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Lüscher’s method is routinely used to determine meson-meson, meson-baryon and baryon-baryon
s-wave scattering amplitudes below inelastic thresholds from Lattice QCD calculations - presently
at unphysical light-quark masses. In this work we review the formalism and develop the requisite
expressions to extract phase-shifts describing meson-meson scattering in partial-waves with angular-
momentum l ≤ 6 and l = 9. The implications of the underlying cubic symmetry, and strategies for
extracting the phase-shifts from Lattice QCD calculations, are presented, along with a discussion of
the signal-to-noise problem that afflicts the higher partial-waves.
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I. INTRODUCTION

The s-wave interactions between hadrons are being calculated with Lattice QCD (LQCD) with increasing precision.
Presently, such calculations are being performed at unphysical light-quark masses, and in the case of mesonic in-
teractions, extrapolations to the physical light-quark masses are made possible by chiral perturbation theory (χPT).
Unfortunately, such extrapolations are presently not reliable for baryon-baryon interactions, and it is likely that LQCD
calculations at, or very near, the physical light-quark masses will be required to make precise predictions for these
interactions due to the fine-tunings that are known to exist in nuclear physics. In most LQCD calculations, periodic
boundary-conditions (BC’s) are imposed on the quark and gluons fields in the spatial-directions of the lattice volume
and Lüscher’s method [1, 2] can be used to extract scattering phase-shifts from the energy-eigenvalues of two-hadron
states that lie below inelastic thresholds. As it is the irreducible representations (irreps) of the cubic group that
determine the degeneracies of the eigenstates in the (cubic) lattice volume, it is difficult to determine the phase-shifts,
δl, beyond the lowest few partial-waves. Each of the irreps of the cubic group have a non-zero overlap with infinitely
many irreps of SO(3), and as a result, the energy-eigenvalues of two-hadron states transforming as a certain irrep
of the cubic group receive contributions from the phase-shifts in an infinite number of partial-waves. In contrast,
two-particle systems confined in a harmonic oscillator potential have a one-to-one relation between phase shifts and
the energy-eigenvalues since the potential respects SO(3) symmetry [3, 4] 1. The mixing of angular momentum in
cubic irreps consequently limits the precision with which the phase-shift in any given partial-wave can be extracted in
a LQCD calculation. This was made obvious in the work of Mandula, Zweig and Govaerts,[6], and explicitly detailed
in Lüscher’s papers [1, 2]. Lüscher calculated the energies of states in the A+

1 irrep of the cubic group as a function
of δ0 and δ4, and gave general expressions for the energies of states transforming in each of the cubic irreps in terms
of the δl. The extension of this formalism to systems with non-zero center-of-mass (CM) momentum was performed
by Rummukainen and Gottlieb [7], and later by Kim, Sharpe and Sachrajda [8]. Recently finite-volume expressions
for three-nucleon systems within cubic volumes have been investigated [9–11].

Fully-dynamical nf = 2 + 1 LQCD calculations of meson-meson interactions in the isospin-stretch-states (i.e. no
disconnected diagrams) are presently enabling predictions of the s-wave interactions with percent-level precision [12–
17] (for a recent review, see Ref. [18]), and very recently a preliminary calculation of the π+π+ d-wave phase-shift
has been performed [19]. Further, preliminary calculations of I = 0 ππ scattering, which contain disconnected
diagrams, have been performed [20]. These calculations were preceded by quenched LQCD calculations [21–39], and
by early nf = 2 LQCD calculations [40]. Meson-baryon systems are starting to be explored in the channels for which
disconnected diagrams are not required in the LQCD calculations [41]. Further, LQCD calculations of baryon-baryon
interactions are beginning to become reliable at unphysical pion masses [42–45], and recently the binding energy
of the H-dibaryon has been calculated [46]. Now that the methodology for extracting s-wave interactions has been
shown to be effective, it is appropriate to explore the higher partial-waves. In the meson sector, a determination of
the p-wave phase-shifts has direct implications for post-dicting the mass and width of the ρ-meson [47, 48], but this
requires evaluating disconnected diagrams in LQCD - calculations that are computationally expensive. In nucleon-
nuclei scattering, the experimentally determined p-wave phase-shifts are thought to be at the heart of the “Ay-puzzle”
in nucleon-deuteron scattering. Further, it is found phenomenologically that only the phase-shifts in partial waves
with l<∼ 4 are required to perform relatively precise calculations of nuclear structure and reactions (at the physical
pion mass).

