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A warped extra-dimensional model, where the Standard Model Yukawa hierarchy

is set by UV physics, is shown to have a sweet spot of parameters with improved

experimental visibility and possibly naturalness. Upon marginalizing over all the

model parameters, a Kaluza-Klein scale of 2.1 TeV can be obtained at 2σ (95.4% CL)

without conflicting with electroweak precision measurements. Fitting all relevant

parameters simultaneously can relax this bound to 1.7 TeV. In this bulk version

of the Rattazzi-Zaffaroni shining model, flavor violation is also highly suppressed,

yielding a bound of 2.4 TeV. Non-trivial flavor physics at the LHC in the form of

flavor gauge bosons is predicted. The model is also characterized by a depletion of

the third generation couplings – as predicted by the general minimal flavor violation

framework – which can be tested via flavor precision measurements. In particular,

sizable CP violation in ∆B = 2 transitions can be obtained, and there is a natural

region where Bs mixing is predicted to be larger than Bd mixing, as favored by

recent Tevatron data. Unlike other proposals, the new contributions are not linked

to Higgs or any scalar exchange processes.

I. INTRODUCTION

Plunging the Standard Model (SM) in a warped extra-dimension provides new perspec-

tives on understanding electroweak symmetry breaking (EWSB), offering a new way to solve

the gauge hierarchy problem [1]. The Randall-Sundrum (RS) class of models also offers a
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simple way to address the SM flavor puzzle by localizing the SM fermions away from the

Higgs vacuum expectation value (VEV) with O(1) parameters [2, 3], which is referred to as

the anarchic approach. In addition, the anarchic setup protects against large flavor and CP

violation via the so called RS-GIM mechanism [4–6]. Yet, a residual little CP problem, in the

form of too large contributions to ǫK [7–11] and electric dipole moments [4, 5, 12], remains.

(Some more RS flavor issues can be found in e.g. [13–22].) Furthermore, this framework calls

for improvement on naturalness since a fine-tuning of worse than O(10%) [9, 23–25] of the

electroweak (EW) scale is required to comply with EW precision tests (EWPTs) [26, 27].

In the best of all known RS models, including a custodial symmetry for Z → bb̄, the lore

is that this pushes the Kaluza-Klein (KK) scale above 3 TeV (below we argue that these

numbers may be too optimistic).

It has been known for some time that changing the position of the light fermions, thus

giving up on the virtues of the anarchic approach, may result in a better EW fit. In

particular, if the profile of all the light fermions is close to being flat, a suppression of

the Peskin-Takeuchi S parameter is obtained [26, 28–33]. This would allow to lower the

KK scale and possibly improve the naturalness of the model. It is interesting that such a

fermion setup is consistent with imposing in the bulk the approximate SM flavor symmetries:

U(2)Q×U(2)U ×U(2)D ×U(3)L×U(3)E , where Q,U,D (L,E) correspond to the SM quark

(lepton) doublet, up and down type quark (charged lepton) singlets, respectively.

In the following, we propose to give up on the warped extra dimensional built-in mech-

anism for solving the flavor puzzle and the RS-GIM protection; after all, no experimental

evidence implies that the flavor hierarchies arise from TeV scale physics, while, on the other

hand, the hierarchy problem does inevitably point to it. We assume that the Yukawa hi-

erarchy is set by some unknown physics on the UV brane, while both the bulk and the IR

brane are invariant under the (now gauged) SM flavor symmetries.1 Then the hierarchical

five dimensional (5D) fundamental Yukawa couplings are shined through the bulk by scalar

flavon fields, thus realizing the approximate SM flavor symmetry structure.

Such a setup was first proposed by Rattazzi and Zaffaroni (RZ) [36], where the SM

fields were localized on the IR brane as in the original RS1 model [1]. In this case, higher-

1 The lepton symmetry can be also be broken down to products of U(2). However, for simplicity we do not

consider this possibility nor do we focus on lepton flavor violation, which is suppressed in our framework,

or neutrino masses. Both issues are discussed in [34, 35].
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dimensional operators, which generically contribute to EWPTs and flavor changing neutral

currents (FCNCs), can be suppressed, but only at the expense of a severe little hierarchy

problem.

We show below that a bulk version of the RZ model, with a bulk Higgs [37], leads to a very

exciting class of models, where improved agreement with EWPTs is obtained. We perform a

global fit to the EW precision observables, evaluating the contributions to S, T and Z → bb̄

at one-loop order (which are calculable in this model). In order to compare our model to

the celebrated anarchic case, we also repeat the fit for this case. (However, for simplicity,

we only consider one possible custodial assignment). As a result of our analysis, we find a

sweet spot in the parameter space of the bulk RZ model, which allows for a significantly

lower KK scale, such that it would be much easier to observe (or exclude [38]) at the LHC.

Furthermore, we show that the inclusion of the one-loop contributions to the EW observables

raises the KK scale of the anarchic case. In addition, the fine-tuning associated with our

model is ameliorated relative to the anarchic case.

The above scenario offers also some interesting perspective on flavor physics. First of

all, the ǫK RS problem is solved, so that the bound from flavor is considerably weakened.

Second, the model is characterized by a depletion of the third generation couplings, as

predicted by the general minimal flavor violation framework [39]. The model also yields

sizable CP violation (CPV) in ∆B = 2 transitions with, in particular, the possibility to

obtain CPV contributions in Bs mixing larger than in Bd , as seems favored by the Tevatron

data at present [40]. This is achieved without invoking Higgs or other scalar exchange

processes [41–43]. Finally, since the bulk flavor symmetry is gauged, such that large breaking

effects from quantum gravity are avoided, flavor gauge bosons are awaited around the TeV

scale. Such states may be discovered at the LHC [44].

In short, the main differences between our study and previous ones are

• We give a rational and an explicit model (a bulk RZ setup with some rough specula-

tions on a possible extension to grand unification) where the light fermion profiles are

roughly flat.

• We choose a custodial representation for the leptons, which turns out to significantly

improve the result of the global EW fit.

• We emphasize, by calculating explicitly (and via 5D power counting), that in the bulk
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Higgs case the S parameter is one-loop finite. Furthermore, our estimation of the UV

sensitive contribution to S, based on naive dimensional analysis (NDA), shows that

they are subdominant (for related discussions see [27, 33, 45]). Thus, the resulting

value of S is dominated by finite contributions, and is under control.

• We use updated input parameters for our EW fit taken from [46]. Additionally, an

appropriate top 5D Yukawa value, matched to the top mass at the relevant scale, is

used, and our 5D gauge couplings are matched at one-loop.

• Our statistical treatment consists of two different analyses. In the first one we report a

bound on the KK scale upon marginalizing over all the other model parameters, while

in the second we produce a bound when all the relevant parameters are combined in

a multi-dimensional fit.

• Finally, even though for simplicity we have not considered the case where the Higgs is

a pseudo-Goldstone boson (PGB), we provide a rough speculation on the fine-tuning

of PGB extensions that include the above improvements, which can be compared to

other genuine PGB studies [9, 23, 25].

The remaining of the paper is organized as follows. In Sec. II we describe the warped

5D setup and define our notation. Then, in Sec. III, the constraints from EWPTs on this

class of models are presented, while in Sec. IV we elaborate on their flavor phenomenology.

Finally, Sec. V gathers our conclusions and discusses prospects at the LHC.

II. THE MODEL

We work in a slice of AdS5 space-time. The metric is ds2 = (kz)−2 (ηµνdx
µdxν − dz2)

with ηµν = diag(+ − −−) and a curvature scale k ≃ 2.4 × 1018GeV, hence solving the

hierarchy problem all the way up to the Planck scale. The slice is bounded by two branes at

z = R ∼ k−1 and z = R ′ ∼TeV−1 usually referred to as the UV and IR branes, respectively.

We impose a SU(2)L×SU(2)R×U(1)X gauge symmetry in the bulk. For simplicity, in this

study we assume that the Higgs field –H ∼ (2, 2)0 under the (L,R)X custodial gauge group –

is a bulk field with VEV 〈H〉 = v5(z, β)/
√
2 , where v5(z, β) ≃ vR′/R3/2

√

2(1 + β)(z/R′)2+β

and v ≃ 246GeV [47]. The β parameter sets the VEV localization in the bulk, with β = 0
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corresponding to gauge-Higgs unified models [23, 48]. Eventually, the model should be

lifted to one where the Higgs is realized as a pseudo-Goldstone boson [23, 49], so that the

quadratically divergent corrections to the Higgs mass are cut at the KK scale.2 Therefore,

we choose β = 0 in the following, so we expect our conclusions to approximately hold also

in models where the Higgs is a pseudo-Goldstone boson. We also gauge in the bulk the non-

abelian part of the SM flavor symmetry SU(3)Q×SU(3)U×SU(3)D×SU(3)L×SU(3)E , such

that all flavor changing effects are controlled by the SM Yukawas, thus realizing the minimal

flavor violation (MFV) ansatz [36, 50, 51]. The fermions are embedded as Q ∼ (2, 2)2/3,

U ∼ (1, 1)2/3, D ∼ (1, 3)2/3 ⊕ (3, 1)2/3 and L ∼ (2, 2)−1, E ∼ (1, 3)0 ⊕ (3, 1)0, so they

transform covariantly under the custodial parity [48].

The bulk gauge symmetry breaks down to the SM gauge group on the UV brane and still

preserves a custodial SU(2)L+R after EWSB, so the T parameter is protected from large

bulk cutoff corrections. The breaking of the flavor group occurs only on the UV brane, and

is shined towards the IR by some flavon scalar fields Φ, with VEV 〈Φ〉 ∝ YI , where YI are

the 5D Yukawa matrices (I = U,D,E). In contrast with most previous studies, we take

the 5D Yukawas to display the hierarchy observed in 4D, which boils down to assuming

that the latter are set by unspecified UV physics. The large top Yukawa implies a shift in

the third generation bulk masses, while the 5D bottom Yukawa is free to be taken either

large or small. The latter can be regarded as the large or small tan β cases in two Higgs

doublet models, such as supersymmetric theories. For simplicity we shall assume in the EW

global fit that the 5D bottom Yukawa is small, and leave the implications of a large bottom

Yukawa option to the flavor physics discussion in Sec. IV. This setup guarantees that at

low energies the model belongs to the MFV framework [52–61], where harmless top Yukawa

resummation is expected and may be observable in the future. Note that although taking a

somewhat larger 5D bottom Yukawa (but still suppressed compared to the 5D top Yukawa)

would not strongly affect the EWPTs, it would lead to a richer flavor phenomenology. In

addition, flavor violation from the presence of flavor gauge bosons is also expected, but yet

again, it is going to be subject to MFV protection [44]. In the following we discuss in more

detail the EW and flavor sectors of our model and their phenomenological implications.

