
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Exploring singlet deflection of gauge mediation
J. de Blas and A. Delgado

Phys. Rev. D 83, 115011 — Published 10 June 2011
DOI: 10.1103/PhysRevD.83.115011

http://dx.doi.org/10.1103/PhysRevD.83.115011


DC11156

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Exploring singlet deflection of gauge mediation

J. de Blas∗ and A. Delgado†

Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556, USA

Abstract

We embed the Next-to Minimal Supersymmetric Standard Model into gauge medi-
ation of supersymmetry breaking and study the phenomenology of scenarios where
the gauge mediation contributions to soft parameters are deflected by superpotential
interactions of the gauge singlet with the messenger fields and the Higgs doublets.
This kind of models provides a satisfactory solution to the µ-bµ problem of gauge
mediation, compatible with the adequate pattern of electroweak symmetry break-
ing and a realistic spectrum with supersymmetric partners at the TeV scale without
requiring a significant fine tuning.

1 Introduction: The µ-bµ problem in gauge mediation

of supersymmetry breaking

Despite the many virtues that make theories with supersymmetry (SUSY) one of the
most appealing candidates to extend the Standard Model (SM) at high energies, these
are not absent of their own problems. The most obvious one is to explain why nature is
not supersymmetric at low energies, i.e., to provide a satisfactory mechanism of SUSY
breaking. This problem is intimately related with the predictive power of SUSY. Indeed,
even for the minimal supersymmetric extension of the SM, the MSSM, with softly broken
SUSY there are far too many free parameters to be determined experimentally before
we can start making general predictions. One expects that once we know the details of
the sector responsible of SUSY breaking all those parameters can be expressed in term
of (hopefully) only a few (more fundamental) quantities. Models with Gauge Mediation
of Supersymmetry Breaking (GMSB) [1, 2, 3, 4, 5, 6, 7] offer a complete pattern of
soft interactions computable within a renormalizable framework in terms of very few
parameters. In GMSB one assumes that the MSSM fields feel supersymmetry breaking
through the SM gauge interactions of a set of messenger fields, Φ, directly coupled to
a hidden sector where SUSY breaking occurs. The latter is parametrized by a gauge-
singlet chiral auxiliary superfield, X , whose vev 〈X〉 = M + θ2F is assumed to be the
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only source of SUSY breaking. Through superpotential interactions W ⊃ XΦ2, 〈X〉
generates a splitting ∼

√
F between the masses (of order M) of the scalar and fermionic

components of the messenger fields. Those effects are translated into the visible sector
through radiative corrections. In this way, gaugino masses are generated at the one-loop
order while scalar masses squared receive contributions only through two-loop graphs:

Mλa
∼ g2a

16π2

F

M
, m2

φi
∼
∑

a

g4a
256π4

F 2

M2
∼ M2

λ . (1)

Notice that, since gauge interactions are flavor blind, the gauge mediation contributions
to the scalar masses for the sfermions are family universal. Thus, GMSB provides a
scenario where one can easily avoid introducing new sources of flavor violation in the
low-energy theory. Together with its predictive power, this is another of the reasons why
gauge mediation has become one of the most popular mechanisms of SUSY breaking.

Another problem common to all supersymmetric extensions of the SM is the origin
of µ, the Higgs bilinear term in the superpotential, W ⊃ µ (Hu ·Hd) (with “·” being the
SU (2)L product). For phenomenological reasons µ must be of the order of the weak scale
and therefore it should not be present in the limit of exact supersymmetry, for it would
be naturally of the order of the Planck or another large fundamental scale. Thus, µ must
be generated upon SUSY breaking. The problem in GMSB is that the same interactions
generating µ also generate bµ, the corresponding Higgs bilinear soft term in the scalar
potential, V ⊃ bµ (Hu ·Hd) + h.c., in a way such that [8]

bµ
µ

∼ F

M
. (2)

Since F/M & 10 - 100 TeV, in order to generate adequate masses for the supersymmetric
particles, Eq. (2) requires an unnatural fine tuning to reproduce electroweak symmetry
breaking (EWSB).

A simple solution to this naturalness problem can be achieved within the Next-to-
Minimal Supersymmetric Standard Model (NMSSM). A bare µ term is forbidden in the
NMSSM by imposing a discreet Z3 symmetry, broken only at the electroweak scale.1 An
effective µ parameter can then be generated at low energies, by means of the vev of the
new gauge-singlet chiral field, S, with superpotential couplings

W ⊃ λS (Hu ·Hd)−
κ

3
S3. (3)

Thus, the low energy dynamics generate µEff = λ 〈S〉. On the other hand, we have
bEffµ = aλ 〈S〉 + λκ 〈S〉2, with aλ the Higgs-singlet trilinear soft coupling in the scalar
potential: V ⊃ aλS (Hu ·Hd) + h.c.. Since the leading gauge-mediation contributions to
a terms arise at the two-loop level, and then are highly suppressed, bEffµ ∼ λκ 〈S〉2 up to

1The introduction of such a symmetry has been criticized because of the potential cosmological prob-
lems due to the formation of stable domain walls. This kind of discussion, however, goes beyond the
scope of this paper. One possibility for avoiding this problem can be found in [9].
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renormalization group (RG) running effects. Therefore, bEffµ /µEff ∼ κ 〈S〉, avoiding the
hierarchy in (2). Note that a sizable value of the cubic coupling κ is required to avoid
the presence of too light pseudoscalars in the theory, for it explicitly breaks the global
Peccei-Quinn symmetry of the NMSSM.

