matrix to approximate the errors.

Since our parameters (Pα, σm, σv) have physical mean-
ing only when they are positive, we have checked this
condition on every iteration step. Were they negative
their values were put to zero.

C. Application to synthetic data

Equation Eq. (7) tells that aside from the matter power
spectrum, the peculiar velocity correlation function de-
pends on the cosmology through the linear growth factor
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as well. Because we are interested in low-z SNe (z < 0.1),
where the peculiar velocity effect is still large, we are in
the regime where the Hubble rate is almost constant, and
equal the Hubble constant. In the limit of low-z we can
rewrite luminosity distances for flat universe as

dL ≈ (1 + z)
cz

H0
, H(t) ≈ H0. (24)

With this in mind the factors in the luminosity distance
correlation matrix (Eq. (8)) become independent of cos-
mological parameters. A little more care must be ex-
ercised with the derivative of the growth factor. If we
expand it into a more suitable form

D̄′(z) =
dD̄(z)

dη
=

1

c
f(a) aH(a)

D(z)

D(z = 0)

=
1

c
f(a)

1

1 + z
H(a) D̄(z), (25)

where we have defined logarithmic growth rate f as

f ≡ a

D(a)

dD(a)

da
=
d lnD

d ln a
. (26)

Therefore, in this limit we can approximate

D̄′(z)D̄′(z′)P (k)

=
H2

0

(1 + z)(1 + z′)
f(z)f(z′)(D̄(z)D̄(z′)P (k))

≈ H2
0

(1 + z)(1 + z′)

(
f2(z̄)P (k, z̄)

)
(27)

This illustrates that in the limit of small redshifts, the
relevant quantity that our method is sensitive to is a
non-dimensional growth factor multiplying matter power
spectrum at some effective redshift (which we show to
be the mean redshift). Our final result for the correla-
tion matrix is thus algebraic combination of Eqs. (8), (9),
(17), (18), (19) and (27).

First, we have tested our method assuming a future
survey of 10,000 supernovae Ia. We plot the results,
together with the theoretical model used to create the
dataset in Figure (3). This illustrates that the method
basically works. We will proceed with a series of tests.

First, we have tested our method using synthetic data
with different number of SN (1000,5000,10000) and differ-
ent number of bins Nb on which we estimated the matter
power spectrum. We chose the bin positions by trial and
error, so that the edge bin positions had very large errors
and hence contained very little information. We therefore
converged on the following set-up: one bin on small scales
1−10h/Mpc, two on large scales 10−4−10−3h/Mpc and
10−3− 10−2h/Mpc. The rest were uniformly distributed
in the logarithmic scale over the interval 0.01− 1h/Mpc.
We always discard edge bins which contain essentially no
information.

Our method relies on the overall signal-to-noise to be
high enough for the central theorem limit making the

10−3 10−2 10−1 100

k [h/Mpc]

101

102

103

104

f
(z

)2 P
(k
,z

)
[M

p
c3 /

h
3 ]

results (f̄ 2P (k, z))α

reference f (z = z̄)2P ref(k, z = z̄)

FIG. 3. Shows the result of the new method in the form
(f2P (k, z))α (datapoints with errors) and the underlying
model that went into creation of synthetic dataset (solid line).

power spectrum constraints have Gaussian errors. To
test this, we have performed a simple test. We analysed
the same synthetic data two ways. First we measured
the effective power spectrum from the data and then, for
a standard ΛCDM cosmology measured the value of σ8,
while keeping all the other cosmological parameters fixed
at their fiducial value. We then repeated the same, but
this time skipped the intermediate test and measured σ8

directly from the synthetic data. In the limit of infinite
number of supernovae, the two should match perfectly,
but we do expect deviations to appear for a small finite
number of datapoints.

Results are shown in the Figure (4), where we plot the
probability distributions for σ8 for different number of
SNe. On the vertical line we plotted the relative proba-
bility L. As expected, with increasing number of SNe the
distributions become more alike. If we fitted Gaussian
distributions we found that the variances of the distri-
butions for Nsn = 5000 differ by roughly 40%, while the
variances for Nsn = 10000 differ only by a few percent
(∼ 4%). We stress that the point of this exercise is to
see how many supernovae are required for reaching the
Gaussian limit and that in general one should marginalise
over other parameters. We also note that for any given
realization, the maximum likelihood is expected to be
distributed around the fiducial value according to the
measurement error.

