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We review a method, suggested many years ago, to numerinafgure the relative amplitudes of the true
Yang-Mills vacuum wavefunctional in a finite set of latticegulated field configurations. The technique is
applied in 2+1 dimensions to sets of abelian plane wave aardipns of varying amplitude and wavelength,
and sets of non-abelian constant configurations. The sesrdtcompared to the predictions of several proposed
versions of the Yang-Mills vacuum wavefunctional that happeared in the literature. These include (i) a
suggestion in temporal gauge due to Greensite and Oldji)ikhe “new variables” wavefunction put forward
by Karabali, Kim, and Nair; (iii) a hybrid proposal combigifieatures of the temporal gauge and new variables
wavefunctionals; and (iv) Coulomb gauge wavefunctionagetbped by Reinhardt and co-workers, and by
Szczepaniak and co-workers. We find that wavefunctionaistwsimplify to a “dimensional reduction” form
at large scales, i.e. which have the form of a probabilityritistion for two-dimensional lattice gauge theory,
when evaluated on long-wavelength configurations, haveptienal agreement with the data.

I. INTRODUCTION are abelian in the sense thet,U;] = 0. The results are com-
pared to the corresponding values obtained in each of the pro

Most of the k turbati i f beli rgosedvacuumwavefunctionals. The method can be applied in
ost oT the Key non-perturbative properties ot non-abetia ny number of space-time dimensions, but here we will work
gauge theories, such as the static quark potential, the ch

| q ) d the topoloaical ch densit té'xclusively in 2+1 dimensions, since the new variables pro-
"Iil con en?a €, fatrr]1 e topo o?rr:]a ¢ ar%e de?hSI Y, atf ?ﬁ eposal [14] is formulated only in that case.
ally properties of the vacuum of the quantized theory. in In section Il below we will introduce and motivate each
Hamiltonian formulation, the vacuum state is the grountksta

functional of the Hamiltoni i d all of th of the wavefunctionals to be tested. Section IIl reviews the
wavetunctionat ot the Hamiftonian operator, and all ot tRe € - oy for measuring the true vacuum wavefunctional, and
cited states of the theory, i.e. the mesons, baryons, and,

Shction IV compares the results obtained by this method with

a pure gauge theory, the glueballs, are simply sm_all excitag, predictions of each of the proposed ground states. Our
tions on top of that und_erlylng ground state. For this reason.,nclusions are in section V, and some numerical details are
knowledge of the Hamiltonian ground state wavefunctiona ound in the appendix '

could be essential in understanding the infrared propsedfie
a non-abelian gauge theory.

Proposals for the ground state of pure Yang-Mills theory go Il. VACUUM STATE PROPOSALS
back over thirty years [1, 2]. However, with only a few excep-
tions [3-7], very little work was done in this area after 80S  The yang-Mills Hamiltonian operator takes on its simplest
initial efforts. In recent years, however, there has beed-m  t5rm in temporal gauge, namely
est revival of interest in this area, and a number of plaasibl
suggestions for the vacuum state have been advanced. These "D 1 62 1 a.,.02
proposals will be described, along with their motivatioims, H= / d X{_EW + 41 (x) }
the next section. Briefly, there are suggestions which have
been put forward in temporal gauge [8], in Coulomb gaugen the continuum theory i + 1 dimensions, and
[9-13] and, in 2+1 dimensions, in terms of gauge-invariant )
“new variables” [14]. Since these suggestions differ ini-var Ho T EPER + t ZTr[Z_ Up) -Ufp)] (@
ous ways, it would be interesting to know which (if any) is the ZaZ 2g%a 4

true vacuum state, or at least a reasonable approximation to ] ] )
the true vacuum state. on the lattice, where the sums are over lihksd spatial pla-

guettes, respectively. Physical states in temporal gauge must
. . ; ; . . obey the Gauss law constraDfPEPW = 0, or more explicitly
suring, via lattice Monte Carlo simulations, the relativagn

nitudes of the true Yang-Mills wavefunctional in any given s bo)

: i iqurati i ; 5%y — ge®*AL) =W =0 ©)
of lattice gauge field configurations. The evaluations wél b k—ge™ A SAC =Y
carried out for two types of lattice configurations: non{&be
constant gauge fields of varying amplitudes, which are conwhich implies that physical states must be invariant under i
stant in space but noncommutatilg,U;] # 0, and abelian finitesimal gauge transformations. The Gauss law constrain
plane waves of various amplitudes and wavelengths, whicin temporal gauge is a mixed blessing in the search for an

1)

In this article we will apply an old method [15-17] for mea-



approximate ground state. On the one hand, gauge invariang®od reasons to believe that Yang-Mills theory is confining
can be seen as an aid in selecting a good ansatz for the vacuumthree Euclidean dimensions. It was noted by Halpern [2]
state. On the other hand, by severely limiting the choice, ce that a dimensional-reduction vacuum state in 2+1 dimeission
tain states which are perfectly acceptable in Coulomb gaugenustbe confining, since Yang-Mills theory in two Euclidean
and which may be much more amenable to an analytical treatimensions is known to confine. Dimensional reduction was
ment, must be discarded in temporal gauge. A very imporalso suggested somewhat later, on rather different grounds
tant relation, for our purposes, is the equality of the vawwuu by Ambjorn, Olesen, and Peterson [20, 21]. These authors
wavefunctionals in temporal and Coulomb gauge (see, e.gwere the first to make the connection between dimensional re-
ref. [18]), duction and the property that has come to be known [22] as
tom Casimir scaling. Strong evidence for Casimir scaling adrint
WSOUl[A] =% A 4) mediate distangce scale?s was found in [23]. ’
when evaluated on gauge fields satisfying the Coulomb gauge On the other hand, the dimensional reduction wavefunc-
conditionJ- A = 0, and which also lie in the first Gribov re- tional cannot be correct as it stands, because the shoades
gion. Since our numerical method, to be described in the nextructure is completely wrong. For example, equal-time-two
section, will generate the relative amplitudes of vacuuwewa point correlators inD + 1 dimensions, at short distances,
functionals in temporal gauge, in any finite set of gauge fieldcannot be identical to short-distance two-point corretto
configurations, we will be able to check proposals in Coulombn D Euclidean dimensions; the singularity structure in the
gauge by ensuring that the given set satisfies the Coulom@Pproach to zero separation would be wrong. In general
gauge condition, and lies within the first Gribov horizon. one would expect that the vacuum state evaluated on short
The ground state wavefunctional is known in two limits: wavelength configurations would agree with the perturleativ
the free-fieldg? = 0 limit, and also at strong lattice couplings ground state, whose zeroth order approximation is given by
g® > 1. In the free-field limit, in either Coulomb or temporal (5)-

gauge, There are other reasons, apart from short-distance singula
) ity structure, that dimensional reduction cannot be exaehe

o 1/ b, ca 68 b for infrared physics. Dimensional reduction from 2+1 to two

WolA = exp [_Z/d xd7y R (x) V_2 Xyl:'j(y) ’ Euclidean dimensions would imply a non-vanishing string

tension, and perfect Casimir scaling, for any color groyp re

(5) resentation. This cannot be right in 2+1 dimensions, bexaus
while in the strong-coupling limit, irBU(N) gauge theory, it of color screening. As argued in ref. [8], it is quite plausi-
has been shown that [19] ble that color screening is achieved by small correctiotis¢o

dimensional reduction form.

(6) Another argument against exact dimensional reduction

’ from 3+1 to three Euclidean dimensions was raised in refs.
[26, 27], which pointed out that this reduction would imply a

to leading order in 1g?. It was suggested long ago in ref. match between the equal-time Coulomb gauge gluon propa-

[1], by one of the present authors, that the Yang-Mills vaouu gator in 3+ 1 dimensions, and the Landau gauge propagator
wavefunctional in 3+1 dimensions might have the form in D = 3 Euclidean dimensions. It was shown in the same
1 references that these propagators actually do agree geiite w

YolA] ~ LP(""‘)”[A] = /Vexp[—zu/de’x Tr[F,jz]} . (7) inarange of low and intermediate momenta around 1 GeV (a
range which is relevant for phenomenology), but the equiva-

when evaluated on sufficiently long-wavelength, slowlyyar lence cannot hold in the far infrared.

ing field configurations. This wavefunctional has the proper  For all of these reasons, a purely dimensional reduction vac

WolU] = A exp [ﬁ ZTrU (P)+c.c.

of dimensional reductionf we write uum wavefunctional is clearly inadequate. Correctionsare
2 sential, and what is really required is an approximatiormo t
‘%[A]‘ = ye RA (8)  vacuum state which holds at all distance scales. There &re no

) ) ~anumber of proposals, which may or may not obtain the di-
thenR[A] has the form of the Euclidean Yang-Mills action in mensional reduction form in some limit, but which do claim

one lower dimension (three dimensions, in this case). It igo approximate the ground state at all length scales. These w
clear that the strong-coupling vacuum state (6) does, i) facwjil| briefly review.
have this property.
The dimensional reduction vacuum (7) in 3+1 dimensions
is confining, i.e.

W(C) — <W0|Tr[U (C)]|q,)0> For thls_ reason it is usef_ul to con;ldb«strlng ten_smns, associated with
AreaC) quarks in completely antisymmetric representations, whmsor charge
~€ A (9) cannot be screened to a lower dimensional representatighubps. The

] ] . . . . current evidence [24] in 2+1 dimensions is that the leadimgections to
if and only if Yang-Mills theory in three Euclidean dimen-  theN = o result are of order AN, as in Casimir scaling, rather thayiN2,

sions has that property, wheltgC) is a Wilson loop holon- as in the competing Sine Law proposal. For a recent disaussik-string
omy around the planar, spacelike 08p Of course we have tensions in the context of the lardexpansion, cf. [25].
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A. Temporal gauge whereV is the volume of 2-space, and the cross-product and
dot-product are defined with respect$t(2) color indices.
It was suggested in ref. [8] that the Yang-Mills ground stateSolving for the ground state is a problem in quantum mechan-
wavefunctional, inD = 2+ 1 dimensions and in temporal iCS, rather than quantum field theory, and to leading order in
gauge, is approximated By 1/V the solution is

V (Al X Az) . (Al X Az)

1
WeolAl = exp{—z—gz / d?xd?y B(x) 202 /A2 + A2

1 ab Now in the region of parameter space where the zero mode is
| Bb(y) , (10) much larger than all other modes, the covariant Laplacian is
V/—D2—Ag+n?

approximated by
whereB? = F2, D? is the covariant Laplaciary is the low- (—DH)D = 5%(x—y) {(A% +A%)5%0 — AZAD — AS‘AS}
est eigenvalue ofD?, andn? is a parameter which vanishes (13)
asg — 0. The motivation was to find the simplest possible

gauge-invariant expression which would agree with the-freeandn? is negligible. It is then found, after some algebra, that

field (5) and dimensional reduction (7) wavefunctionaldi@ t  the proposed wavefunctional (10) reduces to the zero-mode
appropriate limits. In support of this conjecture, it wasrid  solution (12).