2 We leave this specific analysis to future work.
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III. ELECTROWEAK PRECISION TESTS

Models of new physics for the EW scale are tightly constrained, at the per mile level, by

the measurements at SLD and LEP, both at and above the Z pole [62, 63], as well as by

the Tevatron. In a large set of such models, the gauge sector observables, described by the

so-called oblique parameters, capture most (if not all) of the constraints on new physics.

Moreover, the large coupling of the top to the EWSB sector typically implies sizable non-

oblique corrections for the third generation quarks, notably to the Zb̄LbL coupling. The

oblique parameters, along with the Z partial decay width into bb̄, constitute a reduced set of

EW precision observables (EWPOs) often sufficient to constrain RS models [24, 26, 27, 64–

67]. Indeed, whenever localized towards the UV brane, the (elementary) light fermions are

barely sensitive to EWSB in the IR, and induce negligible corrections to the EWPOs. In

contrast, since the light fermions are more composite in our setup, additional non-oblique

corrections are expected to be generated. This requires a more careful study of other observ-

ables, such as the hadronic Z decay width and observables sensitive to four fermion-operators

in the lepton sector, like atomic parity violation (APV) in heavy nuclei. In such a highly

non-universal new physics model, this implies that one must look at more than O(35) EW-

POs in order to assess whether EWPTs are passed. In the following, we discuss in detail

how such a fit is performed. Then, we report the resulting bounds on the KK scale and

estimate the fine-tuning in our model (as well as in the anarchic case) by computing the

sensitivity of the new physics scale to the input parameters.

A. Global Fit to Electroweak Observables

In order to properly include all possible correlations among the various observables, we

perform a global fit to the EW precision data following the approach of [68, 69]. To do

so, we match the relevant dimension-six operators in the SM to our RS setup (see [65] for

a review), including the most important, top (and eventually bottom) Yukawa enhanced,

radiative corrections to the S and T parameters and the Zb̄LbL vertex. Radiative corrections

to lighter fermion-gauge boson couplings and to four-fermion operators will be suppressed

by smaller Yukawas. Note that when the bottom 5D Yukawa is O(1) or larger, additional

loop contributions to the Zb̄LbL vertex involving neutral currents become important. We
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have not included such contributions and therefore will limit our analysis to a relatively

small bottom Yukawa, where these radiative corrections are subdominant.3

We include the following RS contributions to the SM dimension-six operators. First of

all, working at leading order in (v/mKK)
2 ≪ 1, the tree-level effects arise from exchange

of KK-gauge bosons through the diagrams of Fig. 1. Additional tree-level contributions

from the LH bottom sector (potentially, controlled by the top Yukawa coupling) are absent

due to the custodial protection [48] (more generally, the LH down-type sector of the three

generations enjoys a custodial protection). For the up-type, as well as the RH down quark

sectors, which are not protected by this symmetry, the effects are suppressed by the assumed

hierarchical nature of the 5D Yukawa couplings (except for the top which is not, at present,

experimentally constrained).

W a
µ,0 W a

ν,0

p

Xi

f̄0

W a
µ,0Xi

f0

p

f̄0

Xi

f0

f̄ ′

0

f ′

0

FIG. 1: Tree diagrams contributing at leading order to the EWPO. The double line denotes a sum

over the various gauge KK-states, while the cross represents KK/zero mode mixing from the Higgs

VEV. W a
0 are the SM zero modes with a = 0, . . . , 3 and W 0 ≡ B is the hypercharge gauge field.

Furthermore, it is known that isospin breaking in the fermionic sector leads to sizable

corrections to T at one-loop [26]. This correction is often negative as a result of the choice

of custodial representations, unless the singlet contribution dominates, in which case T can

be positive at one-loop [27, 45]. On the other hand, the one-loop corrections to S tend to be

positive and relatively small in RS for a reasonable range of parameters [27, 45]. To prevent

the appearance of a large S parameter at tree-level and cancel the effect on the global fit of

the small positive one-loop correction, we will focus on a region where the light fermions are

almost flat [26]. Notice that since S is not protected by any symmetry, it could a priori be

UV sensitive in 5D, whereas T is finite to all orders in perturbation thanks to the custodial

symmetry. However, we show below that for a bulk Higgs the S parameter is one-loop

3 In practice, this implies a hierarchy of ∼ 4 − 5 between the 5D bottom Yukawa and the best fit value

obtained for the top one.
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finite. Thus the one-loop shifts in both S and T are calculable and dominated by the first

KK-states. In practice, we include the first two KK-levels in the fit; higher KK-levels would

yield at most a (m
(1)
KK/m

(3)
KK)

2 ∼ 10% correction, which we choose to neglect. Moreover,

third generation KK-quarks dominate the shift to the weak gauge boson two-point functions

through the diagram of Fig. 2, while other contributions are suppressed by either gauge

couplings or smaller 5D Yukawas.

W a
µ,0 W b

ν,0

k

k − p

FIG. 2: Diagram contributing to the SM gauge boson propagators at one-loop.

We include the one-loop correction to the ZbLb̄L coupling as well. The dominant con-

tribution is from KK-fermions through the diagrams of Fig. 3, involving the SM charged

current. Finally, although such contributions are not present in the model under study, we

bL b̄L

W

Zµ

ti

bL b̄L

W

Zµ

bL b̄L

W

Zµ

bL b̄L

W

Zµ

FIG. 3: One-loop diagrams contributing to ZbLb̄L in the unitary gauge. KK-modes of third

generation Q = 2/3 states and W± zero-mode are running in the loop.

report the impact on the fit of the corrections to the S and T parameters arising from SM

loops with a pseudo-Goldstone Higgs [70, 71]. We refer the reader to appendix A for further

details on both the tree and one-loop calculations.

B. UV Sensitivity of the S-parameter

We start by deriving the 5D degree of divergence of various one-loop contributions to S

using NDA. We match the various relevant diagrams onto the coefficient CS of the 5D local

operator, BµνW
µνa
L H†σaH , that generates S in the 4D effective action via S = 4πv2CS/gg

′.

Gauge and fermion contributions to this operator scale as Cg
S ∝ g45 and CY

S ∝ Y 2
t g

2
5 , respec-

tively. Recalling that the Yukawa coupling has the same mass dimension as the 5D gauge
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coupling for a bulk Higgs, [Yt] = [g5] = −1/2, power counting yields Cg,Y
S ∼ Λ−1

5 , hence a

finite contribution, where Λ5 ≡ NKK × k is the 5D cut-off. Thus S is perfectly calculable at

one-loop, and is dominated by the KK-fermion contribution, provided Yt ≫ g5.

The 5D top Yukawa grows fast in the UV and quickly becomes non-perturbative. A

conservative approach usually requires NKK & 3, so that the 5D construction makes sense

as an effective theory; we choose NKK = 3 in the following. Assuming in addition that the

KK-fermion coupling to a bulk Higgs is O(1) for β = 0, NDA yields a perturbativity upper

bound on Yt of

Yt

√
k ≤ 4π/

√

NKK ≃ 7.3 . (1)

Higher loops, however, will still be divergent, as they involve more powers of Yt and/or g5.

W
3

µ,0 Bν,0

Yt

Yt

H

H

FIG. 4: Two-loop diagram relevant for matching onto the dimension-six operator generating the

S parameter. A similar diagram with exchange of weak gauge boson is also present.

This introduces a UV cut-off sensitivity, even for a bulk Higgs, starting at the two-loop level.

Nonetheless, we argue that the S parameter calculation is still under control. Indeed, as

examplified by the diagram shown on Fig. 4, the two-loop correction scales like Y 4
t or Y 2

t g
2
5,

so its contribution to S diverges like logNKK. In Fig. 4 we show only the Higgs as the internal

line. As shown below, this is justified for the sweet spot parameters, for which Yt

√
k ∼ 5.

Hence contributions from an exchange of KK-gauge bosons will be sub-dominant, since they

are proportional to g25k ∼ 9 (see appendix A), leading to a g25/Y
2
t ∼ 36% correction NDA

then yields

SNDA
2−loop ≃ 4πv2

m2
KK

Nc

(16π2)2
Y 4
t k

2 logNKK , (2)

where we used the fact that KK-fermion coupling to a bulk Higgs isO(1) for β = 0 [18]. Thus,

SNDA
2−loop is suppressed by about Y 2

t /16π
2 logNKK ∼ 20% compared to the one-loop correction.
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Higher loops will be even more suppressed since, according to NDA, the expansion parameter

is Y 2
t Λ5/16π

2, which is smaller than one for a perturbative Yukawa. The S parameter is

therefore under control in our setup.

C. Statistical Analysis

We first count the parameters of interest in our model. Imposing the MFV ansatz,

the bulk SM flavor symmetries receive large breaking only from the third generation quark

Yukawa couplings. Then, the SU(3)3Q,U,D flavor bulk symmetry is broken down to an approx-

imate SU(2)3Q,U,D by the flavon VEVs, while the lepton flavor group is unbroken. Therefore,

the whole set of effective operators in the SM is determined by 9 free parameters, which we

choose to be the fermion bulk masses: cQ3 , ct, cb, cQi, cU i and cDi (i = 1, 2, with universal

first two generation masses) for the quark sector, cL and cE for the leptons (also taken to

be family universal), and the KK scale, mKK. The flavon VEVs are set by the SM fermion

masses.

The global fit analysis proceeds as follows. First of all, a χ2-distribution is constructed

by comparing the experimental measurements to the theoretical predictions of the model;

it is therefore a function of the new physics parameters: χ2 = χ2(x), where, in our case,

x collectively denotes the 9 parameters listed above. The most probable parameter values,

x̄, are then identified by minimizing the total χ2 function w.r.t. to the model parameters:

χ2(x = x̄) ≡ χ2
min. Finally, we bound the parameters x to lie within confidence level regions

around x̄, whose size and shape are dictated by the χ2 difference, ∆χ2(x) ≡ χ2(x) − χ2
min.

The value of ∆χ2 is fixed as a function of the chosen confidence level (CL) and the number

of simultaneously constrained parameters.

For this analysis we assume a light Higgs and fix, for definiteness, its mass to mH =

115 GeV. We find that the “best fit” parameters in the present scenario are

mKK = 3.5 TeV , ct ≃ 0.47 , cb ≃ 0.6 , cQi ≃ 0.54 , cL ≃ 0.47 , ce ≃ 0.50 , (3)

with a considerably lower sensitivity of the fit to cQ3 , cU i and cDi (at the minimum of the

χ2, we find cQ3 ≃ 0 and cDi ≃ 0.76). As shown in Fig. 5, there is a preference for U i to

be composite, although the χ2 does not depend strongly on cU i when U i is sufficiently IR

localized. The values given in Eq. (3) correspond to cU i ≃ −0.5, which we will use as a
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-3.4

-3.2
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cU i

Χ
2 -
Χ

SM2

FIG. 5: χ2 − χ2
SM as a function of cU i , with the rest of the parameters fixed to the best fit values

of Eq. (3). Besides being relatively insensitive to the localization of U i, the χ2 distribution flattens

for cU i < −0.5. Here we take mH = 115 GeV.

benchmark point. In addition, we impose the restriction cb ≤ 0.6 in order to ensure that

the 5D bottom Yukawa coupling is sufficiently small, so that the Q = −1/3 states give a

negligible contribution to δgZb̄LbL (we have not included such contributions; the required

calculation can be extracted from [72]). Note, however, that the fit prefers a value at the

allowed upper limit for cb.