Using the same method we checked how many bins are
required. We plot this in the Figure (5). The distribu-
tions vary in shape a little when changing number of bins
as well as their positions in the k-space. But as long as
we fix the number of bins around Nb ∼ 10 the variances
of the distributions vary for only a few percent.

We now turn to the dependence on the assumption of
the fiducial cosmological model. To this end we generate
synthetic data with cosmology A (Ωm = 0.24, w = −1)
and reconstruct the matter power spectrum Pα with the
same cosmology. Then we reconstruct the Pα with differ-
ent cosmology B (B 6= A) and compare the results with
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FIG. 4. Show the probability distribution of cosmological pa-
rameter σ8 for data Pα with respect to the reference power
spectrum. It shows lines representing different number of
SNe at the constant number of bins Nb = 9. We com-
pare new method (red) with the brute-force calculation us-
ing Eq. (20) without approximations (black). Different line-
styles represent different number of SNe: Nsn = 1000 (solid),
Nsn = 5000 (dashed) and Nsn = 10000 (dotted). Pα stands
for Pα = (f2(z̄)P (k, z̄))α. The normalization L0 is chosen
such that L/L0 peaks at around 1.

FIG. 5. Shows the probability distribution of cosmological
parameter σ8 for data Pα with respect to the reference power
spectrum. Different line colours represent different number of
bins at the constant number of SNe Nsn = 10000: Nb = 9
(red), Nb = 5 (blue) and Nb = 12 (green). Black colour
represents the brute-force calculation without using any ap-
proximations. Pα stands for Pα = (f2(z̄)P (k, z̄))α. The nor-
malization L0 is chosen such that L/L0 peaks at around 1.

respect to the error on the Pα bins reconstructed with A.
Figure 6 shows that the results vary with the input cos-

mology only in the order of a few percent of the error and
are thus negligible, when we vary parameter Ωm and w
within their present error-bars. Which shows that even if
we use the slightly wrong fiducial cosmology in the power
spectrum recovery procedure, this does not affect the re-
sult significantly and that was the purpose of this new
method. In this way the most cosmological information
is encoded in the result (((f D)2P )α).

The last cross-check that we perform is to check if re-
sult can indeed be approximated as if all supernovae were

at a mean redshift. The matter power spectrum and f
indeed vary with the redshift. In order to proceed, we di-
vide the result of our method with average matter power
spectrum for each bin (P refavg (z = z̄)), where z̄ is the mean
redshift of the input SNe synthetic data. If the quantity
P refavg (z = z̄) is a good estimator of what we are measur-

ing we should get a constant line at the value of f2. This
is shown on figure (7), where we used 9 bins (Nb = 9)
and 10 realizations with Nsn = 10, 000 SNe. We see that
indeed the right f to use is the one evaluated at the mean
redshift f = f(z = z̄).

Figure (4) shows that future surveys of several thou-
sand SNe Ia will be able to estimate σ8 to the accuracy
of 6% using 10, 000 SNe Ia.

Finally, we have investigated to what redshift we can
push our method, by creating mock catalogs with increas-
ing maximum redshfit. The approximations employed in
this work clearly start to break down at z=0.2 and there-
fore the data need to be split into several redshift bins if
working over z = 0.1.

V. CONCLUSIONS

To sum up, we presented a new data compression
method for cosmological extraction of data from the low-
z SNe. We have shown that these supernovae effectively
measure P (k, z)f(z)2 at the mean redshift of the super-
novae survey and that in the limit of large number of
supernova N ∼ 10, 000, the method is essentially op-
timal and unbiased. We have further shown that the
correlations of supernovae velocities are sourced by per-
turbations on scales with wave-vectors ∼ 10−2Mpc/h to
∼ 0.5Mpc/h as these scales are the most constrained.

