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Abstract

The associated production of a Higgs boson with a b quark is a discovery channel for the lightest

MSSM neutral Higgs boson. We consider the SUSY QCD contributions from squarks and gluinos

and discuss the decoupling properties of these effects. A detailed comparison of our exact O(αs)

results with those of a widely used effective Lagrangian approach, the ∆b approximation, is pre-

sented. The ∆b approximation is shown to accurately reproduce the exact one-loop SQCD result

to within a few percent over a wide range of parameter space.
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I. INTRODUCTION

Once a light Higgs-like particle is discovered it will be critical to determine if it is the

Higgs Boson predicted by the Standard Model. The minimal supersymmetric Standard

Model (MSSM) presents a comparison framework in which to examine the properties of

a putative Higgs candidate. The MSSM Higgs sector contains 5 Higgs bosons–2 neutral

bosons, h and H , a pseudoscalar boson, A, and 2 charged bosons, H±. At the tree level

the theory is described by just 2 parameters, which are conveniently chosen to be MA, the

mass of the pseudoscalar boson, and tanβ, the ratio of vacuum expectation values of the

2 neutral Higgs bosons. Even when radiative corrections are included, the theory is highly

predictive[1–3].

In the MSSM, the production mechanisms for the Higgs bosons can be significantly

different from in the Standard Model. For large values of tanβ, the heavier Higgs bosons,

A and H , are predominantly produced in association with b quarks. Even for tan β ∼ 5,

the production rate in association with b quarks is similar to that from gluon fusion for

A and H production[19]. For the lighter Higgs boson, h, for tanβ ∼> 7 the dominant

production mechanism at both the Tevatron and the LHC is production with b quarks for

light MA (∼< 200 GeV ), where the bbh coupling is enhanced . Both the Tevatron[4] and the

LHC experiments[5] have presented limits Higgs production in association with b quarks,

searching for the decays h→ τ+τ− and bb1. These limits are obtained in the context of the

MSSM are sensitive to the b-squark and gluino loop corrections which we consider here.

The rates for bh associated production at the LHC and the Tevatron have been extensively

studied[8–18] and the NLO QCD correction are well understood, both in the 4- and 5-

flavor number parton schemes[9, 11, 15]. In the 4- flavor number scheme, the lowest order

processes for producing a Higgs boson and a b quark are gg → bbh and qq → bbh[8, 12, 17].

In the 5− flavor number scheme, the lowest order process is bg → bh (bg → bh). The

two schemes represent different orderings of perturbation theory and calculations in the two

schemes produce rates which are in qualitative agreement[11, 19]. In this paper, we use

the 5-flavor number scheme for simplicity. The resummation of threshold logarithms[20],

electroweak corrections[21, 22] and SUSY QCD corrections[23] have also been computed for

1 The expected sensitivities of ATLAS and CMS to b Higgs associated production are described in Refs.

[6, 7].

2



bh production in the 5− flavor number scheme.

Here, we focus on the role of squark and gluino loops. The properties of the SUSY

QCD corrections to the bbh vertex, both for the decay h → bb[24–27] and the production,

bb → h[12, 27–29], were computed long ago. The contributions from b squarks and gluinos to

the lightest MSSM Higgs boson mass are known at 2-loops[30, 31], while the 2-loop SQCD

contributions to the bbh vertex is known in the limit in which the Higgs mass is much smaller

than the squark and gluino masses[32, 33]. The contributions of squarks and gluinos to the

on-shell bbh vertex are non-decoupling for heavy squark and gluino masses and decoupling

is only achieved when the pseudoscalar mass, MA, also becomes large.

An effective Lagrangian approach, the ∆b approximation[25, 26], can be used to approxi-

mate the SQCD contributions to the on-shell bbh vertex and to resum the (αs tanβ/MSUSY )
n

enhanced terms. The numerical accuracy of the ∆b effective Lagrangian approach has been

examined for a number of cases. The 2−loop contributions to the lightest MSSM Higgs

boson mass of O(αbαs) were computed in Refs. [30] and [31], and it was found that the

majority of these corrections could be absorbed into a 1−loop contribution by defining an

effective b quark mass using the ∆b approach. The sub-leading contributions to the Higgs

boson mass (those not absorbed into ∆b) are then of O(1 GeV ). The ∆b approach also

yields an excellent approximation to the SQCD corrections for the decay process h→ bb[27].

It is particularly interesting to study the accuracy of the ∆b approximation for production

processes where one of the b quarks is off-shell. The SQCD contributions from squarks and

gluinos to the inclusive Higgs production rate in association with b quarks has been studied

extensively in the 4FNS in Ref. [37], where the the lowest order contribution is gg → bbh.

In the 4FNS, the inclusive cross section including the exact 1-loop SQCD corrections is

reproduced to within a few percent using the ∆b approximation. However, the accuracy of

the ∆b approximation for the MSSM neutral Higgs boson production in the 5FNS has been

studied for only a small set of MSSM parameters in Ref. [23]. The major new result of this

paper is a detailed study of the accuracy of the ∆b approach in the 5FNS for the bg → bh

production process. In this case, one of the b quarks is off-shell and there are contributions

which are not contained in the effective Lagrangian approach.

The plan of the paper is as follows: Section 2 contains a brief review of the MSSM Higgs

and b squark sectors and also a review of the effective Lagrangian approximation. The

calculation of Ref. [23] is summarized in Section 2. We include SQCD contributions to
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bh production which are enhanced by mb tanβ which were omitted in Ref. [23]. Analytic

results for the SQCD corrections to bg → bh in the extreme mixing scenarios in the b squark

sector are presented in Section 3. Section 4 contains numerical results for the
√
s = 7 TeV

LHC. Finally, our conclusions are summarized in Section 5. Detailed analytic results are

relegated to a series of appendices.

