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We review a method, suggested many years ago, to numericallymeasure the relative amplitudes of the true
Yang-Mills vacuum wavefunctional in a finite set of lattice-regulated field configurations. The technique is
applied in 2+1 dimensions to sets of abelian plane wave configurations of varying amplitude and wavelength,
and sets of non-abelian constant configurations. The results are compared to the predictions of several proposed
versions of the Yang-Mills vacuum wavefunctional that haveappeared in the literature. These include (i) a
suggestion in temporal gauge due to Greensite and Olejnı́k;(ii) the “new variables” wavefunction put forward
by Karabali, Kim, and Nair; (iii) a hybrid proposal combining features of the temporal gauge and new variables
wavefunctionals; and (iv) Coulomb gauge wavefunctionals developed by Reinhardt and co-workers, and by
Szczepaniak and co-workers. We find that wavefunctionals which simplify to a “dimensional reduction” form
at large scales, i.e. which have the form of a probability distribution for two-dimensional lattice gauge theory,
when evaluated on long-wavelength configurations, have theoptimal agreement with the data.

I. INTRODUCTION

Most of the key non-perturbative properties of non-abelian
gauge theories, such as the static quark potential, the chi-
ral condensate, and the topological charge density, are actu-
ally properties of the vacuum of the quantized theory. In the
Hamiltonian formulation, the vacuum state is the ground state
wavefunctional of the Hamiltonian operator, and all of the ex-
cited states of the theory, i.e. the mesons, baryons, and, in
a pure gauge theory, the glueballs, are simply small excita-
tions on top of that underlying ground state. For this reason,
knowledge of the Hamiltonian ground state wavefunctional
could be essential in understanding the infrared properties of
a non-abelian gauge theory.

Proposals for the ground state of pure Yang-Mills theory go
back over thirty years [1, 2]. However, with only a few excep-
tions [3–7], very little work was done in this area after those
initial efforts. In recent years, however, there has been a mod-
est revival of interest in this area, and a number of plausible
suggestions for the vacuum state have been advanced. These
proposals will be described, along with their motivations,in
the next section. Briefly, there are suggestions which have
been put forward in temporal gauge [8], in Coulomb gauge
[9–13] and, in 2+1 dimensions, in terms of gauge-invariant
“new variables” [14]. Since these suggestions differ in vari-
ous ways, it would be interesting to know which (if any) is the
true vacuum state, or at least a reasonable approximation to
the true vacuum state.

In this article we will apply an old method [15–17] for mea-
suring, via lattice Monte Carlo simulations, the relative mag-
nitudes of the true Yang-Mills wavefunctional in any given set
of lattice gauge field configurations. The evaluations will be
carried out for two types of lattice configurations: non-abelian
constant gauge fields of varying amplitudes, which are con-
stant in space but noncommutative[Ui ,U j ] 6= 0, and abelian
plane waves of various amplitudes and wavelengths, which

are abelian in the sense that[Ui ,U j ] = 0. The results are com-
pared to the corresponding values obtained in each of the pro-
posed vacuum wavefunctionals. The method can be applied in
any number of space-time dimensions, but here we will work
exclusively in 2+1 dimensions, since the new variables pro-
posal [14] is formulated only in that case.

In section II below we will introduce and motivate each
of the wavefunctionals to be tested. Section III reviews the
method for measuring the true vacuum wavefunctional, and
section IV compares the results obtained by this method with
the predictions of each of the proposed ground states. Our
conclusions are in section V, and some numerical details are
found in the appendix.

II. VACUUM STATE PROPOSALS

The Yang-Mills Hamiltonian operator takes on its simplest
form in temporal gauge, namely

H =

∫
dDx

{
−1

2
δ 2

δAa
k(x)

2 +
1
4

Fa
i j (x)

2
}

(1)

in the continuum theory inD+1 dimensions, and

H =
g2

2a ∑
l

Ea
l Ea

l +
1

2g2a ∑
p

Tr[2−U(p)−U†(p)] (2)

on the lattice, where the sums are over linksl and spatial pla-
quettesp, respectively. Physical states in temporal gauge must
obey the Gauss law constraintDab

k Eb
k Ψ = 0, or more explicitly

(
δ ac∂k−gεabcAb

k

) δ
δAc

k
Ψ = 0 , (3)

which implies that physical states must be invariant under in-
finitesimal gauge transformations. The Gauss law constraint
in temporal gauge is a mixed blessing in the search for an
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approximate ground state. On the one hand, gauge invariance
can be seen as an aid in selecting a good ansatz for the vacuum
state. On the other hand, by severely limiting the choice, cer-
tain states which are perfectly acceptable in Coulomb gauge,
and which may be much more amenable to an analytical treat-
ment, must be discarded in temporal gauge. A very impor-
tant relation, for our purposes, is the equality of the vacuum
wavefunctionals in temporal and Coulomb gauge (see, e.g.,
ref. [18]),

ΨCoul
0 [A] = Ψtemp

0 [A] (4)

when evaluated on gauge fields satisfying the Coulomb gauge
condition∇ ·A= 0, and which also lie in the first Gribov re-
gion. Since our numerical method, to be described in the next
section, will generate the relative amplitudes of vacuum wave-
functionals in temporal gauge, in any finite set of gauge field
configurations, we will be able to check proposals in Coulomb
gauge by ensuring that the given set satisfies the Coulomb
gauge condition, and lies within the first Gribov horizon.

The ground state wavefunctional is known in two limits:
the free-fieldg2 = 0 limit, and also at strong lattice couplings
g2 ≫ 1. In the free-field limit, in either Coulomb or temporal
gauge,

Ψ0[A] = exp

[
−1

4

∫
dDxdDy Fa

i j (x)

(
δ ab

√
−∇2

)

xy
Fb

i j (y)

]
,

(5)

while in the strong-coupling limit, inSU(N) gauge theory, it
has been shown that [19]

Ψ0[U ] = N exp

[
N

g4(N−1)∑
P

TrU(P)+ c.c.

]
, (6)

to leading order in 1/g2. It was suggested long ago in ref.
[1], by one of the present authors, that the Yang-Mills vacuum
wavefunctional in 3+1 dimensions might have the form

Ψ0[A]≈ Ψe f f
0 [A] = N exp

[
−1

2
µ
∫

d3x Tr[F2
i j ]

]
. (7)

when evaluated on sufficiently long-wavelength, slowly vary-
ing field configurations. This wavefunctional has the property
of dimensional reduction: If we write

∣∣∣Ψ0[A]
∣∣∣
2
= N e−R[A] (8)

thenR[A] has the form of the Euclidean Yang-Mills action in
one lower dimension (three dimensions, in this case). It is
clear that the strong-coupling vacuum state (6) does, in fact,
have this property.

The dimensional reduction vacuum (7) in 3+1 dimensions
is confining, i.e.

W(C) = 〈Ψ0|Tr[U(C)]|Ψ0〉
∼ e−Area(C) (9)

if and only if Yang-Mills theory in three Euclidean dimen-
sions has that property, whereU(C) is a Wilson loop holon-
omy around the planar, spacelike loopC. Of course we have

good reasons to believe that Yang-Mills theory is confining
in three Euclidean dimensions. It was noted by Halpern [2]
that a dimensional-reduction vacuum state in 2+1 dimensions
mustbe confining, since Yang-Mills theory in two Euclidean
dimensions is known to confine. Dimensional reduction was
also suggested somewhat later, on rather different grounds,
by Ambjorn, Olesen, and Peterson [20, 21]. These authors
were the first to make the connection between dimensional re-
duction and the property that has come to be known [22] as
Casimir scaling. Strong evidence for Casimir scaling at inter-
mediate distance scales was found in [23].

On the other hand, the dimensional reduction wavefunc-
tional cannot be correct as it stands, because the short-distance
structure is completely wrong. For example, equal-time two-
point correlators inD + 1 dimensions, at short distances,
cannot be identical to short-distance two-point correlators
in D Euclidean dimensions; the singularity structure in the
approach to zero separation would be wrong. In general
one would expect that the vacuum state evaluated on short
wavelength configurations would agree with the perturbative
ground state, whose zeroth order approximation is given by
(5).

There are other reasons, apart from short-distance singular-
ity structure, that dimensional reduction cannot be exact even
for infrared physics. Dimensional reduction from 2+1 to two
Euclidean dimensions would imply a non-vanishing string
tension, and perfect Casimir scaling, for any color group rep-
resentation. This cannot be right in 2+1 dimensions, because
of color screening.1 As argued in ref. [8], it is quite plausi-
ble that color screening is achieved by small corrections tothe
dimensional reduction form.

Another argument against exact dimensional reduction
from 3+1 to three Euclidean dimensions was raised in refs.
[26, 27], which pointed out that this reduction would imply a
match between the equal-time Coulomb gauge gluon propa-
gator in 3+1 dimensions, and the Landau gauge propagator
in D = 3 Euclidean dimensions. It was shown in the same
references that these propagators actually do agree quite well
in a range of low and intermediate momenta around 1 GeV (a
range which is relevant for phenomenology), but the equiva-
lence cannot hold in the far infrared.

For all of these reasons, a purely dimensional reduction vac-
uum wavefunctional is clearly inadequate. Corrections arees-
sential, and what is really required is an approximation to the
vacuum state which holds at all distance scales. There are now
a number of proposals, which may or may not obtain the di-
mensional reduction form in some limit, but which do claim
to approximate the ground state at all length scales. These we
will briefly review.

1 For this reason it is useful to considerk-string tensions, associated with
quarks in completely antisymmetric representations, whose color charge
cannot be screened to a lower dimensional representation bygluons. The
current evidence [24] in 2+1 dimensions is that the leading corrections to
theN = ∞ result are of order 1/N , as in Casimir scaling, rather than 1/N2,
as in the competing Sine Law proposal. For a recent discussion of k-string
tensions in the context of the large-N expansion, cf. [25].
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A. Temporal gauge

It was suggested in ref. [8] that the Yang-Mills ground state
wavefunctional, inD = 2+ 1 dimensions and in temporal
gauge, is approximated by2

ΨGO[A] = exp

[
− 1

2g2

∫
d2xd2y Ba(x)

×
(

1√
−D2−λ0+m2

)ab

xy

Bb(y)


 , (10)

whereBa = Fa
12, D2 is the covariant Laplacian,λ0 is the low-

est eigenvalue of−D2, andm2 is a parameter which vanishes
asg → 0. The motivation was to find the simplest possible
gauge-invariant expression which would agree with the free-
field (5) and dimensional reduction (7) wavefunctionals in the
appropriate limits. In support of this conjecture, it was found
thatΨGO

1. solves the Yang-Mills Schrödinger equation in the
strong-field, zero-mode limit;

2. confines if the mass parameterm> 0, and thatm> 0
seems to be energetically preferred;

3. produces results for the mass gap, the Coulomb gauge
ghost propagator, and the color Coulomb potential,
which are in rather good agreement with results derived
from standard lattice Monte Carlo simulations.