Yo =exp

(12)

Xy

thatWeo Dimensional reduction follows by expanding tBdield in
1. solves the Yang-Mills Schrodinger equation in the&igenmodess of —DZ Then the part of the wavefunctional
strong-field, zero-mode limit; that depends only on the low-lying modes, with eigenvalues

An— Ag < 2 has the form of the dimensional reduction wave-
2. confines if the mass parametar> 0, and thatmn> 0  functional (7), withy = 1/m. If we assume that the asymp-
seems to be energetically preferred; totic string tension is due to the low-lying modes, then cal-

culation of the string tension is simply an exercise in two-
3. produces results for the mass gap, the Coulomb gaugfimensional Yang-Mills theory, and the result is
ghost propagator, and the color Coulomb potential,

which are in rather good agreement with results derived 3 ?
from standard lattice Monte Carlo simulations. o= Em ’

The subtraction o\ is essential, and was introduced be- |fwe turn this around, and write = 160 /(3g?), then we have
cause-D? has a positive semi-definite spectrum, and in gena complete proposal for the vacuum wavefunctional, althoug
eral the lowest eigenvalue tends to infinity for typical vacu  the string tension must be supplied as an input.

configurations in the continuum limit. This fact is obvious A method for obtaining equal time expectation values
perturbatively, and is confirmed numerically. Without thibs

traction (and this was the form originally suggested by Seimu _ / 2
[6]), the kernel joinindB?(x) andBP(y) in (10) effectively van- (Q DAM)QIA¥eo (15)
ishes in the continuum limit, and the corresponding stramg t
sion would be infinite. In contrast, the spectrum-dd? — Aq
is well-behaved, and not far from that of the free-field Lapla
cian operator-[2 [8].

If one drops all components of the vector potential apar

(14)

by numerical simulation, with a suitable lattice regulariz
tion, was also introduced in [8], and applied to calculat th
mass gap. The Coulomb gauge ghost propagator and color
Coulomb potential were derived via numerical simulation of

2 . . . .
from the zero mode (analogous to the “minisuperspace” ap- GO in [28], by the method of generating thermalized lattice

: . o
proximation in quantum cosmology), then the Lagrangian and°figurations from th&’g, distribution, and then transform-
the Hamiltonian operators are simply ing these configurations to Coulomb gauge. The results, as

already mentioned, were in very good agreement with those
_ 1 2 obtained from standard lattice Monte Carlo simulationst Fo
L= 202 /d X {atAk (A (A x Ag)- (Ao x Azﬂ details, we refer the reader to the cited references.

1
= 2_gzv {atAk O A — (AL x Az) - (Ar Az)}

92 (92

Vv B. New variables
" oRR 2

A1 X Az) . (Al X Az) s (11)

While the temporal gauge ground state can be credited with
some numerical success, it remains an educated guess, and
requires the string tension as an input. A more ambitious pro

2 A factor of g has been absorbed into the definition of the gauge field, sagdram in 2+1 dimensions, which aims to calculate both the
that A, has units of inverse length. This accounts for the overatbfaof ~ Yang-Mills vacuum state and the string tension analytcall
1/g” in the exponent of the wavefunction. was initiated by Karabali, Kim, and Nair [14], and has been
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further developed by Karabali and Nair in a series of paperssense, the new variables approach trades the local gauge in-

cf. [29] and references therein.

The starting point in the Karabali, Kim, Nair (KKN) ap-
proach is temporalhg = 0 gauge, and the remaining two
components of thé-field are combined into a complex field
A= (A1 +1A2)/2, related to a matrix-valued fied via

A=—(@MM  A=MT1gM", (16)

wherez = x; — iXp, andz = x1 + ix are the usual holomorphic
variables in the complex plane. The matrix-valued fisld
takes values in the groigL(2,C), and transforms covariantly,
M — GM, under a gauge transformati@ This field can be
used to define gauge-invariant field variables

A =M™
o CA 0% -1

variance constraint (the Gauss law) in temporal gauge for in
variance under local holomorphic transformations.

Expressing the ground statedlg] 7] = .4 exp(—R[_#]),
KKN find an expression foR[_#] which is bilinear in_#,
namely

WekN = ﬂexp{—zz—nzz /d2xd2y5/a(x)
g°Ca
1

() 77 aml
= Wexp{—z—éz /dzxdzy B¥(x)

« )XyBaw)] @)

1
V=0%2+nmP+m

whereCy is the quadratic Casimir in the adjoint representa-yhere the second line is the new variables state convertéd ba

tion. In terms of these gauge invariant variables, the Hamil

nian becomes
Hkkn =T+V, (18)

whereT is derived from theE2 term in the standard Hamilto-
nian

" a 6
T —m(./u S s
o) o
/u,v Qab(U,V) 6/a(u) 5fb(v)> (19)
with
~Ca O - (v)
Qab(u,V) - ?W - |fabcm (20)
and @ = d,)
1 -
V= [B0B 0 =t [00% 0% (@)
and also
_ g°Ca
TR (22)

Inner products are evaluated with respect to the integratio
measure

WilWa) = [ du(or) SRS (W) (23)

wheredu(.27) is the Haar measure, ai8lzw is the Wess-
Zumino-Witten action.

Although the new field variableZ is gauge invariant, the
HamiltonianHkkn is invariant under local holomorphic trans-
formationsh(z), under which # transforms like a connection

C
S —hgh e ZEonht, (24)
and all physical state®| #], in the new variables approach,
must be invariant under this local transformation. In this

to usual variables. KKN assume that the dimensional reduc-
tion form is obtained for long-wavelength configurations by
simply dropping—[? in the kernel, i.e.

WrkN — Wexp[—% /dzx Ba(x)Ba(x)} . (26)

and then the string tension for a spacelike Wilson loop is ob-
tained from solving Yang-Mills theory in two Euclidean di-
mensions, with the result

(27)

Very remarkably, this value is within a few percent of theueal
found by Bringoltz and Teper [30] in lattice Monte Carlo sim-
ulations of the 2+1 dimensional theory, after careful gxtra
lation to the continuum limit.

C. A hybrid wavefunctional

The problem withWkky is that, in terms of new variables,
it is not holomorphic invariant, and in terms of the usualvar
ables (second line of (25)) it is not gauge invariant. Thanef
Wkkn, as it stands, is not a physical state. Of course, KKN
do not claim thatWkkn[_#] in eq. (25) is exact, and pre-
sumably gauge and holomorphic invariance requires consid-
eration of contributions t&[_# | involving higher powers of
. However, ignorance of the gauge/holomorphic-invariant

wavefunctional calls into question the assumed dimensiona

reduction form (26), which was required for the successful
prediction of the string tension. For example, suppose we

3 Recently some corrections  have been calculated [29], and they are
quite small. At present it is not entirely clearhy the correction is so
small, since there is no obvious small expansion parametkisi approach,
and the corrections involve a sum of rather large (positive aegative)
contributing terms, which for some reason nearly cancel.



5

assume that higher powers gf in the expansion oR[_7] thenK — 1, andWq has the dimensional reduction form (26),

would have, as its main effect, the conversion of the orginar leading to the same prediction for the string tension. Leigh

Laplacian into a covariant Laplacian; i.e. in the usualafles et al. also obtain predictions for the glueball mass speattru
in 2+1 dimensions, which appear to be in good agreement

Wy = /exp[_iz / d?xd?y B3(x) with standard lattice Monte Carlo results. The reservaition
29°. this case is that the LMY approach assumes a certain operator
1 a identity (eq. (56) of ref. [31]) whose validity, in our opom,
X (m)xf V)] - (28) s questionable. It would nevertheless be interesting $b te

W my numerically, but unfortunately it is not clear to us that
In that case, for configurations which are non-abelianthe method we will use in this article could be easily applied
([Ax,A)] # 0) in general, dropping-D? is invalid even for  to the LMY proposal.

configurations which vary very slowly compared to the length

scale Yg?, and indeed is invalid even for configurations which

have no spatial variation whatever. As we have remarked D. Coulomb gauge
above, in connection with/go, the covariant operator D?
has a positive semi-definite spectrum, and for typicaldatti In Coulomb gauge, after resolving Gauss’ law, eq. (3), one

configurations the lowest eigenvalue diverges in the centinobtains the Yang-Mills Hamiltonian [32] in terms of the tsan

uum limit. In that case, rather than replacin®? by zeroto  verse components of the gluon field; A= 0,

obtain the dimensional reduction result, one should repitac 1/

by infinity! This is obviously nonsense. H=3 / d®x (7 HAIM? Z[AN?+BBY) +He  (32)
Assuming that the KKN wavefunctional applies to abelian 5

configurations [Ax,A] = 0), the corresponding vacuum state H, — g /dDXdDy/fl[A] pa(x)/[A]Fab(x, Y, [A])pb(y)’

for more general configurations is still a mystery; one can 2

only guess what the gauge and holomorphic invariant comwhereN?(x) = §/idA?(x) is the canonical momentum (elec-

pletion of Wxkn might be. But the gauge-invariant comple- tric field) operator and

tion is essential, if one is going to invoke dimensional redu _

tion to compute the string tension. At this stage there are an /|A=Detl(-D-0) (33)

infinite number of possibilities, and the validity of the KKN is the Faddeev-Popov (FP) determinant (this should not be

prediction for the string tension depends on which of theseonfused with the variableZ (x) in the KKN approach). Fur-

possibilities is the correct one. One possible approach is tthermore

retain Wxkn for abelian configurations, and ask for the sim- asyy _ _ pcabcpabc

plest gauge-invariant generalization which would leadhi® t PR = —eTAT, (34)

dimensional reduction form (26). Then it is natural to mergeis the color charge of the gluons and

features oWgo andWkkn into a conjectured “hybrid” form B B

for the ground-state wavefunctional FExy,[A]) = [(_D'D) H-0%)(-D-O)7* X‘a;y,b(35)