The goodness-of-fit of the above model is found to be χ2
min/d.o.f. = 217.3/223 ≈ 0.97.

This can be compared to the goodness-of-fit of the SM with a Higgs mass mH = 90 GeV

(currently the best fit value): χ2
SM/d.o.f. = 219.9/232 ≈ 0.95. Thus, the agreement of this

particular BSM scenario is quite comparable to the SM.4 We note, however, that we did not

fit the SM input parameters in Eq. (3), but rather fixed them to their best fit values in the

absence of new physics [46]. We proceed now to set CL limits for models that deviate from

Eq. (3).

In our scenario, ∆χ2 is a function of 9 new input parameters, displaying a smooth de-

coupling limit, with approximately ∆χ2 ∝ m−2
KK. We choose to present bounds at the

95.4% (2σ) CL. We describe two statistical treatments, of distinct physical relevance, to

bound the KK scale from EWPTs at a given confidence level (CL). First of all, we derive

4 The net decrease in the total χ2 with respect to the SM can be traced to σhad, Re, Rµ, Ae, and to a

number of LEP II cross sections. Conversely, we find a worse fit to the forward-backward asymmetry of

the bottom, A
(0,b)
FB , and to a lesser extent to Rb. We also assume in our fit a Higgs mass mH = 115 GeV,

but this has a negligible impact on the total χ2. For example, the SM with mH = 115 GeV has χ2 = 221.3,

which is only about 1.4 larger than the value given above.
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a one d.o.f. bound on mKK only, by marginalizing 5 over all the bulk masses and imposing

∆χ2 = 4.00. In addition, we quote a bound on the KK scale resulting from a simultaneous fit

of the most relevant model parameters. We adopt the following simple criterion for assessing

the relevance of a given input parameter: if ∂ log∆χ2/∂ log ci > O(1), then the parameter

ci is relevant in setting the CL. We find that the logarithmic derivatives w.r.t. cQ3, cU i and

cDi are much smaller than one (so we do not count them as d.o.f. for setting the CL limits),

while the rest of the logarithmic derivatives are order one or larger. Therefore, the second

bound on mKK is obtained by assuming 9 − 3 = 6 d.o.f., which translates into ∆χ2 = 12.8

for 95.4% CL.

We stress that these two bounds have a meaning of their own and contain complementary

information. For the one d.o.f. analysis, we have that, statistically, 95.4% of the models show

a KK scale larger than the bound, without any assumptions on all the other parameters.

Thus, we expect the one d.o.f. bound on the KK scale to be rather conservative and of most

relevance in terms of LHC discovery potential. On the other hand, the six d.o.f. analysis

informs us on the possible correlations among the model parameters and, in particular, on

the existence of less constrained directions in the parameter space. The presence of the

latter could allow for a lower mKK, provided some other parameters deviate from their best

fit values in a correlated way. As a result, however, we expect such a KK scale to be

statistically unlikely, although we have not tried to quantify this statement. Nevertheless,

we think that the existence of such points in the parameter space are worth mentioning, for

such correlation may be theoretically motivated and/or future experimental analyses may

become sensitive to additional parameters, on top of the KK scale.

D. EWPT Global Fit Results

We report in this section the sweet spots found for the one and six d.o.f. statistical

analyses defined above. These are done for both our flavor-triviality model, as well as for a

(slight) variant of the conventional anarchic model.

5 Assuming the parameters to be Gaussian distributed, marginalizing over the bulk masses boils down to

setting them to the values that minimize the χ2 as a function of the KK scale: i.e. ci = ci(mKK), where

the ci(mKK)’s satisfy a null gradient condition ∂χ2/∂ci
∣

∣

mKK

= 0. (See e.g. [73].)
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1. Sweet spot in the flavor-triviality model

Assuming the hierarchical Yukawa ansatz, we find from the global fit a bound on the KK

scale of mKK > 2.1 TeV (95.4% CL) for the one d.o.f. analysis (i.e. χ2 − χ2
min = 4.00). The

corresponding “sweet spot” values for the bulk masses are:

cQ3 ≃ 0.05 , ct ≃ 0.47 , cQi ≃ 0.51 , cL ≃ 0.48 , ce ≃ 0.50 ,

cb ≃ 0.6 , cU i ≃ −0.5 , cDi ≃ 0.77 . (4)

If instead the SM is taken as the “best fit point” (i.e. χ2 − χ2
SM = 4.00), the resulting

bound is improved to 1.8 TeV (with some changes in the bulk masses). Performing a six

d.o.f. analysis at 95.4% CL (i.e. χ2 − χ2
min = 12.8) yields mKK > 1.7 TeV, with

cQ3 ≃ 0.02 , ct ≃ 0.48 , cQi ≃ 0.50 , cL ≃ 0.48 , ce ≃ 0.50 ,

cb ≃ 0.6 , cU i ≃ −0.18 , cDi ≃ 0.77 . (5)

We illustrate in Fig. 6, as a function of the LH lepton localization parameter, cL, the ∆χ2

contributions which are most sensitive to this parameter; they are the Z pole observables

(including b and c quark observables) and the W mass measurements. This shows that

a low KK scale is achieved for relatively flat light fermions, cL ≃ 0.48, as expected from

cancelation of an effective S parameter (see also Eq. (13) below). We also report in Table I

the contributions to the χ2 and ∆χ2 for the one d.o.f. sweet spot of Eq. (4).

2. Bounds on the semi-anarchic model

For the sake of comparing our setup to known anarchic models, and better assessing

the benefits of the flavor triviality scenario, we report the EW global results for a “semi-

anarchic” model defined as follows. We set the first two quark generations and all the leptons

to be elementary, cQi = cU i = cDi = cL = cE = 0.65, thus allowing the corresponding 5D

Yukawa couplings to be all of the same order (the fit is completely insensitive to the precise

value of the c’s, or to the fact that these are all the same, as long as they are UV localized).

However, we require cb < 0.6, so that the 5D bottom Yukawa coupling is suppressed. This

restriction ensures that our loop contribution to δgZb̄LbL is reliable, as mentioned above. The

results of relaxing this assumption, so that full anarchy can be achieved, will be presented
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FIG. 6: Most important contributions to ∆χ2 as a function of cL, with mKK and other bulk masses

set to the sweet spot values of Eq. (4). Z pole observables (blue) include the total Z width, e+e−

hadronic cross section and other leptonic observables, while the heavy quark observables (green)

include Rb,c, Ab,c and AFB
b,c .

elsewhere. The parameters determined in the fit are mKK, cQ3 , ct and cb. Unlike what

was found in the flavor-triviality model, under the anarchy assumption the minimum χ2 is

obtained when mKK → ∞, hence it is the same as in the SM. The goodness-of-fit in this

case is χ2
SM/d.o.f. = 221.3/228 ≈ 0.97.

We then find a one d.o.f. bound (χ2 − χ2
SM = 4.00) on the KK scale of mKK > 4.6 TeV

(95.4% CL) with the following sweet spot values

cQ3 ≃ 0.11 , ct ≃ 0.49 , cb ≃ 0.6 . (6)

For completeness, we also report that comparing the semi-anarchic scenario to the best fit

point of Eq. (3), the bound is raised to mKK & 7 TeV (χ2 − χ2
min = 4.00).

In order to set a limit on mKK by simultaneously fitting all the parameters, we note that

mKK and ct are unequivocally relevant parameters (as defined in the previous subsection),

while the logarithmic derivative of ∆χ2 w.r.t. cQ3 is much smaller than one, and the one

corresponding to cb is of order one. We therefore perform a 4 − 1 = 3 d.o.f. analysis,

corresponding to ∆χ2 = 8.02 for 95.4% CL. This yields mKK > 3.9 TeV with

ct ≃ 0.49 , cb ≃ 0.6 , (7)
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χ2 − χ2
SM χ2

min − χ2
SM ∆χ2

W mass 1.37 0.12 1.25

Z line shape & lepton AFB −2.47 −2.74 0.27

Z pole b&c quarks 5.30 3.44 1.86

s2W hadronic charge asymmetry 0.20 0.23 −0.03

Leptonic polarization asymmetries −1.95 −2.18 0.23

Deep inelastic scattering −0.13 −0.12 −0.01

Atomic parity violation 3.23 0.11 3.12

LEP2 hadronic cross-section −1.97 −0.97 −1.00

LEP2 muon pair < 10−2 0.03 −0.03

LEP2 tau pair −0.04 −0.03 −0.01

OPAL electron pair −0.02 −0.02 < 10−2

L3 W pair −0.17 −0.11 −0.06

Z pole s quark 0.07 0.09 −0.02

LEP2 ee→bb −3.22 −1.75 −1.47

LEP2 ee→cc −0.18 −0.08 −0.10

Total 0.02 −3.98 4

TABLE I: Contributions to the χ2 and ∆χ2 for the sweet spot of Eq. (4); see [68].

where we fixed cQ3 = 0.10.

We end this subsection by emphasizing that in this work we explore the possibility that

the fermions span SU(2)L×SU(2)R representations. However, the loop-level contributions to

S, T and δgZb̄LbL can be rather dependent on this assumption. For instance, when the third

generation fermions are assigned to SO(5) representations, à la gauge-Higgs unification, one

finds that the one-loop S-parameter can be significantly smaller than for the SU(2)L×SU(2)R

representations (this happens, e.g., in the scenario of Ref. [45]). This can affect the bounds

for the anarchic scenario, which are controlled by the oblique parameters (plus δgZb̄LbL). As

an example, in the scenario discussed in [45], where the corresponding bound was found to

be mKK > 3.4 TeV, an updated 3-parameter fit to the EW data leads to mKK > 3 TeV

(both cases are compared to the SM as the best fit). This slight improvement is mainly

due to the use of the most recent SM fit, that has moved in a favorable direction for these
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scenarios. Regarding the flavor triviality case, we expect that the representation assignments

for the third family are less crucial for the sweet spot, since the difference in the loop-

level S-parameter can be compensated to some extent by an effective tree-level contribution

(with a slight readjustment of parameters). What is more important for the sweet spot is

the custodial protection associated with the lepton representations, as emphasized in the

introduction. With these caveats, we explore the degree of tuning involved in the next

subsection.