The subtraction ofλ0 is essential, and was introduced be-
cause−D2 has a positive semi-definite spectrum, and in gen-
eral the lowest eigenvalue tends to infinity for typical vacuum
configurations in the continuum limit. This fact is obvious
perturbatively, and is confirmed numerically. Without the sub-
traction (and this was the form originally suggested by Samuel
[6]), the kernel joiningBa(x) andBb(y) in (10) effectively van-
ishes in the continuum limit, and the corresponding string ten-
sion would be infinite. In contrast, the spectrum of−D2−λ0
is well-behaved, and not far from that of the free-field Lapla-
cian operator−∇2 [8].

If one drops all components of the vector potential apart
from the zero mode (analogous to the “minisuperspace” ap-
proximation in quantum cosmology), then the Lagrangian and
the Hamiltonian operators are simply

L =
1

2g2

∫
d2x

[
∂tAk ·∂tAk− (A1×A2) · (A1×A2)

]

=
1

2g2V
[
∂tAk ·∂tAk− (A1×A2) · (A1×A2)

]

H =− g2

2V
∂ 2

∂Aa
k∂Aa

k
+

V
2g2 (A1×A2) · (A1×A2) , (11)

2 A factor of g has been absorbed into the definition of the gauge field, so
that Ak has units of inverse length. This accounts for the overall factor of
1/g2 in the exponent of the wavefunction.

whereV is the volume of 2-space, and the cross-product and
dot-product are defined with respect toSU(2) color indices.
Solving for the ground state is a problem in quantum mechan-
ics, rather than quantum field theory, and to leading order in
1/V the solution is

Ψ0 = exp

[
− V

2g2

(A1×A2) · (A1×A2)√
|A1|2+ |A2|2

]
. (12)

Now in the region of parameter space where the zero mode is
much larger than all other modes, the covariant Laplacian is
approximated by

(−D2)ab
xy = δ 2(x− y)

[
(A2

1+A2
2)δ

ab−Aa
1Ab

1−Aa
2Ab

2

]

(13)

andm2 is negligible. It is then found, after some algebra, that
the proposed wavefunctional (10) reduces to the zero-mode
solution (12).

Dimensional reduction follows by expanding theB-field in
eigenmodesφa

n of −D2. Then the part of the wavefunctional
that depends only on the low-lying modes, with eigenvalues
λn−λ0≪m2 has the form of the dimensional reduction wave-
functional (7), withµ = 1/m. If we assume that the asymp-
totic string tension is due to the low-lying modes, then cal-
culation of the string tension is simply an exercise in two-
dimensional Yang-Mills theory, and the result is

σ =
3
16

mg2 , (14)

If we turn this around, and writem= 16σ/(3g2), then we have
a complete proposal for the vacuum wavefunctional, although
the string tension must be supplied as an input.

A method for obtaining equal time expectation values

〈Q〉=
∫

DAk(x)Q[A]Ψ2
GO (15)

by numerical simulation, with a suitable lattice regulariza-
tion, was also introduced in [8], and applied to calculate the
mass gap. The Coulomb gauge ghost propagator and color
Coulomb potential were derived via numerical simulation of
Ψ2

GO in [28], by the method of generating thermalized lattice
configurations from theΨ2

GO distribution, and then transform-
ing these configurations to Coulomb gauge. The results, as
already mentioned, were in very good agreement with those
obtained from standard lattice Monte Carlo simulations. For
details, we refer the reader to the cited references.

B. New variables

While the temporal gauge ground state can be credited with
some numerical success, it remains an educated guess, and
requires the string tension as an input. A more ambitious pro-
gram in 2+1 dimensions, which aims to calculate both the
Yang-Mills vacuum state and the string tension analytically,
was initiated by Karabali, Kim, and Nair [14], and has been
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further developed by Karabali and Nair in a series of papers,
cf. [29] and references therein.

The starting point in the Karabali, Kim, Nair (KKN) ap-
proach is temporalA0 = 0 gauge, and the remaining two
components of theA-field are combined into a complex field
A= (A1+ iA2)/2, related to a matrix-valued fieldM via

A=−(∂zM)M−1 , A= M†−1∂zM
† , (16)

wherez= x1− ix2, andz= x1+ ix2 are the usual holomorphic
variables in the complex plane. The matrix-valued fieldM
takes values in the groupSL(2,C), and transforms covariantly,
M → GM, under a gauge transformationG. This field can be
used to define gauge-invariant field variables

H = M†M

J =
CA

π
∂H

∂z
H −1 , (17)

whereCA is the quadratic Casimir in the adjoint representa-
tion. In terms of these gauge invariant variables, the Hamilto-
nian becomes

HKKN = T +V , (18)

whereT is derived from theE2 term in the standard Hamilto-
nian

T = m

(∫

u
J a(u)

δ
δJ a(u)

+

∫

u,v
Ωab(u,v)

δ
δJ a(u)

δ
δJ b(v)

)
(19)

with

Ωab(u,v) =
CA

π2

δab

(u− v)2 − i fabc
J c(v)

π(u− v)
(20)

and (∂ ≡ ∂z)

V =
1

2g2

∫

x
Ba(x)Ba(x) =

π
mCA

∫

z
∂J a∂J a (21)

and also

m=
g2CA

2π
. (22)

Inner products are evaluated with respect to the integration
measure

〈Ψ1|Ψ2〉=
∫

dµ(H ) e2CASWZW(H )Ψ∗
1(H )Ψ2(H ) ,(23)

wheredµ(H ) is the Haar measure, andSWZW is the Wess-
Zumino-Witten action.

Although the new field variableJ is gauge invariant, the
HamiltonianHKKN is invariant under local holomorphic trans-
formationsh(z), under whichJ transforms like a connection

J → hJ h−1+
CA

π
∂hh−1 , (24)

and all physical statesΨ[J ], in the new variables approach,
must be invariant under this local transformation. In this

sense, the new variables approach trades the local gauge in-
variance constraint (the Gauss law) in temporal gauge for in-
variance under local holomorphic transformations.

Expressing the ground state asΨ0[J ] = N exp(−R[J ]),
KKN find an expression forR[J ] which is bilinear inJ ,
namely

ΨKKN = N exp

[
− 2π2

g2C2
A

∫
d2xd2y ∂J a(x)

×
(

1√
−∇2+m2+m

)

xy
∂J a(y)

]

= N exp

[
− 1

2g2

∫
d2xd2y Ba(x)

×
(

1√
−∇2+m2+m

)

xy
Ba(y)

]
, (25)

where the second line is the new variables state converted back
to usual variables. KKN assume that the dimensional reduc-
tion form is obtained for long-wavelength configurations by
simply dropping−∇2 in the kernel, i.e.

ΨKKN → N exp

[
− 1

2mg2

∫
d2x Ba(x)Ba(x)

]
, (26)

and then the string tension for a spacelike Wilson loop is ob-
tained from solving Yang-Mills theory in two Euclidean di-
mensions, with the result

σ =
g4

8π
(N2−1) . (27)

Very remarkably, this value is within a few percent of the value
found by Bringoltz and Teper [30] in lattice Monte Carlo sim-
ulations of the 2+1 dimensional theory, after careful extrapo-
lation to the continuum limit.3

C. A hybrid wavefunctional

The problem withΨKKN is that, in terms of new variables,
it is not holomorphic invariant, and in terms of the usual vari-
ables (second line of (25)) it is not gauge invariant. Therefore
ΨKKN, as it stands, is not a physical state. Of course, KKN
do not claim thatΨKKN[J ] in eq. (25) is exact, and pre-
sumably gauge and holomorphic invariance requires consid-
eration of contributions toR[J ] involving higher powers of
J . However, ignorance of the gauge/holomorphic-invariant
wavefunctional calls into question the assumed dimensional
reduction form (26), which was required for the successful
prediction of the string tension. For example, suppose we

3 Recently some corrections toσ have been calculated [29], and they are
quite small. At present it is not entirely clearwhy the correction is so
small, since there is no obvious small expansion parameter in this approach,
and the corrections involve a sum of rather large (positive and negative)
contributing terms, which for some reason nearly cancel.
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assume that higher powers ofJ in the expansion ofR[J ]
would have, as its main effect, the conversion of the ordinary
Laplacian into a covariant Laplacian; i.e. in the usual variables

Ψ0 = N exp

[
− 1

2g2

∫
d2xd2y Ba(x)

×
(

1√
−D2+m2+m

)

xy
Ba(y)

]
. (28)

In that case, for configurations which are non-abelian
([Ax,Ay] 6= 0) in general, dropping−D2 is invalid even for
configurations which vary very slowly compared to the length
scale 1/g2, and indeed is invalid even for configurations which
have no spatial variation whatever. As we have remarked
above, in connection withΨGO, the covariant operator−D2

has a positive semi-definite spectrum, and for typical lattice
configurations the lowest eigenvalue diverges in the contin-
uum limit. In that case, rather than replacing−D2 by zero to
obtain the dimensional reduction result, one should replace it
by infinity! This is obviously nonsense.