II. BASICS

A. MSSM Framework

In the simplest version of the MSSM there are two Higgs doublets, Hu and Hd, which

break the electroweak symmetry and give masses to theW and Z gauge bosons. The neutral

Higgs boson masses are given at tree level by,

M2
h,H =

1

2

[

M2
A +M2

Z ∓
√

(M2
A +M2

Z)
2 − 4M2

AM
2
Z cos2 2β

]

, (1)

and the angle, α, which diagonalizes the neutral Higgs mass is

tan 2α = tan 2β

(

M2
A +M2

Z

M2
A −M2

Z

)

. (2)

In practice, the relations of Eqs. 1 and 2 receive large radiative corrections which must be

taken into account in numerical studies. We use the program FeynHiggs[34–36] to generate

the Higgs masses and an effective mixing angle, αeff , which incorporates higher order effects.

The scalar partners of the left- and right- handed b quarks, b̃L and b̃R, are not mass

eigenstates, but mix according to,

LM = −(b̃∗L, b̃
∗
R)M

2
b̃





b̃L

b̃R



 . (3)

The b̃ squark mass matrix is,

M2
b̃
=





m̃2
L mbXb

mbXb m̃2
R



 , (4)

and we define,

Xb = Ab − µ tanβ

m̃2
L = M2

Q +m2
b +M2

Z cos 2β(Ib3 −Qb sin
2 θW )

m̃2
R = M2

D +m2
b +M2

Z cos 2βQb sin
2 θW . (5)
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MQ,D are the soft SUSY breaking masses, Ib3 = −1/2, and Qb = −1/3. The parameter

Ab is the trilinear scalar coupling of the soft supersymmetry breaking Lagrangian and µ is

the Higgsino mass parameter. The b squark mass eigenstates are b̃1 and b̃2 and define the

b-squark mixing angle, θ̃b

b̃1 = cos θ̃bb̃L + sin θ̃bb̃R

b̃2 = − sin θ̃bb̃L + cos θ̃bb̃R .

(6)

At tree level,

sin 2θ̃b =
2mb(Ab − µ tanβ)

M2
b̃1
−M2

b̃2

(7)

and the sbottom mass eigenstates are,

M2
b̃1,b̃2

=
1

2

[

m̃2
L + m̃2

R ∓
√

(m̃2
L − m̃2

R)
2 + 4m2

bX
2
b

]

. (8)

B. ∆b Approximation: The Effective Lagrangian Approach

Loop corrections which are enhanced by powers of αs tan β can be included in an effective

Lagrangian approach. At tree level, there is no ψLbRHu coupling in the MSSM, but such a

coupling arises at one loop and gives an effective interaction[25–27]2,

Leff = −λbψL

(

Hd +
∆b

tan β
Hu

)

bR + h.c. . (9)

Eq. 9 shifts the b quark mass from its tree level value, 3

mb →
λbv1√

2
(1 + ∆b) , (10)

and also implies that the Yukawa couplings of the Higgs bosons to the b quark are shifted

from the tree level predictions. This shift of the Yukawa couplings can be included with an

effective Lagrangian approach[26, 27],

Leff = − mb

vSM

(

1

1 + ∆b

)(

− sinα

cos β

)(

1− ∆b

tan β tanα

)

bbh . (11)

The Lagrangian of Eq. 11 has been shown to sum all terms of O(αs tanβ)
n for large

tan β[25, 26].4 This effective Lagrangian has been used to compute the SQCD corrections

2 The neutral components of the Higgs bosons receive vacuum expectation values: 〈H0
d〉 = v1√

2
, 〈H0

u〉 = v2√

2
.

3 vSM = (
√
2GF )

−1/2, v1 = vSM cosβ
4 It is also possible to sum the contributions which are proportional to Ab, but these terms are less important

numerically[27].
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to both the inclusive production process, bb → h, and the decay process, h→ bb, and yields

results which are within a few percent of the exact one-loop SQCD calculations[27, 37].

The expression for ∆b is found in the limit mb << Mh,MZ << Mb̃1
,Mb̃2

,Mg̃ . The 1-loop

contribution to ∆b from sbottom/gluino loops is[25, 26, 38]

∆b =
2αs(µS)

3π
Mg̃µ tanβI(Mb̃1

,Mb̃2
,Mg̃) , (12)

where the function I(a, b, c) is,

I(a, b, c) =
1

(a2 − b2)(b2 − c2)(a2 − c2)

{

a2b2 log

(

a2

b2

)

+ b2c2 log

(

b2

c2

)

+ c2a2 log

(

c2

a2

)}

,

(13)

and αs(µS) should be evaluated at a typical squark or gluino mass. The 2−loop QCD

corrections to ∆b have been computed and demonstrate that the appropriate scale at which

to evaluate ∆b is indeed of the order of the heavy squark and gluino masses[32, 33]. The

renormalization scale dependence of ∆b is minimal around µ0/3, where µ0 ≡ (Mg̃ +mb̃1
+

mb̃2
)/3. In our language this is a high scale, of order the heavy SUSY particle masses.

The squarks and gluinos are integrated out of the theory at this high scale and their effects

contained in ∆b. The effective Lagrangian is then used to calculate light Higgs production

at a low scale, which is typically the electroweak scale, ∼ 100 GeV .

Using the effective Lagrangian of Eq. 9, which we term the Improved Born Approximation

(or ∆b approximation), the cross section is written in terms of the effective coupling,

g∆b

bbh ≡ gbbh

(

1

1 + ∆b

)(

1− ∆b

tanβ tanα

)

, (14)

where

gbbh = −
(

sinα

cos β

)

mb(µR)

vSM
. (15)

We evaluate mb(µR) using the 2−loopMS value at a scale µR of O(Mh), and use the value of

αeff determined from FeynHiggs. The Improved Born Approximation consists of rescaling

the tree level cross section, σ0, by the coupling of Eq. 145,

σIBA =

(

g∆b

bbh

gbbh

)2

σ0 . (16)

The Improved Born Approximation has been shown to accurately reproduce the full SQCD

calculation of pp→ tbH+[39, 40].

5 This is the approximation used in Ref. [19] to include the SQCD corrections.
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FIG. 1: Feynman diagrams for g(q1) + b(q2) → b(pb) + h(ph).