E. Fine Tuning Estimates

The bulk RZ model displays a sweet spot of bulk masses where the KK scale is significantly

lower than for the most optimistic anarchic cases. Such a lower KK scale would, in principle,

reduce the fine-tuning associated with the Higgs mass in warped models. However, this result

is a mere consequence of the approximate flatness of the SM light fermion wave functions.

We therefore expect a large sensitivity of the KK scale under corrections to the sweet spot

values of the bulk masses, and a potentially larger new source of fine-tuning. We show that,

even in the anarchic case, a sensitivity of this sort is actually also present; we shall estimate

its size as well.

Due to the flavor symmetries, the only UV sensitive contributions are expected to be

related to gauge interactions, which distinguish between different fermion representations.

This would raise a legitimate question regarding the sweet spot: how come fields related

to different SM representation are located near each other, in particular around cx ∼ 0.5?

We do not have a sharp answer to this question. However, one could imagine embedding

the above theory into some form of unification model (for an SO(10) grand unified theory

(GUT) see for example [74–80]), which would explain why the couplings are related to each

other.6 Finite radiative corrections to these quantities are proportional to the bulk masses

themselves [81]. The radiative corrections to the bulk masses, which split the universal part

of the fermions wave-functions, ci, will be finite and suppressed by a loop factor of order

g25k/16π
2 (g25k ∼ 9). Therefore, a mass splitting of a few percent is expected. It is interesting

6 This would require various fermions to come from the same GUT multiplet, which would require a non-

conventional approach to ensure proton longevity. Alternatively, one could impose a discrete symmetry

that would correspond to invariance with respect to interchanging the different GUT multiplets.
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that within the RS framework the radiative correction to the masses seems to vanish for flat

fermions. However, we shall not pursue this possibility, as it goes beyond the scope of this

project.

We now estimate the fine-tuning in the flavor triviality and semi-anarchic models. The

fine-tuning is composed of two ingredients, namely the sensitivity of the weak scale to the

KK scale, FTmKK
, and the sensitivity of the KK scale itself to the bulk masses, FTc, through

the global EW fit. Strictly speaking, the former is under control only if the Higgs is a pseudo-

Goldstone boson (i.e. if its mass is finite). Nonetheless, we believe a pragmatic approach 7

consists in estimating this fine-tuning as FTmKK
≃ (v/fπ)

2 where f−1
π ≈ R′ (see e.g. [23]).

The specific definition is not crucial (and different studies differ in their order one coefficients

in any case [9, 23, 25]), but it does enable us to assess the difference in success between the

anarchic and flavor triviality cases.

Regarding FTc, one conventional procedure is to relate it to the logarithmic derivative

at the sweet spot: Sc ≡ maxi |∂ logmKK/∂ log ci| [82, 83], and interpret its inverse as a

measure of the fine-tuning involved. However, since the sweet spot naturally resides in a

local minimum of the parameter space, this derivative exactly vanishes. Instead, we find

it convenient to use the (one-sided) finite difference analog, which gives a measure of the

sensitivity ofmKK to ci in a vicinity of the sweet spot. Since these one-sided finite derivatives

can be different on both sides of the best fit point, especially for parameters which control

the size of the top Yukawa coupling (e.g. ct), we use an average of the two:

Sci ≡
1

2

(
∣

∣

∣

∣

ci
∆ci

∆m+
KK

mKK

∣

∣

∣

∣

+

∣

∣

∣

∣

ci
∆ci

∆m−
KK

mKK

∣

∣

∣

∣

)

, (8)

where we choose ∆ci = 0.03 , as motivated by the typical size of the radiative corrections.

Here ∆m±
KK = mKK(ci ± ∆ci) − mKK(ci) is the change of the KK scale for a given ∆ci,

with the other bulk masses fixed, that is necessary to keep ∆χ2 fixed (so as to keep the

success of the EW global fit at the same level). The final sensitivity should correspond to

7 In the present model the Higgs mass parameter is quadratically sensitive to the cutoff scale, rather than

to the KK scale. Our intention here is to very roughly estimate the fine-tuning of the EW scale in PGB

extensions that also incorporate the ingredients discussed in this paper. One should remember, however,

that such extensions can contain additional correlations that may not allow a KK scale as low as we have

found above, or may contain additional sources of fine-tuning (see e.g. [25]). Nevertheless, we believe that

the new ingredients highlighted here should help in relaxing the bound on mKK, and hence associated the

fine-tuning in such models.
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the largest value obtained by repeating the procedure for all the parameters in the model:

Sc = maxiSci.

Using the definitions above, we find for the flavor triviality (one, six) d.o.f. sweet spots

the following measures of fine-tuning:

FTmKK
≃ (8.4, 13)% ;

S−1
ct ≃ (5.3, 10)% ; S−1

cL
≃ (6.2, 8.9)% ; S−1

cE
≃ (8.1, 9.3)% ; S−1

c
Qi

≃ (46, 42)% , (9)

while there is essentially no sensitivity to the rest of the input parameters. If the SM is

assumed to constitute the best fit, these numbers slightly improve

FTmKK
≃ (11, 14)% ;

S−1
ct ≃ (8.1, 10)% ; S−1

cL
≃ (8.2, 9.1)% ; S−1

cE
≃ (9.2, 9.4)% ; S−1

c
Qi

≃ (44, 42)% , (10)

In contrast, for the semi-anarchic model with fermions in SU(2)L×SU(2)R representations,

we find

SM: FTmKK
≃ (1.7, 2.3)% ; S−1

ct ≃ (22, 20)% ,

Best fit: FTmKK
≃ (0.7, 1.7)% ; S−1

ct ≃ (−, 22)% , (11)

for (one, three) d.o.f., respectively.8 We then see that indeed the fine-tuning of the weak

scale is improved in our model. On the other hand, the sensitivity to the bulk masses is

greater. We regard the sensitivity exhibited by S−1
c as an indication of fine-tuning that,

together with FTmKK
, determines the overall fine-tuning of the model.

Finally, it is interesting to analytically examine the sensitivity of the vertex corrections

[see Eqs. (A2,A5)] to the localization of the leptons in our model, which is the main source

for S−1
cL,E

, as given above. The parametric dependence on cL,E and mKK of the corresponding

operators is:

at,shF ∝ (cL,E − 1/2 + k)

m2
KK

, (12)

where cL,E − 1/2 originated from the {++} gauge KK-states [26] and k ≃ 0.06 effectively

parameterizes the contribution of the {−+} gauge KK-states. Using this expression, we can

8 Due to the high KK scale observed in the semi-anarchic model when compared to the best fit point, see

below Eq. (6), the 1 d.o.f. requires us to extrapolate the results, hence the sensitivity in that case could

not be computed. However, from the three d.o.f. case we see that the sensitivity is roughly the same as

when the bound was compared to the χ2
SM.
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approximately evaluate S−1
cL,E

as

S−1
cL,E

=

(

∂ logmKK

∂ log cL,E

)−1

≃ 2(cL,E − 1/2 + k)

cL,E
, (13)

which for cL = 0.48 gives S−1
cL

≃ 0.16 . The remaining sensitivity above comes from the rest

of the observables.

IV. FLAVOR PHYSICS

Our setup is a variation of the anarchic 5DMFV model [50, 51], where the shined Yukawas

are of hierarchical structure as in [36], but the SM quarks propagate in the bulk. Therefore,

the following relation between the bulk masses and the 5D Yukawa matrices is obtained:

CQ = aQ · 13 + bQU YUY
†
U + bQD YDY

†
D + . . . ,

CU,D = aU,D · 13 + bU,D Y †
U,DYU,D + . . . ,

(14)

where the dots stand for contributions from higher powers of the Yukawa flavons. Recall

also that, in the absence of mixing, the masses in terms of the Yukawas are given by

mU,D ≃ αU,D
v√
2
FQYU,DFU,D rH00(β, cQ, cU,D) + . . . , (15)

where FX are matrices with eigenvalues fxi representing the IR projection of the quark

zero mode profiles, given by f 2
xi = (1 − 2cxi)/(1 − ǫ1−2c

xi ) , cxi are the eigenvalues of

the Cx matrices, ǫ = exp[−ξ], ξ = log[MPl/TeV], MPl is the reduced Planck mass and

rH00(β, cL, cR) ≈
√

2(1+β)

2+β−cL−cR
is the overlap correction for a bulk Higgs [22] (rH00(β, cL, cR) = 1

for a brane-localized Higgs). The αU,D coefficients are distinct from those in the expansion

of Eq. (14) (in our subsequent discussion, only the combinations αU,DYU,D appear). For

simplicity we show in Eq. (15) only the part related to the zero mode couplings and the

leading term in terms of the Yukawa flavon fields. In practice, the third generation masses

are somewhat modified due to the fact that the mass eigenstates are affected by mixing with

the KK-fermions, hence this is taken into account in our quantitative analysis. NDA sug-

gests that in the most generic models bQU,D, bU,D and αU,D are all of order one in appropriate

units of the curvature [51]. However, we point out that αU,D carry different U(1)YU,D,Q̄,U,D,H

charges (which can be thought of as generalized Peccei-Quinn symmetries), and therefore a

hierarchy between αU and αD, and between αi and bQi , bi is natural, and can be obtained
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in specific models. For instance, in models of gauge-Higgs unification, αi can be indirectly

suppressed due to gauge interactions.

An immediate consequence of the MFV framework is that bounds from flavor violation

in the first two generations become much weaker. This follows from an inherent suppression

of right-handed currents, which require light mass insertions [39, 57]. Thus, the bound from

ǫK , which is rather strong in the anarchic case [7–11], is irrelevant here [39], since the right-

handed current is suppressed by r4Qmsmd/m
2
b (rQ ∼ 2 − 3, see Eq. (B4) in Appendix B)

compared to the left-handed current.

As a result of the large top mass, we actually expect higher powers of the up Yukawa to

be important, and these would shift the eigenvalues of the bulk masses [39, 84]. The impact

of top Yukawa resummation is subtle, but can be observed in flavor violation involving left-

handed currents in the first two generations. This applies in particular to CP violation in the

D system [85] (effects of order m2
c/m

2
t are present in the kaon system, but are much harder

to observe [39, 86]). If the bottom Yukawa is large as well, then in the presence of flavor

diagonal phases, order one CP violating contributions are expected in Bd,s mixing [39, 87–

90]. An easy way to see this is to take the two generation limit, where the SM Lagrangian

is manifestly CP conserving. In this case, higher dimensional operators can contain a CP

violating combination of the Yukawa matrices, proportional to the covariant flavor direction,

Ĵ [91, 92]

Ĵ ∝
[

YDY
†
D, YUY

†
U

]

. (16)

This induces CP violation in both up and down sectors, even in the two generation case.