Assuming that the KKN wavefunctional applies to abelian
configurations ([Ax,Ay] = 0), the corresponding vacuum state
for more general configurations is still a mystery; one can
only guess what the gauge and holomorphic invariant com-
pletion of ΨKKN might be. But the gauge-invariant comple-
tion is essential, if one is going to invoke dimensional reduc-
tion to compute the string tension. At this stage there are an
infinite number of possibilities, and the validity of the KKN
prediction for the string tension depends on which of these
possibilities is the correct one. One possible approach is to
retainΨKKN for abelian configurations, and ask for the sim-
plest gauge-invariant generalization which would lead to the
dimensional reduction form (26). Then it is natural to merge
features ofΨGO andΨKKN into a conjectured “hybrid” form
for the ground-state wavefunctional

Ψhybrid = N exp

[
− 1

2g2

∫
d2xd2y Ba(x)

×
(

1√
−D2−λ0+m2+m

)ab

xy

Bb(y)


 (29)

which we will include in our numerical tests below.
An alternative approach has been followed by Leigh, Minic,

and Yelnikov (LMY) [31], who begin with the ansatz

ΨLMY = exp

[
− π

2CAm2

∫
d2xd2y ∂J a(x)Kxy(L)∂J a(y)

]
,

(30)

whereL=−∆/m2, and∆ is the holomorphic-covariant Lapla-
cian. They then derive and solve a differential equation for
K(L), whereL is treated as a number, rather than an operator,
and by solving this equation they arrive at

K(L) =
1√
L

J2(4
√

L)

J1(4
√

L)
. (31)

whereJ1,2 are Bessel functions. By construction, the LMY
proposal is a physical state. If the infrared limit meansL → 0,

thenK → 1, andΨ0 has the dimensional reduction form (26),
leading to the same prediction for the string tension. Leigh
et al. also obtain predictions for the glueball mass spectrum
in 2+1 dimensions, which appear to be in good agreement
with standard lattice Monte Carlo results. The reservationin
this case is that the LMY approach assumes a certain operator
identity (eq. (56) of ref. [31]) whose validity, in our opinion,
is questionable. It would nevertheless be interesting to test
ΨLMY numerically, but unfortunately it is not clear to us that
the method we will use in this article could be easily applied
to the LMY proposal.

D. Coulomb gauge

In Coulomb gauge, after resolving Gauss’ law, eq. (3), one
obtains the Yang-Mills Hamiltonian [32] in terms of the trans-
verse components of the gluon field,∇ ·AAA= 0,

H =
1
2

∫
dDx

(
J −1[A]Πa

i J [A]Πa
i +Ba

i Ba
i

)
+Hc (32)

Hc =
g2

2

∫
dDxdDyJ −1[A]ρa(x)J [A]Fab(x,y, [A])ρb(y) ,

whereΠa(x) = δ/iδAa
i (x) is the canonical momentum (elec-

tric field) operator and

J [A] = Det(−D ·∇) (33)

is the Faddeev-Popov (FP) determinant (this should not be
confused with the variableJ (x) in the KKN approach). Fur-
thermore

ρa(x) =−εabcAb
i Πc

i (34)

is the color charge of the gluons and

Fab(x,y, [A]) =
[
(−D ·∇)−1(−∇2)(−D ·∇)−1

]
x,a;y,b

(35)

is the so-called Coulomb kernel. The gauge fixed Hamilto-
nian eq. (32) is highly non-local due to the Coulomb kernel,
eq. (35), and due to the FP determinant, eq. (33). In addition,
the latter occurs also in the functional integration measure of
the scalar product of Coulomb gauge wavefunctionals

〈ψ1|O|ψ2〉=
∫

DAJ [A]ψ∗
1 [A]Oψ2[A]. (36)

Any normalizable state, expressed as a functional of the trans-
verse gauge field, is a physical state in Coulomb gauge. This
means in particular that a wavefunctional which is Gaussianin
the gauge field may be a viable proposal for the ground state.
Unlike the GO and KKN/hybrid proposals, such a state cannot
have the dimensional reduction property in general, since that
property calls for a wavefunctional which, on large scales,is
Gaussian in the field strengths rather than the gauge fields. On
the other hand, also unlike the other proposals, the Gaussian
wavefunctional is tractable analytically.

Efforts in this direction were spearheaded by Szczepaniak
and Swanson [9, 33]. They used a Coulomb gauge ground
state wavefunctional of the form

Ψ[A] = N exp

[
−1

2

∫
dDk
(2π)D ω(k)Aa

i (k)A
a
i (−k)

]
. (37)
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The proposal was further developed in ref. [10], where the
contribution from the Faddeev-Popov determinant was in-
cluded at one-loop order. The field-independent functionω(k)
was determined from a gap equation obtained by minimizing
the energy expectation value. The gap equation depends on
the so-called ghost dressing functiond(k), which is defined in
terms of the expectation value of the inverse Faddeev-Popov
operator4

∫
dDxeikx〈Ψ| g

−(D ·∇)
|Ψ〉x,a;0,b = δ abd(k)

k2 (39)

and the Coulomb form factor,f (k), defined by

f (k) =

∫
dDxeikx〈Ψ|

[
∇2

(−D·∇)

]2
|Ψ〉x,a;0,b

[∫
dDxeikx〈Ψ| ∇2

(−D·∇)
|Ψ〉x,a;0,b

]2 . (40)

In terms of d(k) and f (k) the expectation value of the
Coulomb kernel in eq. (35), which determines the Coulomb
potentialV, is given by

V(k)≡
∫

dDx eikx〈Ψ|Fab(x,0, [A])|Ψ〉= δ ab f (k)d2(k)
k2 .

(41)
Finally, inclusion of the Faddeev-Popov determinant at one-
loop order introduces dependence on the function5 (k̂= ki/|k|)

χ(k) =
NC

2

∫
d2q
(2π)2

[
1− (k̂· q̂)2] d(q)d(q− k)

(q− k)2 . (42)

which is related to the expectation value ofJ . In ref. [10]
χ(k) (there denoted byF(k)) was derived in context of the
gap equation, while the explicit representation ofJ in terms
of χ(k) was derived by Reinhardt and Feuchter in ref. [12] (cf.
eq. (47) below).
The set of coupled Schwinger-Dyson equations for
χ(k),d(k), f (k) and ω(k) is UV divergent and requires
renormalization. In the variational approach this is achieved
by adding relevant and marginal counter-terms to the Hamil-
tonian and, if needed, renormalizing the functional measure.
The latter was obtained in [10] and reads

χ(k)→ χ(k,µ) = Iχ(k)− Iχ(µ) , (43)

whereIχ(k) is given by the right hand side of eq. (42). In
[10] the renormalization program was, however, not fully im-
plemented. In particular a Hamiltonian counter-term propor-
tional to

∫
AΠ, which defines thec1 renormalization constant

4 As shown by Reinhardt [34], in Coulomb gauge the inverse ghost form
factord−1(k) has the meaning of the dielectric function of the Yang-Mills
vacuum, and the horizon condition

d−1(0) = 0 (38)

therefore implies that the Yang-Mills vacuum is a dual superconductor.
5 For later use, we present all explicit expressions inD = 2 space dimensions

and for the color groupSU(NC) [13].

(cf. eq. (52) below), was omitted and thus only an approx-
imate low-energy solution could be obtained. It was found,
however to be qualitatively consistent with the results of [9]
that used theJ = 1 (χ(k)= 0) approximation. This hints that
within the one-loop variational approach, contributions from
the FP operator may be accounted for by the gaussian wave-
functional itself, with an appropriate choice of the gaussian
parameterω(k). Such a possibility was rigorously demon-
strated by Reinhardt and Feuchter [12] (cf. eq. (46) below
and the discussion that follows).

Inspired by the wavefunctional of a spinless particle in an
s-state of a spherical potential, Feuchter and Reinhardt in[11]
suggested to use the ansatz

Ψ[A] =
N√
J [A]

exp

[
−1

2

∫
d2k
(2π)2 ω(k)Aa

i (k)A
a
i (−k)

]
,

(44)
which has a number of technical advantages: The factor of
J [A] in the integration measure (eq. (36)) cancels against
J [A]−1 from the square of the wavefunction and thus drops
out from the calculation of equal-time vacuum expectation
values. As a consequence Wick’s theorem can be applied di-
rectly, and in particularω(k) appearing in eq. (44) is found to
be directly related to the static gluon propagator

〈Aa
i (k)A

b
j (q)〉= (2π)2δ 2(k+q)δ abδi j − k̂i k̂ j

2ω(k)
. (45)

In ref. [12] Reinhardt and Feuchter considered a general wave-
functional of the type

Ψα [A] =
N

J α [A]
exp

[
−1

2

∫
d2k
(2π)2 A(−k)ωα(k)A(k)

]
.

(46)
In the one loop approximation they showed that the Faddeev-
Popov determinant, eq. (33), can be represented as

J [A] = exp

[
−
∫

d2k
(2π)2 Aa

i (−k)χ(k)Aa
i (k)

]
(47)

whereχ(k), thereafter referred to as the curvature, is given by

δ abχ(k) =−1
2

∫
d2xeikx

〈
Ψα

∣∣∣∣
δ 2 lnJ

δAa(x)δAb(0)

∣∣∣∣Ψα

〉
, (48)

which, to the order of approximation considered, after renor-
malization, coincides with the one given in eq. (43). Combin-
ing eq. (46) and eq. (47) leads to

Ψα [A] =N exp

[
−1

2

∫
d2k
(2π)2 A(−k)

[
ωα(k)−2α χ(k)

]
A(k)

]

(49)
and establishes equivalence, at a one-loop level, between the
ansatz of the Indiana group eq. (37), which corresponds to
α = 0, and that of the Tüebingen group eq. (44), correspond-
ing to α = 1/2.6

6 The value ofα does not matter in the one-loop approximation considered
here. It will, however, become relevant for calculations athigher loop or-
der.
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However, using equivalent variational ansätze did not lead
to the same results for the correlation functions,d(k), f (k),
χ(k), ω(k). This is because the approaches of the Indiana and
Tübingen groups differ ini) the approximation scheme used
to evaluate the expectation value of the Hamiltonian andii)
the renormalization scheme. While the Tübingen group fully
includes the Faddeev-Popov determinant to the order consid-
ered, the Indiana group setJ = 1 throughout ref. [9] and ne-
glectedJ in the Coulomb term in the numerical calculations
of ref. [10]. (In the analytic calculation of ref. [10]J was,
however, fully included.) Also, while the Indiana group con-
siders the one-loop corrections to the Coulomb form factor
f (k), the Tübingen group employs thed(k) = 1 approxima-
tion in the equation forf (k).

Ref. [10], in which the renormalization program was not
fully implemented, missed a Hamiltonian counter-term pro-
portional to

∫
AΠ, which defines thec1 renormalization con-

stant (cf. eq. (52) below). The existence of this term was real-
ized by Feuchter and Reinhardt [11], who carried out the com-
plete renormalization program. Thec1 counter-term missed
in [10] plays an important role in determining the IR proper-
ties of the wavefunctional, as realized by Reinhardt and Ep-
ple [35], and will be crucial for the investigations given inthe
present paper. Therefore throughout this paper we will use the
fully renormalized approach of the Tübingen group [11, 35].

For later convenience we define

ω(k)≡ ω(k)− χ(k), (50)

whereω(k) corresponds to the wave functional in eq. (44),
and write the wave functional of eq. (44) in the form

ΨCG[A] = N exp

[
−1

2

∫
d2k
(2π)2A(−k)ω(k)A(k)

]
.