The one-loop result including the SQCD corrections for bg → bh can be written as,

σSQCD ≡ σIBA

(

1 + ∆SQCD

)

, (17)

where ∆SQCD is found from the exact SQCD calculation summarized in Appendix B.

The Improved Born Approximation involves making the replacement in the tree level

Lagrangian,

mb →
mb

1 + ∆b
. (18)

Consistency requires that this substitution also be made in the squark mass matrix of Eq.

4[41, 42]

M2
b̃
→









m̃2
L

(

mb

1+∆b

)

Xb

(

mb

1+∆b

)

Xb m̃2
R









. (19)

The effects of the substitution of Eq. 18 in the b-squark mass matrix are numerically

important, although they generate contributions which are formally higher order in αs. Eqs.

12 and 19 can be solved iteratively for Mb̃1
, Mb̃2

and ∆b using the proceedure of Ref. [41]6.

C. SQCD Contributions to gb → bh

The contributions from squark and gluino loops to the gb → bh process have been com-

puted in Ref. [23] in the mb = 0 limit. We extend that calculation by including terms which

are enhanced by mb tan β and provide analytic results in several useful limits.

The tree level diagrams for g(q1) + b(q2) → b(pb) + h(ph) are shown in Fig. 1. We define

6 We use FeynHiggs only for calculating Mh and sinαeff .
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the following dimensionless spinor products

Mµ
s =

u (pb) (q/1 + q/2) γ
µu (q2)

s

Mµ
t =

u (pb) γ
µ (/pb − q/1)u (q2)

t

Mµ
1 = qµ2

u (pb) u (q2)

u

Mµ
2 =

u (pb) γ
µu (q2)

mb

Mµ
3 = pµb

u (pb) q/1u (q2)

mbt

Mµ
4 = qµ2

u (pb) q/1u (q2)

mbs
, (20)

where s = (q1 + q2)
2, t = (pb − q1)

2 and u = (pb − q2)
2. In the mb = 0 limit, the tree level

amplitude depends only onMµ
s andMµ

t , andM
µ
1 is generated at one-loop. When the effects

of the b mass are included, Mµ
2 , M

µ
3 , and M

µ
4 are also generated.

The tree level amplitude is

Aa
αβ |0 = −gsgbbh (T a)αβ ǫµ(q1) {Mµ

s +Mµ
t } , (21)

and the one loop contribution can be written as

Aa
αβ = −αs(µR)

4π
gsgbbh (T

a)αβ
∑

j

XjM
µ
j ǫµ(q1) . (22)

In the calculations to follow, only the non-zero Xj coefficients are listed and we neglect

terms of O(m2
b/s) if they are not enhanced by tan β.

The renormalization of the squark and gluino contributions is performed in the on-shell

scheme and has been described in Refs. [23, 32, 43]. The bottom quark self-energy is

Σb (p) = /p

(

ΣV
b (p

2)− ΣA
b (p

2)γ5

)

+mbΣ
S
b (p

2) . (23)

The b quark fields are renormalized as b →
√

ZV
b b and Z

V
b ≡

√

1 + δZV
b . The contribution

from the counter-terms to the self-energy is,

Σren
b (p) = Σb (p) + δΣb(p)

δΣb (p) = /p
(

δZV
b − δZA

b γ5
)

−mbδZ
V
b − δmb . (24)

Neglecting the γ5 contribution, the renormalized self-energy is then given by

Σren
b (p) = (/p−mb)

(

ΣV
b (p

2) + δZV
b

)

+mb

(

ΣS
b (p

2) + ΣV
b (p

2)− δmb

mb

)

. (25)
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The on-shell renormalization condition implies

Σren
b (p)|/p=mb

= 0 (26)

lim/p→mb

(

Σren
b (p)

/p−mb

)

= 0 . (27)

The mass and wavefunction counter-terms are7

δmb

mb

=
[

ΣS
b

(

p2
)

+ ΣV
b

(

p2
)]

p2=m2

b

=
αs(µR)

3π

2
∑

i=1

[

(−1)i
Mg̃

mb
s2b̃B0 −B1

]

(

0;M2
g̃ ,M

2
b̃i

)

(28)

δZV
b = − ΣV

b

(

p2
)∣

∣

p2=m2

b

− 2m2
b

∂

∂p2

(

ΣV
b (p

2) + ΣS(p
2)

)

|p2=m2

b

=
αs(µR)

3π

2
∑

i=1

[

B1 + 2m2
bB

′
1 − (−1)i2mbMg̃s2b̃B

′
0

]

(

0;M2
g̃ ,M

2
b̃i

)

, (29)

where we consistently neglect the b quark mass if it is not enhanced by tan β. The Passarino-

Veltman functions B0

(

0;M2
g̃ ,M

2
b̃i

)

and B1

(

0;M2
g̃ ,M

2
b̃i

)

are defined in Appendix A. Using

the tree level relationship of Eq. 7, the mass counterterm can be written as,

δmb

mb

=
2αs(µR)

3π
Mg̃AbI(Mb̃1

,Mb̃2
,Mg̃)−∆b −

αs(µR)

3π

2
∑

i=1

B1

(

0;M2
g̃ ,M

2
b̃i

)

. (30)

The external gluon is renormalized as gAµ →
√
Z3g

A
µ =

√
1 + δZ3g

A
µ and the strong cou-

pling renormalization is gs → Zggs with δZg = −δZ3/2. We renormalize gs using the MS

scheme with the heavy squark and gluino contributions subtracted at zero momentum[44],

δZ3 = −αs(µR)

4π

[

1

6
Σq̃i

(

4πµ2
R

M2
q̃i

)ǫ

+ 2

(

4πµ2
R

M2
g̃

)ǫ]
1

ǫ
Γ(1 + ǫ) . (31)

In order to avoid overcounting the effects which are contained in g∆b

bbh to O(αs), we need

the additional counterterm,

δCT = ∆b

(

1 +
1

tanβ tanα

)

. (32)

The total contribution of the counterterms is,

σCT = σIBA

(

2δZV
b + δZ3 + 2δZg + 2

δmb

mb

+ 2δCT

)

= 2σIBA

(

δZV
b +

δmb

mb

+ δCT

)

. (33)

The tan β enhanced contributions from ∆b cancel between Eqs. 30 and 32. The expressions

for the contributions to the Xi, as defined in Eq. 22, are given in Appendix B for arbitrary

squark and gluino masses, and separately for each 1− loop diagram.