We shall focus on two scenarios. The first is when the bulk parameters give a small 5D

bottom Yukawa. Generically, the phenomenology of this model is rather simple, and the

contributions to various flavor changing processes are highly suppressed. We then slightly

deform this sweet spot solution, and show how the model approaches the large bottom 5D

Yukawa limit, which yields a richer flavor structure. In particular, we demonstrate how

one can generate sizable new CP violating contributions in Bd and Bs mixing, and identify

a natural region of the parameters where the latter dominates, as favored by the recent

D/0 data [93, 94] and permitted by the CDF one [95] (see [40–43, 96–104] for related work

and [105] for a much earlier study about lepton asymmetry in the B system).

In the following we employ only a 1 d.o.f. analysis of the EWPT bounds, for simplicity.

We also mainly focus on a comparison with the best fit point (which is now required to
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comply with flavor constraints).

A. Small 5D Bottom Yukawa

We first analyze the flavor structure of the theory with a small bottom Yukawa. For

concreteness we give an example of such a point9:

CQ = (0.497, 0.497, 0.348) , CU = (−0.5,−0.5, 0.482) , CD = (0.56, 0.56, 0.55) ,

αUYU = (3.6× 10−5, 0.017, 6.2) , αDYD = (0.0013, 0.024, 0.36) . (17)

The reader should bear in mind tough, that as long as the bottom Yukawa is small, the

gross features of the model near the sweet spot remain unchanged. The resulting bound

from EWPTs is 2.4 TeV.

In the limit of small YD, the bulk masses can be expanded in powers of YU only. This is

manifest in the choice of bulk masses in Eq. (17), where CD is almost completely diagonal,

and in CQ,U only the third eigenvalue is shifted away from the first two. Since this applies

to the FX ’s as well, we have according to Eq. (15) [mU , YU ] = 0, i.e. mU and YU can be

simultaneously diagonalized. Our model thus contains a built-in up-type flavor alignment,

hence FCNCs are only present in the down sector. Moreover, flavor violation in the down

sector is proportional to elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix V CKM ,

and right-handed currents are significantly suppressed, as anticipated since our current setup

belongs to the MFV framework with a small bottom Yukawa.

It is crucial to emphasize that when expanding the bulk masses as functions of the Yukawa

matrices, higher order terms in YU are important, and may give rise to a significant effect,

as shown below. Therefore, we write

CQ = aQ · 13 + bQU YUY
†
U + bQD YDY

†
D + dQUUYU

(

YUY
†
U

)

Y †
U + dQDUYD

(

YUY
†
U

)

Y †
D + . . . ,

CU = aU · 13 + bU Y †
UYU + dUUY

†
U

(

YUY
†
U

)

YU + . . . ,

CD = aD · 13 + bD Y †
DYD + dDUY

†
D

(

YUY
†
U

)

YD + . . . ,

(18)

where some of these terms are actually small in the case of small bottom Yukawa.

9 In the context of flavor physics, it is more convenient to employ the notations cU3 and cD3 instead of ct

and cb used above. We thus adopt this change in this section.
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The most severe constraints are from the Bd,s systems, in the form of a ∆B = 2 con-

tribution to the mixing amplitude. These are generated in RS via a tree-level KK-gluon

exchange, formulated in terms of two of the standard four-quark operators,

Q1 = q̄αjLγµq
α
iLq̄

β
jLγµq

β
iL ,

Q4 = q̄αjRq
α
iLq̄

β
jLq

β
iR ,

(19)

where α, β are color indices and i, j are flavor indices. New physics in the Bd,s mixing

amplitudes can be described by four real parameters:

Md,s
12 =

(

Md,s
12

)SM
(

1 + hd,se
2iσd,s

)

, (20)

where M12 is the dispersive part of the amplitude. We shall use the notation h1,4
d,s , where

the superscript denotes the contributing operator.

In order to evaluate the flavor-violating contribution to Bd, we need to rotate the diagonal

coupling of two quarks with the KK-gluon to the mass basis. Since the mass basis is aligned

with YU , this introduces CKM factors (plus sub-leading corrections for large bottom Yukawa)

in the case of left-handed quarks, and a factor related to the difference of overlaps of the

b and d quarks with the KK-gluon. This calculation is performed in detail in Appendix B

(see Eq. (B10)). The Wilson coefficient for Q1 is then given by

C1 ≈
g2s∗

6m2
KK

(VtbV
∗
td)

2 [f 2
Q3r

g
00(cQ3)− f 2

Q1r
g
00(cQ1)

]2
. (21)

Here gs∗ is the dimensionless 5D coupling of the gluon (gs∗ = 3 with one-loop matching),

rg00(c) ≈
√
2

J1(x1)
0.7
6−4c

(1 + ec/2) is the overlap correction for two zero mode quarks with the

KK-gluon [9, 20, 22], with x1
∼= 2.4 as the first root of the Bessel function J0(x1) = 0, and

(VtbV
∗
td)

2 ≈
[

V CKM
tb

(

V CKM
td

)∗]2 (
1 + rY 2

b e
i2θd
)

, with θd an arbitrary phase and r a propor-

tionality coefficient (in the current case we neglect this correction, which is formally of order

Y 2
b ). A similar formula applies for Bs (replacing d → s and 1 → 2).

For a right-handed coupling, which is a part of the Q4 contribution, the rotation is more

involved, and introduces some additional factors (see Appendix B). The resulting Wilson

coefficient is

C4 ≈ g2s∗
m2

KK

(VtbV
∗
td)

2 md

mb

[

(

fQ3 rH00(β, cQ3, cD3)

fQ1 rH00(β, cQ1, cD3)

)2

− 1

]

×
[

f 2
Q3r

g
00(cQ3)− f 2

Q1r
g
00(cQ1)

] [

f 2
D3r

g
00(cD3)− f 2

D1r
g
00(cD1)

]

.

(22)
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In order to derive a bound on the KK scale, we allow for h1,4
d to be as large as 0.5 (since

the NP contributions do not carry additional CP phases) [40]. We include running and

mixing effects at 2 TeV, as described in [7] and refs. therein. The bound resulting from Q1

is
( mKK

2TeV

)

& 3.7
(

δf 2
Q31

)

≈ 2.3

(

1− 2.1 cQ3

1− 2
3
cQ3

)

, (23)

where we defined
(

δf 2
Qij

)

≡ f 2
Qir

g
00(cQi)− f 2

Qjr
g
00(cQj) , (24)

and used cQ1 = 0.497 from Eq. (17) and

f 2
xr

g
00(cx) ≈

1− 2 cx
1.5− cx

, (25)

which is a good approximation for 0 < cx < 0.47 . Note that for cQ3 = 0.348 we have

mKK & 1.9 TeV, consistent with EWPT.10 Similarly, the bound from Q4 is

( mKK

2TeV

)

& 23

√

√

√

√

md

mb

[

(

fQ3 rH00(β, cQ3, cD3)

fQ1 rH00(β, cQ1, cD3)

)2

− 1

]

(

δf 2
Q31

)

(

δf 2
D31

)

. (26)

The actual constraint is much weaker than Eq. (23) because of the md/mb suppression and

the approximate degeneracy of the fD’s. It is instructive to see the relation between the

contributions of Q4 and Q1 to Bd mixing:

C4

C1

∣

∣

∣

∣

∣

2 TeV

≈ 40
md

mb

(

δf 2
D31

)

(

δf 2
Q31

)

[

(

fQ3 rH00(β, cQ3, cD3)

fQ1 rH00(β, cQ1, cD3)

)2

− 1

]

. (27)

The same exercise can be carried out for Bs mixing, where now we allow the RS contri-

bution to be 30% of the SM one (that is, h1,4
s = 0.3), without new phases [40]. The bounds

from Q1 and Q4 are

( mKK

2TeV

)

& 4.7
(

δf 2
Q32

)

≈ 3

(

1− 2.1 cQ3

1− 2
3
cQ3

)

,

( mKK

2TeV

)

& 30

√

√

√

√

(

δf 2
Q31

)

f 2
Q1r

g
00(cQ1)

(

δf 2
Q32

)

(

δf 2
D32

) ms

mb
,

(28)

respectively. For cQ3 = 0.348 the first bound reads mKK & 2.4 TeV. The Q4 bound is much

stronger than for Bd, but still weaker than the one from Q1. Note that the Q1 contribution

10 This is weaker than in [106], which was ultra-conservative.
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is universal, i.e. the same for Bd and Bs , and that the bound in the first line of Eq. (28) is

stronger than Eq. (23) only because we required hd = 0.5 and hs = 0.3. Eq. (27) changes

for Bs to

C4

C1

∣

∣

∣

∣

∣

2 TeV

≈ 39
ms

mb

(

δf 2
D32

)

(

δf 2
Q32

)

[

(

fQ3 rH00(β, cQ3, cD3)

fQ2 rH00(β, cQ2, cD3)

)2

− 1

]

. (29)

Note that in our example
(

δf 2
Q31

)

=
(

δf 2
Q32

)

.

One may wonder whether ∆B = 1 processes, such as b → sγ , could also lead to significant

bounds on the model (see e.g. [18, 22] for some recent estimations within the anarchic

scenario). However, since this is a chirality-flipping process, it must involve right-handed

mixing angles, which are strongly suppressed in our model, as shown in Eq. (B9). More

generally, this is a consequence of the fact that our model belongs to the class of general

MFV [39], where right-handed currents are suppressed by a ratio of masses, that is ms/mb

in this case.

To summarize this example, characterized by Eq. (17), the overall bound that we find is

mKK & 2.4 TeV , (30)

coming from the Q1 contribution to Bs and from EWPTs. It should be noted that this

bound can be reduced to 2.2 TeV if compared to the SM, instead of the best fit point (with

an appropriate change in the bulk masses).

B. Large 5D Bottom Yukawa

The analysis of the previous subsection assumed a small bottom Yukawa, as can be

inferred from Eq. (17). Yet by reducing αD, for example, the bottom Yukawa can be made

larger, until it is of order 1. Consequently, YD resummation effects appear, and the results

of the previous subsection receive O(1) corrections plus a general phase [39].

We can try to use the large bottom Yukawa case to obtain a larger RS contribution to

Bs than for Bd. Since C1 is universal in that sense, this requires to increase C4 to be larger

than C1 , noting that h4
s > h4

d in any case.

Considering as an example the following bulk masses

CQ = (0.516, 0.516, 0.35) , CU = (−0.5,−0.5, 0.479) , CD = (0.56, 0.56, 0.497) ,

αUYU = (5.1× 10−5, 0.025, 5.9) , αDYD = (0.0018, 0.034, 0.12) , (31)
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and an appropriate αD to obtain a large bottom Yukawa, we have the following results:

• The bound on the KK scale from EWPT is slightly raised to 2.6 TeV.