1 dPxdy B is the so-called Coulomb kernel. The gauge fixed Hamilto-
Whybrid = -/ €xp _2_92/ xd%y BY(x) nian eq. (32) is highly non-local due to the Coulomb kernel,
ab eg. (35), and due to the FP determinant, eq. (33). In addlition
1 BP 29 the latter occurs also in the functional integration measir
x D2 Qo+ mP4m » W] @9 the scalar product of Coulomb gauge wavefunctionals

which we will include in our numerical tests below. (Un|Oly) = /DA/ (Al Y1 (A OU[Al. (36)

An alternative approach has been followed by Leigh, Minic

and Yelnikov (LMY) [31], who begin with the ansatz Any normalizable state, expressed as a functional of tmsira

verse gauge field, is a physical state in Coulomb gauge. This
T o o = 4 = _a means in particular that a wavefunctional which is Gausisian
Wimy = exp[—m /d xd%y 0 7% (X)Kyy(L)9 7 (y)} > the gauge field may be a viable proposal for the ground state.
(30) Unlike the GO and KKN/hybrid proposals, such a state cannot
have the dimensional reduction property in general, sihat t
wherel = —A/m?, andA is the holomorphic-covariant Lapla- property calls for a wavefunctional which, on large scaigs,
cian. They then derive and solve a differential equation forGaussian in the field strengths rather than the gauge fields. O
K(L), whereL is treated as a number, rather than an operatothe other hand, also unlike the other proposals, the Gaussia
and by solving this equation they arrive at wavefunctional is tractable analytically.
Efforts in this direction were spearheaded by Szczepaniak
K(L) = i32(4\/t) ) (31) and Swanson [9, 33]. They used a Coulomb gauge ground
VL Ji(4VL) state wavefunctional of the form

whereJ; » are Bessel functions. By construction, the LMY _ 1 dPk a a
proposal is a physical state. If the infrared limit means 0, WAl = Wexp[—é/ (Z,T)D‘*’(k)Ai (KA (=K)| . (37)




The proposal was further developed in ref. [10], where thecf. eq. (52) below), was omitted and thus only an approx-
contribution from the Faddeev-Popov determinant was inimate low-energy solution could be obtained. It was found,
cluded at one-loop order. The field-independent funatgk) however to be qualitatively consistent with the results 8f [
was determined from a gap equation obtained by minimizinghat used theZ = 1 (x (k) = 0) approximation. This hints that
the energy expectation value. The gap equation depends avithin the one-loop variational approach, contributiora
the so-called ghost dressing functidfk), which is defined in  the FP operator may be accounted for by the gaussian wave-
terms of the expectation value of the inverse Faddeev-Popdunctional itself, with an appropriate choice of the gaassi
operatof parameterw(k). Such a possibility was rigorously demon-
strated by Reinhardt and Feuchter [12] (cf. eq. (46) below
/dDXékX<W| W)xa0p = 5ab&|2() (39)  and the discussion that follows).
" k Inspired by the wavefunctional of a spinless particle in an
s-state of a spherical potential, Feuchter and Reinharidtih
suggested to use the ansatz

I dPx ekX<w|[ } W)xaon. w VA [ 2/ K oA A~ |

2
[f dDxelx( >x,a;0,b} (44)
which has a number of technical advantages: The factor of
In terms of d(k) and f(k) the expectation value of the _#[A] in the integration measure (eq. (36)) cancels against
Coulomb kernel in eq. (35), which determines the Coulomb_# [A] "1 from the square of the wavefunction and thus drops

g
—(b-0)
and the Coulomb form factof,(k), defined by

f(k) =

potentialV, is given by out from the calculation of equal-time vacuum expectation
) values. As a consequence Wick’s theorem can be applied di-
' i f(k)d“(k) rectly, and in particulac(k) appearing in eq. (44) is found to
— D kx ab _ sab y
k) = / d"x EXWIFP(x0,[A)|W) = 8 ke be directly related to the static gluon propagator
(41) .
. aj — kik;
Finally, inclusion of the Faddeev-Popov determma?t at-one <A1-a(k)A*j3(q)> _ (27.[)252(k_|_q)5ab j L. (45)
loop order introduces dependence on the funétflm- k' /|k|) 2w(k)
dia d(a—k Inref. [12] Reinhardt and Feuchter considered a generatwav
o w21 d(@)d(g—K) :
— (k-6)] SCE (42)  functional of the type
2
which is related to the expectation value gf. In ref. [10] WolA = an [ / d k (k)A(k)}
Xx(k) (there denoted by (k)) was derived in context of the / 2 (46)

gap equation, while the explicit representation gfin terms L
of x (k) was derived by Reinhardt and Feuchteﬁ ref. [12] (cf.::r>1 the one Ioop approximation they showed that the Faddeev-
eq. (47) below). opov determinant, eq. (33), can be represented as

The set of coupled Schwinger-Dyson equations for d’k a

x(K),d(k), f(k) and w(k) is UV divergent and requires S A= exp{—/ 2z (—K) x (k) A (k)} (47)
renormalization. In the variational approach this is achie o

by adding relevant and marginal counter-terms to the Hamilwherex (k), thereafter referred to as the curvature, is given by

tonian and, if needed, renormalizing the functional measur 1 r 62In/
The latter was obtained in [10] and reads ab :——/ 2k —
W i in [10] 0%°x (k) 5 doxe™ ( Wy A% (X)5AR(0) Wy ), (48)
X(K) = x(k p) = Tx(K) = Iy (k) , (43) " which, to the order of approximation considered, after reno

malization, coincides with the one given in eq. (43). Combin

wherely (k) is given by the right hand side of eq. (42). In ing eq. (46) and eq. (47) leads to

[10] the renormalization program was, however, not fully im

plemented. In particular a Hamiltonian counter-term prepo d2k

tional to [ A, which defines the; renormalization constant ¥a[Al = Wexp{ 2/ A(—K) [wq (k) — 2a x (k)] A(k)}
(49)

and establishes equivalence, at a one-loop level, between t

ansatz of the Indiana group eq. (37), which corresponds to

4 As shown by Reinhardt [34], in Coulomb gauge the inverse gfam a = 0, and that of the T'L]ebingen group eq. (44), correspond-

factord—1(k) has the meaning of the dielectric function of the Yang-Mills o 6
vacuum, and the horizon condition ingtoar = 1/2'
d10)=0 (38)
therefore implies that the Yang-Mills vacuum is a dual sapeductor. 6 The value ofa does not matter in the one-loop approximation considered
5 For later use, we present all explicit expressionB i 2 space dimensions here. It will, however, become relevant for calculationsigher loop or-

and for the color groupU(Nc) [13]. der.



However, using equivalent variational ansatze did nad lea form a closed set of coupled integral equationsyfod, f and
to the same results for the correlation functiodg), f(k), w. In the gap equation (52f; andc;, are (finite) renormal-
Xx(k), w(k). This is because the approaches of the Indiana anzation constants. For the critical solution, where oneasgs
Tubingen groups differ im) the approximation scheme used the horizon condition for the ghost dressing function, 8§)(
to evaluate the expectation value of the Hamiltonian &8nd bothcw(k) andx (k) are infrared divergent, which implies that
the renormalization scheme. While the Tubingen grougyfull the transverse gluon propagator vanishds-at0, while [35]
includes the Faddeev-Popov determinant to the order consid (0 = i K K
ered, the Indiana group se¢f = 1 throughout ref. [9] and ne- ®(0) = k'ﬂ?)(w( )= X (k) =c1. (56)
glected # in the Coulomb term in the numerical calculations
of ref. [10]. (In the analytic calculation of ref. [10}7 was,
however, fully included.) Also, while the Indiana group eon
siders the one-loop corrections to the Coulomb form factor
f(k), the Tubingen group employs thkk) = 1 approxima-
tion in the equation foff (k).

Ref. [10], in which the renormalization program was not
fully implemented, missed a Hamiltonian counter-term pro-
portional to [ A1, which defines the; renormalization con-
stant (cf. eq. (52) below). The existence of this term wak rea
ized by Feuchter and Reinhardt [11], who carried out the com-
plete renormalization program. Tlog counter-term missed
in [10] plays an important role in determining the IR proper-
ties of the wavefunctional, as realized by Reinhardt and Ep-
ple [35], and will be crucial for the investigations giventhre
present paper. Therefore throughout this paper we willluse t
fully renormalized approach of the Tubingen group [11,.35]

For later convenience we define

So even when enforcing the horizon condition, the quantity
¢1 = @(0) is undetermined and may be taken to be either in-
frared finite or zero. However, a perimeter law of the 't Hooft
Ioop requiresc; = 0 and this value is also favoured by the
variational principle [35]. Furthermore, fag = 0, in the IR
limit k— 0, the wavefunctional eq. (51) becomes independent
of the gluon zero mode which agrees with the behavior of the
exact vacuum wavefunctional inf1 dimensions [36], and
corresponds to the so-called ghost loop dominance in higher
dimensions [37]. But although there is strong evidence 1o fa
vor ¢; = @(0) = 0, our numerical studies in Section 1V B will
also look at the case of a non-zero, but small, valu&d).
The renormalization parametes, on the other hand, has no
influence on the IR or UV behavior of the solutions of the gap
equation (52). Only the mid momentum regime wofk) is
weakly dependent oty [11]. Since we are mainly interested
in the IR properties we will put, = 0 throughout this paper.
The set of coupled integral equations can be solved ana-
(k) = w(k) — x(k), (50) lytically in the IR (for the critical solution) using the p@aw
law ansatze [11, 38] while the full numerical solutions loé t
"above equations were given, fbr= 3 space dimensions, in
[11, 39, 40]. FoD = 2, the numerical solution was presented

wherew(k) corresponds to the wave functional in eq. (44)
and write the wave functional of eq. (44) in the form