(51)

The fully renormalized gap equation forω , which ultimately
determinesω , reads [11, 35]

ω2(k) = k2+ χ2(k)+ c2+∆I (2)(k)+2χ(k) [∆I (1)(k)+ c1],

(52)

with

∆I (n)(k) = I (n)(k)− I (n)(0) ,

I (n)(k) =
NC

2

∫
d2q
(2π)2 (k̂ · q̂)

2V(q− k)
ωn(q)−ωn(k)

ω(q)
,

(53)

andV(k) given by eq. (41). The gap equation, together with
eq. (43) and the Schwinger-Dyson equations for the ghost
form factor,

d−1(k) = d−1(µ)− (Id(k)− Id(µ)),

Id(k)≡
NC

2

∫
d2q
(2π)2

[
1− (k̂· q̂)2] d(q− k)

ω(q)(q− k)2 (54)

and Coulomb form factor,

f (k) = f (µ)+ (I f (k)− I f (µ))

I f (k)≡
NC

2

∫
d2q
(2π)2

[
1− (k̂· q̂)2] f (q− k)d2(q− k)

ω(q)(q− k)2 (55)

form a closed set of coupled integral equations forχ ,d, f and
ω . In the gap equation (52),c1 andc2 are (finite) renormal-
ization constants. For the critical solution, where one imposes
the horizon condition for the ghost dressing function, eq. (38),
bothω(k) andχ(k) are infrared divergent, which implies that
the transverse gluon propagator vanishes atk→ 0, while [35]

ω(0)≡ lim
k→0

(ω(k)− χ(k)) = c1. (56)

So even when enforcing the horizon condition, the quantity
c1 = ω(0) is undetermined and may be taken to be either in-
frared finite or zero. However, a perimeter law of the ’t Hooft
loop requiresc1 = 0 and this value is also favoured by the
variational principle [35]. Furthermore, forc1 = 0, in the IR
limit k→ 0, the wavefunctional eq. (51) becomes independent
of the gluon zero mode which agrees with the behavior of the
exact vacuum wavefunctional in 1+ 1 dimensions [36], and
corresponds to the so-called ghost loop dominance in higher
dimensions [37]. But although there is strong evidence to fa-
vor c1 = ω(0) = 0, our numerical studies in Section IV B will
also look at the case of a non-zero, but small, value forω(0).
The renormalization parameterc2, on the other hand, has no
influence on the IR or UV behavior of the solutions of the gap
equation (52). Only the mid momentum regime ofω(k) is
weakly dependent onc2 [11]. Since we are mainly interested
in the IR properties we will putc2 = 0 throughout this paper.

The set of coupled integral equations can be solved ana-
lytically in the IR (for the critical solution) using the power
law ansätze [11, 38] while the full numerical solutions of the
above equations were given, forD = 3 space dimensions, in
[11, 39, 40]. ForD = 2, the numerical solution was presented
in ref. [13] and it will be used in Section IV B for comparison
with lattice simulations.

One criticism that can be leveled at the Coulomb gauge pro-
posal is that it is not clear how it could ever lead to an area
law falloff for spatial Wilson loops. In order to address this
issue, a modified version of a Gaussian ansatz, which incor-
porates monopole configurations, has been proposed by Mat-
evosyan and Szczepaniak [41]. Furthermore, recently [42]
Campagnari and Reinhardt have developed a method which
allows to use non-Gaussian wavefunctionals in the variational
approach. Specifically, a wavefunctional containing vertices
with up to four gluon fields was considered. Tests of these
modified versions are, however, deferred to future investiga-
tions.

III. THE MEASUREMENT METHOD

We begin with the identity

Ψ2
0[U

′
i (x)] =

1
Z

∫
DU

{

∏
x

2

∏
k=1

δ [Uk(x,0)−U ′
k(x)]

}
e−S

(57)

where, in the infinite volume limit,Ψ0 is the ground state of
the operatorH, defined via the transfer matrixT = exp[−Hat ],
with at the lattice spacing in the time direction. In the con-
tinuous time limit,H is the Hamiltonian of the lattice gauge
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theory. Now consider a finite set of lattice configurations

U ≡ {U (m)
k (x),m= 1,2, ...,M} at a fixed time, and define

Z̃ =
M

∑
m=1

∫
DU

{

∏
x

2

∏
k=1

δ [Uk(x,0)−U (m)
k (x)]

}
e−S(58)

This is the partition function of a statistical system in which
the lattice configurations at timet = 0 are restricted to the set
U . The rescaled wavefunctional

Ψ̃2
0[U

(n)
i (x)]

=
Ψ2

0[U
(n)
i (x)]

∑M
m=1 Ψ2[U (m)

i (x)]

=

∫
DU

{
∏x ∏2

k=1 δ [Uk(x,0)−U (n)
k (x)]

}
e−S

∑M
m=1

∫
DU

{
∏x ∏2

k=1 δ [Uk(x,0)−U (m)
k (x)]

}
e−S

(59)

has the interpretation as the probabilityPn that, in this statis-
tical system, a lattice configuration on thet = 0 time-slice is

equal to then-th configurationU (n)
i (x) ∈ U in the given set.

The probabilityPn can be computed numerically by a mod-
ified lattice Monte Carlo simulation. All links att 6= 0 are
updated in the usual way, which for the SU(2) gauge group
with the Wilson action is a simple heat bath. On thet = 0
plane, however, one of theM configurations from the setU
is selected at random, and then accepted or rejected by the
Metropolis algorithm. LetNn represent the total number of
times, in a given simulation, that then-th configuration in the
set is selected by the Metropolis algorithm, withNtot the total
number of updates of thet = 0 plane. Then

Pn = Ψ̃2
0[U

(n)
i (x)] = lim

Ntot→∞

Nn

Ntot
. (60)

SinceΨ̃0[U (n)] is simply a constant rescaling ofΨ0[U (n)], it
follows that the relative amplitudes of the vacuum wavefunc-
tionalΨ0 in the setU are given by

Ψ2
0[U

(n)]

Ψ2
0[U

(m)]
= lim

Ntot→∞

Nn

Nm
. (61)

Now suppose we have some theoretical proposal for the
Yang-Mills vacuum wavefunctional

Ψtheory[U ] = N e−
1
2R[U] . (62)

If the proposal is correct, i.e.Ψtheory= Ψ0, and we make a
plot of

− log

[
Nm

Ntot

]
vs. R[U (m)] , (63)

then the data points should fall on a straight line,with slope
equal to one.

The method just described was introduced and applied in
refs. [15–17]. In that early work, however, the simulations
were carried out on small lattices and relatively small values

of β = 4/g2, while comparison to theory was limited to sim-
ple wavefunctionals, resembling (6), inspired by the strong-
coupling expansion. It is now possible for us to greatly im-
prove on these previous studies.

In this investigation we will consider sets of three different
types of configurations:

• Abelian plane waves with wavelengthλ and variable
amplitude

U (m)
1 (n1,n2) =

√
1− (a(m)(n2))212+ ia(m)(n2)σ3

U (m)
2 (n1,n2) = 12

a(m)(n2) =
1
L

√
α + γmcos

(
2πn2

λ

)
, (64)

wherem= 1,2, ...,mmaxwith L the lattice extension and
α,γ some constants. The wavelength can be varied
by settingλ = L and performing simulations on vary-
ing lattice volumes or, alternatively, settingλ = L/M,
whereM is an integer, and carrying out simulations with
different values ofM on a fixed lattice volume. The
former method allows for a greater selection of long-
wavelengthλ , and is used in section IV A below, while
the latter method was used to obtain the data displayed
in Fig. 4 in section IV B.

• Non-abelian constant configurations, variable ampli-
tude:7

U (m)
1 (n1,n2) =

√
1− (a(m))212+ ia(m)σ1

U (m)
2 (n1,n2) =

√
1− (a(m))212+ ia(m)σ2

a(m) =

[
α + γm
20L2

]1/4

. (65)

• Non-abelian constant configurations, fixed amplitude,
variable “non-abelianicity” specified by an angleθm

U (m)
1 (n1,n2) =

√
1−α212+ iασ1

U (m)
2 (n1,n2) =

√
1−α212

+iα(cos(θm)σ1+ sin(θm)σ2)

θm = γ(m−1)π . (66)

The range of amplitudes chosen is limited by the fact
that the number of configurationsNm falls exponentially with
R[U (m)], so typically the interval ofR in any one simulation
is chosen have a width of∆R∼ 4−6 or so. This means that
extracting the slope from a plot of− log[Nm/Ntot] vs.R[U (m)]
may only inform us of the tangent of a function which is actu-
ally non-linear. For this reason it is important to repeat these
calculations in windows of width∆R centered around greatly
different values ofR, to check that slope is invariant and the
functional dependence is, therefore, linear.

7 The factor of 20 in the definition ofa(m) is an arbitrary scaling of the pa-
rameters, which could of course be absorbed intoα ,γ .
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IV. RESULTS

Since the measurement method in the previous section re-
lies on a lattice regularization, we must apply this regulator to
the vacuum wavefunctionals under study. Let us begin with
ΨGO. The proposal is that

− log[Ψ2
GO[A]] = RGO[A]+R0 , (67)

whereR0 =− log(N 2), and in the continuum

RGO[A] =
1
g2

∫
d2x

∫
d2y Ba(x)

×
[

1√
−D2−λ0+m2

]ab

xy

Bb(y) . (68)

In the special case of abelian plane waves withAa
1(x) =

A1(x)δ a3, Aa
2(x) = 0, we have the simpler expression

RGO[A] =
1
g2

∫
d2x

∫
d2y (∂2A1)x

×
[

1√
−∇2+m2

]

xy
(∂2A1)y . (69)

The engineering dimension of the kernel, in 2+1 spacetime
dimensions, is also inverse length. We now latticize the theory
and absorb dimensions into a lattice spacinga, with

A1(x)→
1
a

AL1(x) , ∂2 →
1
a

∂L2 ,

∫
d2x→ a2∑

x

g2 =
g2

L

a
=

4
βa

, m=
mL

a
, (70)

where∂L is the lattice finite difference operator, and all of the
other subscriptL quantities are dimensionless. All factors of
a cancel inR[A], and the result is

RGO[A] =
β
4 ∑

x
∑
y
(∂L2AL1)x


 1√

−∇2
L +m2

L




xy

(∂L2AL1)y .