The formalism required to analyze the J = 1 coupled-channels, in which the deuteron is the ground-state, has been
put in place by Liu, Feng and He [49], and exploratory quenched calculations of the s-d mixing parameter, ε, at pion
masses of mπ ∼ 730, 530 and 380 MeV have been performed in a small number of lattice volumes [50]. Further, there
has been recent work in developing the phenomenology that goes beyond Lüschers formalism in an attempt to explore
resonances (and couplings to multi-hadron final-states) in the single baryon and meson sectors[51].

It is appropriate to point out that there is a substantial amount of information and technology that is directly
relevant to this subject, in particular space-groups, that has been developed for study of condensed matter systems.
Much of the work in this paper draws directly from various applications found in these fields. Discussions of space-
groups can be found in texts, such as Ref. [52] or Ref. [53], as are discussions of point-groups, and other formalisms
that impact the present calculations.

While the papers by Lüscher [1, 2] contain the required formalism, we take this opportunity to present the explicit
relations between the energy-eigenvalues of two spin-zero meson states in a cubic volume and the phase-shifts in
the partial-waves with l ≤ 6 and l = 9. As the total spin is zero, the total angular momentum of these states is

1 The same is true when a “spherical-wall” is imposed on the separation between hadrons, as has been demonstrated in recent lattice
effective field theory (LEFT) calculations [5].
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TABLE I: Decomposition of the orbital angular momentum eigenstates, |l,m〉, into irreps of the cubic group, Γ(i),
for l ≤ 9 (see, for instance, Ref. [52]).

Angular Momentum, l Irreps of the Cubic Group, Γ(i)

0 A+
1

1 T−1
2 E+ ⊕ T+

2

3 A−2 ⊕ T
−
1 ⊕ T

−
2

4 A+
1 ⊕ E+ ⊕ T+

1 ⊕ T
+
2

5 E− ⊕ T−(1)
1 ⊕ T−(2)

1 ⊕ T−2
6 A+

1 ⊕A
+
2 ⊕ E+ ⊕ T+

1 ⊕ T
+(1)
2 ⊕ T+(2)

2

7 A−2 ⊕ E− ⊕ T
−(1)
1 ⊕ T−(2)

1 ⊕ T−(1)
2 ⊕ T−(2)

2

8 A+
1 ⊕ E+(1) ⊕ E+(2) ⊕ T+(1)

1 ⊕ T+(2)
1 ⊕ T+(1)

2 ⊕ T+(2)
2

9 A−1 ⊕A
−
2 ⊕ E− ⊕ T

−(1)
1 ⊕ T−(2)

1 ⊕ T−(3)
1 ⊕ T−(1)

2 ⊕ T−(2)
2

dictated by the spatial cubic irreps [54, 55]. The experimentally measured phase-shifts describing ππ scattering in
the lowest-lying partial-waves, appropriately parameterized, are used to perform estimates of the energy-eigenvalues
that are expected in LQCD calculations of such systems over a range of lattice volumes. We also discuss the issue of
signal-to-noise degradation while performing lattice calculations in higher partial waves.

II. FORMALISM

In the absence of interactions, the states in the cubic volume can be defined by their behavior under transformations
of the cubic group and by their energy. As the momentum in the volume is quantized in integer multiples of 2π/L,
where L is the spatial-extent of the volume, the energy quantum number can be replaced by the magnitude of the
integer triplet defining the momentum, |n|2, where n = (nx, ny, nz). Instead of the energy, it is convenient to refer to
the particular |n|2-shell. For each partial-wave with l ≤ 6 and l = 9, an irrep of the cubic group is identified for which
δl provides the dominant contribution to the interaction energy. Sources and sinks used in LQCD calculations that
are constructed to transform under such irreps will allow for a determination of the δl at some level of precision. The
energy of states with |n|2 ≤ 6 are required to lie below the inelastic threshold in order to obtain all of the phase-shifts
with l ≤ 6, thereby requiring relatively large lattice volumes. Further, the energy of a state in the |n|2 = 14-shell is
required to obtain the l = 9 phase-shift.

A non-zero phase-shift in a given partial-wave will, in general, contribute to the energy-eigenvalues of two-hadron
states in the volume that transform as one or more irreducible representations of the full cubic group, Γ(i). 2 Table I
shows the decomposition of the orbital angular momentum eigenstates, |l,m〉, into the Γ(i) for l ≤ 9, from which it
is straightforward to determine the Γ(i) that have energy-eigenvalues that depend upon a given phase-shift δl