This minimal scenario with GMSB, however, is known to have problems to attain the
correct EWSB and, at the same time, generate a phenomenologically viable spectrum [10].
In particular, this requires to generate a large enough negative mass squared for the singlet,
m2

S, or large a terms for the superpotential interactions in Eq. (3), aλ and aκ. Neither
of these can be obtained within pure GMSB since S carries no gauge quantum numbers
and, as explained above, a terms are generically small in gauge mediation.

In Ref. [11] it was proposed that if, apart from gauge interactions, SUSY breaking
is communicated also by means of direct superpotential interactions of the messengers
with the NMSSM singlet S, negative values for m2

S and non-negligible contributions to
aλ and aκ can be obtained. The phenomenological implications of such scenario were
explored in [12], finding that EWSB is then compatible with a realistic spectrum. This
scenario thus provides a viable solution to the µ-bµ problem of gauge mediation 2. An
alternative scenario where the singlet, the messengers and the Higgs doublets are coupled
was discussed in [13]. Again, this provides sizable contributions to the soft a terms and
m2

S, but the latter require |κ| ∼ 1 at the messenger scale to obtain a negative value.
Indeed, the characteristic feature in both scenarios is the use of singlet interactions to
generate the required extra contributions to the soft terms for S, that then deviate from
the standard gauge mediation scenario. Hence the name of singlet deflection of gauge
mediation.

As explained in [12], one of the main phenomenological difficulties of the scenario with
messengers coupled only to S is to obtain regions in the parameter space where the lightest
CP-even Higgs boson, H1, passes the direct LEP 2 bound of 114 GeV [14]. This has been
one of the major problems of supersymmetric extensions of the SM, where the Higgs
is naturally very light at tree level and one relies in large contributions from radiative
corrections to lift the leading order value above the LEP 2 bound. In general, attaining
a Higgs with masses above 114 GeV within this model required to assume both a large
SUSY breaking scale F/M and a large messenger scale M in order for top and stop loops
to give such large radiative corrections to mH1 . This lead to a heavy spectrum where, for
instance, stops were required to have masses around 2 TeV. As we will illustrate, one can
lower the mass scale of that model and still find regions in the parameter space where
all experimental restrictions are passed, but such regions are quite small thus requiring a
significant fine tuning.

Motivated by this tension between obtaining a relatively light spectrum and still having
large allowed regions in the parameter space, in this paper we combine the ideas of [12]
and [13] to explore the scenario where deflection of gauge mediation is due to general
interactions involving the singlet and the messenger fields. We show that, despite this
more general scenario introduces several parameters with respect to [12], only one of them

2In this case aλ ∼ λ
16π2

F
M

so, because of the loop factor, we can still avoid (2).
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suffices to greatly increase the size of the allowed regions in the parameter space. Thus,
the fine tuning problem for low SUSY breaking scales is removed. In particular, this
allows a TeV scale spectrum which may be eventually tested by the LHC.

The paper is organized as follows. In the next section we present the model and
provide the soft SUSY breaking terms in the effective theory below the messengers mass
threshold. Section 3 explains the method employed in our phenomenological analysis
of the model. We scan the parameter space searching for regions where EWSB can be
reproduced. The resulting spectrum for those regions is detailed in section 4. Finally we
present our conclusions.

2 Description of the model

We use the following conventions in writing the superpotential couplings and soft a terms
of the Z3-symmetric NMSSM:

W = −yt u
c
3 (Hu · q3) + yb d

c
3 (Hd · q3) + yτ ec3 (Hd · l3) + λ S (Hu ·Hd)−

κ

3
S3, (4)

Lsoft ⊃ at u
c
3
(Hu · q3)−ab d

c
3
(Hd · q3)−aτ ec

3
(Hd · l3)−aλ S (Hu ·Hd)+

aκ
3

S3+h.c., (5)

where, as usual, we have neglected Yukawa couplings other than those for the third SM
family.

Following [12], above the messenger scale, M , we will assume n = 2 pairs of messenger
fields Φi and Φ̄i, i = 1, 2, transforming as a 5 and a 5̄ of SU (5), respectively. These
fields decompose into a triplet and a doublet under SU (3)c and SU (2)L, respectively:
Φ =

(

ΦT ,ΦD
)

and couple to the spurion field, X = M + θ2F , responsible of SUSY
breaking. This is considered only as a background non-dynamical field. Apart from
gauge interactions the messenger fields can also have direct superpotential couplings with
the NMSSM fields, thus altering the gauge mediation pattern of soft SUSY breaking
contributions. We consider the following superpotential couplings for the messenger fields
at M

Wmess = X

n=2
∑

i=1

(

κD
i Φ̄

D
i Φ

D
i + κT

i Φ̄
T
i Φ

T
i

)

+

+ S
(

ξDΦ̄
D
1
ΦD

2
+ ξT Φ̄

T
1
ΦT

2
+ ξHu

Φ̄D
1
Hu + ξHd

(

Hd · ΦD
2

))

.

(6)

The structure of the above superpotential can be explained under the following asump-
tions. As stressed in [12], the structure of the singlet-messenger couplings can by explained
by extending the discrete Z3 symmetry of the NMSSM with Z3[Φ1] = Z3[Φ̄2] = −1/3,
Z3[Φ2] = Z3[Φ̄1] = 1/3 (= Z3[S] = Z3[Hu] = Z3[Hd]), Z3[X ] = 0. Let us note that
the couplings in (6) generate a kinetic Φ̄D

1 -Hd and ΦD
2 -Hu mixing at the one-loop level.