1 d%k _ in ref. [13] and it will be used in Section IV B for comparison
WealAl = exp{—z / (zmzA(_k)“’(k) AK)] - with lattice simulations.
(51) One criticism that can be leveled at the Coulomb gauge pro-

) ) _ _ posal is that it is not clear how it could ever lead to an area
The fully renormalized gap equation far, which ultimately  |aw falloff for spatial Wilson loops. In order to addresssthi
determines, reads [11, 35] issue, a modified version of a Gaussian ansatz, which incor-
W?(K) = K2+ x2(K) + c2 + AP (K) 4 2x (K) [l D (K) + 4], porates monopole configurations, has been proposed by Mat-
evosyan and Szczepaniak [41]. Furthermore, recently [42]

(52) Campagnari and Reinhardt have developed a method which
with allows to use non-Gaussian wavefunctionals in the vanatio
Al (n)(k) _ |(n)(k) _ |(n)(o) approach. Specifically, a wavefunctional containing edi
’ with up to four gluon fields was considered. Tests of these
(n> Nc d2 . @"(q) —@"(k) modified versions are, however, deferred to future invastig
| 5(k-0)°V(g—K) ; tions.
w(q)
(53)
andV (k) given by eq. (41). The gap equation, together with . THE MEASUREMENT METHOD
eq. (43) and the Schwinger-Dyson equations for the ghost
form factor, We begin with the identity
dH (k) =d () - (Id(k) la(H)), 2
Nc L d(q—k) /DU { |_|5ka0 ()]}eS
/ (k-6 s (54) k1
(@) (a—K) 57)
and Coulomb form factor, A 1 the infini I it s th g .
where, in the infinite volume limit¥y is the ground state o
F(k) = () + (15 (k) = 1 (k)) the operatoH, defined via the transfer matrix= expg—Ha],

Ne

Ne [ _ (R-q with & the lattice spacing in the time direction. In the con-
2 ) (2m)?

(k)= tinuous time limit,H is the Hamiltonian of the lattice gauge




8

theory. Now consider a finite set of lattice configurationsof B = 4/g?, while comparison to theory was limited to sim-
Y = {Uk ( ,m=1,2,....M} at a fixed time, and define ple wavefunctionals, resembling (6), inspired by the sjron
coupling expansion. It is now possible for us to greatly im-
M, 2 m prove on these previous studies.
Z=73 / DU { [1 [ 9[Uk(x,0) = U7 (x)] } e 3(58) In this investigation we will consider sets of three diffetre
m=1 X k=1 types of configurations:

This is the partition function of a statistical system in whhi « Abelian plane waves with wavelength and variable
the lattice configurations at tinte= 0 are restricted to the set amplitude
% . The rescaled wavefunctional
. (m) _ _ (a(m) 2 iq(m)
B2U () Ulm)(nlanZ) 1— (@™ (n2))?12 +ia'™(n2) o3
LU V2 mre) = 12
= 1 2m
Thea W2 ()] a(ng) = VaF WC"S(TZ) , (64)
: 2 1 -S
_ Jbu {HX k=1 0[Uk(%,0) — Uy (x)]}e wherem=1,2, ..., mmaxWith L the lattice extension and
sM . /DU {l_lx M2, 8[Uk(x,0) —Uk(m>(x)]}e*5 o,y some constants. The wavelength can be varied
B by settingA = L and performing simulations on vary-
(59) ing lattice volumes or, alternatively, setting= L/M,

whereM is an integer, and carrying out simulations with
different values ofM on a fixed lattice volume. The
former method allows for a greater selection of long-

has the interpretation as the probabiRythat, in this statis-
tical system, a lattice configuration on the- O time-slice is

equal to thm—th.configuratiomi(") (x) € # inthe given set. wavelengtht, and is used in section IV A below, while
_ The probabilityP, can be computed numerically by a mod- the latter method was used to obtain the data displayed
ified Iattlc_:e Monte Carlo S|mu_Iat|on. All links at= 0 are in Fig. 4 in section IV B.
updated in the usual way, which for the SU(2) gauge group
with the Wilson action is a simple heat bath. On the 0 » Non-abelian constant configurations, variable ampli-
plane, however, one of thd configurations from the se¥ tude:’
is selected at random, and then accepted or rejected by the (m) - (m)
Metropolis algorithm. LeWlN, represent the total number of Up 7 (ng,nz) =4/1— (@m)21, +ia'™ oy
times, in a given simulation, that timeth configuration in the (m) 2 - m)
set is selected by the Metropolis algorithm, wiifa; the total Uy " (ng,mp) = y/1—(@M)21, +ia'™ o,
number of updates of the= 0 plane. Then m_ {a i ym] 1/4 5)
N 1 202 :
P = B3U" (x)] = Jim S (60)
o et * Non-abelian constant configurations, fixed amplitude,
SinceWo[U(™] is simply a constant rescaling &f[U (™), it variable “non-abelianicity” specified by an andla
follows that the relative amplitudes of the vacuum wavefunc
tional Wy in the set% are given by U nl,nz Vi-a?lp+iaoy
WU N, oy Vit .
W2UM] ~ Notoses Ny +|a(cos(9m)01+sm(6m)02)
Om=y(m-1)m. (66)
Now suppose we have some theoretical proposal for the
Yang-Mills vacuum wavefunctional The range of amplitudes chosen is limited by the fact
L that the number of configuratiom, falls exponentially with
WheonU| = Ne 2RUL (62)  R[UM)], so typically the interval oR in any one simulation

) ) is chosen have a width &R ~ 4 — 6 or so. This means that
If the proposal is correct, i.8Viheory = Wo, and we make a extracting the slope from a plot 6f10g[Nm/Nf] vs. RIU (]
plot of may only inform us of the tangent of a function which is actu-
N ally non-linear. For this reason it is important to repeaisth
—log [—m} vs. RU (m)] , (63)  calculations in windows of widtiAR centered around greatly
ot different values oR, to check that slope is invariant and the

then the data points should fall on a straight linéth slope ~ functional dependence is, therefore, linear.
equal to one E—
The method just described was introduced and applied in
refs. [15-17]. In that early work, however, the simulations 7 The factor of 20 in the definition ad(™ is an arbitrary scaling of the pa-
were carried out on small lattices and relatively small galu ~ rameters, which could of course be absorbed ntp.



IV. RESULTS Substituting these configurations iRpA], the result is
(i = i K2
Since the measurement method in the previous section re- ReolU™] =2(a +yj)weo(k) , (73)
lies on a lattice regularization, we must apply this requl&d  with
the vacuum wavefunctionals under study. Let us begin with

. _ K2
Wso. The proposal is that wc;o(kz) _ g -
2
~ log[#&o[Al] = RaolA] + Ro (67) Ve
. . 1 k?
whereRy = —log(.#?), and in the continuum == 74
(1 9% VkZ + m? (74)
ReolA] = e /dzx/dzy B(x) and wherek andm are the momentum and the mass parame-

ters in physical units, i.&? = k2/a2, m=m_/a.
b The same regularization applied to the KKN wavefunc-
B°(y). (68)  tional yields, for the abelian plane wave configurations,

ab

o) I
[\/—DZ—/\M—mZ

xy
ul)=2 ' k2 75
In the special case of abelian plane waves WA{x) = Rk (U] (a-+yhaxen (k). (75)
A1(x)6%3, A3(x) = 0, we have the simpler expression with
1 —. B K2
Rooli = g [ o [ & @utu) cxian (k) = G e
o ) 4 Jletmem
X [7 (OoA1)y.  (69) 1 k2
V2t me mz} =S 76
BRUELY 9° Ve +m+m (76)

The engineering dimension of the kernel, in 2+1 spacetime
dimensions, is also inverse length. We now latticize theithe
and absorb dimensions into a lattice spa@ngith

The theoretical values fan(k?) are to be compared against
the data obtained from the numerical simulation. For a given
lattice couplingBe of the Wilson action, at a given lattice size
1 1 ) > L corresponding to a value &f given in eq. (72), we obtain
A(X) = aALl(X) » 02— aﬁLz ) /d X—ay from thepnumergi]cal simulation gescribedqin(the) previous sec
2 tion the values
2 _ 9 _ 4 m

Lo m=—, 70
7% g " (70) rn_—log(&>. (77)

Neot
whered, is the lattice finite difference operator, and all of the B °
other subscripL quantities are dimensionless. All factors of Thenwyc(k?) is obtained from a best linear fit of
acancel inR[A], and the result is

X

2(a + ymanc (k) + ro (78)
B 1 to the data point
A== OL2A — | (02AL)y- point$rn}.
ReolA 4 Zg( LALL)x /02 + me (GhoALrly The values forr, y used at eaclfg andL are listed in Ta-
- Xy ble 11l of the Appendix. These values were chosen so that,

(71)  for the most part, the abelian plane wave configurationstie i
side the first Gribov horizon, which is important if we claim
that these results are relevant to the Coulomb gauge wave-

A.  The GO and KKN wavefunctionals for abelian plane waves  functional Wcg, where a horizon restriction is implicit. On
the other hand there is no such restriction on the temporal
Now we specialize to the lattice abelian plane wave congauge wavefunctionals, and it is important to check that the

figurations listed in the previous section (lattice sitesxar=  value of wyc(k?) does not depend on the specific values of

(n1,n2)) a,y. Therefore, in addition to extracting the slopes at values
0 - of a,y shown in Table Ill, we have also cgrried out runs at
A (n )0_3 _ Uy 7(ng,n2) —U; (g, ) much higher values of, to ensure thatoyc (k?) is indepen-
L1172/ 2i dent of the range of amplitudes chosen.
U2(1>(n1’n2) —1, Figure 1 shows two Dépi.cal plots af, vs. 2@ +yn) aF
_ 2 21, Be :.9 andL = 24; ch(k ) is the slppe of the line (best lin-
Af_’l)(nz) =—\/a+yj cos<—> ear fit) shown. In the first plot, Fig. 1(a), we have chosen
L L a =5,y = 0.5, and the configurations are all within the first