3. A
cursory study of table I shows that A+

1 -states will, in general, receive contributions to their energy from interactions

with l = 0, 4, 6, 8, ..., as is well known [6], and similarly for the other Γ(i). As the dimensionality of an SO(3) irrep
(which is 2l + 1 for |l,m〉) must be equal to the sum of the dimensionalities of the cubic irreps in its decomposition,
cubic irreps will, in general, appear multiple times (with multiplicities denoted by N(Γ(i), l)) in the decomposition of
an SO(3) irrep. Multiplicities greater than one occur for l ≥ 5. The space associated with the jth occurrence of Γ(i)

in the decomposition of |l,m〉 is spanned by the orthonormal basis { |Γ(i), Lz; l; j〉 }, where the number of values of
Lz equals the dimensionality of Γ(i), e.g. for l = 5, the 3-dimensional irrep T−1 occurs twice, and the space associated
with the second occurrence is spanned by { |T−1 , 0; 5; 2〉 , |T−1 , 1; 5; 2〉 , |T−1 , 3; 5; 2〉} 4. When calculating observables

2 The irreps of the full cubic group are Γ(i) = A±1 , A
±
2 , E

±, T±1 , and T±2 , and have dimensionality 1, 1, 2, 3 and 3 respectively. The

superscript denotes the parity of Γ(i).
3 Each Γ(i) appears at least once in the decomposition of the |l,m〉 with l ≤ 6 except A−1 which first appears in the decomposition of the

l = 9 irrep [52]. It is important to note that the decompositions of the l = 7 and l = 8 irreps contain only Γ(i) that also appear in the
decomposition of the l ≤ 6 irreps, and consequently there is no Γ(i) for which the dominant contribution to the interaction energy (in
the large volume limit) is from the l = 7 and l = 8 partial-waves.

4 The Lz quantum number indicates that a phase of eiLzφ results from a (cubic) rotation of φ = nπ/2 about the z-axis, with n an integer.
Lz = 3 is equivalent to a Lz = −1 and Lz = 2 is equivalent to Lz = −2.
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in a cubic volume, operators transforming as a component of a spherical tensor of rank-S, Ô
(µ)
S , are most conveniently

written as

Ô
(µ)
S =

∑
i,j,Lz

θ(Γ(i),j,Lz ;S,µ) |Γ(i), Lz;S; j〉〈Γ(i), Lz;S; j| , (1)

where the values of the θ(Γ(i),j,Lz ;S,µ) are simply determined by matrix elements of Ô
(µ)
S between |l,m〉, or

|Γ(i), Lz;S; j〉, or any states forming a basis in which the projections onto |Γ(i), Lz;S; j〉 are known. In determin-
ing the energy-eigenvalues of the states in the volume, it is the scattering amplitude in a given partial-wave that is
written in the form of eq. (1), with S = l.

The relations between the energy-eigenvalues of two-hadrons in a cubic volume and their scattering phase-shifts
below the inelastic threshold, originally derived in the context of non-relativistic quantum mechanics, were shown to
be valid in quantum field theory (QFT) without modification by Lüscher [1, 2]. The energy-shifts of scattering states
due to the interactions exhibit power-law dependence upon the volume when the range of the interaction is negligible
compared to the spatial-extent of the volume. Corrections arising from the range of the interaction (for the case of
π+π+ the range is set by R ∼ 1/(2mπ), while for nucleon-nucleon interactions it is set by R ∼ 1/mπ) are exponentially
suppressed for L � R, and of the form ∼ e−L/R [56]. In this work, it is assumed that these finite-range corrections
are negligible compared to the power-law energy-shifts due to the interactions. It is straightforward to calculate a
two-hadron Green function resulting from an arbitrary source and sink. The Green-function is generated by the
bubble-diagrams with non-interacting two-hadron states propagating from the source through multiple insertions of
the T-matrix, and then to the sink. In free-space, the Green function exhibits poles at the location of bound-states
and cuts along the positive real axis. In the finite-volume, modifications to the propagation of the two non-interacting
hadrons eliminates the cuts on the positive real axis, replacing them with poles at the location of the energy-eigenstates.
Further, these modifications shift the location of the poles on the negative real axis (if present in infinite volume).
The energy-eigenvalues, corresponding to both bound-states and continuum states in the infinite-volume limit are
determined by solutions to [8],

det
[

cos δ − sin δ F (FV )
]

= 0 , (2)

where cot δ, sin δ and F (FV ) are (lmax + 1)2 × (lmax + 1)2 dimensional matrices when the phase-shifts δl are non-zero
for l ≤ lmax and vanish for l > lmax. Initially, it is convenient to work in the |l,m〉 basis in which, for uncoupled
channels, cot δ and sin δ are diagonal matrices of the form

cos δ = cos δl1 δl1,l2 δm1,m2
, sin δ = sin δl1 δl1,l2 δm1,m2

, (3)

for l1,2 ≤ lmax, but in which F (FV ) has off-diagonal elements, in general. F (FV ) is a matrix that is a function of

the dimensionless quantity q̃ = qL
2π , where q is related to the energy of the interacting two-hadron state, EH1H2