Using mock catalogues we have shown that accuracy
of 6% in σ8 can be obtained using 10, 000 SNe Ia with
the data compression method presented in this paper.
Comparing this results with the ones presented in [22]
where similar compression method using velocity angu-
lar power spectrum was used, roughly the same accuracy
can be achieved with less data. We would also like to
stress that using velocity angular power spectrum should
be excercised with caution, since C`’s at different red-
shift bins are not correlated as was shown in section III.
Moreover, the data compression method presented in this
paper does not carry any new information, it just shows
that all information is represented by f2(z̄)P (k, z̄).

These basic conclusions are unlikely to change with
the real data. However, at the limit of this number of su-
pernovae, one should worry about potential systematics
and biases. Two of those are the most important. First,
the actual perturbations sourcing supernovae are not in
the completely linear regime any more and second, su-
pernovae don’t trace velocity at random positions in the
Universe, but instead trace it at position of rare density
peaks in the primordial field, where galaxies eventually
form. Corrections due to these effects can only be as-
sessed by running N -body simulations. This exceeds to
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FIG. 6. Shows the difference of the Pα bins at different cosmologies (A and B) with respect to the error on the result
reconstructed with A. On the upper left plot we change Ωm while keeping w constant (Ωm = 0.27 - full line, Ωm = 0.21 -
dashed; cosmology A had Ωm = 0.24). On the lower left plot we change w while keeping Ωm constant (w = −1.1 - full line,
w = −0.9 - dashed; cosmology A had w = −1.0). The right-hand side plots are the same as left, but we have additionally used
Ωk = 0.01 in the assumed model.

10−3 10−2 10−1 100

k [h/Mpc]

0.0

0.1

0.2

0.3

0.4

0.5

(f̄
2 P

(k
,z

))
α
/P

re
f

a
v
g
(k
,z

=
z̄)

results
f (z = 0)2

f (z = z̄)2

f̄ 2

FIG. 7. Shows the results of the new data compression
method in the form (f̄2P (k, z))α/P

ref
avg (z = z̄) on the kα bins.

Two dashed constant lines represent values of f evaluated at
two different redshifts (z = 0 - green and z = z̄ - blue; where
z̄ stands for the mean redshift of the synthetic SNe data).
The mean of the results is shown as a full red line with 1σ
errors (gray shaded region). The results are consistent with
the latter (f = f(z = z̄)). We used the OQE with Nb = 9
bins and 10 realizations with Nsn = 10, 000 SNe.

scope of this paper.

Recent SNe data contain of the order of a couple hun-

dred low-redshift supernovae and so this method remains
inapplicable. Unfortunately, the 10, 000 low-redshift SNe
will not be available for the foreseeable future. The LSST
survey predicts ∼ 100, 000 SNe per year with redshift
z < 1.2. Of this ∼ 1400 SNe per year with z < 0.1. How-
ever, there is no planned spectroscopic followup to these
measurements. The LSST photometric redshift errors are
predicted to be around 0.02(1 + z). We examined if in-
formation on peculiar velocities could be extracted with
such large redshift errors by approximating them with
an extra velocity scatter of 6000km/s, but the results are
not encouraging. Photometric errors of course have an
additional issue of being highly non-Gaussian.

If one could, however, measure 10,000 supernova Ia at
low redshift, it might results in some interesting science.
The auto-power spectrum of the population of galaxies
in which supernova reside would measure the value of
P (k)b2, where b is the galaxy bias, while the redshift-
space distortions of the same sample would measure β =
f/b. Combined with peculiar velocities measurements
discussed here, one would get an over-constrained system
and if analysis was done on the same volume, the sample
variance would cancel out. The quantity

SG =
1

β2

Pg
Psn

, (28)
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would therefore have a unity value in Einstein gravity and
deviation from unity would indicate either new physics or
systematics. Note that in using several tracers over the
same field, the sample variance would cancel and thus
provide a much more stringent result than one might
naively guess. Similar method using weak gravitational
lensing was recently proposed ([29]).
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APPENDIX

When computing the angular power spectrum we get

〈a`ma∗`′m′〉 = D̄′(z1)D̄′(z2)