(71)

A. The GO and KKN wavefunctionals for abelian plane waves

Now we specialize to the lattice abelian plane wave con-
figurations listed in the previous section (lattice sites are x =
(n1,n2))

A( j)
L1 (n2)

σ3

2
=

U ( j)
1 (n1,n2)−U†( j)

1 (n1,n2)

2i

U ( j)
2 (n1,n2) = 12

A( j)
L1 (n2) =

2
L

√
α + γ j cos

(
2πn2

L

)

k̃2 = 2
(

1− cos

(
2π
L

))
. (72)

Substituting these configurations intoR[A], the result is

RGO[U
( j)] = 2(α + γ j)ωGO(k̃

2) , (73)

with

ωGO(k̃
2) =

β
4

k̃2
√

k̃2+m2
L

=
1
g2

k2
√

k2+m2
, (74)

and wherek andm are the momentum and the mass parame-
ters in physical units, i.e.k2 = k̃2/a2,m= mL/a.

The same regularization applied to the KKN wavefunc-
tional yields, for the abelian plane wave configurations,

RKKN[U
( j)] = 2(α + γ j)ωKKN(k̃

2) , (75)

with

ωKKN(k̃
2) =

β
4

k̃2
√

k̃2+m2
L +mL

=
1
g2

k2
√

k2+m2+m
. (76)

The theoretical values forω(k2) are to be compared against
the data obtained from the numerical simulation. For a given
lattice couplingβE of the Wilson action, at a given lattice size
L corresponding to a value of̃k2 given in eq. (72), we obtain
from the numerical simulation described in the previous sec-
tion the values

rn =− log

(
Nn

Ntot

)
. (77)

ThenωMC(k̃2) is obtained from a best linear fit of

2(α + γn)ωMC(k̃
2)+ r0 (78)

to the data points{rn}.
The values forα,γ used at eachβE andL are listed in Ta-

ble III of the Appendix. These values were chosen so that,
for the most part, the abelian plane wave configurations lie in-
side the first Gribov horizon, which is important if we claim
that these results are relevant to the Coulomb gauge wave-
functionalΨCG, where a horizon restriction is implicit. On
the other hand there is no such restriction on the temporal
gauge wavefunctionals, and it is important to check that the
value ofωMC(k̃2) does not depend on the specific values of
α,γ. Therefore, in addition to extracting the slopes at values
of α,γ shown in Table III, we have also carried out runs at
much higher values ofα, to ensure thatωMC(k̃2) is indepen-
dent of the range of amplitudes chosen.

Figure 1 shows two typical plots ofrn vs. 2(α + γn) at
βE = 9 andL = 24; ωMC(k̃2) is the slope of the line (best lin-
ear fit) shown. In the first plot, Fig. 1(a), we have chosen
α = 5,γ = 0.5, and the configurations are all within the first
Gribov horizon. The result isωMC = 0.316(6). In the second
plot, Fig. 1(b), we have takenα = 80,γ = 0.4, which gives
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(b)

FIG. 1. Typical plots of the data for− log(Nn/Ntot) vs. the factor 2(α + γn) associated with the amplitude of then-th configuration. The
straight line is a best linear fit, and the quantityωMC(k̃2) is the slope of that line. The data shown is forβE = 9 andL = 24, and two different
ranges for 2(α + γn): (a) configurations generated withα = 5,γ = 0.5, and the slope isωMC = 0.316(6); (b) configurations generated with
α = 80,γ = 0.4, and the slope isωMC = 0.309(2). The slope of the data is therefore essentially independentof the range of 2(α + γn).

us a range of values for 2(α + γn) which is roughly an order
of magnitude greater than in 1(a), and a set of configurations
which are well outside the first Gribov horizon. Nevertheless,
the slope of the data is almost identical to that of the first plot,
in this caseωMC = 0.309(2). In this way we have determined
that the relationship between− log(Nn/Ntot) and 2(α + γn) is
truly linear, andωMC(k̃2) does not depend on the amplitude of
the abelian configurations.

The theoretical expressions forωGO(k2) andωKKN(k2) in-
volve two dimensionful parametersm andg2. Once these pa-
rameters are chosen, the results can be compared with the data
obtained forωMC(k̃2) on any lattice, providing the dimension-
less squared momentum̃k2 on the lattice is converted into
physical unitsk2 = k̃2/a2 using the lattice spacinga. For a
choice of lattice couplingβE, the lattice spacing in physical
units is given by

a=

√
σL

σ
(79)

whereσL = σL(βE) is theD = 3 dimensional string tension
in lattice units, andσ is the string tension in physical units.
On grounds of tradition, we make the arbitrary choiceσ =
(440 MeV)2.

Figure 2 is a plot ofωMC(k2), extracted from a best fit of
the data to eq. (78). Each data point is obtained at a particular
βE = 6,9 or 12 on a given lattice of extensionL, with L =
16,24,32,40 or 48, and the wavelength of the plane wave on
each lattice is the largest wavelengthλ = L available. This
plot also displays the two theoretical curves

ωGO(k
2) =

1
g2

k2
√

k2+m2

ωKKN(k
2) =

1
g2

k2
√

k2+m2+m
, (80)

with the parametersg2 andm obtained, for each curve, from

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

ω
M

C
(p

)

p2  (GeV2)

βE=6
βE=9

βE=12
GO fit

KKN fit
Coulomb gauge

FIG. 2. Cumulative data forωMC vs. p2 in physical units, on lattices
of extensionsL = 16,24,32,40,48, and Euclidean lattice couplings
βE = 6,9,12. The curves labeled “GO fit” and “KKN fit” (there are
actually two curves, difficult to distinguish from one another), are
the theoretical values forωGO(p2), andωKKN(p2), using the param-
eters ofm andg2 in Table I. The line labeled “Coulomb gauge” is
obtained from the ansatz for the Coulomb gauge vacuum wavefunc-
tional ΨCG[A] (eq. 51) as described in Section IV B.

a best fit to the data points. Observe that in this range of mo-
mentum, the difference between the two fitting functions is
essentially negligible, and in fact only becomes noticeable for
k2 > 4 GeV2.

With the parameters obtained from the fit, we can use di-
mensional reduction (naively, in the KKN case, as explained
in section II C) to compute the string tension, and compare it
with our input value of (440 MeV)2. Dimensional reduction
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gives

σ = mg2×





3
16 GO

3
8 KKN

. (81)

The parametersg2,m from the best fit, and
√

σ from obtained
dimensional reduction, in the GO and KKN cases are shown
in Table I. The values of

√
σ should be compared with the

given value of
√

σ = 0.44 GeV, which was used to set the
lattice spacing at eachβE. The GO result is within 5% of that
value, and the KKN result is almost exactly right.

variant m g2 √
σ from

diml red.
GO 0.771 1.465 0.460

KKN 0.420 1.237 0.441

TABLE I. The parametersm,g2 for the GO and KKN wavefunction-
als, determined from a best fit to the abelian plane wave data in Fig.
2, with

√
σ derived from dimensional reduction. All values are in

units of GeV.

The product ofm and g2, in either the GO or KKN ap-
proach, determines the string tensionσ in either approach.
The dimensionless ratiog2/m is an output of the KKN ap-
proach, where it is predicted to beπ . If m and g2 are de-
termined from a best fit to the data, then the actual ratio is
g2/m= 2.95. It is not clear, at this stage, whether this small
discrepancy is significant, or should just be attributed to devi-
ations from the continuum scaling due to a finite lattice spac-
ing.

B. Tests of the Coulomb gauge wavefunctional

To test the wavefunctional eq. (51), we first have to trans-
fer it to the lattice. We begin by rescaling the gauge field
Ai 7→ Ai/g so that a prefactorg−2 appears in the exponent
of eq. (51), andAi(x) has engineering dimension of a mass.
With these conventions, the Fourier transformed kernelω(k)
and curvatureχ(k) also have dimensions of mass.

Next we latticize as in eq. (70) and rescale the gauge field
again to obtain the dimensionless field8 Âc

k(x̂)≡ aAc
k(ax̂). For

Coulomb gauge fixed connections, it is, in principle, impor-
tant to use the so-called midpoint rule when extracting the
gauge fields from the lattice linksUk:

Uk(x̂) = a0
k(x̂)1+ iac

k(x̂)σc

=⇒ Âc
k(x̂+ k̂/2) =−2ac

k(x̂) ·η(a0
k(x̂)) . (82)

As compared to simpler prescriptions such as eq. (72), we
have two modifications:

8 Throughout this section, we will denote dimensionless lattice objects with
a caret.

1. The shift in the argument on the lhs ensures that the
resulting lattice connection is exactly lattice transversal
if the link fields are,

∇ · Â(x̂) = ∑
j

[
Â j(x̂+ ĵ)− Â j(x̂)

]
= 0.

After Fourier transformation, the shift leads to a phase
factor in the connection which affects general observ-
ables but happens to drop out in the (quadratic) expo-
nentR[A] tested here.

2. Theη–correction in eq. (82) comes from theSU(2) al-
gebra for parallel transporters over a finite distancea,

η(t) =
arccost√

1− t2
= 1+O(t2) .

It is only relevant for very strong fields far from the con-
tinuum limit. (In our numerical studies, the correction
never exceeded 5%.)

After Fourier transformation

Âc
i (k) = ∑̂

x

e−ikx̂ Âc
i (x̂) , (83)

whereki = (2π/L)ℓi (with −L/2≤ ℓi < L/2), a simple calcu-
lation leads to the lattice version of the CG wavefunctional,

RCG[U ] =
1
L2 ∑

k

ω(k)
2

∑
i=1

3

∑
c=1

∣∣∣∣∣∑̂x

e−ik̂x̂2ac
i (x̂)η(a0

i (x̂))

∣∣∣∣∣

2

+R0

ω(k) = g−2[ω(k)− χ(k)
]
.

(84)
Notice that the dimensionless momentum argument in the nu-
merical continuum solution of the gap equation isk/g2, so
that its lattice counterpart becomes

ki ≡
2

ag2 sin
(π

L
ℓi

)
. (85)

To complete the lattice transcription, we only have to find an
expression for the function

h(β )≡ a(β )g2 , (86)

whereβ = 4/(ag2
0) is the usual lattice coupling forSU(2)MC

simulations inD = 2+1. From high precision measurements
of the string tension inD= 2+1 [43], the best fit in the scaling
windowβ ∈ [3,12] is

σ̂ = σ a2 =
b

β 2

(
1+

c
β

)

with coefficientsb≈ 1.788 andc≈ 1.414. From this,

σ̂ = σa2 = σ
16

β 2g4
0

=
16σ
β 2g4

[
1+O(β−1)

] !
=

b
β 2

(
1+

c
β

)
.
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FIG. 3. The exponentR from the variational approach eq. (88) plot-
ted against the lattice data for− lnΨ2 for one set of non-Abelian
constant configurations, choosingω(0) = c1 as fitting parameter
(c1 = 0.1165).