• Because of the generic phase, it is required to take h1,4
d to be 0.3 instead of 0.5 [40].

• As a result of taking cD3 = 0.496, we now have h4
s
∼= 1.33 h1

s
∼= 0.4, while for the Bd

system C4 is still smaller than C1 (see Eqs. (27) and (29), when evaluated at the scale

2.6 TeV originating from EWPT constraints).

• Another possible point is cD3 = 0.4 (and some more slight adjustments of other bulk

masses). Then the EWPT bound is ∼ 2.7 TeV and h4
s
∼= 1.75 .

The implication of this result is that our model is now in accordance with the recent Tevatron

data, which favors larger contributions to Bs than for Bd [40]. The price to pay is that

αDYb ≈ 0.12, so that in order to have an O(1) bottom Yukawa, αD must be small. While

this is technically natural, it still requires a small parameter to be tuned by hand.

It is actually simple to explain why our model cannot produce hs > 0.3 and hd ≤ 0.3 if

we insist on having a large bottom Yukawa with αD = O(1). The latter requirement leads

to the relation fQ3fD3 . 0.01, in order to get the correct bottom mass. However, as can be

seen from Eq. (22), the C4 contribution is roughly proportional to (fQ3fD3)2 (times another

factor of f 2
Q3 which is smaller than 1), and as a result it is too small to yield hs > 0.3.

1. The universal hd = hs case

While the data favors large CP violation in the Bs system, a reasonable fit of the flavor

measurements is obtained in the SU(2) universal case where hb ≡ hd = hs ∼ 0.3, consistent

with the data [40]. It is not surprising that our framework (as well as the anarchic RS

case [4, 5]) can account for this case in a straightforward manner, while having αD and

the 5D bottom Yukawa of order unity. This is obtained by taking cD3 to be ∼0.6 and

cDi around 0.6-0.65, while the other bulk masses are as in Eq. (17). In this case, one can

sharply predict order one CPV phases with exact universality, σb ≡ σd = σs [39]. The

resulting EWPT bound is ∼ 2.4 TeV.
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C. Higgs Mediated FCNCs

Another possible source of flavor violation arises from the Higgs [107–109], which obtains

off-diagonal couplings in the mass basis as a result of mixing between zero mode and KK-

fermions. For an IR brane Higgs, the leading spurion which induces this process is [108]

∼ FQYDY
†
DYDF

†
D , (32)

omitting all universal factors11. Yet, the resulting flavor violation is suppressed relative to

the KK-gluon contribution. To see this, let us neglect the masses (and Yukawa couplings)

of quarks of the first two generations. Then in its diagonal basis, YD is proportional to

diag(0, 0, Yb), and consequently we have Y 3
D ∝ Y 2

b YD. In other words, the leading mass

term in Eq. (15) and the spurion in Eq. (32) are aligned together, so no flavor violation is

generated. Restoring the strange mass, we expect to have a (ms/mb)
2 suppression, after

squaring these spurions to obtain the relevant Wilson coefficients. Since a factor of this kind

does not appear for the KK-gluon contribution to flavor violation via Q1, the Higgs effect

can be neglected.

This argument is easily generalized to the bulk Higgs case. The Y 3
D part of Eq. (32)

should be written now as

YDr
H
01Y

†
Dr

H
10YD , (33)

where rH01,10 is an overlap correction for the coupling of the Higgs to a zero mode quark and

a KK-quark. Even though these corrections are not universal, the wrapping YD’s act as a

projection operator for the 3-3 matrix element, when neglecting the first two generations

masses. Therefore, we still have Y 3
D ∝ Y 2

b YD , and the conclusion from before applies to this

case as well. Moreover, we did not have to assume anything about FQ and FD, hence the

Higgs contribution is negligible in both the small and the large bottom Yukawa cases.

V. CONCLUSIONS

We analyzed a warped 5D model where the SM Yukawa hierarchy is set by UV physics,

which realizes a bulk version of the Rattazzi-Zaffaroni model [36]. Such a scenario displays

11 An additional contribution comes from a one-loop process involving a charged Higgs and up-type quarks.

However, as a result of the loop suppression, it is subleading.
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1 d.o.f. 6 / 3 d.o.f.

Model Best fit SM Best fit SM

Flavor triviality 2.1 1.8 1.7 1.6

Semi-anarchy 7 4.6 4.6 3.9

TABLE II: Bounds (in TeV) from EWPTs for the various statistical scenarios considered, com-

paring the flavor triviality model to the semi-anarchic case. Best fit refers to the bound relative

to the best fit point, where χ2 is lower than in the SM, and SM refers to the case where the SM

is assumed to be the minimum χ2 . In the last two columns the flavor triviality analysis is for 6

d.o.f., while the semi anarchic one is for 3 d.o.f.

the weakest bound on the scale of RS type of new physics explored to date, both from the

point of view of electroweak (EW) precision measurements, as well as from flavor constraints.

The EW precision tests (EWPTs) allow for a “sweet spot” with a KK scale as low as 2.1 TeV,

which is more than a factor of 2 lower than in the anarchic RS setup (with fermions in the

minimal SU(2)L ×SU(2)R representations, as discussed in the main text). Such a low scale

for the RS KK physics should lead to significantly better prospects for discovery at the LHC,

given the fact that its reach for a KK-gluon is around 4 TeV [110, 111]. A summary of the

bounds that we find from EWPTs for different statistical scenarios is presented in Table II.

This model, by construction, belongs to the minimal flavor violation (MFV) frame-

work [52–61], and naively one would expect a rather dull flavor phenomenology. Indeed

the model enjoys a strong protection when considering first two generation CP violating

physics. Imposing the flavor constraints, we also find consistency with a KK scale of about

2.4 TeV. Thus the RS ǫK problem is avoided, practically, without interfering with the model’s

visability. This is a natural consequence of MFV. However, the fact that in this framework

the third generation couplings are sizable and flavor-violating couplings effectively exponen-

tiate leads to various interesting deviations from the commonly studied MFV models. Thus,

this class of models belongs to the general MFV framework [39]. Performing a deformation

around the best fit point in parameter space allows for a rather rich third generation flavor

phenomenology, such as providing the new CPV source required by the latest same-sign di-

muon signal from D/0. The present ideas are expected to help reduce the constraints (hence

the fine-tuning) of extra-dimensional scenarios of EWSB, such as models where the Higgs
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is a pseudo-Goldstone boson. The detailed study of such an exciting possibility is left to

future work.
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We are grateful to Kaustubh Agashe and José Santiago for valuable discussion, comments

on the manuscript and helping us to find an error in our global fit. GP is the Shlomo and

Michla Tomarin career development chair; GP is supported by the Israel Science Foundation

(grant #1087/09), EU-FP7 Marie Curie, IRG fellowship and the Peter & Patricia Gruber

Award. E.P. is supported by DOE grant DE-FG02-92ER40699.

Appendix A: Matching RS to the EW precision operators

New physics effects at the weak scale are captured by a set of effective operators added

to the renormalizable part of the SM Lagrangian: L = LSM +
∑

i aiOi , where Oi are gauge

and flavor invariant operators. In the absence of flavor and CP violation, 20 operators 12 (of

mass dimension 6) contribute most significantly to the electroweak precision observables [68].

There are 2 operators affecting the gauge sector,

OWB = h†σahW a
µνB

µν , Oh = |h†Dµh|2 , (A1)

which generate respectively the S and T parameters, 7 operators shifting the fermion-gauge

boson couplings

Os
hf = ih†Dµhf̄γ

µf + h.c. , Os
hF = ih†DµhF̄γµF + h.c. ,

Ot
hF = ih†σaDµhF̄γµσaF + h.c. ,

(A2)

where f = u, d, e and F = q, l, and 11 four-fermion operators contributing to the leptonic

sector

Os
ll =

1

2
(l̄γµl)2 , Ot

ll =
1

2
(l̄γµσal)2, Os

le = (l̄γµl)(ēγµe) , Os
ee =

1

2
(ēγµe)2 ,

Os
lq = (l̄γµl)(q̄γµq) , Ot

lq = (l̄γµσal)(q̄γµσ
aq) , Os

qe = (q̄γµq)(ēγµe) ,

Os
lu = (l̄γµl)(ūγµu) , Os

ld = (l̄γµl)(d̄γµd) , Os
eu = (ēγµe)(ūγµu) , Os

ed = (ēγµe)(d̄γµd) .

(A3)

12 An additional operator, OW = ǫabcW
a
µνW

νρbWµc
ρ , can be considered as well. However, it is weakly

constrained by EWPT, since it affects only the triple and quadruple gauge self-couplings, which are

poorly measured. Thus we set this operator to zero in our fit.
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Whenever relevant, a U(3) trace over flavor is assumed in all of the above. Given the peculiar

behavior of the third generation quarks, new physics is expected to break the U(3)3 flavor

symmetries in the quark sector down to [U(2)×U(1)]3. In our setup bR behaves as the lighter

generations dR and sR , and EWPTs are not sensitive to top observables. Thus, it is well

justified to work in a limit where only U(3)Q is broken down to U(2)q×U(1)Q , with q and Q

denoting the first two and third generation quark doublets, respectively. In this case there

are 5 additional operators

Os
hQ = ih†DµhQ̄γµQ+ h.c. , Ot

hQ = ih†σaDµhQ̄γµσaQ+ h.c. ,

Ot
lQ = (l̄γµσal)(Q̄γµσ

aQ) , Os
lQ = (l̄γµl)(Q̄γµQ) , Os

Qe = (Q̄γµQ)(ēγµe) ,
(A4)

and a U(2) trace over the first two generations is now understood in the q̄γµq current of

Os,t
hq , O

s,t
lq and Os

qe. Therefore, 25 operators are relevant for EWPT. We use the SM global

fit of [46], following the approach developed in [68, 69], with updated mtop = (173.3 ±
1.1) GeV [112] and mW = (80.420± 0.031) GeV [113] measurements from the Tevatron.

a. Tree-level effects We start with matching the coefficients of the 25 operators to RS

at tree-level. The leading contributions arise from exchange of gauge KK-modes, as depicted

in the diagrams of Fig. 1. An explicit evaluation of the latter yields (see [65] for a pedagogical

review 13)

ah =
g′25
2
(G++ −G−+) ,

athF =
g25
4
I++(cF ) ,

atFF ′ =
g25
4
J++(cF , cF ′) ,

ashF =
g′25
2
YF [I++(cF )− I−+(cF )] +

g25R
2

T F
3RI−+(cF ) , (A5)

ashf =
g′25
2
Yf [I++(cf)− I−+(cf)] +

g25R
2

T f
3RI−+(cf) ,

asFF ′ = g′25 YFYF ′J++(cF , cF ′) +
g25R
cos2 θ

(

T F
3R − sin2 θYF

)