Indeed, we have the following contributions to the off-diagonal elements of the matrix of
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anomalous dimensions γ 3 above the messenger scale:

γHd

Φ̄D

1

= − 1

8π2
(λξHu

+ ξDξHd
) , (7)

γHu

ΦD

2

= − 1

8π2
(λξHd

+ ξDξHu
) . (8)

Thus, even if one of the couplings ξD, ξHu
or ξHd

vanishes at a given scale Q ≥ M , a
non-zero value is generated through renormalization above the messenger scale. This is
not in contradiction with the non-renormalization theorem, since the effect comes from
the wavefunction renormalization. The above Z3 symmetry still allows for the possibility
of including terms like XΦ̄D

2 Hu and X
(

Hd · ΦD
1

)

. Upon SUSY breaking, these introduce
a mixing between the NMSSM Higgs fields and the doublet components of the messenger
fields. Such mixing should be diagonalized in order to obtain the physical Higgses and
messenger doublets, giving rise to additional interactions in the superpotential between
the physical messengers and the NMSSM fields [13]. Note that, because of the mixing
induced by (7) and (8), RG effects above M would also generate the above-mentioned
terms, even if we assume they vanish at a given scale. In this regard, for simplicity
and to avoid the proliferation of new parameters controlling the contributions to soft
terms we will assume there is no such mixing at the messenger scale. Thus, in the above
superpotential Hd,u describe the physical Higgses and these correspond to the NMSSM
ones. Genuine trilinear couplings between the doublet components of the messengers and
the quark/squark or lepton/slepton chiral fields could be also present:

∆Wmess = −ξiju uc
i

(

ΦD
2
· qj
)

+ ξijd dci Φ̄
D
1
qj + ξije eci Φ̄

D
1
lj . (9)

Should they be present, a rather unnatural alignment of such couplings with the Yukawa
ones would be required in order to avoid introducing extra sources of flavor violation.
On the other hand, this kind of interactions can be forbidden within extra dimensional
models by locating in different branes the MSSM quark and leptons, and the hidden and
messenger fields. Here, again for simplicity, we will just assume that the couplings in (9)
vanish at the messenger scale. In this case, for energy scales Q > M the wavefunction
renormalizations (7) and (8) would generate non-zero values only for the couplings with
the third family 4 (ξt ≡ ξ33u , ξb ≡ ξ33d and ξτ ≡ ξ33e ). Note also that in (6) one can
write similar couplings replacing Hd by the left-handed lepton chiral fields li. These can
be avoided by simply requiring R-parity conservation. Finally, just to mention that, as
also stressed in [12], the two messengers are required in order to avoid kinetic mixing
between X and S, which could destabilize the weak scale. The structure of the minimal
superpotential in Eq. (6) is preserved if we include extra messenger fields, as long as they
come in pairs and we enlarge consequently the assignments of the Z3 symmetry.

Upon integrating the messenger fields out, the couplings in Eq. (6) generate the
following contributions to the soft parameters at Q = M . These can be derived using the

3 γj
i ≡ d logZj

i /d logQ, with Zj
i the corresponding wavefunction renormalization.

4In turn, these feed (7) and (8) with extra contributions.
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general method described in [11, 15]. For the scalar soft masses squared the contributions
at the leading order in F 2/M2 arise at two loops. These deviate from the gauge mediation
contributions by terms controlled by both the new interactions in (6) and the standard
superpotential couplings for each particle:

m2

q3
=

1

256π4

(

g4
1

15
+ 3g42 +

16

3
g43 − y2bξ

2

Hd
− y2t ξ

2

Hu

)

F 2

M2
,

m2

uc

3

=
1

256π4

(

16

15
g41 +

16

3
g43 − 2y2t ξ

2

Hu

)

F 2

M2
,

m2

dc
3

=
1

256π4

(

4

15
g4
1
+

16

3
g4
3
− 2y2bξ

2

Hd

)

F 2

M2
,

m2

l3
=

1

256π4

(

3

5
g4
1
+ 3g4

2
− y2τξ

2

Hd

)

F 2

M2
,

m2

ec
3

=
1

256π4

(

12

5
g4
1
− 2y2τξ

2

Hd

)

F 2

M2
,

(10)

m2

Hd
=

1

256π4

[

3

5
g4
1
+ 3g4

2
− ξ2Hd

(

3

5
g2
1
+ 3g2

2
− 2κ2 − 4ξ2Hd

− 4ξ2D − 3ξ2T − 2ξ2Hu

)

−

− 2λ2

(

ξ2D +
3

2
ξ2T + 2ξ2Hu

)]

F 2

M2
,

m2

Hu
=

1

256π4

[

3

5
g41 + 3g42 − ξ2Hu

(

3

5
g21 + 3g22 − 2κ2 − 4ξ2Hu

− 4ξ2D − 3ξ2T − 2ξ2Hd

)

−

− 2λ2

(

ξ2D +
3

2
ξ2T + 2ξ2Hd

)]

F 2

M2
,

m2

S =
1

256π4

[

−6

5
g2
1

(

ξ2Hd
+ ξ2Hu

+ ξ2D +
2

3
ξ2T

)

− 6g2
2

(

ξ2Hd
+ ξ2Hu

+ ξ2D
)