From the leading terms of orderO(β−2), we findb= 16σ/g4

and therefore

h(β ) = ag2 =
√

σ a2 g2
√

σ
=
√

σ̂(β )
4√
b

=
4
β

√
1+

c
β
, c= 1.414. (87)

This completes the lattice transformation of the Coulomb
gauge wavefunctional.

Let us first look at the non-Abelian constant configurations
(65). The corresponding lattice connection has the special
colour structureAc

i ∼ δ c
i , but is otherwise constant in space,

i.e. Fourier transformation projects out the zero frequency
contribution,

2

∑
i=1

3

∑
c=1

|Âc
i (kkk)|2 ∼ δkkk,000 .

The final result for the exponent in the wavefunctional
ΨCG[A]∼ e−RCG[A]/2 becomes, for non-Abelian constant con-
figurations,

RCG[U
(m)] = 8L2 arccos2

(√
1− (a(m))2

)
·ω(0)+R0

≃ 8L2 (a(m))2 ·ω(0)+R0 ,
(88)

where the approximation in the second line comes from dis-
carding theη–correction in eq. (82).

From eq. (56), the quantityω(0) is given by the (finite)
renormalization constantc1 and, as already mentioned in
sect. II D, the energetically preferred value isc1 = 0, which
is also required for a perimeter law in the ’t Hooft loop
[35]. Obviously, with this choice of renormalization constant
ω(0) = c1 = 0 the Coulomb gauge wavefunctional cannot ac-
count for theconstantnon-Abelian gauge field configurations.
Whether this failure is important remains to be seen. At least
it does not necessarily imply that the Coulomb gauge wave-
functional is a bad approximation to the true vacuum wave-
functional since constant configurations form a set of measure

zero in field space. One could give up the preferred value
c1 = 0 and chooseω(0) = c1 as a fitting parameter, cf. fig.3.
This gives reasonable agreement with the lattice data for one
set of constant non-Abelian configurations but does not cure
the general problem. From the results presented in Sec. IV C
below, it will become clear that constant non-Abelian gauge
fields can only be accounted for if we include quartic terms
∼ (AAA×AAA)2 in the exponent of the wavefunctional. The use of
such non-Gaussian wavefunctionals in the variational princi-
ple has recently become feasible [42], but the solution for the
wavefunctional has not yet been determined explicitly up to
quartic terms in the exponent.

For these reasons, we will use the energetically favored
value ω(0) = c1 = 0 in the following. We will now show
that the Coulomb gauge wavefunctional does a good job for
Abelian plane waves of the type eq. (64). In this case we have
carried out simulations atβ = 6 on a fixed lattice volume of
extensionL= 24, and varied the amplitude of the plane waves,
at given wavelengthL/M, according to

U (m)
1 (n1,n2) =

√
1− (a(m)(n2))212+ ia(m)(n2)σ3

U (m)
2 (n1,n2) = 12

a(m)(n2) =
1
L

√
mκM cos

(
2πn2M

L

)
, (89)

wherem= 1, ...,mmax, with κM = 1.4,0.45,0.17,0.09,0.036
at M = 1,2,4,8,12 respectively. The connection is Abelian,
Ac

i ∼ δ c3, with a harmonic spacetime dependence in they-
direction; the corresponding wavenumber is proportional to
the parameterM in eq. (89). After Fourier transformation the
general result (84) takes a fairly complicated form

RCG[U
(m)] = R0+4

L/2

∑
n=−L/2+1

ω(pn)

∣∣∣∣∣
L−1

∑
r=0

exp

(
−2π i

L
nr

)

×sgna(m)(r) ·arccos
√

1− (a(m))2(r)

∣∣∣∣∣

2

pn ≡ 2
h(β )

sin
(π

L
n
)
.

(90)
This can be simplified considerably, if theη–correction in the
definition of the connection, eq. (82), is discarded. Then the
sums in eq. (90) can be performed explicitly and we obtain a
much simpler expression

RCG[U
(m)] = R0+2cM ·mκM ·ω(pM) , (91)

wherecM = 2 for the highest frequencyM = L/2 andcM = 1
otherwise forL even (L = 24 in this case). From eq. (91), it
is obvious that the plane wave configuration tests the kernel
ω = ω/g2− χ/g2 exactly at the lattice momentumpM which
corresponds to the frequency of the plane wave.

Figure 4 shows the result of the numerical evaluation of
eqs. (90), (91) against the lattice MC data for Abelian plane
wave configurations of varying wavenumber and amplitude.
As can be clearly seen, the individual plane waves with fixed
wavenumbersM and varying amplitude fall on a straight line,
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FIG. 4. The exponentRCG from the variational approach eq. (90)
plotted against the lattice data for− lnΨ2 for the plane wave config-
urations with wavenumberM ∈ {1,2,4,8,12}. The lattice data was
taken with lattice extensionL = 24 atβ = 6.0.

but the slope of that line differs from unity. (We have chosen
the solutionω(k) of the variational problem with the preferred
renormalisation constantc1 = 0.) Morever, the slopes of the
lines vary slightly withM, i.e. effectively with the momen-
tum picked by the plane wave: For the smallest momentum
M = 1, we find a slope of 1.19, which decreases down to 1.02
for M = 2, and then increases again up to 1.52 for the largest
momentumM = 12 representable on aL = 24 lattice. If we
relax the condition on the renormalisation constantc1 and take
it as a free parameter, we observe that the spread in the slope
between the various wave numbers is increased, which is an-
other hint that the choicec1 = 0 should be preferred.

Since the plane waves test the kernelω(k) at varying mo-
menta, we can use a fit to the MC data as explained in the
previous section to find a numerical estimateωMC(k). In the
Coulomb gauge wavefunctional, this quantity corresponds to
ω(k) = g−2

(
ω(k)− χ(k)

)
. After rescaling to physical units

(see eq. (86) and below), the result is plotted along with the
values obtained by numerical simulation,ωMC(k), in fig. 2. It
is evident that the variational solution forω(k) fits the MC
data very well, at least in the infrared region for momenta up
to k ≈ 1.3GeV. For larger momenta,ω(k) starts to deviate
and becomes slightly larger than the numerical estimate, but
at most by a few percent within the phenomenologically rel-
evant mid-momentum regime. (For very large momenta not
plotted here,ω(k)∼ k is exact by asymptotic freedom.)

C. Non-abelian constant configurations: fixed amplitude,
variable “non-abelianicity”

For general non-abelian configurations we have, in a lattice
regularization,

RGO[U
(n)] =

β
4 ∑

x
∑
y

Ba(x)


 1√

−D2−λ0+m2
L




ab

xy

Bb(y)

(92)

where

Ba(x) =
1
i
Tr[U(Px)σa)] (93)

with U(Px) a product of links around a plaquette, starting with
a link at sitex. The lattice covariant Laplacian, in the adjoint
representation, is given by

(D2)ab
xy =

2

∑
k=1

[
Uab

k (x)δy,x+k̂+U†ab
k (x− k̂)δy,x−k̂−2δ abδxy

]

Uab
µ (x) =

1
2

Tr
[
σaUk(x)σbU†

k (x)
]
. (94)

In terms of the parametersg2,m in the GO row of Table I, we
useβ = 4/(g2a) andmL = ma, wherea is the lattice spacing.
For comparison with the Monte Carlo data generated at the
lattice couplingβE of the Wilson action, we determinea from
eq. (79). It is important to note that while we expectβ/βE → 1
in the continuum limit, this ratio need not be exactly equal to
one at any finiteβE.

In the same way, the latticized “hybrid” wavefunctional is

Rhybrid[U
(n)]

=
β
4 ∑

x
∑
y

Ba(x)


 1√

−D2−λ0+m2
L +mL




ab

xy

Bb(y) ,

(95)

with β ,mL determined using the parametersg2,m in the KKN
row of Table I, and the lattice spacing from eq. (79).

We will consider first the configurations of eq. (66), with
fixed amplitude and variable “non-abelianicity” specified by
the θ parameter. If the amplitude is chosen small enough,
then−D2−λ0 is negligible compared tom2, and the kernel
reduces to

(
1√

−D2−λ0+m2

)ab

xy

=
1
m

δxyδ ab (96)

for the GO wavefunctional, and
(

1√
−D2−λ0+m2+m

)ab

xy

=
1

2m
δxyδ ab (97)

for the hybrid. This is the dimensional reduction limit, andin
either case, for the configurations (66),R[U ] ∝ (A1×A2)

2, or

RGO,hybrid[U
(n)] ∝ sin2(θn) (98)

For the Coulomb gauge wavefunctional, however,R[U ] ∝
A2

1 +A2
2, and hence, since the amplitudes ofA1 and A2 are

fixed in the set (66),

RCG[U
(n)] ∝ ω(0) (99)

independent of the angleθn. If ω(0) = 0, which seems opti-
mal for agreement with the plane wave data, thenRCG would
also be independent of the amplitude of the gauge fields.
However, it is important to recall that the Coulomb gauge
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wavefunctional should not be evaluated outside the first Gri-
bov horizon. So even ifω(0) = 0, the restriction to the Gri-
bov region amounts to a cutoff in the amplitude of non-abelian
constant configurations.

The Monte Carlo simulation was carried out on a 123 lattice
at βE = 6, with thet = 0 configurations chosen from

U (n)
1 =

√
1−α212+ iασ1

U (n)
2 =

√
1−α212+ iα(cos(θn)σ1+ sin(θn)σ2) (100)

with α = 0.193, andθn = (n−1)π/38. By explicitly calcu-
lating numerically the lowest lying eigenvalues of the lattice
Faddeev-Popov operator, we have checked that these lattice
configurations are all inside the first Gribov horizon.

In Fig. 5 it can be seen that the logarithm of the wavefunc-
tional is indeed proportional to sin2(θ ), as one would expect
from the GO and hybrid wavefunctionals in the dimensional
reduction limit. The data does not seem to be compatible,
however, with theθ -independence (99) of the CG wavefunc-
tional (51).