(

T F ′

3R − sin2 θYF ′

)

J−+(cF , cF ′) ,

asff ′ = g′25 YfYf ′J++(cf , cf ′) +
g25R
cos2 θ

(

T f
3R − sin2 θYf

)(

T f ′

3R − sin2 θYf ′

)

J−+(cf , cf ′) ,

13 For reference, the relation between the notation used here and that of [65] is as follows: αN = LG++,

αD = LG−+, β
N
ψ = L I++(cψ), β

D
ψ = L I−+(cψ), γ

N
ψψ′ = LJ++(cψ, cψ′) and γDψψ′ = LJ−+(cψ , cψ′), where

L = R log[R′/R] is the proper size of the fifth dimension.
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where F, F ′ = Q, q, l and f, f ′ = u, d, e with sin2 θ = g′25 /g
2
5R. The G, I, J wave-function

overlap integrals are given by

G±+ = v−4

∫ R′

R

dzdz′
(

R

z

)3(
R

z′

)3

v5(z, β)
2G±+(z, z

′)v5(z
′, β)2 ,

I±+(c) = v−2

∫ R′

R

dzdz′
(

R

z

)4(
R

z′

)3

χ(z, c)2G±+(z, z
′)v5(z

′, β)2 , (A6)

J±+(c, c
′) =

∫ R′

R

dzdz′
(

R

z

)4(
R

z′

)4

χ(z, c)2G±+(z, z
′)χ(z′, c′)2 ,

where G±+ is the mixed position-momentum 5D propagator for (±,+) gauge bosons in

AdS space evaluated at zero (4D) momentum [74, 114] and χ(z, c) is the fermion zero-

mode wave-function, while v5(z, β) is the bulk Higgs VEV. g5, g
′
5 and g5R are the 5D gauge

couplings of SU(2)L, U(1)Y and SU(2)R , respectively. While g5 and g′5 have to be matched

to the 4D gauge couplings (see below), g5R is a free parameter of the model, which we

take to be g5R = g5 , as required by the extended custodial symmetry that protects the

ZbLb̄L coupling. Note that aWB ∼ O(v4/m4
KK) at tree-level, and we recall that the tree-

level S parameter often quoted in RS is coming from a “universal” shift to the fermion

couplings. This contribution is included in the global fit through the shifts in the fermion-

gauge boson couplings, which is just a consequence of the fact that some operators in the

effective Lagrangian are redundant [115, 116].

b. Matching of 5D gauge couplings The 5D gauge couplings used above have to be

matched to their 4D values in the effective action. Including one-loop renormalization, the

matching conditions are [74–76, 117–123]

1

g2
= log(R′/R)

(

1

g25k
+

bg
8π2

)

+
1

g2UV

+
1

g2IR
, (A7)

where the last two terms are contributions from (possible) “bare” brane-localized kinetic

terms, which we set to zero for simplicity. The one-loop β-function coefficients b receive

contributions from the bulk only through elementary fields. Hence after removing the Higgs

contribution from the running, we find bg = −10/3 and bg′ = 20/3. Therefore, matching

the 5D gauge couplings at the TeV scale yields g5
√
k ≃ 27.3g/

√

log(R′/R) ≃ 3.02 and

g′5
√
k = 43.9g′/

√

log(R′/R) ≃ 2.66 for k = R−1 = 2.4× 1018GeV and mKK ∼ 2TeV.

c. One-loop effects The large top Yukawa induces a non-negligible contribution to the S

and T parameters, as well as to the bL coupling to Z. A straightforward calculation of the one-
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loop diagram of Fig. 2 gives the following contributions to the oblique parameters [27, 124]

S =
Nc

2π

∑

α,β

∑

X=U,D

[ (

XL†
αβY

L
Xβα +XR†

αβY
R
Xβα

)

χ+(m
α
X , m

β
X)

+
(

XL†
αβY

R
Xβα +XR†

αβY
L
Xβα

)

χ−(m
α
X , m

β
X)
]

,

T =
Nc

16πs2W c2Wm2
Z

[

∑

α,i

V 2
αiθ+(m

α
U , m

i
D) + AV

αiθ−(m
α
U , m

i
D)

−
∑

β<α

U2
αβθ+(m

α
U , m

β
U) + AU

αβθ−(m
α
U , m

β
U)
]

, (A8)

where we defined K2 ≡ |KL|2 + |KR|2, AK = 2Re
[

KLKR∗] with K = U, V . The unitary

matrices UL,R,DL,R (Y L,R
U,D ) denote the couplings of the Q = 2/3 and Q = (−1/3, 5/3) mass

eigenstates to the W µ
3L (Bµ) zero-mode, while the V L,R matrices stand for the coupling of

the mass eigenstates to the W± zero-mode. The definitions of the loop functions θ± and χ±

are [124]

θ+(m1, m2) = m2
1 +m2

2 −
2m2

1m
2
2

m2
1 −m2

2

log
m2

1

m2
2

, (A9)

θ−(m1, m2) = 2m1m2

(

m2
1 +m2

2

m2
1 −m2

2

log
m2

1

m2
2

− 2

)

, (A10)

χ+(m1, m2) =
5(m4

1 +m4
2)− 22m2

1m
2
2

9(m2
1 −m2

2)
2

− 2

3
log

m1m2

µ2

+
3m2

1m
2
2(m

2
1 +m2

2)− (m6
1 +m6

2)

3(m2
1 −m2

2)
3

log
m2

1

m2
2

, (A11)

χ−(m1, m2) =
m1m2

(m2
1 −m2

2)
3

(

m4
1 −m4

2 − 2m2
1m

2
2 log

m2
1

m2
2

)

, (A12)

where the renormalization scale dependence in χ+ cancels out in S thanks to tr[U †YU +

D†YD] = 0. Note that Eq. (A8) includes SM contributions from top and bottom

S SM ≃ Nc

18π

[

3− log

(

m2
t

m2
b

)]

, TSM ≃ Nc

16πs2W c2W

(

m2
t

m2
Z

)

, (A13)

which need to be subtracted in order to isolate the new physics contributions.

These loop effects are controlled by EWSB, dominantly from the top sector as

parametrized by the 5D top Yukawa. The contributions associated with EWSB mixing

among heavy KK-modes are controlled by the top Yukawa coupling evaluated at a scale of

the order of the KK masses. These contributions are subdominant, however, and the result

is dominated by EW mixing between the KK-modes and the top zero-mode. The relevant

diagrams display an IR divergence that is cutoff by the top mass, indicating that the result
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is dominated by scales of order µ ∼ mtop (see [27]). To be conservative, we use in these

loop contributions a top running mass mt(µ = mtop) ≈ 160 GeV [125]. Similarly, we use

mb(µ = mtop) ≈ 2.7 GeV.

In gauge-Higgs unified models, where the Higgs is realized as a pseudo-Goldstone boson,

the Higgs only partially regulates the divergent contribution to the S and T parameters

arising from loops of (longitudinal) SM gauge fields14 [70]. This results in a logarithmic

correction to the S and T parameters which is cut by the KK scale [71]:

∆S =
1

12π

(

1− a2
)

log
Λ2

eff

m2
h

, ∆T = − 3

16πc2W

(

1− a2
)

log
Λ2

eff

m2
h

, (A14)

where Λeff ≃ mKK and a measures the amount of Higgs compositeness, with a = 1 cor-

responding to the fully elementary SM Higgs. Deviation from a = 1 also leads to an

incomplete unitarization of the W/Z scattering amplitude, and perturbative unitarity is lost

at Λeff ≃ 1.2 TeV/
√

|1− a2|. Requiring unitarity not to be violated below the KK scale,

we find the contributions in (A14) to raise the bound for 1 (6) d.o.f. by 300 (200) GeV,

assuming the SM as the best fit.

The Zb̄LbL vertex also receives large radiative corrections dominated by the diagrams of

Fig. 3. This yields

δgbL =
α

2π

[

∑

α

V L
αbV

L
αb

[

FSM(rα) + F̃

(

UL
αα

2
− 1

2
,
UR
αα

2
, rα

)]

+
∑

α<β

V L
αbV

L
βbF

(

UL
αβ

2
,
UR
αβ

2
, rα, rβ

)]

, (A15)

where rα = (mα
U/mW )2 and the loop functions are [45, 126]

FSM(r) =
r

8s2W

(r − 1)(r − 6) + (3r + 2) log r

(r − 1)2
, (A16)

F̃ (gL, gR, r) =
r

8s2W

[

gL

(

2− 4

r − 1
log r

)

−gR

(

2r − 5

r − 1
+

r2 − 2r + 4

(r − 1)2
log r

)

]

, (A17)

F(gL, gR, r, r
′) =

1

4s2W (r′ − r)

[

2gL

(

r − 1

r′ − 1
r′2 log r′ − r′ − 1

r − 1
r2 log r

)

−gR
√
rr′
(

r′ − r +
r′ − 4

r′ − 1
r′ log r′ − r − 4

r − 1
r log r

)

]

. (A18)

14 We thank Kaustubh Agashe for bringing this point to our attention.
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Here again the SM contribution,

δgbLSM =
α

2π
FSM(rt) , (A19)

should be subtracted to isolate the contribution from new physics. Note that this result

is derived for an off-shell (q2 = 0) Z in the ’t Hooft/Feynman (ξ = 1) gauge. Although

the result should only be gauge-invariant when the Z is on-shell (q2 = m2
Z), we expect the

missing terms to suffer an additional m2
Z/m

2
KK suppression, so the q2 = 0 result quoted

constitutes a valid approximation for the new physics contribution. Notice also that all

the radiative corrections above decouple like v2/m2
KK, as expected, since they arise from

vector-like (KK-)fermions which mix with the chiral zero-mode through Yukawa couplings.

The above one-loop corrections are accounted for in the global fit by adding the following

shifts to the coefficients of the OWB, Oh and Os
hQ operators:

aWB → aWB +
gg′

16πv2
(S − S SM) ,

ah → ah −
g2s2W
2πv2

(T − TSM) , (A20)

ashQ → ashQ − 2

v2
(δgbL − δgbLSM) .

As for S and T , we use a renormalization scale of order µ ∼ mtop to evaluate δgbL, which

errs on the conservative side.

Appendix B: Contributions to B meson mixing

In Sec. IV we estimated the bounds coming from the contributions to Bd,s mixing in our

model. Here we calculate these contributions in detail. We begin with the simpler case of

small bottom Yukawa coupling, based on the bulk masses of Eq. (17), and then we generalize

to the large bottom Yukawa case, and show that in fact there are only O(1) corrections.