~ 2 Gribov horizon. The result isxyyc = 0.316(6). In the second
2_ _ en c
k= 2(1 COS( )) ' (72) plot, Fig. 1(b), we have takea = 80,y = 0.4, which gives
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abelian plane wave: (a,y) = (5,0.5) , Bg=9, L=24 abelian plane wave: (a,y) = (80,0.4) , Bg=9, L=24
8 6.5
6 .
ran
55
6 5
-~ ~ 45
g g
EA z a4t
z >
S 5
- - 3 .
3 2.5
2 .
2 L
151
10 12 14 16 18 20 22 24 26 28 30 160 162 164 166 168 170 172 174 176
2(a +yn) 2(a+yn)

(@) (b)

FIG. 1. Typical plots of the data for log(Nn/Niot) vs. the factor o + yn) associated with the amplitude of theth configuration. The
straight line is a best linear fit, and the quantiwic(ﬁz) is the slope of that line. The data shown is Bar= 9 andL = 24, and two different
ranges for 2a + yn): (a) configurations generated with= 5,y = 0.5, and the slope isayc = 0.316(6); (b) configurations generated with
a =80,y = 0.4, and the slope ieyc = 0.3092). The slope of the data is therefore essentially indepermfehe range of 2a + yn).

us a range of values for{@ -+ yn) which is roughly an order 1 ‘ ‘ ‘ —
of magnitude greater than in 1(a), and a set of configurations
which are well outside the first Gribov horizon. Neverthsles
the slope of the data is almost identical to that of the first,pl I e
in this casewvc = 0.3092). In this way we have determined
that the relationship betweenlog(Nn/Niot) @and Za + yn) is 06 |
truly linear, anchJMc(Rz) does not depend on the amplitude of
the abelian configurations.

The theoretical expressions faxo(k?) and wckn (K2) in- .
volve two dimensionful parametensandg?. Once these pa- e
rameters are chosen, the results can be compared with the dat 02 | %
obtained foerC(EZ) on any lattice, providing the dimension- ,Jr
less squared momentuk? on the lattice is converted into 0
physical unitsk? = k2/a? using the lattice spacing. For a
choice of lattice couplingBg, the lattice spacing in physical
units is given by

wyc(P)

0.4 r

Coulomb gauge

0 0.5 1 1.5 2 2.5
p° (Gev?)

FIG. 2. Cumulative data famyc vs. p? in physical units, on lattices
a=,4/— (79)  of extensiond = 16,24,32 40,48, and Euclidean lattice couplings
o Be = 6,9,12. The curves labeled “GO fit” and “KKN fit” (there are
wherea, = o (Be) is theD = 3 dimensional string tension actually two curves, difficult to distinguish from one anet) are
. X ; . ; o : . i 2 2 i
in lattice units, and is the string tension in physical units. the theoretical values fanso(p), andaxkn(p®), using the param-

On grounds of tradition, we make the arbitrary choie- eters_, ofmandg? in Table I. The line labeled “Coulomb gauge” is

(440 MeV)Z. qbtalned from the ansatz for the Co.ulomb.gauge vacuum wagefu
Figure 2 is a plot ofayc(k?), extracted from a best fit of tionalteelAJ (eq. 51) as described in Section IV B.

the data to eq. (78). Each data point is obtained at a paaticul

Be = 6,9 or 12 on a given lattice of extensidn with L =

16,24,32 40 or 48, and the wavelength of the plane wave on

each lattice is the largest wavelength= L available. This a best fit to the data points. Observe that in this range of mo-

plot also displays the two theoretical curves mentum, the difference between the two fitting functions is
1 K2 essentially negligible, and in fact only becomes notice &l
weo(K?) = & ——— k? > 4 Ge\2.
9 vk?+n¥
@ 1 K2 80 With the parameters obtained from the fit, we can use di-
axkn (K) PR tmeLm’ (80)  mensional reduction (naively, in the KKN case, as explained

in section Il C) to compute the string tension, and compare it
with the parameterg? andm obtained, for each curve, from with our input value of (440 Me\A) Dimensional reduction
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gives 1. The shift in the argument on the lhs ensures that the
3 resulting lattice connection is exactly lattice transaérs
i GO if the link fields are,
o =mg x ; . (81)
g KKN D-A()“():Z[Aj(>“<+j)—Aj(>“<) —o0.

The parameterg®, mfrom the best fit, and/o from obtained )

dimensional reduction, in the GO and KKN cases are shown

in Table I. The values of/o should be compared with the factor in the connection which affects general observ-

given value ofy/o = 0.44 GeV, which was used to set the ables but happens to drop out in the (quadratic) expo-
lattice spacing at eagB:. The GO result is within 5% of that nentRA] tested here.

value, and the KKN result is almost exactly right.

After Fourier transformation, the shift leads to a phase

2. Then—correction in eq. (82) comes from tB&J(2) al-

: 2 .. .
variang m | g ?Jl/izrrrgc? gebra for parallel transporters over a finite distaace
GO [0.771]1.465 0.460 arccod
KKN [0.420/1.237 0.441 nt) = =1+ 0(t?).

V1—t2

TABLE I. The parameterm, g2 for the GO and KKN wavefunction- I.t IS only_re_levant for very str_ong fleld_s far fromthe con-
als, determined from a best fit to the abelian plane wave ddt&gi tinuum limit. (In our numerical studies, the correction
2, with /o derived from dimensional reduction. All values are in never exceeded 5%.)

units of GeV.

After Fourier transformation
The product ofm and g2, in either the GO or KKN ap-

A1) — k
proach, determines the string tensionin either approach. A (K) = Ze AR, (83)
The dimensionless ratig?/m is an output of the KKN ap- X
proach, where it is predicted to be If m andg? are de- wherek; = (211/L)#; (with —L/2 < £ < L/2), a simple calcu-

termined from a best fit to the data, then the actual ratio '?ann lead
g?/m= 2.95. It is not clear, at this stage, whether this small
discrepancy is significant, or should just be attributedetei-d ) 3
ations from the continuum scaling due to a finite lattice spac ReglU] = Z Z\ Z
K)]

s to the lattice version of the CG wavefunctipnal

2

Ze % 2a8(%) N (8(%))| +Ro

ing.

@K =g ?[wk) —x(K)]
B. Tests of the Coulomb gauge wavefunctional ] ) ) _(84)
Notice that the dimensionless momentum argument in the nu-
merical continuum solution of the gap equatiorkjg?, so

To test the wavefunctional eq. (51), we first have to transthat its lattice counterpart becomes

fer it to the lattice. We begin by rescaling the gauge field
A — Aj/g so that a prefactog—2 appears in the exponent 3 2 T
of eq. (51), and\ (x) has engineering dimension of a mass. ki = ad Sin(f fi) : (85)
With these conventions, the Fourier transformed keco()
and curvature (k) also have dimensions of mass.

Next we latticize as in eq. (70) and rescale the gauge fiel
again to obtain the dimensionless flRlf (%) = aAS(aX). For

0 complete the lattice transcription, we only have to find an
xpression for the function

Coulomb gauge fixed connections, it is, in principle, impor- h(B) = a(B)gz, (86)

tant to use the so-called midpoint rule when extracting the

gauge fields from the lattice linkd: whereB = 4/(add) is the usual lattice coupling f&U(2) MC
Uk(R) = aE(f() 1+ia%(R) o simulations inD = 2+ 1. From high precision measurements

of the string tension iD = 2+ 1 [43], the best fit in the scaling
—  AR+R) = 280 n(R).  (82) WindowBe[3.12s

As compared to simpler prescriptions such as eq. (72), we 5— 082 b <1+%)

have two modifications: = B2
with coefficientsh ~ 1.788 andc ~ 1.414. From this,

8 Throughout this section, we will denote dimensionlessciatbbjects with 4 2 16 160

b
a caret. 0=0a = Uﬁz—gg [3294 [1 0B~ )] = BZ <1+ B)
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i
N

N

i
T
|

B R P zero in field space. One could give up the preferred value

* [OxOVg" 201165, Ry=2722 N c1 = 0 and choos@(0) = c; as a fitting parameter, cf. fig.3.
e E This gives reasonable agreement with the lattice data fer on
set of constant non-Abelian configurations but does not cure
E s 3 the general problem. From the results presented in Sec. IVC
E e E below, it will become clear that constant non-Abelian gauge
F e E fields can only be accounted for if we include quartic terms
pre 1 ~ (A x A)? in the exponent of the wavefunctional. The use of
a s E such non-Gaussian wavefunctionals in the variationalgprin
EoL ] ple has recently become feasible [42], but the solutiontfer t
/‘f"‘/‘H_H‘m_”_H_"_H_H_H_H_H wavefunctional has not yet been determined explicitly up to
78 9 10 1 w2 guartic terms in the exponent.