∫
k2dk

(2π)3
P (k)

∫
dΩk

1

k4
·

·
∫
dΩ(x̂1)Y ∗`m(x̂1)eik·x1k · x̂1·

·
∫
dΩ(x̂2)Y`′m′(x̂2)e−ik·x2k · x̂2, (A1)

where a`m stand for the expansion coefficients, D̄(z) is
normalized linear growth factor and derivatives are with
respect to conformal time (a(t)dη = cdt). In equation
(A1) there are two integrals of the form

I`m =

∫
dΩ(x̂)Y ∗`m(x̂)eik·xk · x̂, (A2)

where we have dropped the SN label in the subscript
(1 or 2). We notice that the integrals in Eq. (A1)
are complex conjugates, so we only need to calcu-
late one. If we choose the coordinate system such
that k = k (sin θk cosφk, sin θk sinφk, cos θk) and x =
x (sin θ cosφ, sin θ sinφ, cos θ) we can rewrite the above
integral into

I`m =

∫
dΩY ∗`m(θ, φ)eikx cos γk cos γ, (A3)

where k = |k|, x = |x| and γ the angle between k in x.
Also the following identity is true

k

ix

∂

∂k
eikx cos γ = eikx cos γk cos γ. (A4)

Now we are left with the integral of the exponent func-
tion over the spherical harmonics. With the use of the
following mathematical identities [30]

eikr cos γ =

∞∑
n=0

anjn(kx)Pn(cos γ), (A5)

where an = in(2n+ 1), jn are spherical Bessel functions
and Pn Legendre polynomials given by

Pn(cos γ) =
4π

2n+ 1

+n∑
p=−n

Ynp(θ, φ)Y ∗np(θk, φk),

(A6)

where Ynp are spherical harmonics, we can rewrite
Eq. (A3) into

I`m =
k

ix

∂

∂k

∞∑
n=0

an
4π

2n+ 1
jn(kx)·

·
+n∑
p=−n

Ynp ∗ (θk, φk)

∫
dΩY ∗`m(θ, φ)Ynp(θ, φ),

(A7)

where the only integral left is the orthonormal relation
of spherical harmonics∫

dΩY ∗`m(θ, φ)Ynp(θ, φ) = δ`nδmp, (A8)

where δ’s on the right-hand side are Kronecker delta’s.
Using the above identity we can evaluate both sums in
the Eq. (A7) and write the result as

I`m =
k

ix

∂

∂k
a`

4π

2`+ 1
j`(kx)Y ∗`m(θk, φk)

= 4π k i`−1 ∂j`(kx)

x∂k
Y ∗`m(θk, φk). (A9)

Comparing the result with the original equation (A1), we
have computed I`m(kx1). With complex conjugation and
variable substitution of this result we can write the sec-
ond integral as I∗`′m′(kx2), where x1,2 = |x1,2|. Rewriting
Eq. (A1) and inserting the integral values we get

〈a`ma∗`′m′〉 =D̄′(z1)D̄′(z2)

∫
k2dk

(2π)3
P (k)·

·
∫
dΩk

1

k4
I`m(kx1)I`′m′(kx2)

=D̄′(z1)D̄′(z2)

∫
2dk

π
P (k)·

· ∂j`(kx1)

x1∂k

∂j`′(kx2)

x2∂k
i`−`

′ ·

·
∫
dΩkY

∗
`m(θk, φk)Y`′m′(θk, φk)

=D̄′(z1)D̄′(z2)

∫
2dk

π
P (k)·

· ∂j`(kx1)

x1∂k

∂j`′(kx2)

x2∂k
i`−`

′
δ``′δmm′ ,

(A10)

which is exactly what we were looking for. The term on
the right-hand side of the equation, that stands in front
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of the δ``′δmm′ is by definition equal to C`. Implying the Kronecker delta δ``′ we can write

C`(z1, z2) =D̄′(z1)D̄′(z2)
2

π
·

·
∫ ∞

0

dkP (k)

(
∂j`(kx1)

x1∂k

)(
∂j`(kx2)

x2∂k

)
.

(A11)
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