1. Small 5D Bottom Yukawa

We start with the mass relation of Eq. (15), where for simplicity we omit the overlap

correction rH00 (which can be restored at the end) and absorb the αU,D coefficients into the

5D Yukawas. As explained in Sec. IVA, we have to a good approximation [mU , YU ] = 0.
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Thus, it is convenient to work in a basis in which YU is diagonal. The 5D Yukawa matrices

can then be written as

YU = λU , YD = V QλD , (B1)

where λU = diag(Yu, Yc, Yt) , λD = diag(Yd, Ys, Yb) and V Q is the misalignment between YU

and YD, or in other words, the 5D equivalent of the CKM matrix.

In order to find the relation between V Q and V CKM, we note that the latter diagonalizes

the mass matrix mD from the left, i.e. it diagonalizes

mDm
†
D ∝ FQYDFDF

†
DY

†
DF

†
Q . (B2)

The almost universal FD’s can be thrown away, since we now only care about diagonalization,

and for the FQ’s we can pull out a factor of fQ1 (= fQ2), obtaining

FQ ∝ diag(1, 1, rQ) , (B3)

where we defined15

rQ ≡ fQ3 rH00(β, cQ3, cD3)

fQ1 rH00(β, cQ1, cD3)
. (B4)

Eq. (B2) then becomes

mDm
†
D ∝ diag(1, 1, rQ) V

Q λ2
D V Q† diag(1, 1, rQ) . (B5)

From this expression, it is simple to find the following relations for the mixing angles16

V Q
12 ∼ V CKM

us , V Q
13 ∼ rQV

CKM
td , V Q

23 ∼ rQV
CKM
ts . (B6)

The 5D CKM mixing angles for the third generation are thus larger than the corresponding

CKM elements. This is not a surprise, since the hierarchy in the 5D Yukawas is milder than

for the masses because of the fQ’s. After diagonalization, we find the mass relations

md,s,b
∼= v√

2
fQ1,1,3Yd,s,bfD1 , (B7)

where we used the facts that fQ1 = fQ2 in our current realization of the model and that all

the fD’s are almost identical.

15 To be precise, the right-handed bulk mass that is used in the overlap corrections in Eq. (B4) depends on

the process in which we use rQ . Since the largest contributions usually come from the third generation,

we defined rQ with cD3 .
16 We omit any complex conjugate signs here and below.
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The matrix DR which diagonalizes mD from the right is computed from the following

expression

m†
DmD ∝ F †

DY
†
DF

†
QFQYDFD ∝ λD V Q†diag(1, 1, r2Q) V

Q λD . (B8)

The resulting mixing angles of DR are

(DR)12 ∼ (r2Q − 1)
Yd

Ys
V Q
13 V

Q
23 ∼ (r2Q − 1)r2Q

md

ms
V CKM
td V CKM

ts ,

(DR)13 ∼
r2Q − 1

r2Q

Yd

Yb

V Q
13 ∼ (r2Q − 1)

md

mb

V CKM
td ,

(DR)23 ∼
r2Q − 1

r2Q

Ys

Yb
V Q
23 ∼ (r2Q − 1)

ms

mb
V CKM
ts ,

(B9)

where we used Eqs. (B6) and (B7).

The operators considered in Sec. IV are generated by KK-gluon exchange. The coupling

of two zero-mode quarks to a KK-gluon is proportional to FQF
†
Q or F †

DFD for left- or right-

handed couplings, respectively. Applying the appropriate rotation to the down mass basis,

the 1-3 entries of the couplings, relevant for Bd mixing, are

(

FQF
†
Q

)

13

∣

∣

∣

mass basis
∼ V CKM

tb

(

V CKM
td

)∗ [
f 2
Q3r

g
00(cQ3)− f 2

Q1r
g
00(cQ1)

]

,

(

F †
DFD

)

13

∣

∣

∣

mass basis
∼ V CKM

tb

(

V CKM
td

)∗ md

mb

[

(

fQ3 rH00(β, cQ3, cD3)

fQ1 rH00(β, cQ1, cD3)

)2

− 1

]

×
[

f 2
D3r

g
00(cD3)− f 2

D1r
g
00(cD1)

]

.

(B10)

The result for Bs is obtained by the replacements 1 → 2 and d → s .

It should be noted that (DR)12 from Eq. (B9) is actually not useful, since when a DR

rotation is applied to F †
DFD , the 1-2 entry is multiplied by ∼ (f 2

D2 − f 2
D1), which is zero in

our model. Hence, FCNC processes among the first two generations follow through (DR)13 ·
(DR)23 . This explains why the right-handed current for ǫK is suppressed by r4Qmdms/m

2
b

relative to the left-handed current, as mentioned in Sec. IV.

2. Large 5D Bottom Yukawa

The case where the 5D bottom Yukawa is large is more complicated, but it turns out

that it only leads to O(1) corrections, as we now show. First, YU and mU do not commute

anymore, so there is no “natural” basis to adopt. It is therefore useful to define two new
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matrices, V QD,QU , which parameterize the misalignment between YD,U and CQ (and equiva-

lently FQ). Moreover, we need now to compute both DL and UL (diagonalizing mD and mU

from the left, respectively), in order to relate all the above matrices to the CKM matrix. In

the following we consider for simplicity only the first relevant terms in the MFV expansion

of the 5D spurions.

The first step is to relate V QD and V QU to V Q. In the basis in which YD is diagonal, CQ

from Eq. (14) can be written as

CQ = aQ · 13 + bQD λ2
D + bQU V Q†λ2

UV
Q + . . . , (B11)

and it is diagonalized by V QD. We then obtain the following relations:

V QD
12 ∼ V Q

13

V Q
23

∼ V Q
12 , V QD

13 ∼ V Q
13

(

bQUY
2
t

bQDY
2
b + bQUY

2
t

)

, V QD
23 ∼ V Q

23

(

bQUY
2
t

bQDY
2
b + bQUY

2
t

)

,

(B12)

where we assumed a specific relation between the V Q mixing angles for V QD
12 , which is

consistent with the results below (since a similar relation holds for the CKM matrix). Note

that the expression in parenthesis in the last two mixing angles is of order one as long as Yb

is smaller than or comparable to Yt and bQU,D are O(1). Similarly, in the basis in which YU

is diagonal, CQ can be written as

CQ = aQ · 13 + bQU λ2
U + bQD V Qλ2

DV
Q† + . . . . (B13)

We then have

V QU
12 ∼ V Q

12 , V QU
13 ∼ V Q

13

(

bQDY
2
b

bQDY
2
b + bQUY

2
t

)

, V QU
23 ∼ V Q

23

(

bQDY
2
b

bQDY
2
b + bQUY

2
t

)

. (B14)

In this case, if Yb < Yt then the expression in parenthesis becomes small, and we return to

the small bottom Yukawa scenario. We assume that Yb and Yt are comparable, so that the

expressions in parenthesis in Eqs. (B12) and (B14) are O(1). We then conclude that

V QD ∼ V QU ∼ V Q . (B15)

The next step is to diagonalize from the left the down and up mass matrices, thus

expressing DL and UL in terms of V Q . Compared to Eq. (B5) for mD , we now need to

account for the fact that FD is non-universal and not aligned with YD. Parameterizing this

misalignment by the matrix V D , Eq. (B5) is generalized to

mDm
†
D ∝ diag(1, 1, rQ) V

Q λDV
Ddiag(1, 1, r2D)V

D†λDV
Q†diag(1, 1, rQ) , (B16)
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where rD is defined as rQ but with D ↔ Q. However, since the leading terms still come

from Yb (so that we can take Yd = Ys = 0), V D does not play a role in this diagonalization.

Therefore, the result of Eq. (B6) holds also in the current case for the relation between V Q

and DL , that is

V Q
12 ∼ (DL)12 , V Q

13 ∼ rQ (DL)13 , V Q
23 ∼ rQ (DL)23 . (B17)

Applying the same process tomU , we see that Eq. (B17) also holds after replacingDL → UL .

Since V CKM = ULD
†
L , then e.g. for the 2-3 entry,

V CKM
ts ∼ (UL)22 (DL)23 + (UL)23 (DL)33 ∼

V Q
23

rQ
, (B18)

where the two terms in the middle are similar in magnitude, but have different phases in

general. Thus, we took only one of them as representing the sum (omitting an order 1

correction and the unknown phase). The bottom line is that the relations of Eq. (B6) apply

to this case as well, and we have DL ∼ UL ∼ V CKM.

Before continuing, it should be noted that the mass relations in Eq. (B7) are slightly

changed to

md,s,b
∼= v√

2
fQ1,1,3Yd,s,bfD1,1,3 , (B19)

to include the different cD3 .

In order to estimate DR , we first need to relate V D to an already known matrix. In the

basis where YD is diagonal, V D diagonalizes CD , written as

CD = aD · 13 + bD λ2
D + dDUλDV

Q†λ2
UV

QλD + . . . , (B20)

considering the relevant leading terms from Eq. (18). The mixing angles of V D are then

given by

V D
12 ∼ Yd

Ys
Y 2
t V Q

13V
Q
23

(

dDU

bD

)

∼ r3QrD
md

ms
Y 2
t V

CKM
td V CKM

ts ,

V D
13 ∼ Yd

Yb
V Q
13

(

dDUY
2
t

bD + dDUY 2
t

)

∼ r2QrD
md

mb
V CKM
td ,

V D
23 ∼ Ys

Yb
V Q
23

(

dDUY
2
t

bD + dDUY 2
t

)

∼ r2QrD
ms

mb
V CKM
ts ,

(B21)

where we again assume that the expressions in parenthesis are O(1). Now we can generalize

Eq. (B8):

m†
DmD ∼ diag(1, 1, rD) V

D† λD V Q†diag(1, 1, r2Q) V
Q λD V D diag(1, 1, rD) , (B22)
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and obtain DR :

(DR)12 ∼ (r2Q − 1)
Yd

Ys
V Q
13 V

Q
23 + V D

12 ∼ (r2Q − 1)r2Q
md

ms
V CKM
td V CKM

ts + r3QrD
md

ms
Y 2
t V

CKM
td V CKM

ts ,

(DR)13 ∼
r2Q − 1

r2QrD

Yd

Yb

V Q
13 +

V D
13

rD
∼ (r2Q − 1)

md

mb

V CKM
td + r2Q

md

mb

V CKM
td , (B23)

(DR)23 ∼
r2Q − 1

r2QrD

Ys

Yb
V Q
23 +

V D
23

rD
∼ (r2Q − 1)

ms

mb
V CKM
ts + r2Q

ms

mb
V CKM
ts .

Comparing this to the small bottom Yukawa result in Eq. (B9), we get here for each of the

angles the same term plus an additional one, which is of the same order. Since there is a

general phase between them, we should just take one of them as the result, so that overall

there is an O(1) correction and an undetermined phase compared to Eq. (B9), as expected.

Therefore, we are justified in using Eq. (B10) in our estimates.
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