− 16g2
3
ξ2T+

+8ξ2Hu

(

3

4
y2t − κ2 + ξ2Hu

+ 2ξ2D +
3

2
ξ2T

)

+ 8ξ2Hd

(

3

4
y2b +

1

4
y2τ − κ2 + ξ2Hd

+ 2ξ2D +
3

2
ξ2T

)

+

+ 8ξ2Hu
ξ2Hd

+ 8ξ2D
(

ξ2D − κ2
)

+ 3ξ2T
(

5ξ2T − 4κ2
)

+ 12ξ2Dξ
2

T + 8λξHd
ξHu

ξD
] F 2

M2
,

(11)

where g1,2,3 are the SM gauge couplings with g1 ≡
√

5/3g′ and the hypercharge defined by
Q = T3+Y . These are the leading contributions provided F/M2 ≪ 1/4π. Otherwise, one-
loop corrections generated at order F 4/M6 from non-trivial terms in the effective Kähler
potential can be comparable. Here we will concentrate in the previous regime, where such
one-loop contributions can be safely neglected. For the first and second sfermion families
only the gauge mediation contributions are considered since we neglect the corresponding
Yukawa couplings. The soft a terms, which are negligible in GMSB, now receive the
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leading contributions at one loop:

at =− ytξ
2

Hu

16π2

F

M
,

ab =−
ybξ

2

Hd

16π2

F

M
,

aτ =−
yτξ

2

Hd

16π2

F

M
,

aλ =− 1

16π2

[

λ
(

4ξ2Hd
+ 4ξ2Hu

+ 2ξ2D + 3ξ2T
)

+ 2ξHd
ξHu

ξD
] F

M
,

aκ =− 3
κ

16π2

(

2ξ2Hd
+ 2ξ2Hu

+ 2ξ2D + 3ξ2T
) F

M
.

(12)

Thus, this model has enough freedom to provide for large enough negative contributions
to m2

S, aλ and aκ, as required to make the correct EWSB compatible with a realistic
spectrum. In particular, compared to the scenario with only SΦ̄D

1
Hu couplings in [13],

the singlet-messenger interactions can turn m2

S negative without requiring large values
of |κ| ∼ 1. On the other hand, it is also possible to generate a large at and therefore a
large stop mixing. This enhances the size of the radiative top/stop one-loop corrections
to mH1 . Thus, it should be possible to lift the Higgs mass prediction above the direct
LEP 2 bound with relaxed (not too large) values of F/M and M , compared to the case
of the model without Hu couplings to the messenger fields.

Finally, we have the gaugino masses. These are given by the pure GMSB contribution.
At one loop:

Mλa
=

g2a
8π2

F

M
, a = 1, 2, 3, (13)

for n = 2 messenger fields.

3 Electroweak symmetry breaking and the spectrum

calculation

Using the model described in the previous section we have performed a scan in the pa-
rameter space looking for those regions where a satisfactory EWSB is possible together
with a phenomenologically acceptable spectrum. In what follows, and prior to show the
results of this analysis we sketch the method employed in the scan. This largely follows
that of Ref. [12] so we refer to that reference for more details.

The model has eight unknown input parameters: the superpotential couplings λ, κ,
ξD, ξT , ξHd

and ξHu
, and the SUSY breaking and messenger scales F/M and M . The

values for the SM parameters g1,2,3, yt,b,τ and the electroweak scale, v2 ≡ 〈Hd〉2+ 〈Hu〉2 ≈
(174 GeV)2, can be determined from the experimental values of GF , MZ , αem, αS (M

2

Z),
and the known fermion masses [16] (for the top mass we use mt = 173.3 GeV [17] and
also take into account one-loop QCD corrections in extracting the corresponding Yukawa
coupling). Using the RG equations to evolve all these parameters from the scales where
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they are defined up to the messenger scale we can compute the values of the SUSY-
breaking soft terms using Eqs. (10), (11) and (12). Then we must use again the RG to
run all the couplings down to the scale where we minimize the scalar potential

V = m2

Hu

∣

∣H0

u

∣

∣

2
+m2

Hd

∣

∣H0

d

∣

∣

2
+m2

S |S|2 +
(

−aλSH
0

uH
0

d −
aκ
3
S3 + h.c.

)

+ |λ|2 |S|2
(

∣

∣H0

u

∣

∣

2
+
∣

∣H0

d

∣

∣

2
)

+
∣

∣λH0

uH
0

d + κS2
∣

∣

2
+

g2 + g′ 2

8

(

∣

∣H0

d

∣

∣

2 −
∣

∣H0

u

∣

∣

2
)2

.
(14)

The dominant O (y4t , y
4

b ) one-loop radiative corrections in the effective scalar potential

are taken into account by replacing V → V + ∆V , where ∆V reads in the DR′ scheme
[18, 19]:

∆V =
3

32π2

∑

f=t,b

[

2
∑

i=1

m4

f̃i

(

log
m2

f̃i

Q2
− 3

2

)

− 2m4

f

(

log
m2

f

Q2
− 3

2

)

]

, (15)

with mf , mf̃i
the field-dependent fermion/sfermion masses.

In order to minimize the (leading) O (y4t ) corrections, as in [12] we choose to perform
this last step at a matching scale given by the geometric average of the stop masses,
Mmatch =

√
mt̃1

mt̃2
. This is also the scale where we specify the value for λ. On the other

hand, κ is determined in the minimization from the extremal conditions of the potential
at the electroweak vacuum, together with tan β and 〈S〉. Thus, κ is actually an output,
which reduces the number of unknown parameters by one.