7 s
2b̃ ≡ sin 2θ̃b.
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III. RESULTS FOR MAXIMAL AND MINIMAL MIXING IN THE b-SQUARK

SECTOR

A. Maximal Mixing

The squark and gluino contributions to bg → bh can be examined analytically in several

scenarios. In the first scenario,

| m̃2
L − m̃2

R |<< mb

1 + ∆b
| Xb | . (34)

We expand in powers of
|m̃2

L−m̃2

R|

mbXb
. In this case the sbottom masses are nearly degenerate,

M2
S ≡ 1

2

[

M2
b̃1
+M2

b̃2

]

|M2
b̃1
−M2

b̃2
| =

(

2mb | Xb |
1 + ∆b

)(

1 +
(m̃2

L − m̃2
R)

2(1 + ∆b)
2

8m2
bX

2
b

)

<< M2
S . (35)

This scenario is termed maximal mixing since

sin 2θ̃b ∼ 1− (m̃2
L − m̃2

R)
2(1 + ∆b)

2

8m2
bX

2
b

. (36)

We expand the contributions of the exact one-loop SQCD calculation given in Appendix B

in powers of 1/MS, keeping terms to O
(

M2

EW

M2

S

)

and assuming MS ∼ Mg̃ ∼ µ ∼ Ab ∼ m̃L ∼
m̃R >> MW ,MZ ,Mh ∼MEW . In the expansions, we assume the large tan β limit and take

mb tan β ∼ O(MEW ). This expansion has been studied in detail for the decay h→ bb, with

particular emphasis on the decoupling properties of the results as MS and Mg̃ → ∞[28].

The SQCD contributions to the decay, h→ bb, extracted from our results are in agreement

with those of Refs. [28, 42]

The final result for maximal mixing, summing all contributions, is,

As ≡ −gsTAgbbhM
µ
s

{

1 +
αs(µR)

4π
Xs

i

}

= −gsTAgbbhM
µ
s

{

1 +

(

δgbbh
gbbh

)

max

+
αs(µR)

4π

s

M2
S

δκmax

}

At ≡ −gsTAgbbhM
µ
s

{

1 +
αs(µR)

4π
X t

i

}

= −gsTAgbbhM
µ
t

{

1 +

(

δgbbh
gbbh

)

max

}

A1 ≡ −gsTAgbbhM
µ
s

{

1 +
αs(µR)

4π
X1

i

}

= −gsTAgbbhM
µ
1

(

−αs(µR)u

2πM2
S

)

δκmax . (37)
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The contribution which is a rescaling of the bbh vertex is,

(

δgbbh
gbbh

)

max

=

(

δgbbh
gbbh

)(1)

max

+

(

δgbbh
gbbh

)(2)

max

, (38)

where the leading order term in MEW/MS is O(1),

(

δgbbh
gbbh

)(1)

max

=
αs(µR)

3π

Mg̃(Xb − Yb)

M2
S

f1(R) , (39)

with Yb ≡ Ab+µ cotα and R ≡Mg̃/MS. Eq. 39 only decouples for largeMS if the additional

limit MA → ∞ is also taken[23, 28]. In this limit,

Xb − Yb →
2µM2

Z

M2
A

tanβ cos 2β +O
(

M4
EW

M4
A

)

. (40)

The subleading terms of O(M2
EW/M

2
S) are,

8

(

δgbbh
gbbh

)(2)

max

=
αs(µR)

3π

{

−Mg̃Yb
M2

S

[

M2
h

12M2
S

f−1
3 (R) +

X2
bm

2
b

2(1 + ∆b)2M4
S

f3(R)

]

− m2
bXbYb

2(1 + ∆b)2M4
S

f−1
3 (R)

+
M2

Z

3M2
S

cβsα+β

sα
Ib3

[

3f1(R) +

(

2Mg̃Xb

M2
S

− 1

)

f2(R)

]}

(41)

The functions fi(R) are defined in Appendix C.

The s
M2

S

, u
M2

S

terms in Eq. 37 are not a rescaling of the lowest order vertex and cannot be

obtained from the effective Lagrangian. We find,

δκmax =
1

4

[

f3(R) +
1

9
f−1
3 (R)

]

−R
Yb

2MS

[

f ′
2(R) +

1

9
f̂2(R)

]

. (42)

The δκmax term is O(1) in MEW/MS and has its largest values for small R and large ratios

of Yb/MS, as can be seen in Fig. 2. Large effects can be obtained for Yb/MS ∼ 10 and

Mg̃ << MS. However, the parameters must be carefully tuned so that Ab/MS ∼< 1 in order

not to break color[45].

The amplitude squared, summing over final state spins and colors and averaging over

initial state spins and colors, including one-loop SQCD corrections is

∣

∣A
∣

∣

2

max
= −2παs(µR)

3
g2bbh

[(

u2 +M4
h

st

)[

1 + 2

(

δgbbh
gbbh

)

max

]

+
αs(µR)

2π

M2
h

M2
S

δκmax

]

. (43)

8 We use the shorthand, cβ = cosβ, sα+β = sin(α+ β), etc.
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FIG. 2: Contribution of δκmax defined in Eq. 42 as a function of R = Mg̃/MS .

Note that in the cross section, the δκmax term is not enhanced by a power of s and gives a

contribution of O
(

M2

EW

M2

S

)

.