We recall that ifΨ[U ] = exp[− 1
2R(U)] is the true vacuum

state, then the data points for− log(Nn/NT) vs.R[Un] should
fall on a straight line, with unit slope. Plotting the data for
− log(Nn/NT) againstRGO[Un], as in Fig. 6, we find the slope
obtained from a linear fit through the data is indeed close to
unity. In the GO case the slope is 1.02(6); a similar analysis
for the hybrid wavefunctional results in a slope of 1.12(7).
Some numerical details concerning the simulations are found
in the Appendix.
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FIG. 5. Dependence of− log(Nn/NT) on the ”non-abelianicity” of
the non-abelian constant configurations, determined by sin(θn).

D. Non-abelian constant configurations: variable amplitude,
maximal “non-abelianicity”

We now consider the non-abelian constant configurations
of maximal “non-abelianicity,”, i.e.θ = π/2, which are the
configurations of eq. (65), with indexm running from 1 to 20.
All Monte Carlo calculations were carried out on lattices of
volume 323 at βE = 6,9,12, and the corresponding values of
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FIG. 6. Plot of− log(Nn/NT) vs. RGO for the non-abelian constant
configurations with variable non-abelianicity. The straight line fit has
slope = 1.02.

β ,mL at eachβE are given in Table II, where the values for
the hybrid wavefunctional are taken to be the KKN values,
since the hybrid reduces to the KKN form on abelian config-
urations. The test of the GO and hybrid wavefunctionals is
to see whether or not the data points for− log[Nn/Ntot], when
plotted againstR[U (n)], fall on a straight line whose slope is
close to unity.

βE β (GO) mL (GO) β (KKN) mL (KKN)
6 4.73 0.445 5.60 0.242
9 7.43 0.283 8.80 0.154
12 10.19 0.207 12.07 0.113

TABLE II. Values ofβ ,mL for the GO and KKN wavefunctionals at
eachβE, derived from theg2,m parameters in Table I and the lattice
spacingsa, atβE = 6,9,12.
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FIG. 7. Plot of− log(Nn/NT) vs.RGO for non-abelian constant con-
figurations, maximal non-abeliancity, atβE = 6, L = 32, α = 2, γ =
0.15 In this case the straight line fit has a slope = 0.98.
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L= 32, using the values ofg2,mderived from the abelian plane wave
fit.

An example of the− log[Nn/Ntot] vs. RGO[U (n)] data at
βE = 6 is shown in Fig. 7, for the choiceα = 2,γ = 0.15.
Although the data is nicely fit by a straight line which has a
slope close to unity, this fact must be interpreted with cau-
tion because, since the numberNn falls off exponentially with
RGO[U (n)], the range ofRmust necessarily be kept small; typ-
ically ∆R≈ 4−5. Thiscouldmean that the tendency of the
data to lie on a straight line is misleading, and perhaps we are
simply looking at the tangent of a curve, as already noted in
Section III. It is therefore necessary to extract the slope of
the straight line over small intervals centered around points
over a wide range ofR. The question is whether those slopes
are constant, in which case the linearity hypothesis is verified,
or whether they vary significantly asR increases. This is the
motivation to calculate− log[Nn/Ntot] in sets of twenty con-
figurations, using different values of the parameters(α,γ) in
each set. The parameters we have used are shown in Table IV
of the Appendix.

Figure 8 is a plot of the slope vs.R at βE = 6,9,12, where
the value ofRat each data point is the midpoint of the range in
which the slope was computed. Things are not perfect; there
is some slight variation in the slope withR, there is a little
variation withβ , and the values of the slope are not exactly
one (they seem to be closer to 1.1 at the largeR values). On
the other hand, we have made no claim that the GO wavefunc-
tional is exact, nor is asymptotic scaling exact at these lattice
couplings. The point is that scaling is not bad, and the slopes
are fairly close to unity over a large range ofR, usingg2,m
values that were extracted from fits to a completely different
type of lattice configuration (i.e. abelian plane waves).

Results for the hybrid wavefunctional turn out to be quite
close to those of the GO wavefunctional. The values forβE =
12, for both types of wavefunctionals, are shown in Fig. 9,
with similar agreement at the two otherβE values.
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FIG. 9. βE=12 calculation, for both types of wavefunctionals.

E. The ghost propagator and the Coulomb potential

Because of the equality (4) of the vacuum wavefunctionals
in temporal and Coulomb gauges, when evaluated on trans-
verse (∇ ·A= 0) gauge fields, equal-time expectation values
in Coulomb gauge can be derived from

〈Q〉=
∫

DA Q[A]δ (∇ ·A)J [A]Ψ2
0[A] , (101)

and we may use forΨ0 either of the temporal gauge proposals,
ΨGO, Ψhybrid, or the Coulomb gauge proposalΨCG to calcu-
late such objects as the ghost propagator

G(R) =

〈(
− 1

∇ ·D[A]

)aa

xy

〉

|x−y|=R

(102)

and the color Coulomb potential9

Vc(R) =−
〈(

1
∇ ·D(−∇2)

1
∇ ·D

)aa

xy

〉

|x−y|=R

. (103)

In eq. (101) there is an implicit restriction of the integration
domain to the Gribov region.

In an ordinary Monte Carlo (MC) simulation, Coulomb
gauge expectation values are obtained by first generating
lattice configurations with the usual probability distribution
exp[−S]/Z, whereS is the standard lattice action, transform-
ing those configurations to Coulomb gauge, and evaluating
the observableQ in the ensemble of transformed configu-
rations. In principle the same strategy applies to evaluating
the right hand side of (101) numerically; the problem in
that case is to generate configurations with the probability
distributionΨ2[U ], and this problem was solved, for theΨGO
proposal, in ref. [8]. The simulation method developed in

9 More precisely, for color charges in some representationr , the Coulombic
potential energy is obtained by multiplyingVc(R) by the quadratic Casimir
Cr , and dividing by the dimension of the adjoint representation.
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FIG. 10. The ghost propagator derived from standard Monte Carlo
(MC) simulation atβE = 9, and the same quantity calculated by sim-
ulation of the GO and hybrid wavefunctionals, by the technique de-
scribed in ref. [8].

[8] is also applicable (although it has not been applied until
now) to the hybrid proposal. The lattice ghost propagator
and Coulomb potential were calculated numerically from
ΨGO, and compared to the corresponding results in ordinary
lattice Monte Carlo, in ref. [28]. In that work, however, the
authors choseβ = βE and mL = 4β σL/3. In the present
article the philosophy has changed somewhat. We have two
parameters with dimensions of mass,g2 andm, and a scale
set (arbitrarily) by taking

√
σ = 440 MeV. Theng2,m are

chosen to give a best fit to the abelian plane wave data in
Fig. 2. To compare wavefunctional results with standard
Monte Carlo results we determine the lattice spacinga, at
eachβE, from

√
σL/σ , and thenβ = 4/(g2a) andmL = ma

are the corresponding dimensionless parameters to use in
the latticized wavefunctionalΨGO or Ψhybrid. With the new
procedure we haveβ 6= βE, and the obvious question is
whether this fact will tend to destroy the agreement that
was found previously, in [28], between ghost propagators
and Coulomb potentials derived from simulation ofΨ2

GO,
and the corresponding quantities found in ordinary lattice
Monte Carlo simulations. We would also like to calculate the
Coulomb gauge ghost propagator and Coulomb potential for
the hybrid wavefunctional proposal.

Figure 10 shows the equal-times ghost propagatorG(R)
computed in a standard Monte Carlo simulation on a 323 lat-
tice at βE = 9. On the same plot we see the corresponding
results obtained by generating lattices with probability distri-
bution Ψ2

GO andΨ2
hybrid by the methods of [8], transforming

to Coulomb gauge, and evaluating the ghost propagator, in
each case using the appropriate values ofβ ,mL corresponding
to βE = 9. It can be seen that the agreement between Monte
Carlo, GO, and hybrid results is almost perfect.

The agreement for the Coulomb potentialVc(R) is not as
good. In Fig. 11 we display the data from MC, GO, and hy-
brid simulations, again atβE = 9, with a cut in the data, dis-

carding configurations with|V(0)| greater than some bound
equal to 5,10,50,300. If we restrict the data set to configura-
tions with |V(0)| < 5, then the agreement between MC, GO,
and hybrid results is again almost perfect. Roughly half of all
configurations meet this criterion. The agreement is still fairly
good for |V(0)| < 10, which accounts for about 80% of all
configurations. However, as the cut is gradually removed, the
Coulomb potential derived from GO and hybrid simulations,
while roughly linear inR, deviates quantitatively from the MC
result. But how can there be such a noticeable deviation when
the ghost propagators agree so accurately, without any cutsat
all? The explanation probably has to do with a discrepancy in
the tail of the probability distribution. If two probability dis-
tributions agree in their lower moments, but disagree in higher
moments, then it means that the two distributions agree pretty
well where the probability is substantial, but disagree in the
tail of the distributions. That is what seems to be going on
here.

What was found already in ref. [28] is that the Coulomb
potential is quite sensitive to a comparatively small number of
“exceptional” configurations, in which the lowest eigenvalue
of the Faddeev-Popov operator−∇ ·D is far below the average
value for the lowest eigenvalue. The reason that such excep-
tional configurations are relevant for the Coulomb potential,
but not the ghost propagator, is presumably because the ghost
propagator involves only one factor of the inverse F-P oper-
ator, while the Coulomb potential involves two factors. Be-
cause the inverse F-P operator becomes singular as the lowest
eigenvalueλ0 approaches zero, higher powers of the inverse
F-P operator (such as the Coulomb potential) will be more
sensitive to infrequent configurations with exceptionallylow
values ofλ0 than lower powers (such as the ghost propagator).
The probability distribution of infrequent configurationsis, of
course, governed by the tail of the probability distribution. So
our interpretation of the ghost and Coulomb propagator results
is thatΨ2

GO andΨ2
hybrid agree quite closely with each other,

and with the probability distribution of the true Yang-Mills
vacuum wavefunctionalΨ2

0, in the “bulk” of the distribution.
The Coulomb potential data suggests, however, there is some
small disagreement in the tail of the distribution.

In general, our results for the Coulomb gauge ghost prop-
agator and Coulomb potential with the new fitting procedure
for β ,magree quite closely with our previous results (based on
settingβ = βE) reported in ref. [28] (for a quantitative com-
parison, cf. [44]). The GO and hybrid results are, once again,
virtually indistinguishable. Since both choices of parameters,
and the GO and hybrid wavefunctionals, have about the same
dimensional reduction limit, our results suggest that the quan-
tities we have computed, at the couplings we have employed,
are mainly sensitive to that limit.