We will require in our analysis that the gauge and superpotential couplings remain
perturbative up to the grand unification scale, MGUT, defined as the scale such that
g1(MGUT) = g2(MGUT). For simplicity we will assume that the singlet-messenger interac-
tions unify at that scale, at a common value ξU ≡ ξD, ξT (MGUT). This removes another
parameter from the list, leaving finally with a total of six unknown inputs. The ξHu

and ξHd
couplings are also specified at MGUT. For completeness, the corresponding RG

equations for the region M ≤ Q < MGUT are given in the appendix. Recall that, despite
we assume that the messenger couplings to quark and lepton chiral fields vanish at M ,
non-zero values for ξt, ξb and ξτ will be generated above the messenger scale. We take
their effect on the running into account. Finally note that since the boundary conditions
for the different parameters are specified at different scales and also depend on the results
of the minimization, after solving the RG equations and minimizing the Higgs potential
we need to adjust tan β, 〈S〉 and κ and iterate until the procedure converges.

Once we obtain a set of parameters that allows to reproduce the correct EWSB we
make sure that the resulting spectrum passes all existing experimental bounds [16]. Al-
though such bounds depend on a variety of assumptions and may not directly apply in
some cases, we prefer to be conservative in the cuts we apply prior to accept a given
point in the scan. In particular, we demand that the lightest neutralino is above 50 GeV
or 120 GeV depending on whether it behaves as an stable or unstable particle, respec-
tively. For the lightest chargino we also impose the cut in 120 GeV. Current limits for
sfermions are different for sleptons and squarks and in the latter case also distinguish
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between generic squarks or the third family ones. For the sleptons and the third family
of squarks we impose a common bound ml̃i,t̃i,b̃i

> 120 GeV. Limits for generic squarks
are significantly stronger than those of stops and sbottoms. Here we use the latest ex-
perimental results on SUSY searches at the LHC [20, 21, 22]. These correspond to the
mSUGRA/CMSSM parameter space and impose bounds on generic squarks and gluino
masses around 700-800 GeV, depending on the difference between mq̃ and Mg̃. For the
first two families of squarks and the gluino mass we thus require mq̃,Mg̃ > 700 GeV. For
the Higgs masses we make use of the existing bounds from LEP 2 searches though, as we
will see, in practice only the limit on a SM-like Higgs mass of 114 GeV applies.

The mass matrices for the sfermions, neutralinos, charginos and CP even and odd
Higgses can be found in the literature (see for instance [23, 24]) and here we only sketch
the precision in our determination of the lightest CP-even Higgs mass in order to compare
with the LEP 2 bound. These include the dominant O

(

y4t,b
)

one-loop corrections [23] as

well as the two-loop leading logarithmic corrections of O
(

y4t,b g
2

3
, y6t,b

)

[24]. We also include

the one-loop leading logarithmic corrections of O
(

y2t,b g
2

1,2, y
2

t,b λ
2
)

that enter in the mass
matrices through the wavefunction renormalization of the scalar fields [24]. Finally, we
also include the one-loop leading logarithmic corrections of O (λ4) to the mass of the
lightest CP-even Higgs boson, computed in the limit 〈S〉 ≫ v:

∆m2

H1 = −3λ2

Eff
v2

4π2
log

Q2

m2
t

, (16)

with λEff the effective quartic coupling for the lightest CP-even Higgs boson.

4 Phenomenological results

Here we present the results of the scan and discuss the phenomenological features of the
model. We present the results in two parts. In the first one we discuss the general aspects
of the spectrum obtained from a scan over all the six free parameters. In the second, in
order to compare the model with the one presented in [12], we consider a submanifold
of the allowed region of the parameter space where some of the parameters are fixed to
specific values. Along this section we will often refer to the model in that reference, with
only singlet-messenger interactions, as N-GMSB (as denoted there) while for the general
scenario of singlet deflection of GMSB presented here we use S-GMSB. We discuss the
improvements with respect to [12], emphasizing whether or not these are worth increasing
the number of free parameters.

We have explored values for the SUSY breaking scale F/M up to 175 TeV. For
F/M & 175 TeV it was shown in [12] that significantly large regions in the parameter
space were allowed by all experimental bounds, provided we allow for a long enough
running, i.e., a large M (F/M = 172 TeV and M = 1010 TeV in the example presented
there). Here we focus on whether this can be achieved with a lower scale of SUSY
breaking. Regarding the messenger mass scale we take 104 TeV ≤ M ≤ 1011 TeV. We
restrict to values above 104 TeV to ensure F/M2 ≪ 1/4π, so the leading corrections to
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soft masses are those in Eqs. (10) and (11). For the remaining unknown parameters, the
superpotential couplings λ, ξU , ξHu

and ξHd
, we scan both positive and negative values.

This is required since they contribute to terms with no definite sign in the boundary
conditions (11) and (12), and in the RG equations above the messenger scale.