Expanding ∆b in the maximal mixing limit,

∆b → −αs(µS)

3π

Mg̃µ

M2
S

tanβf1(R) +O
(

M4
EW

M4
S

)

. (44)

By comparison with Eq. 14,

∣

∣A
∣

∣

2

max
= −2παs(µR)

3
(g∆b

bbh)
2

{

(

u2 +M4
h

st

)

[

1 + 2

(

δgbbh
gbbh

)(2)

max

]

+
αs(µR)

2π

M2
h

M2
S

δκmax

}

+O
([

MEW

MS

]4

, α3
s

)

. (45)

Note that the mis-match in the arguments of αs in Eqs. 44 and 45 is higher order in αs

than the terms considered here. The (δgbbh/gbbh)
(2)
max and δκmax terms both correspond to

contributions which are not present in the effective Lagrangian approach. These terms are,

however, suppressed by powers of M2
EW/M

2
S and the non-decoupling effects discussed in

Refs. [28] and [27] are completely contained in the g∆b

bbh term.
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B. Minimal Mixing in the b Squark Sector

The minimal mixing scenario is characterized by a mass splitting between the b squarks

which is of order the b squark mass, |M2
b̃1
−M2

b̃2
|∼M2

S. In this case,

| m̃2
L − m̃2

R |>> mb | Xb |
(1 + ∆b)

, (46)

and the mixing angle in the b squark sector is close to zero,

cos 2θ̃b ∼ 1− 2m2
bX

2
b

(M2
b̃1
−M2

b̃2
)2

(

1

1 + ∆b

)2

. (47)

The non-zero subamplitudes are

As = −gsTAgbbhM
µ
s

{

1 +

(

δgbbh
gbbh

)

min

+
αs(µR)

4π

s

M̃2
g

δκmin

}

At = −gsTAgbbhM
µ
t

{

1 +

(

δgbbh
gbbh

)

min

}

A1 = −gsTAgbbhM
µ
1

(

−αs(µR)u

2πM̃2
g

)

δκmin . (48)

Expanding the exact one-loop results of Appendix B in the minimal mixing scenario,

δκmin =
1

8
Σ2

i=1

(

R2
i

[

1

9
f−1
3 (Ri)+ f3(Ri)

])

+
Yb
Mg̃

R2
1R

2
2

R2
2 − R2

1

(

3h1(R1, R2, 1)+
8

3
h1(R1, R2, 2)

)

,

(49)

where Ri = Mg̃/Mb̃i
and the functions fi(Ri) and hi(R1, R2, n) are defined in Appendix C.

The δκmin function is shown in Fig. 3. For large values of Yb/Mg̃ it can be significantly

larger than 1.

As in the previous section, the spin and color averaged amplitude-squared is,

| A |2min = −2αs(µR)π

3
(g2bbh)

{

(M4
h + u2)

st

[

1 + 2

(

δgbbh
gbbh

)

min

]

+
αs(µR)

2π
δκmin

M2
h

M2
g̃

}

,(50)

with,
(

δgbbh
gbbh

)

min

=

(

δgbbh
gbbh

)(1)

min

+

(

δgbbh
gbbh

)(2)

min

. (51)

The leading order term in MEW/MS is O(1),

(

δgbbh
gbbh

)(1)

min

=
2αs(µR)

3π

(Xb − Yb)

Mg̃

R2
1R

2
2

R2
1 − R2

2

h1(R1, R2, 0) . (52)
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.

The subleading terms are O
(

M2

EW

M2

S

)

,

(

δgbbh
gbbh

)(2)

min

=
αs

4π

{

− 8Mg̃Yb
3∆M2

b̃12

[

h2 (R1, R2)M
2
h

∆M2
b̃12

+
m2

bX
2
b

(

∆M2
b̃12

)2

(1 + ∆b)2

{

2S
(

f1 (R)

M2
b̃

)

+
h1 (R1, R2, 0)

∆M2
b̃12

}







+
4

3

cβsα+β

sα
Ib3M

2
Z

[

S
(

3f1 (R)− f2 (R)

3M2
b̃

)

− 2Mg̃Xb

∆M2
b̃12

A
(

f1 (R)

M2
b̃

)]

+
4

3

cβsα+β

sα

(

Ib3 − 2Qbs2W
)

M2
Z

[

A
(

3f1 (R)− f2 (R)

3M2
b̃

)

−2Mg̃Xb

∆M2
b̃12

{

S
(

f1 (R)

M2
b̃

)

+
h1 (R1, R2, 0)

∆M2
b̃12

}]

+
8

3

m2
bXbYb

∆M2
b̃12

(1 + ∆b)2
A
(

3f1 (R)− f2 (R)

3M2
b̃

)

}

. (53)

The symmetric and anti-symmetric functions are defined,

S(f(R,Mb̃) ≡ 1

2

[

f(R1,Mb̃1
) + f(R2,Mb̃2

)

]

A(f(R,Mb̃) ≡ 1

2

[

f(R1,Mb̃1
)− f(R2,Mb̃2

)

]

(54)
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and ∆M2
b̃12

≡ M2
b̃1
−M2

b̃2
. The remaining functions are defined in Appendix C.

By expanding ∆b in the minimal mixing limit, we find the analogous result to that of the

maximal mixing case,

| A |2min = −2αsπ

3
(g∆b

bbh)
2

{

(M4
h + u2)

st

[

1 + 2

(

δgbbh
gbbh

)(2)

min

]

+
αs

2π
δκmin

M2
h

M2
g̃

}

+O
([

MEW

MS

]4

, α3
s

)

. (55)

The contributions which are not contained in σIBA are again found to be suppressed by

O
([

MEW

MS

]2)

.

IV. NUMERICAL RESULTS

We present results for pp → b(b)h at
√
s = 7 TeV with pTb > 20 GeV and | ηb |<

2.0. We use FeynHiggs to generate Mh and sinαeff and then iteratively solve for the

b squark masses and ∆b from Eqs. 12 and 19. We evaluate the 2-loop MS b mass at

µR =Mh/2, which we also take to be the renormalization and factorization scales9. Finally,

Figs 4, 5, 6, and 7 use the CTEQ6m NLO parton distribution functions[46]. Figs. 4, 5

and 6 show the percentage deviation of the complete one-loop SQCD calculation from the

Improved Born Approximation of Eq. 16 for tan β = 40 and tanβ = 20 and representative

values of the MSSM parameters10. In both extremes of b squark mixing, the Improved

Born Approximation approximation is within a few percent of the complete one-loop SQCD

calculation and so is a reliable prediction for the rate. This is true for both large and small

MA. In addition, the large MS expansion accurately reproduces the full SQCD one-loop

result to within a few percent. These results are expected from the expansions of Eqs. 45

and 55, since the terms which differ between the Improved Born Approximation and the

one-loop calculation are suppressed in the large MS limit.