For these reasons, we will use the energetically favored

FIG. 3. The exponerR from the variational approach eq. (88) plot- Value@(0) = ¢; = 0 in the following. We will now show
ted against the lattice data ferln W2 for one set of non-Abelian that the Coulomb gauge wavefunctional does a good job for
constant configurations, choosirg(0) = c; as fitting parameter Abelian plane waves of the type eq. (64). In this case we have
(cy = 0.1165). carried out simulations g8 = 6 on a fixed lattice volume of
extensiorL = 24, and varied the amplitude of the plane waves,
at given wavelength /M, according to

[N
1Sy
T
|

-log[N/N;]

O Bk, N W A DN ® ©
T T T T
|

o
=
N
w
IS
o

6
R[]

From the leading terms of ordér(3—2), we findb = 160 /g*
and therefore U™ (n1,1p) = 1/1— (@M(n))215 + 1™ () 0

2
h(B) =acf = \/an% - 6(3)\%) U™ (ng,np) = 1,

1
(m) —=m
a(np) = K cos(
:%‘/1—%%, c=1414. (87) L

. . ) wherem=1,....Mnax With Ky = 1.4,0.45,0.17,0.09,0.036
This completes the lattice transformation of the Coulombat M = 1,2, 4,8,12 respectively. The connection is Abelian,
gauge wavefunctional. _ ~ A°~ 3%, with a harmonic spacetime dependence in yhe

Let us first look at the non-Abelian constant configurationsgirection; the corresponding wavenumber is proportional t
(65). The corresponding lattice connection has the speciahe parameteM in eq. (89). After Fourier transformation the

colour structured’ ~ &°, but is otherwise constant in space, general result (84) takes a fairly complicated form
i.e. Fourier transformation projects out the zero freqyenc

2rmoM
e

contribution, L/2 L-1 270
. 3 RelUM] = Ry+4 > @(pn) Z}exp(—an>
~ =—L/2+1 r=
AP (K)I? ~ &o- "
i;czl ' 2

xsgnal™(r) -arccos /1 — (a(m)2(r)

The final result for the exponent in the wavefunctional
Weg[A] ~ e ReclA/2 pecomes, for non-Abelian constant con- ) -
figurations, P = h(B) sm(L n) )

(90)
This can be simplified considerably, if tije-correction in the
2/ (M2 definition of the connection, eq. (82), is discarded. Then th
~ 8L*(a™)° - @(0) + Ry, sums in eq. (90) can be performed explicitly and we obtain a

(88) " much simpler expression
where the approximation in the second line comes from dis- P P

carding then—correction in eq. (82). ReglU (m)] = Ry+ 20y - MKy - @(Py) (91)
From eq. (56), the quantityp(0) is given by the (finite)
renormalization constant; and, as already mentioned in wherecy = 2 for the highest frequendyl = L/2 andcy = 1
sect. Il D, the energetically preferred valuecis= 0, which  otherwise forlL even = 24 in this case). From eq. (91), it
is also required for a perimeter law in the 't Hooft loop is obvious that the plane wave configuration tests the kernel
[35]. Obviously, with this choice of renormalization comst @ = w/g” — x/g? exactly at the lattice momentupy, which
@(0) = c; = 0 the Coulomb gauge wavefunctional cannot ac-corresponds to the frequency of the plane wave.
count for theconstannon-Abelian gauge field configurations.  Figure 4 shows the result of the numerical evaluation of
Whether this failure is important remains to be seen. Attleasegs. (90), (91) against the lattice MC data for Abelian plane
it does not necessarily imply that the Coulomb gauge wavewave configurations of varying wavenumber and amplitude.
functional is a bad approximation to the true vacuum wave-As can be clearly seen, the individual plane waves with fixed
functional since constant configurations form a set of measu wavenumber#! and varying amplitude fall on a straight line,

Reg[UM] = 8L2 arccod ( 1— (a<m))2) -@(0) + Ry



13

2 sEE . i where
T MV 1 1
wE e, O g B*(x) = TTrU (R)o?)] (93)
i ::‘9455 7 with U (R) a product of links around a plaguette, starting with
é ﬁ; ,1;1',7,,,;‘7' | a link at sitex. The lattice covariant Laplacian, in the adjoint
g xi,x,:f;a@“ﬁ' g ] representation, is given by
4 xﬁ;‘éﬁaﬁ/ . 2
b o
i , O = 5 V008,044 U 0 08,1 255
| =1
L | L | L | L | L 1
E T UEP0) = 5Tr[0%U(0)0"U) (9| (94)

FIG. 4. The exponenRcg from the variational approach eq. (90) In terms of the parametegs, min the GO row of Table I, we
plotted against the lattice data ferln W2 for the plane wave config- usef = 4/(g?a) andm_ = ma, wherea is the lattice spacing.
urations with wavenumbe¥ € {1,2,4,8,12}. The lattice data was For comparison with the Monte Carlo data generated at the
taken with lattice extensiob = 24 atj3 = 6.0. lattice couplingBe of the Wilson action, we determirgefrom

eq. (79). ltisimportant to note that while we expB¢3e — 1

in the continuum limit, this ratio need not be exactly equal t
but the slope of that line differs from unity. (We have chosenone at any finiteSe.
the solutioreo(k) of the variational problem with the preferred  In the same way, the latticized “hybrid” wavefunctional is
renormalisation constai§ = 0.) Morever, the slopes of the

lines vary slightly withM, i.e. effectively with the momen- Raybria[U "]

tum picked by the plane wave: For the smallest momentum ab

M = 1, we find a slope of 19, which decreases down t@2 _ B z z B2(x) 1 B°(y)

for M = 2, and then increases again up téZfor the largest 444 %—DZ “hotmem 5
momentumM = 12 representable onla= 24 lattice. If we

relax the condition on the renormalisation constarand take (95)

it as a free parameter, we observe that the spread in the slo
between the various wave numbers is increased, which is a
other hint that the choicgy = 0 should be preferred.

Since the plane waves test the keragk) at varying mo-
menta, we can use a fit to the MC data as explained in th
previous section to find a numerical estimaigc (k). In the
Coulomb gauge wavefunctional, this quantity corresponds t
(k) = g2 (w(k)— x(K)). After rescaling to physical units

g\ﬁth B,m_ determined using the parametgfsmin the KKN
row of Table I, and the lattice spacing from eq. (79).

We will consider first the configurations of eq. (66), with
fixed amplitude and variable “non-abelianicity” specified b
the 6 parameter. If the amplitude is chosen small enough,
then—D? — Aq is negligible compared ta?, and the kernel
reduces to

(see eq. (86) and below), the result is plotted along with the 1 ab 1

values obtained by numerical simulatiaoyc (k), in fig. 2. It (—) = Z5,0% (96)
is evident that the variational solution fas(k) fits the MC V/=D?= Ao+ Xy m

data very well, at least in the infrared region for momenta upf he GO ¢ ional. and

to k ~ 1.3GeV. For larger momentay(k) starts to deviate orthe wavefunctional, an

and becomes slightly larger than the numerical estimate, bu 1 ab 1

at most by a few percent within the phenomenologically rel- = _@y(sab (97)
evant mid-momentum regime. (For very large momenta not —D2—Ag+nmP+m Xy 2m

plotted herego(k) ~ k is exact by asymptotic freedom.) ) o ] ] o
for the hybrid. This is the dimensional reduction limit, and

either case, for the configurations (6BJU] O (A1 x Az)?, or

C. Non-abelian constant configurations: fixed amplitude, RGo,hybrid[U (“)] O sin2(9n) (98)
variable “non-abelianicity”

For the Coulomb gauge wavefunctional, howevef)] O

§+A§, and hence, since the amplitudes/Af and A, are

For general non-abelian configurations we have, in a lattic ixed in the set (66).

regularization,

N RealU ™) 0 @(0) (99)
1 ind dent of the angl. If @(0) = 0, which seems opti-
um_ P g2 gP independen g , p
ReolU™] 4 Z% 9 /_D2_ ) R ) mal for agreement with the plane wave data, tReg would
0Ty also be independent of the amplitude of the gauge fields.

(92) However, it is important to recall that the Coulomb gauge
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wavefunctional should not be evaluated outside the first Gri 5
bov horizon. So even ifv(0) = 0O, the restriction to the Gri-
bov region amounts to a cutoff in the amplitude of non-almelia 451 ‘ 1
constant configurations. a4l . 1
The Monte Carlo simulation was carried out on & te2tice T
at B = 6, with thet = 0 configurations chosen from § 357¢ o |
> 31 ‘ i
U™ =V1-a2ly+iao; 2 )
25 ¢ 1
U" = V/1— a2l +ia(cog 6,) 0y + Sin(6r) 02) (100) o
with a = 0.193, andf, = (n— 1)717/38. By explicitly calcu- 1 ] ‘ ‘ ‘ ‘ ‘ ‘
: ; : . . 5
lating numerically the lowest lying eigenvalues of theitat 0 05 1 15 2 25 3 35
Faddeev-Popov operator, we have checked that these lattice ReolU]

configurations are all inside the first Gribov horizon.

In Fig. 5 it can be seen that the logarithm of the wavefunc-
tional is indeed proportional to sitB), as one would expect FIG. 6. Plot of—log(Nn/Nr) vs. Rso for the non-abelian constant
from the GO and hybrid wavefunctionals in the dimensionalconfigurations with variable non-abelianicity. The sthdiline fit has
reduction limit. The data does not seem to be compatibleslope = 1.02.
however, with thed-independence (99) of the CG wavefunc-
tional (51).

We recall that if¥[U] = exp— SR(U)] is the true vacuum B, m_ at eachBe are given in Table II, where the values for
state, then the data points felog(Nn/Nr) vs.RlU"| should  the hybrid wavefunctional are taken to be the KKN values,
fall on a straight line, with unit slope. Plotting the data fo since the hybrid reduces to the KKN form on abelian config-
—log(Nn/Nt) againsRso[U"], as in Fig. 6, we find the slope urations. The test of the GO and hybrid wavefunctionals is
obtained from a linear fit through the data is indeed close tto see whether or not the data points folog[Nn/Niot], when
unity. In the GO case the slope is 1.02(6); a similar analysiplotted againsR[U ("], fall on a straight line whose slope is
for the hybrid wavefunctional results in a slope of 1.12(7).close to unity.

Some numerical details concerning the simulations aredoun

in the Appendix. Be | B (GO)[m_ (GO)| B (KKN) [m_ (KKN)
6| 473 | 0445 | 5.60 0.242
5 . 9| 7.43 | 0.283 8.80 0.154
12| 10.19| 0.207 | 12.07 0.113
45 . 1
. 4r - | TABLE Il. Values of B, m_ for the GO and KKN wavefunctionals at
Z" 35 . A eachBg, derived from theg?, m parameters in Table | and the lattice
Z spacings, atfg = 6,9,12.
> 3 . 1
o
25 | ’ 1
2 L = | non-abelian constant, =6, L=32
1.5 L L L L L 6-5
0 0.1 0.2 0.3 0.4 0.5 0.6 6 L
sin%() 5.5 | o
3,0 -
o Z 45+ -
FIG. 5. Dependence of log(Nn/Nt) on the "non-abelianicity” of = 4t "
the non-abelian constant configurations, determined H@sin % 35 | iy
2 3t "
25t -
27 -
D. Non-abelian constant configurations: variable amplituc, 15 = T R T R s
maximal “non-abelianicity” 35 4 45 5 55 6 65 7 75 8 85 9

ReolV]
We now consider the non-abelian constant configurations
of maximal “non-abelianicity,”, i.e6 = 11/2, which are the
configurations of eq. (65), with inde® running from 1to 20.  FIG. 7. Plot of—log(Nn/Nr) vs. Rgo for non-abelian constant con-
All Monte Carlo calculations were carried out on lattices of figurations, maximal non-abeliancity, & = 6, L=32 a =2, y=
volume 33 at Be = 6,9,12, and the corresponding values of 0.15 In this case the straight line fit has a slope = 0.98.