As stressed in [12], one of the major difficulties in the model with only singlet-
messenger interactions was finding a set of parameters that gives a large enough Higgs
mass so it passes the direct LEP 2 bound. The problem in that model is the absence of
direct contributions to at at the messenger scale. Thus, a non-zero at can be generated
only through the RG evolution down to Mmatch. This results in small values of the stop
mixing, which then require large stop masses, and therefore large values of F/M , in order
to lift mH1 above 114 GeV through top/stop radiative corrections. As we explained in
section 2, achieving a significantly large stop mixing should be no longer an issue once
we consider the new interactions between the singlet, the messengers and Hu. Therefore,
since a larger stop mixing than in [12] is in general predicted, lower values of F/M should
be naturally allowed, yielding also to a lighter spectrum. Still, overcoming the LEP 2
bound is the major constraint in F/M and M but the results of the scan show that values
of the SUSY breaking scale F/M & 50 TeV are within the allowed region. (For those
values of F/M the extra Higgs boson masses are still effectively decoupled. Therefore,
the lightest CP-even Higgs is SM-like and the 114 GeV limit applies, instead of the less
stringent bounds from direct searches of the supersymmetric Higgses.) On the other hand,
we find mH1 . 123 GeV for the entire set of scan points. Regarding also the Higgs mass
and the radiative corrections we find

1.5 . tanβ . 35, (17)

with a general preference for low values. Therefore, contributions from bottom/sbottom
loops to the Higgs mass can be safely neglected in general. Nevertheless, the small regions
with large tan β require to include bottom/sbottom radiative corrections in the EWSB
sector as explained in the previous section, for they might start to be noticeable at that
point. Note also that in that case these corrections actually lower the prediction for the
Higgs mass.

On general grounds the spectrum of the model is gauge mediation like, with sparticle
masses ordered according to their gauge interactions. The lightest supersymmetric particle
(LSP) is the gravitino, which may become a good dark matter candidate for relatively
low values of F/M and M . As explained above such values are now easily accessible. The
characteristic SUSY mass scale (roughly ∼ F/(16π2M)) is & 320 GeV. In Fig. 1 left
we show the masses for the third family of charged sfermions. These are typically lighter
than the first and second generations because of the effect of the Yukawa couplings. Such
effects enter not only in the running but also in the boundary conditions (10). Hence, a
characteristic feature of this scenario is a larger splitting between the third and the first
two families of sfermions, compared to the one with pure gauge mediation. This is more
pronounced in the case of stops, since not too large values of tanβ are preferred. Still,
the effect is only noticeable for sizable values of the ξHu

coupling. In particular, it is
noteworthy that stops (and to a less extent sbottoms) below the TeV are still compatible

10
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Figure 1: (Left) Third family sfermion masses. (Right) Gluino and lightest neutralino
and chargino masses versus the lightest CP-even Higgs mass. The sharp upper bounds
correspond to the upper bound of F/M in the scan. The lightest neutralino is in general
the NLSP.

with all the constraints. Note also the presence of some points in the region of stop masses
below 500 GeV. These correspond to configurations where an approximate cancellation
in the boundary condition for the third family of squark masses is taking place (see Eq.
(10)). They are, however, rather difficult to find in the scan. This may indicates that such
configurations require a significant fine tuning and do not correspond to natural solutions.
As in gauge mediation the lightest sfermions are the staus. Stau masses can be compared
with the lightest neutralino mass, which is shown in Fig. 1 right, together with the gluino
and the lightest chargino masses. In general, the lightest neutralino is lighter than staus,
thus being the next-to-lightest supersymmetric particle (NLSP). This is the case for low
tan β . 3. For larger values there are regions where the stau can be nearly degenerate or
slightly lighter than the lightest neutralino. In this case both may behave as co-NLSPs.
Only for some regions with large tanβ & 20 the effect of the τ Yukawa couplings can
lower mτ̃1 significantly below Mχ0

1
. Regarding the lightest neutralino composition, this

is in general bino like. However, we also find some regions where this can be singlino or
Higgsino like. The main phenomenology of this model depends on the NLSP nature and
lifetime. At particle colliders the most interesting scenarios occurs for those cases where
the NLSP is stau, or it is neutralino but decays promptly within the detector. The latter
occurs for

√
F . 103 TeV, which is still accessible but only in a small region at the lower

end of the range of allowed values of F/M and M . For larger values the NLSP behaves
like an stable particle. On the other hand, one must be aware that long-lived NLSP might
pose cosmological problems for ordinary nucleosynthesis [7, 25]. These can put additional
constraints on the upper bounds of F/M and M . For instance, for photon decays we are
safe as long as τNLSP < 107 sec. For the range of values of F/M explored this translates
into an upper bound for the messenger scale M . 1012-1014 TeV. Hadronic decays might
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impose even stronger constraints M . 109-1011 TeV.
Despite it is clear that the S-GMSB scenario favors heavier Higgs masses through

radiative corrections than the one without the interactions involving Higgs doublets, we
would like to determine quantitatively the actual improvement respect to N-GMSB, for
we are introducing extra free parameters which reduce the predictive power of the model.
In what follows we compare our results with those of [12]. For that purpose we have
considered two specific benchmark points with fixed values of F/M and M . For the first
one we have chosen F/M = 172 TeV and M = 1010 TeV as in the example presented in
[12]. As we have stressed previously, one of the major advantages of the model presented
here is that it does not require of large values of F/M and M to pass all the constraints.
Thus, we have also considered another point where both parameters take significantly
lower values: F/M = 100 TeV and M = 104 TeV. Let us note here that the ξHd

coupling
has a negligible effect over the Higgs mass prediction. Indeed, the impact of the parameter
ξHd

in generating a significant sbottom mixing is always irrelevant. Thus, it does not have
any significant effect on the (already tiny) bottom/sbottom radiative corrections. The
only relevant effect that this parameter may have is to help in the process of generating
a negative m2

S and controlling the size of aλ
5. However, this rôle can be easily played by

some of the other parameters. Therefore, for our purposes this coupling looks completely
irrelevant. Hence, in order to emphasize the important effects in the comparison, we have
gotten rid of this parameter by assuming that it vanishes at the scale MGUT, i.e., we only
consider one extra parameter 6 compared to the N-GMSB scenario.