Fig. 7 compares the total SQCD rate for maximal and minimal mixing, which bracket

the allowed mixing possibilities. For large MS, the effect of the mixing is quite small, while

for MS ∼ 800 GeV , the mixing effects are at most a few fb. The accuracy of the Improved

Born Approximation as a function of mR is shown in Fig. 8 for fixed MA, µ, and mL. As

9 ∆b is evaluated using αs(MS).
10 Figs. 4, 5 and 6 do not include the pure QCD NLO corrections[17].
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FIG. 4: Percentage difference between the Improved Born Approximation and the exact one-loop

SQCD calculation of pp → bh for maximal mixing in the b-squark sector at
√
s = 7 TeV , tan β = 40,

and MA = 1 TeV .

mR is increased, the effects become very tiny. Even for light gluino masses, the Improved

Born Approximation reproduces the exact SQCD result to within a few percent.

In Fig. 9, we show the scale dependence for the total rate, including NLO QCD and SQCD

corrections (dotted lines) for a representative set of MSSM parameters at
√
s = 7 TeV . The

NLO scale dependence is quite small when µR = µF ∼Mh. However, there is a roughly∼ 5%

difference between the predictions found using the CTEQ6m PDFs and the MSTW2008 NLO

PDFs[47]. In Fig. 10, we show the scale dependence for small µF (as preferred by [16]),

and see that it is significantly larger than in Fig. 9. This is consistent with the results of

[19, 29].

V. CONCLUSION

Our major results are the analytic expressions for the SQCD corrections to b Higgs

associated production in the minimal (Eqs. 41, 42 and 45) and maximal (Eqs. 49, 53

and 55) b squark mixing scenarios for large tanβ and squark masses,MS . These results
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and MA = 250 GeV .

clearly demonstrate that deviations from the ∆b approximation are suppressed by powers

of (MEW/MS) in the large tanβ region. The ∆b approximation hence yields an accurate

prediction in the 5 flavor number scheme for the cross section for squark and gluino masses

at the TeV scale. As a by-product of our calculation, we update the predictions for b Higgs

production at
√
s = 7 TeV .
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Appendix A: Passarino-Veltman Functions

The scalar integrals are defined as:

i

16π2
A0(M

2
0 ) =

∫

dnk

(2π)n
1

N0
,

i

16π2
B0(p

2
1;M

2
0 ,M

2
1 ) =

∫

dnk

(2π)n
1

N0N1
,

i

16π2
C0(p

2
1, p

2
2, (p1 + p2)

2;M2
0 ,M

2
1 ,M

2
2 ) =

∫

dnk

(2π)n
1

N0N1N2
,

i

16π2
D0(p

2
1, p

2
2, p

2
3, p

2
4, (p1 + p2)

2, (p2 + p3)
2;M2

0 ,M
2
1 ,M

2
2 ,M

2
3 )

=

∫

dnk

(2π)n
1

N0N1N2N3

, (56)

where,

N0 = k2 −M2
0

N1 = (k + p1)
2 −M2

1

N2 = (k + p1 + p2)
2 −M2

2

N3 = (k + p1 + p2 + p3)
2 −M2

3 . (57)
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4 .

The tensor integrals encountered are expanded in terms of the external momenta pi and

the metric tensor gµν . For the two-point function we write:

i

16π2
Bµ(p21;M

2
0 ,M

2
1 ) =

∫

dnk

(2π)n
kµ

N0N1

≡ i

16π2
pµ1B1(p

2
1,M

2
0 ,M

2
1 ) , (58)

while for the three-point functions we have both rank-one and rank-two tensor integrals

which we expand as:

Cµ(p21, p
2
2, (p1 + p2)

2;M2
0 ,M

2
1 ,M

2
2 ) = pµ1C11 + pµ2C12 ,

Cµν(p21, p
2
2, (p1 + p2)

2;M2
0 ,M

2
1 ,M

2
2 ) = pµ1p

ν
1C21 + pµ2p

ν
2C22

+ (pµ1p
ν
2 + pν1p

µ
2)C23 + gµνC24 , (59)

where:
i

16π2
Cµ(Cµν)(p21, p

2
2, (p1 + p2)

2;M2
0 ,M

2
1 ,M

2
2 ) ≡

∫

dnk

(2π)n
kµ(kµkν)

N0N1N2

(60)

Finally, for the box diagrams, we encounter rank-one and rank-two tensor integrals which
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are written in terms of the Passarino-Veltmann coefficients as:

i

16π2
Dµ(p21, p

2
2, p

2
3, p

2
4, (p1 + p2)

2, (p2 + p3)2;M2
0 ,M

2
1 ,M

2
2 ) ≡

∫

dnk

(2π)n
kµ

N0N1N2N3

=
i

16π2

{

pµ1D11 + pµ2D12 + pµ3D13

}

. (61)

i

16π2
Dµν(p21, p

2
2, p

2
3, p

2
4, (p1 + p2)

2, (p2 + p3)
2;M2

0 ,M
2
1 ,M

2
2 ) ≡

∫

dnk

(2π)n
kµkν

N0N1N2N3

=
i

16π2

{

gµνD00 + tensor structures not needed here

}

. (62)

Appendix B: One-Loop Results

In this appendix we give the non-zero contributions of the individual diagrams in terms

of the basis functions of Eq. 20 and the decompositions of Eq. 22. The contributions

proportional to mb tanβ are new and were not included in the results of Ref.[23]. Although

we specialize to the case of the lightest Higgs boson, h, our results are easily generalized

to the heavier neutral Higgs boson, H , and so the Feynman diagrams in this appendix are

shown for φi = h,H .
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The self-energy diagrams of Fig. 11:

X
(t)
S1

=
4

3

2
∑

i=1

{

B1 − (−1)i
2mbMg̃s2b̃

t
B0

}

(

M2
b̃i

)

X
(2)
S1

= −4

3

2
∑

i=1

(−1)i
mbMg̃s2b̃

t
B0

(

M2
b̃i

)

(63)

where we have have used the shorthand notation for the arguments of Passarino-Veltman

functions, B0,1

(

M2
b̃i

)

≡ B0,1

(

t;M2
g̃ ,M

2
b̃i

)

.