Results for the ghost propagator and the Coulomb potential
derived from the Coulomb gauge wavefunctionalΨCG[A] are
presented in [13]. In that case the agreement between the
calculated ghost propagator in momentum space, and the
corresponding Monte Carlo results, appears to be satisfactory,
although the agreement is not at the level shown in Fig. 10.
The quantitative discrepancy with data is substantially larger
for the Coulomb potential (as is the case for the temporal
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FIG. 11. Data for the Coulomb potential atβE = 9 andL= 32, derived from MC, GO and hybrid simulations, with a cut on the data, discarding
configurations for which|V0| is greater than 5, 10, 50, and 300, respectively.

gauge wavefunctionals). In the case of the Coulomb potential,
linear confinement corresponds in momentum space (in 2+1
dimensions) to the behaviorVc(k) ∼ 1/k3. The behavior
derived from the Coulomb gauge wavefunctional approach is
either 1/k2.8, if the relevant equations are solved analytically
in the infrared, or 1/k2.9 if those equations are analyzed
numerically. Further details may be found in ref. [13].

V. CONCLUSIONS

We have compared several suggestions for the Yang-Mills
vacuum wavefunctional to the true Yang-Mills vacuum wave-
functional in 2+1 dimensions, whose exact form is unknown,
but whose relative magnitudes in any set of lattice configu-
rations can be obtained numerically. Three types of lattice
configurations were studied: abelian plane wave configura-
tions, non-abelian constant configurations of fixed amplitude
but varying “non-abelianicity,” and non-abelian constantcon-
figurations of maximal non-abelianicity and varying ampli-
tudes. For purposes of comparison, the physical scale was
set by taking the string tension to be

√
σ = 440 MeV.

For abelian plane waves, up to the shortest wavelength
corresponding top2 = 2.5 GeV2 that we have investigated,
the GO and Karabali-Kim-Nair proposals are almost indistin-
guishable, and both agree very well with the values obtained
for the true vacuum wavefunctional, evaluated on these con-

figurations. The Coulomb gauge wavefunctional can also fit
the plane wave data with an appropriate choice of parame-
ters, providing in particular that the renormalization constant
c1 in eq. (41) is set equal to zero. Both the GO and KKN
wavefunctionals reduce to the dimensional reduction form
exp[−µ

∫
F2] at long wavelengths, and it seems likely that this

is also true for the Coulomb gauge proposal, in this special
case of abelian configurations, for the choice of renormaliza-
tion constantc1 = 0.

For non-abelian configurations, we have suggested a gauge-
invariant wavefunctional which reduces to the KKN pro-
posal for abelian configurations, and incorporates the covari-
ant Laplacian and eigenvalue subtraction of the GO proposal,
which we have termed the “hybrid” wavefunctional. Both
the GO and hybrid wavefunctionals have the dimensional re-
duction form when restricted to configurations which, when
expanded in eigenstates of the covariant Laplacian, contain
only low-lying eigenmodes. Once again, the GO and hy-
brid wavefunctionals are almost indistinguishable when evalu-
ated on non-abelian constant configurations, and this is prob-
ably because they have almost the same dimensional reduc-
tion limit. We find that the GO and hybrid wavefunctionals
are in good agreement with the true vacuum wavefunctional
for non-abelian constant configurations, as well as for abelian
plane waves. The Coulomb gauge wavefunctional, however,
which does not have the dimensional reduction property for
non-abelian lattices, does not seem compatible with the data
for non-abelian constant configurations, particularly thedata
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with variable non-abelianicity.
The Coulomb gauge wavefunctional has been used to

compute Coulomb gauge ghost and gluon propagators, with
results in 2+1 dimensions, reported in [13], indicating a
Coulomb potential rising almost (but not quite) linearly. We
have also computed these quantities by direct simulation of
the GO and hybrid wavefunctionals. The GO and hybrid re-
sults agree with one another, and almost perfectly with the
lattice Monte Carlo results for the ghost propagator. The GO
and hybrid wavefunctionals also lead to an apparently linear
Coulomb potential and agree very closely with each other. On
the other hand there is some difference in the GO and hy-
brid Coulomb potentials in comparison to the lattice Monte
Carlo results, and this can be attributed to a difference asso-
ciated with exceptional configurations with unusually small
values of the lowest Faddeev-Popov eigenvalue. Thus the GO
and hybrid wavefunctionals would seem to agree with the true
Yang-Mills vacuum wavefunctional for the bulk of the prob-
ability distribution, but there would appear to be a small dis-
agreement in the tail of the distribution.

The main effort in this article has been to calculate the rel-
ative magnitudes of the true vacuum wavefunctional on par-
ticular sets of lattice configurations; namely, abelian plane
waves and non-abelian constant configurations, and to com-
pare those results with a number of proposals for the vacuum
state. We have found that the lattice data for the abelian plane
waves have been nicely reproduced by all proposals consid-
ered, while good agreement with the data for non-abelian con-
stant configurations appears to require wavefunctionals with
the property of dimensional reduction.
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Appendix: Numerical details

Evaluation ofRGO[U ] involves dealing with a kernel

Kab
xy =

(
1√

−D2−λ0+m2

)ab

xy

(A.1)

which, on a lattice of extensionL, calls for inverting the square
root of a 3L2×3L2 matrix. The numerical evaluation in this
case can be accelerated using the Zolotarev approximation,
for which

1√
X

≈ a11+ a2

X+b21 +
a3

X+b31 +
a4

X+b41 , (A.2)

whereX is a matrix, and the coefficients are given by [45]

a1= 0.3904603901

a2= 0.0511093775

a3= 0.1408286237

a4= 0.5964845033

b2= 0.0012779193

b3= 0.0286165446

b4= 0.4105999719. (A.3)

In fact, what one really wants is the vector

ua
x = Kab

xy Fb
12(y) , (A.4)

and we found it convenient to compute this vector numerically
using the Matlab software package. In Matlab, computation
of the vectoruuu= M−1www, given the matrixM, requires only a
single line of code:u = M\w. One first definesX = −D2−
λ01+m21 to be a sparse matrix, and then setsY2 = X +b21
etc. The vectoruuu with componentsua

x is then obtained by the
Matlab statement

u= a1∗1+a2∗ (Y2\F)+a3∗ (Y3\F)+a4∗ (Y4\F) ,

(A.5)

and we finally take the inner product

R=
β
4

Fa
12(x)u

a
x , (A.6)

with an implicit summation over lattice sitesx and color in-
dicesa. All the matrix operations, including the determina-
tion of λ0, can be carried out numerically using sparse matrix
techniques, which results in a considerable savings in com-
putation time, often by an order of magnitude or more in our
calculations. We have checked the accuracy of the Zolotarev
approximation by evaluatingR numerically, in several cases,
without this approximation, and have found the results with
and without the approximation to differ only at the third sig-
nificant digit. This is sufficient for our purposes. In the case
of Rhybrid the formula (A.2) is not directly applicable, and the
numerical evaluation was carried out without the help of the
Zolotarev approximation.

In the Monte Carlo simulations, we set up eight runs each
time with the same parameters, but different seeds for the ran-
dom number generator. Each run is itself a number of inde-
pendent jobs, which we refer to as “cycles”, whose results for
− log(Nn/NT) are averaged together at the end of the run. At
the beginning of each cycle the links are all set to the iden-
tity matrix, except for the spacelike links on thet = 0 plane,
which are set to the first (n= 1) configuration out of the set of

{U (n)
i (x, t = 0)} of non-abelian constant configurations. The

lattice att 6=0 then thermalizes for 5000 sweeps with then= 1
configuration att = 0 held fixed. All timelike links are fixed to
the unit matrix, except for the timelike links att = L/2, which
are updated in the usual way. After thermalization we carry
out another 30000 sweeps, with the configuration att = 0 up-
dated only once every 40 sweeps. On reaching thet = 0 plane
every 40th sweep, we carry out 20 Metropolis “hits”; i.e. the
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βE L = 16 L = 24 L = 32 L = 40 L = 48
6 (0,0.5) (0,1.0) (20,1.5) (30,2.5) (60,3.5)
9 (3, 0.25) (5, 0.5) (50,0.7) (10,1.3) (20,1.8)
12 (2,0.17) (7, 0.28) (12,0.53) (20,0.75) (30,1.0)

TABLE III. Values of α,γ used in eq. (72) to generate abelian plane wave configurations with wavelengthλ = L equal to the lattice extension,
andβE = 6,9,12.

βE { (α, γ) }
6 (2,0.15) , (15, 0.20) , (32,0.20) , (60,0.22) , (86,0.24) , (107, 0.26)
9 (2,0.09) , (10, 0.10) , (25,0.13) , (50,0.14)
12 (1.3,0.06) , (4, 0.06) , (10,0.065) , (20,0.08) , (27,0.083), (35,0.083)

TABLE IV. Values ofα,γ used in eq. (65) to generate non-abelian constant configurations with maximal non-abelianicity, on a 322 lattice and
βE = 6,9,12.

Metropolis algorithm is used to update thet = 0 plane, and at
each hit the plane is changed to a new configuration (or not,
depending on the result of the algorithm), and the appropriate
configuration counterNn is incremented. At the end of each
cycle the value for− log(Nn/NT) for each configurationn is
recorded. At the upper end (highern) it is usually the case
thatNn = 0 on one or more cycles; all data from these higher
n configurations are deemed statistically unreliable, and dis-
carded. The number of cycles (used for eight runs at the same
set of parameters) varied from a minimum of 17 to a max-
imum of 70, but was mostly around 30. The result for the
slope of− log(Nn/NT) vs.R[U (n)] was obtained from the best
fit to the data in each run, and the results from the eight inde-

pendent runs were used to estimate the error.

Finally we record, in Tables III and IV, the values ofα,γ
used, in eqs. (72) and (65), to generate sets of abelian plane
waves and non-abelian constant configurations with varying
amplitudes. The aim, in choosing parameters, was to keep the
variation of rn = − log(Nn/Ntot) in a relatively small range
∆rn ≈ 4 (otherwise, because of the exponential falloff, there
would be few or no data points at the larger values ofn). In the
case of non-abelian constant configurations, we choose differ-
ent α values so as to sample the slope of− log(Nn/Ntot) vs.
R[U ] in a small interval of∆R, centered around a wide range
of values ofR, as explained in subsection IV D.
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