In Fig. 2 left we compare the allowed regions for both models in the λ(Mmatch)-ξU plane
for F/M = 172 TeV and M = 1010 TeV. As it is apparent the ξHu

coupling significantly
increases the area where Higgs masses above 114 GeV can be attained, beyond the three
characteristic regions explained in [12]. This enhancement of the allowed regions is even
more apparent when we move to lower SUSY breaking scales, where the model in [12] has
problems in obtaining large enough Higgs masses. Indeed, in Fig. 2 right we can observe
how for F/M = 100 TeV, M = 104 TeV the N-GMSB scenario is almost ruled out by the
experimental constraints, while still a large region in the λ(Mmatch)-ξU plane is allowed
once we introduce the extra coupling. Let us also note that this does not require too large
values for ξHu

. For the regions in Fig. 2 we find ξHu
. 4, with ξHu

∼ 4 only at the end of
the tail in Fig. 2 right (ξHu

. 1.5 in Fig. 2 left). Characteristic values for the sparticle
masses in this latter example, and thus not easily accessible to the N-GMSB scenario,
are the following: the lightest stop (sbottom) mass is ∼ 1.1-1.3 TeV (1.4-1.5 TeV); for
the lightest stau mτ̃1 ∼ 220-270 GeV; for the gaugino masses Mλa

≈ 280, 510, 1400 GeV
for bino, winos and gluinos, respectively. Notice that the stau is lighter than the bino.
The lightest neutralino is in general an admixture of Higgsinos and the bino, though
regions where it is purely singlino are still present. In the latter case as well as in those
regions where the effective µ term is low enough the lightest neutralino can still be the
NLSP. Notice also that this is a short-lived NLSP (

√
F = 103 TeV), which might still

5Actually, the only contribution to aλ that has no definite sign vanish for ξHd
→ 0.

6At any rate, since ξHu
and ξD are non-vanishing, small corrections from ξHd

are still expected from
the running down to the messenger scale (see discussion below Eq. (6), and Eq. (21) in the appendix).
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Figure 2: Comparison of the allowed regions in the λ(Mmatch)-ξU plane for the models with
and without SΦ̄D

1 Hu superpotential interactions, S-GMSB and N-GMSB, respectively.
Only the regions with mH1 ≥ 114 GeV are shown. (Left) F/M = 172 TeV and M =
1010 TeV as in [12]. (Right) The same for F/M = 100 TeV and M = 105 TeV.

decay within the detector at collider experiments giving a hard photon or two jets plus
missing ET , depending on whether the NLSP is mostly a bino or has a singlino/Higgsino
component. In the case where the NSLP is a stau the decay inside the detector will
provide a hard jet plus missing energy.

In summary, despite the model in [12] is more predictive and it is a phenomenologically
viable solution to the µ-bµ problem, at the price of only one more parameter the model
presented here provides not only a significant enhancement of the allowed regions for those
values of F/M and M where N-GMSB works but also extends the applicability of the
gauge mediated NMSSM to scenarios where SUSY breaking occurs at lower energy scales.

5 Conclusions

In this paper we have extended the work presented in [12], where a model including
singlet-messenger superpotential interactions was proposed in order to ameliorate the
difficulties in generating the correct EWSB and a phenomenologically valid spectrum in
gauge mediation scenarios of the NMSSM. Such model thus also provides a satisfactory
explanation to the µ-bµ problem of GMSB. However, it requires a relatively large scale
of SUSY breaking in order to overcome all existing bounds and, in particular, the direct
LEP 2 bound on the lightest CP-even Higgs boson mass. Considering an extension where
we also include interactions between the NMSSM singlet, the messengers and the Higgs
doublets we have proved that it is possible to lower significantly the scale of SUSY breaking
without drastically constraining the size of the allowed regions in the parameter space. We
have performed a scan over all the parameter space and discussed the general aspects of
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the spectrum of the model. Most of the basic features of a GMSB-like spectrum prevail in
this scenario: strongly interacting particles are heavier, gravitino LSP, bino-like neutralino
or stau NLSP and so on. These are “deflected” by the new interactions, whose effects are
multiplied by the NMSSM superpotential couplings of the corresponding particles. Thus,
for instance, there is a significant splitting between the stops and first two families of up
squarks that goes beyond the RG effects in GMSB. The overall scale of the spectrum can
be relatively low. In particular, there are regions in the parameter space that allow stop
masses below the TeV. Such values are not easily accessible without the new interactions.
This low spectrum could be discovered at the early stages of the LHC.