X
(s)
S2

=
4

3

2
∑

i=1

{

B1 − (−1)i
2mbMg̃s2b̃

s
B0

}

(

M2
b̃i

)

X
(2)
S2

= −4

3

2
∑

i=1

(−1)i
mbMg̃s2b̃

s
B0

(

M2
b̃i

)

(64)

and B0,1

(

M2
b̃i

)

≡ B0,1

(

s;M2
g̃ ,M

2
b̃i

)

The vertex functions of Fig. 12:
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FIG. 11: Self-energy diagrams, S1 and S2.

Diagram V1:

X
(s)
V1

=
s

6

2
∑

i=1

{

C12 + C23 − (−1)i
2mbMg̃s2b̃

t
(C0 + C11)

}

(

M2
b̃i

)

X
(t)
V1

= −1

6

2
∑

i=1

{

t (C12 + C23) + 2C24 − (−1)i 2mbMg̃s2b̃ (C0 + C11)
}(

M2
b̃i

)

X
(1)
V1

= −u
3

2
∑

i=1

{

C12 + C23 − (−1)i
2mbMg̃s2b̃

t
(C0 + C11)

}

(

M2
b̃i

)

X
(3)
V1

= −1

3

∑

i

(−1)imbMg̃s2b̃ (C0 + C11)
(

M2
b̃i

)

(65)
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where C0,11,12,23,24

(

M2
b̃i

)

≡ C0,11,12,23,24

(

0, 0, t;M2
g̃ ,M

2
b̃i
,M2

b̃i

)

.

Diagram V2:

X
(s)
V2

= −1

3

2
∑

i=1

C24

(

M2
b̃i

)

X
(1)
V2

= −u
3

2
∑

i=1

{

C12 + C23 − (−1)i
2mbMg̃s2b̃

s
(C0 + C11)

}

(

M2
b̃i

)

X
(4)
V2

=
1

3

∑

i

(−1)imbMg̃s2b̃ (C0 + C11)
(

M2
b̃i

)

(66)

where C0,11,12,23,24

(

M2
b̃i

)

≡ C0,11,12,23,24

(

0, 0, s;M2
g̃ ,M

2
b̃i
,M2

b̃i

)

.

The vertex functions of Fig. 13:

b

b̃
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FIG. 13: Virtual diagrams, V3 and V4.
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Diagram V3:

X
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)
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t
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X
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2
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(
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2
∑

i=1
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)

(67)

where C0,11,12,23,24

(

M2
b̃i

)

≡ C0,11,12,23,24

(

0, 0, t;M2
g̃ ,M

2
g̃ ,M

2
b̃i

)

.

Diagram V4:

X
(s)
V4

= −3

2

2
∑

i=1

{

M2
g̃C0 − 2 (1− ǫ)C24 − s (C12 + C23) + (−1)i 2mbMg̃s2b̃C0

}(

M2
b̃i

)

X
(1)
V4

= −3u
2
∑

i=1

{

C12 + C23 − (−1)i
2mbMg̃s2b̃

s
(C0 + C12)

}

(

M2
b̃i

)

X
(2)
V4

= −3

2

2
∑

i=1

(−1)imbMg̃s2b̃C0

(

M2
b̃i

)

X
(4)
V4

= 3

2
∑

i=1

(−1)imbMg̃s2b̃ {C0 + C12}
(

M2
b̃i

)

(68)

where C0,11,12,23,24

(

M2
b̃i

)

≡ C0,11,12,23,24

(

0, 0, s;M2
g̃ ,M

2
g̃ ,M

2
b̃i

)

.

The vertex functions of Fig. 14:

b̃

b̃

gAµ

b

g̃B

b

φi

b

b

gAµ

b

g̃C

b̃

b̃

φi

b

FIG. 14: Virtual diagrams, V5 and V6.
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Diagram V5:

X
(t)
V5

=
4

3

2
∑

i,j=1

Ch,ij {δijmbC11 + aijMg̃C0}
(

M2
b̃i
,M2

b̃j

)

X
(2)
V5

=
4

3
mb

∑

i,j=1,2

Ch,ijδijC12

(

M2
b̃i
,M2

b̃j

)

(69)

where C0,11,12,23,24

(

M2
b̃i
,M2

b̃j

)

≡ C0,11,12,23,24

(

0,M2
h , t;M

2
g̃ ,M

2
b̃i
,M2

b̃j

)

, the squark mixing

matrix is defined,




a11 a12

a21 a22



 =





s2b̃ c2b̃

c2b̃ −s2b̃



 (70)

and the light Higgs-squark-squark couplings Ch,ij, are normalized with respect to the Higgs-

quark-quark coupling[2],

Ch,11 + Ch,22 = 4mb +
2M2

Z

mb
Ib3
sα+βcβ
sα

(71)

Ch,11 − Ch,22 = 2Ybs2b̃ +
2M2

Z

mb
c2b̃
(

Ib3 − 2Qbs
2
W

) sα+βcβ
sα

(72)

Ch,12 = Ch,21 = Ybc2b̃ −
M2

Z

mb
s2b̃
(

Ib3 − 2Qbs2W
) sα+βcβ

sα
, (73)

s2W = sin θ2W = 1−M2
W/M

2
Z and Yb is defined below Eq. 41.

Diagram V6:

X
(s)
V6

=
4

3

∑

i,j=1,2

Ch,ij {δijmbC11 + aijMg̃C0}
(

M2
b̃i
,M2

b̃j

)

X
(2)
V6

=
4

3
mb

∑

i,j=1,2

Ch,ijδijC12

(

M2
b̃i
,M2

b̃j

)

X
(t)
V6

= X
(3)
V6

= X
(4)
V6

= 0 (74)

where C0,11,12,23,24

(

M2
b̃i
,M2

b̃j

)

≡ C0,11,12,23,24

(

0,M2
h , s;M

2
g̃ ,M

2
b̃i
,M2

b̃j

)

.