15

BE:6 ,,,,,,,,,,,, GO o
Be=9 o hybrid v
BE:]_Z a
15 1 15 1
g- 1 ¢ o e A ® i B ¢ g. 1 v @ v v v
] (]
0.5 r 1 0.5 r 1
0 : : : : : : : 0 : : : : : : :
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
R[U] R[U]
FIG. 8. Slopes for the GO wavefunctional W®.at 8z = 6,9,12 and FIG. 9. Be=12 calculation, for both types of wavefunctionals.
L =32, using the values @f, mderived from the abelian plane wave

fit.
E. The ghost propagator and the Coulomb potential

Because of the equality (4) of the vacuum wavefunctionals
in temporal and Coulomb gauges, when evaluated on trans-
An example of the—log[Nn/Nit] Vs. Reo[U"] data at  verse (1- A= 0) gauge fields, equal-time expectation values
Be = 6 is shown in Fig. 7, for the choice = 2,y = 0.15.  in Coulomb gauge can be derived from
Although the data is nicely fit by a straight line which has a

slope close to unity, this fact must be interpreted with cau- Q) = / DA QAI3(0-A) 7 [AWEA], (101)
tion because, since the numbgrfalls off exponentially with .

Rso[U "], the range oRmust necessarily be kept small; typ- and we may use fob either of the temporal gauge proposals,
ICaIIy AR~ 4 —5. Thiscould mean that the tendency of the Yeo, thybrida or the Coulomb gauge proposate to calcu-

data to lie on a straight line is misleading, and perhaps ®e anate such objects as the ghost propagator
simply looking at the tangent of a curve, as already noted in

Section Ill. 1t is therefore necessary to extract the slope o 1 aa
G(R) = (102)
Ix-y|=R

the straight line over small intervals centered around tsoin 0-D[A
over a wide range dR. The question is whether those slopes
are constant, in which case the linearity hypothesis igieel;

or whether they vary significantly @&increases. This is the
motivation to calculate-10g[Nn/Niot] in sets of twenty con- 1 1 \2
figurations, using different values of the parametersy) in Ve(R) = — < (ﬁ(—Dz)ﬁ) > . (103)
each set. The parameters we have used are shown in Table IV XY/ x-y=R

of the Appendix.

Xy

and the color Coulomb potentidl

In eq. (101) there is an implicit restriction of the integoat
domain to the Gribov region.
In an ordinary Monte Carlo (MC) simulation, Coulomb
auge expectation values are obtained by first generating

Figure 8 is a plot of the slope vR at fg = 6,9,12, where
the value oR at each data point is the midpoint of the range in

which the slope was computed. Things are not perfect; thergice configurations with the usual probability distrilon

is some slight variation in the slope witR there is a little exp—S|/Z, whereSis the standard lattice action, transform-

variation with 3, and the values of the slope are not exactlying those configurations to Coulomb gauge, and evaluating
one (they seem to be closer td Jat the largeR values). On o gpservable) in the ensemble of transformed configu-
the other hand, we have made no claim that the GO wavefun¢zions I principle the same strategy applies to evaigati

tional is exact, nor is asymptotic scaling exact at theseéat o right hand side of (101) numerically: the problem in

couplings. The point is that scaling is not bad, and the slopey, 4t case is to generate configurations with the probability

are fairly close to unity over a large rangeRf usingg?, m distribution¥?2|U], and this problem was solved, for tHg;o
values that were extracted from fits to a completely d'ﬁerenproposal, in ref. [8]. The simulation method developed in

type of lattice configuration (i.e. abelian plane waves).

Results for the hybrid wavefunctional turn out to be quite
close to those of the GO wavefunctional. The valuesBfor= 9 More precisely, for color charges in some representatighe Coulombic
12, for both types of wavefunctionals, are shown in Fig. 9, potential energy is obtained by multiplying(R) by the quadratic Casimir
with similar agreement at the two Othﬁ values. C;, and dividing by the dimension of the adjoint representatio
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carding configurations witlV (0)| greater than some bound
equal to 510,50, 300. If we restrict the data set to configura-
. ‘ ‘ ‘ ‘ ‘ " MC = tions with [V (0)| < 5, then the agreement between MC, GO,
2t co -] and hybrid results is again almost perfect. Roughly halflof a
hybrid - configurations meet this criterion. The agreement is stitlyf
15} ® ] good for|V(0)| < 10, which accounts for about 80% of all
configurations. However, as the cut is gradually removesl, th
: 1 Coulomb potential derived from GO and hybrid simulations,
"o, while roughly linear irR, deviates quantitatively from the MC
05| !!aga 1 result. But how can there be such a noticeable deviation when
By .
S the ghost propagators agree so accurately, without anyatuts
""'n—;ﬁ“y‘ all? The explanation probably has to do with a discrepancy in
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ the tail of the probability distribution. If two probabitdis-
0 2 4 6 s 10 12 14 16 tributions agree in their lower moments, but disagree iéig
R moments, then it means that the two distributions agreéypret
well where the probability is substantial, but disagreehia t
FIG. 10. The ghost propagator derived from standard MontéoCa tail of the distributions. That is what seems to be going on
(MC) simulation aie = 9, and the same quantity calculated by sim- here.
ulation of the GO and hybrid wavefunctionals, by the techaige- What was found already in ref. [28] is that the Coulomb
scribed in ref. [8]. potential is quite sensitive to a comparatively small nunafe
“exceptional” configurations, in which the lowest eigeml
of the Faddeev-Popov operater]- D is far below the average
[8] is also applicable (although it has not been appliedluntivalue for the lowest eigenvalue. The reason that such excep-
now) to the hybrid proposal. The lattice ghost propagatotional configurations are relevant for the Coulomb poténtia
and Coulomb potential were calculated numerically frombut not the ghost propagator, is presumably because thé ghos
Wso, and compared to the corresponding results in ordinarpropagator involves only one factor of the inverse F-P oper-
lattice Monte Carlo, in ref. [28]. In that work, however, the ator, while the Coulomb potential involves two factors. Be-
authors chose8 = Bz and m_ = 4B0. /3. In the present cause the inverse F-P operator becomes singular as thetlowes
article the philosophy has changed somewhat. We have tweigenvaluedg approaches zero, higher powers of the inverse
parameters with dimensions of mag$,andm, and a scale F-P operator (such as the Coulomb potential) will be more
set (arbitrarily) by taking,/og = 440 MeV. Theng?,m are  sensitive to infrequent configurations with exceptionddly
chosen to give a best fit to the abelian plane wave data imalues ofAg than lower powers (such as the ghost propagator).
Fig. 2. To compare wavefunctional results with standardThe probability distribution of infrequent configuratiossof
Monte Carlo results we determine the lattice spacngt course, governed by the tail of the probability distribati®o
eachpg, from /oL /o, and then3 = 4/(g%a) andm_ = ma  ourinterpretation of the ghost and Coulomb propagatott®su
are the corresponding dimensionless parameters to use i® thatWZ, and Wﬁybrid agree quite closely with each other,
the latticized wavefunctionalgo or Whyprig. With the new — and with the probability distribution of the true Yang-Mill
procedure we havg8 # Bz, and the obvious question is vacuum wavefunctionab3, in the “bulk” of the distribution.
whether this fact will tend to destroy the agreement thaiThe Coulomb potential data suggests, however, there is some
was found previously, in [28], between ghost propagatorsmall disagreement in the tail of the distribution.
and Coulomb potentials derived from simulation W&, In general, our results for the Coulomb gauge ghost prop-
and the corresponding quantities found in ordinary latticeagator and Coulomb potential with the new fitting procedure
Monte Carlo simulations. We would also like to calculate thefor 3, magree quite closely with our previous results (based on
Coulomb gauge ghost propagator and Coulomb potential fogetting3 = &) reported in ref. [28] (for a quantitative com-
the hybrid wavefunctional proposal. parison, cf. [44]). The GO and hybrid results are, once again
virtually indistinguishable. Since both choices of parteng
Figure 10 shows the equal-times ghost propag&(R) and the GO and hybrid wavefunctionals, have about the same
computed in a standard Monte Carlo simulation on 2182  dimensional reduction limit, our results suggest that tireng
tice at g = 9. On the same plot we see the correspondindities we have computed, at the couplings we have employed,
results obtained by generating lattices with probabilistré are mainly sensitive to that limit.
bution Wg, and Wi, 4 by the methods of [8], transforming  Resuilts for the ghost propagator and the Coulomb potential
to Coulomb gauge, and evaluating the ghost propagator, iflerived from the Coulomb gauge wavefunctiolgg|A] are
each case using the appropriate valug8,ofi. corresponding presented in [13]. In that case the agreement between the
to Be = 9. It can be seen that the agreement between Montgalculated ghost propagator in momentum space, and the
Carlo, GO, and hybrid results is almost perfect. corresponding Monte Carlo results, appears to be satisfact
The agreement for the Coulomb poten¥@(R) is not as  although the agreement is not at the level shown in Fig. 10.
good. In Fig. 11 we display the data from MC, GO, and hy-The quantitative discrepancy with data is substantialigda
brid simulations, again g8z = 9, with a cut in the data, dis- for the Coulomb potential (as is the case for the temporal

Be=9, L=32
25

G(R)
o
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Be=9, L=32, |V(0)|<5 Bg=9, L=32, |V(0)|<10
1 ‘ ‘ 2 ¢ ‘ ‘
05 | #ﬂ-ﬂ"&
1 »
0 fd.. b !ﬂm 4
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FIG. 11. Data for the Coulomb potential@t = 9 andL = 32, derived from MC, GO and hybrid simulations, with a cut loa tlata, discarding
configurations for which\p| is greater than 5, 10, 50, and 300, respectively.

gauge wavefunctionals). In the case of the Coulomb potentiafigurations. The Coulomb gauge wavefunctional can also fit
linear confinement corresponds in momentum space (in 2+the plane wave data with an appropriate choice of parame-
dimensions) to the behavidr,(k) ~ 1/k3. The behavior ters, providing in particular that the renormalization stamt
derived from the Coulomb gauge wavefunctional approach ig; in eq. (41) is set equal to zero. Both the GO and KKN
either 1/k®8, if the relevant equations are solved analytically wavefunctionals reduce to the dimensional reduction form
in the infrared, or 1k?° if those equations are analyzed exp—u [ F?] atlong wavelengths, and it seems likely that this
numerically. Further details may be found in ref. [13]. is also true for the Coulomb gauge proposal, in this special
case of abelian configurations, for the choice of renorraaliz
tion constant; = 0.