We also emphasize that despite the general scenario introduces several extra free pa-
rameters, only one of them, the coupling ξHu

, is actually required in order to open the new
regions in the parameter space. Thus, in practice, only one extra parameter is relevant
and the model still remains quite predictive.
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Appendix: Renormalization Group Equations

In this appendix we provide formulae for the one-loop RG equations of the model presented
in this paper. These can be derived using the general formulae in Refs. [26, 27, 28]. Below
the messenger scale M these are simply given by the NMSSM ones, which can be found for
instance in [24]. It is important to note that, because of the contributions proportional
to ξHu,Hd

in the boundary conditions of the scalar soft masses squared, the boundary
condition for the U (1)Y Fayet-Iliopoulos D term

∆
dm2

φi

d logQ
=

3

5

g21
8π2

Yφi
Tr
[

Y m2

φ

]

(18)

is not vanishing at M . Therefore, this term contributes in the running unlike in the pure
GMSB scenario or in the model presented in [12]. Above the messenger scale the contri-
butions from the messenger superpotential couplings modify the RG equations respect to
those of the NMSSM. For the gauge couplings these are given by

dg1
d logQ

=
g3
1

16π2

(

n+
33

5

)

,

dg2
d logQ

=
g32

16π2
(n + 1) ,

dg3
d logQ

=
g3
3

16π2
(n− 3) ,

(19)

where n is the number of messengers and recall g1 =
√

5

3
g′. As explained in the main text

we neglect any possible superpotential couplings between the messengers and the quark
and lepton chiral fields at the messenger scale. However, as also emphasized there, even
in that case non-vanishing values for the couplings with the third family are generated in
the running above M . Thus, we must also include the effect of such couplings, as well as
their RG equations in our analysis. For the NMSSM superpotential interactions we have,
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dyt
d logQ

=
yt

16π2

(

6y2t + y2b + λ2 + ξ2Hu
+ 6ξ2t + ξ2b −

13

15
g2
1
− 3g2

2
− 16

3
g2
3

)

+

+
ξt

16π2
(λξHd

+ ξDξHu
) ,

dyb
d logQ

=
yb

16π2

(

y2t + 6y2b + y2τ + λ2 + ξ2Hd
+ ξ2t + 6ξ2b −

7

15
g21 − 3g22 −

16

3
g23

)

+

+
ξb

16π2
(yτξτ + λξHu

+ ξDξHd
) ,

dyτ
d logQ

=
yτ

16π2

(

3y2b + 4y2τ + λ2 + ξ2Hd
+ 4ξ2τ −

9

5
g2
1
− 3g2

2

)

+

+
ξτ

16π2
(3ybξb + λξHu

+ ξDξHd
) ,

dλ

d logQ
=

λ

16π2

(

3y2t + 3y2b + y2τ + 4λ2 + 2κ2 + 2ξ2D + 3ξ2T + 4ξ2Hd
+ 4ξ2Hu

− 3

5
g2
1
− 3g2

2

)

+

+
1

16π2
(3ytξHd

ξt + 3ybξHu
ξb + yτξHu

ξτ + 2ξDξHd
ξHu

) ,

dκ

d logQ
=

3κ

16π2

(

2λ2 + 2κ2 + 2ξ2D + 3ξ2T + 2ξ2Hd
+ 2ξ2Hu

)

.

(20)

The RG equations for the messenger superpotential couplings in Eq. (6) read

dξD
d logQ

=
ξD
16π2

(

2λ2 + 2κ2 + 4ξ2D + 3ξ2T + 4ξ2Hd
+ 4ξ2Hu

+ 3ξ2t + 3ξ2b + ξ2τ −
3

5
g21 − 3g22

)

+

+
1

16π2
(3ytξHu

ξt + 3ybξHd
ξb + yτξHd

ξτ + 2λξHd
ξHu

) ,

dξT
d logQ

=
ξT
16π2

(

2λ2 + 2κ2 + 2ξ2Hd
+ 2ξ2Hu

+ 2ξ2D + 5ξ2T − 4

15
g2
1
− 16

3
g2
3

)

,

dξHd

d logQ
=

ξHd

16π2

(

3y2b + y2τ + 4λ2 + 2κ2 + 4ξ2D + 3ξ2T + 4ξ2Hd
+ 2ξ2Hu

+ 3ξ2t −
3

5
g21 − 3g22

)

+

+
1

16π2
(3ytλξt + 3ybξDξb + yτξDξτ + 2λξDξHu

) ,

dξHu

d logQ
=

ξHu

16π2

(

3y2t + 4λ2 + 2κ2 + 4ξ2D + 3ξ2T + 2ξ2Hd
+ 4ξ2Hu

+ 3ξ2b + ξ2τ −
3

5
g2
1
− 3g2

2

)

+

+
1

16π2
(3ytξDξt + 3ybλξb + yτλξτ + 2λξDξHd

) .

(21)

Finally, as explained above, we also need the RG equations for the couplings in Eq.
(9) in the case of couplings with the third family only:
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dξt
d logQ

=
ξt

16π2

(

6y2t + y2b + ξ2D + ξ2Hd
+ 6ξ2t + ξ2b −

13

15
g2
1
− 3g2

2
− 16

3
g2
3

)

+

+
yt

16π2
(λξHd

+ ξDξHu
) ,

dξb
d logQ

=
ξb

16π2

(

y2t + 6y2b + ξ2D + ξ2Hu
+ ξ2t + 6ξ2b + ξ2τ −

7

15
g2
1
− 3g2

2
− 16

3
g2
3

)

+

+
yb

16π2
(yτξτ + λξHu

+ ξDξHd
) ,

dξτ
d logQ

=
ξτ

16π2

(

4y2τ + ξ2D + ξ2Hu
+ 3ξ2b + 4ξ2τ −

9

5
g2
1
− 3g2

2

)

+

+
yτ

16π2
(3ybξb + λξHu

+ ξDξHd
) .

(22)
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