The box diagram of Fig. 15:

X
(s)
B1

=
3Mg̃s

2

∑

i,j=1,2

aijCh,ij {D0 +D13}
(

M2
b̃i
,M2

b̃j

)

X
(t)
B1

= −3Mg̃t

2

∑

i,j=1,2

aijCh,ijD13

(

M2
b̃i
,M2

b̃j

)

X
(1)
B1

= 3Mg̃u
∑

i,j=1,2

aijCh,ij {D11 −D13}
(

M2
b̃i
,M2

b̃j

)

X
(2)
B1

= −3mb

2

∑

i,j=1,2

δijCh,ij

{

M2
g̃D0 − 2D00

}

(

M2
b̃i
,M2

b̃j

)

(75)
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g̃B bgA,µ

b b̃ φi

b̃g̃C

FIG. 15: Box diagram, B1.

where, D0

(

M2
b̃i
,M2

b̃j

)

≡ D0

(

0, 0, 0,M2
h , s, t;M

2
b̃i
,M2

g̃ ,M
2
g̃ ,M

2
b̃j

)

.

The box diagram of Fig. 16:

b̃ bgA,µ

b g̃B φi

b̃b̃

FIG. 16: Box diagram, B2.

Diagram B2:

X
(s)
B2

= −Mg̃s

6

∑

i,j=1,2

aijCh,ij {D0 +D11}
(

M2
b̃i
,M2

b̃j

)

X
(t)
B2

=
Mg̃t

6

∑

i,j=1,2

aijCh,ij {D0 +D11}
(

M2
b̃i
,M2

b̃j

)

X
(1)
B2

=
Mg̃u

3

∑

i,j=1,2

aijCh,ij {D11 −D12}
(

M2
b̃i
,M2

b̃j

)

X
(2)
B2

= −mb

3

∑

i,j=1,2

δijCh,ijD00

(

M2
b̃i
,M2

b̃j

)

(76)

where D0

(

M2
b̃i
,M2

b̃j

)

≡ D0

(

0, 0, 0,M2
h , u, s;M

2
b̃i
,M2

g̃ ,M
2
b̃j
,M2

b̃j

)

.

The box diagram of Fig. 17:
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gAµ b̃ b

b g̃B φi

b̃b̃

FIG. 17: Box diagram, B3.

Diagram B3:

X
(s)
B3

=
Mg̃s

6

∑

i,j=1,2

aijCh,ij {D0 +D12}
(

M2
b̃i
,M2

b̃j

)

X
(t)
B3

= −Mg̃t

6

∑

i,j=1,2

aijCh,ij {D0 +D12}
(

M2
b̃i
,M2

b̃j

)

X
(1)
B3

=
Mg̃u

3

∑

i,j=1,2

aijCh,ij {D11 −D12}
(

M2
b̃i
,M2

b̃j

)

X
(2)
B3

= −mb

3

∑

i,j=1,2

δijCh,ijD00

(

M2
b̃i
,M2

b̃j

)

(77)

where D0

(

M2
b̃i
,M2

b̃j

)

≡ D0

(

0, 0, 0,M2
h , u, t;M

2
b̃i
,M2

g̃ ,M
2
b̃j
,M2

b̃j

)

.

The vertex and external wavefunction counter terms, Eq. 29, along with the subtraction

of Eq. 32, give the counterterm of Eq. 33:

X
(s)
CT = X

(t)
CT =

(

4π

αs(µR)

)[

δZV
b +

δmb

mb
+ δCT

]

=
4

3

[

2Mg̃YbI(Mb̃1
,Mb̃2

,Mg̃) +

2
∑

i=1

(

− (−1)i 2mbs2b̃B
′
0 + 2m2

bB
′
1

)

(0;M2
g̃ ,M

2
b̃i
)

]

.(78)

Note that the counterterm contains no large tanβ enhanced contribution.

Appendix C: Definitions

In this appendix we define the f unctions used in the expansions of the Passarino-Veltman

integrals in the maximum and minimum mixing scenarios, where R ≡ Mg̃

MS
in the maximal
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mixing scenario, and Ri ≡
M

b̃i

MS
in the minimal mixing scenario:

f1 (R) =
2

(1− R2)2
[

1−R2 +R2 logR2
]

f2 (R) =
3

(1− R2)3
[

1−R4 + 2R2 logR2
]

f3 (R) =
4

(1− R2)4

[

1 +
3

2
R2 − 3R4 +

1

2
R6 + 3R2 logR2

]

f4 (R) =
5

(1− R2)5

[

1

2
− 4R2 + 4R6 − 1

2
R8 − 6R4 logR2

]

h1 (R1, R2, n) =

(

R2
1

1−R2
1

)n
logR2

1

1−R2
1

−
(

R2
2

1−R2
2

)n
logR2

2

1− R2
2

−
n
∑

j=0

(−1)j
j + 2

2

{

(

1− R2
1

)j−n −
(

1−R2
2

)j−n
}

h2 (R1, R2) =
R2

1 +R2
2 − 2

(1− R2
1) (1−R2

2)
+

1

R2
1 −R2

2

[

R2
1 +R2

2 − 2R4
1

(1− R2
1)

2 logR2
1

−R
2
1 +R2

2 − 2R4
2

(1−R2
2)

2 logR2
2

]

. (79)

Further,

f ′
i (R) ≡ dfi (x)

dx2

∣

∣

∣

∣

∣

x=R

f−1
i (R) ≡ fi (1/R)

R2

f̂i (R) ≡ 1

R4

dfi (x)

dx2

∣

∣

∣

∣

∣

x=1/R

. (80)
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