For non-abelian configurations, we have suggested a gauge-
V.. CONCLUSIONS invariant wavefunctional which reduces to the KKN pro-
posal for abelian configurations, and incorporates thertova
We have compared several suggestions for the Yang-Millant Laplacian and eigenvalue subtraction of the GO proposal
vacuum wavefunctional to the true Yang-Mills vacuum wave-which we have termed the “hybrid” wavefunctional. Both
functional in 2+1 dimensions, whose exact form is unknownthe GO and hybrid wavefunctionals have the dimensional re-
but whose relative magnitudes in any set of lattice configuduction form when restricted to configurations which, when
rations can be obtained numerically. Three types of latticeexpanded in eigenstates of the covariant Laplacian, aontai
configurations were studied: abelian plane wave configuraenly low-lying eigenmodes. Once again, the GO and hy-
tions, non-abelian constant configurations of fixed amgétu brid wavefunctionals are almost indistinguishable whealev
but varying “non-abelianicity,” and non-abelian consteoh-  ated on non-abelian constant configurations, and this is-pro
figurations of maximal non-abelianicity and varying ampli- ably because they have almost the same dimensional reduc-
tudes. For purposes of comparison, the physical scale wawn limit. We find that the GO and hybrid wavefunctionals
set by taking the string tension to héo = 440 MeV. are in good agreement with the true vacuum wavefunctional
For abelian plane waves, up to the shortest wavelengtfor non-abelian constant configurations, as well as foriabel
corresponding t? = 2.5 Ge\? that we have investigated, plane waves. The Coulomb gauge wavefunctional, however,
the GO and Karabali-Kim-Nair proposals are almost indistin which does not have the dimensional reduction property for
guishable, and both agree very well with the values obtainedon-abelian lattices, does not seem compatible with the dat
for the true vacuum wavefunctional, evaluated on these corfor non-abelian constant configurations, particularly diaga
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with variable non-abelianicity. whereX is a matrix, and the coefficients are given by [45]
The Coulomb gauge wavefunctional has been used to

compute Coulomb gauge ghost and gluon propagators, with al = 03904603901

results in 2+1 dimensions, reported in [13], indicating a a2 =0.0511093775

Coulomb potential rising almost (but not quite) linearlyeW a3 = 0.1408286237

have also computed these quantities by direct simulation of

the GO and hybrid wavefunctionals. The GO and hybrid re- a4 =0.5964845033

sults agree with one another, and almost perfectly with the b2 = 0.0012779193
lattice Monte Carlo results for the ghost propagator. The GO b3 =0.0286165446
and hybrid wavefunctionals also lead to an apparently tinea b4 — 0.4105999719 (A.3)

Coulomb potential and agree very closely with each other. On

the other hand there is some difference in the GO and hyh fact, what one really wants is the vector

brid Coulomb potent_ials in compe_lrison to the _Iattice Monte 4 Labeb

Carlo results, and this can be attributed to a difference-ass Uy = Ky Fr2(Y) (A4)
ciated with exceptional configurations with unusually dmal
values of the lowest Faddeev-Popov eigenvalue. Thus the G
and hybrid wavefunctionals would seem to agree with the tru
Yang-Mills vacuum wavefunctional for the bulk of the prob-

ability d|strt|l.)u:|r?ni b_lut]:dt'lr?red\_/v?ytljdtgppear to be a smaddi Aol + NP1 to be a sparse matrix, and then Séts= X + b, 1

agreementin the tail ot the distribution. etc. The vecton with components? is then obtained by the
The main effort in this article has been to calculate the rel+
. X ) Matlab statement

ative magnitudes of the true vacuum wavefunctional on par-

ticular sets of Iatticg configurations; namelly, abeliannpla u=ap*xL+apx (Y2\F)+agx (Ys\F)+asx(Ya\F),

waves and non-abelian constant configurations, and to com- (A.5)

pare those results with a number of proposals for the vacuum '

state. We have found that the lattice data for the abeliamepla and we finally take the inner product

waves have been nicely reproduced by all proposals consid-

ered, while good agreement with the data for non-abelian con R— E F2,(x)ud (A.6)

stant configurations appears to require wavefunctionals wi 4 1270

the property of dimensional reduction.

nd we found it convenient to compute this vector numenicall

sing the Matlab software package. In Matlab, computation
%f the vectoru = M 1w, given the matrixM, requires only a
single line of codeu = M\w. One first defineX = —D? —

with an implicit summation over lattice sitesand color in-
dicesa. All the matrix operations, including the determina-
tion of Ag, can be carried out numerically using sparse matrix
techniques, which results in a considerable savings in com-
. ] putation time, often by an order of magnitude or more in our
J.G.s research is supported in part by the U.S. Departmendy|culations. We have checked the accuracy of the Zolotarev
of Energy under Grant No. DE-FG03-92ER40711. A.P.S'szpproximation by evaluating numerically, in several cases,
research is supported in part by the US Department of Engjthout this approximation, and have found the results with
ergy grant under contract DE-FG0287ER40365. M.Q. angynd without the approximation to differ only at the third-sig
H.R. are supported by DFG under contract DFG-Re 856/6pjficant digit. This is sufficient for our purposes. In the €as

3. S.0. is supported in part by the Slovak Grant Agency forgf R, 1.4 the formula (A.2) is not directly applicable, and the
Science, Project VEGA No. 2/0070/09, by ERDF OP R&D, nymerical evaluation was carried out without the help of the

PrOjeCt CE QUTE ITMS 26240120009, and via CE SASZO|0tareV approximation_

QUTE. In the Monte Carlo simulations, we set up eight runs each
time with the same parameters, but different seeds for tine ra
dom number generator. Each run is itself a number of inde-
pendent jobs, which we refer to as “cycles”, whose results fo
—log(Nn/Nr) are averaged together at the end of the run. At
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Appendix: Numerical details

Evaluation ofRgo[U] involves dealing with a kernel the beginning of each cycle the links are all set to the iden-
ab tity matrix, except for the spacelike links on the- 0 plane,
Kab 1 (A1) which are set to the firsn(= 1) configuration out of the set of
o V—D2— Ao+ m xy {Ui(“)(x,t = 0)} of non-abelian constant configurations. The

) ) ) ) ) lattice att # 0 then thermalizes for 5000 sweeps with the 1
which, on a lattice of extensidn calls for inverting the square - configuration at = 0 held fixed. All timelike links are fixed to
root of a 3.2 x 3L matrix. The numerical evaluation in this he unit matrix, except for the timelike links &t L/2, which
case can be accelerated using the Zolotarev approximatiogye ypdated in the usual way. After thermalization we carry
for which out another 30000 sweeps, with the configuration=a0 up-

ap az =V (A.2) dated only once every 40 sweeps. On reaching th@ plane
X+ byl + X + bl + X+bsl’ ) every 40th sweep, we carry out 20 Metropolis “hits”; i.e. the

1
—=~al+
VX
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C=32| L=40 |[L=48
(20,15)| (30,2.5)[(60,3.5
(50,0.7)| (10,1.3)|(20,1.8

(12,0.53) (20,0.75) (30,1.0

Be[L=16
6] (0,05 (0,1.0)
9((3, 0.25) (5, 0.5)
12((2,0.17)|(7, 0.28

L=24

TABLE llI. Values of a, y used in eq. (72) to generate abelian plane wave configusatith wavelength\ = L equal to the lattice extension,
andfe =6,9,12.

Be {(a, )}

6 | (2,0.15), (15, 0.20), (32,0.20), (60,0.22) , (86,0.24)07(10.26)
9 (2,0.09), (10, 0.10) , (25,0.13) , (50,0.14)
12((1.3,0.06) , (4, 0.06) , (10,0.065) , (20,0.08) , (27,0.0935,0.083

TABLE IV. Values ofa, y used in eq. (65) to generate non-abelian constant confignsatvith maximal non-abelianicity, on a 3ttice and
Be =6,9,12.

Metropolis algorithm is used to update the O plane, and at pendent runs were used to estimate the error.

each hit the plane is changed to a new configuration (or not,

depending on the result of the algorithm), and the apprtgria  Finally we record, in Tables Il and 1V, the values ofy
configuration counteNy, is incremented. At the end of each used, in egs. (72) and (65), to generate sets of abelian plane
cycle the value for-log(Nn/Nr) for each configuratiomis  waves and non-abelian constant configurations with varying
recorded. At the upper end (highey it is usually the case amplitudes. The aim, in choosing parameters, was to keep the
thatN, = 0 on one or more cycles; all data from these highervariation ofr, = —log(Nn/Niot) in a relatively small range

n configurations are deemed statistically unreliable, asd di Ar,, =~ 4 (otherwise, because of the exponential falloff, there
carded. The number of cycles (used for eight runs at the sameould be few or no data points at the larger values)ofn the

set of parameters) varied from a minimum of 17 to a max-case of non-abelian constant configurations, we choosrdiff
imum of 70, but was mostly around 30. The result for theenta values so as to sample the slope-obg(Nn/Niot) Vs.
slope of—log(Nn/Nr) vs.RU (M| was obtained from the best R[U] in a small interval ofAR, centered around a wide range

fit to the data in each run, and the results from the eight indeef values ofR, as explained in subsection IV D.
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