=√
q2 +m2

H1
+
√
q2 +m2

H2
. Its matrix elements are of the form

F
(FV )

l1m1;l2m2
=

(−)m2

q̃ π3/2

√
(2l1 + 1)(2l2 + 1)

|l1+l2|∑
l=|l1−l2|

l∑
m=−l

√
2l + 1

q̃l

(
l1 l l2
0 0 0

)(
l1 l l2
−m1 −m m2

)
Zl,m(1; q̃2) , (4)

where the functions Zl,m(1; q̃2) are those defined by Lüscher [1, 2],

Zl,m(s; q̃2) =
∑
n

|n|l Ylm(Ωn)

[ |n|2 − q̃2 ]
s , (5)

where Ylm(Ω) are the spherical harmonics. The function Z0,0(1; q̃2) is UV-divergent and is defined with the same
renormalization scheme used to define the infinite-volume scattering amplitude.

The non-diagonal nature of FFV with regards to l1 and l2 results in the mixing of partial waves within each cubic
irrep Γ(i) and makes the derivation of the finite-volume formulas nontrivial. We found the following steps to be useful:

• Separate the problem into positive (l even) and negative (l odd) parity systems.
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TABLE II: The degeneracies of, and the number of occurrences of each Γ(i) in, the lowest-lying |n|2-shells. Note: the
A−1 irrep first appears in the |n|2 = 14 shell.

|n|2 degeneracy A+
1 A+

2 T+
1 T+

2 E+ A−1 A−2 T−1 T−2 E−

0 1 1 - - - - - - - - -

1 6 1 - - - 1 - - 1 - -

2 12 1 - - 1 1 - - 1 1 -

3 8 1 - - 1 - - 1 1 - -

4 6 1 - - - 1 - - 1 - -

5 24 1 1 1 1 2 - - 2 2 -

6 24 1 - 1 2 1 - 1 2 1 1
...

14 48 1 1 3 3 2 1 1 3 3 2

• Diagonalize the blocks of F (FV ) with l1 = l2 = l, giving F
(FV )

lm1,lm2
. This separates F (FV ) into blocks with

dimensions dictated by the number of occurrences of each Γ(i) for l ≤ lmax.

• Perform further diagonalizations confined within each Γ(i), if needed.

• As the sin δ and cos δ matrices are diagonal in l1 and l2, their inclusion into eq. (2) is straightforward. The
determinant in eq. (2) then becomes the product of determinants resulting from each Γ(i).

For lmax = 6 this procedure requires dealing with matrices of size at most 4× 4. Unfortunately, even with these steps
laid out, calculations can become quite tedious in the absence of automation (as is currently the case). As an aid, we
give explicit derivations of select systems in Appendix A.

Despite the fact that eq. (2) requires forming the determinant of a finite dimensional matrix, it has infinitely many
solutions. It is derived from a Green-function between arbitrary sources and sinks which, in principle, can couple to all
of the eigenstates in the volume, manifested in the infinite-sums over integer-triplets that define the Zl,m-functions.
Therefore, the zero’s of the determinant in eq. (2) define all of the energy-eigenvalues and hence eigenstates. As
discussed previously, the energy-spectrum of two non-interacting hadrons in the cubic volume with periodic BC’s, and
with vanishing total momentum can be defined by triplets of integers, n,

E =
√
|q1|2 +m2

1 +
√
|q2|2 +m2

2 →

√(
2π

L

)2

|n|2 +m2
1 +

√(
2π

L

)2

|n|2 +m2
2

=
|q1|2

2m1
+
|q2|2

2m2
+ ... → 2π2

µL2
|n|2 + ... . (6)

where one hadron carries momentum q1 = 2π
L n and the other carries momentum q2 = − 2π

L n, and the reduced mass

of the system is µ−1 = m−1
1 +m−1

2 . This (non-interacting) spectrum is recovered in the above formalism, in particular
eq. (2), in the limit that δl → 0 in each partial-wave from the poles in the Zl,m-functions that exist along the positive
real axis. The degeneracy of any given |n|2-shell is straightforward to determine and is recovered from the number
of states in the Γ(i) that span the |n|2-shell, as shown in table II. As the (single hadron) momentum eigenstates
in a given |n|2-shell are degenerate, the corresponding Γ(i) are also degenerate. These degeneracies are lifted by
two-particle interactions that induce non-zero δl’s. Table II shows that all but one of the Γ(i) are required to describe
the eigenstates for |n|2 ≤ 6, and from table I it can be concluded that for δl 6= 0 for l ≤ 6 all of the eigenstates
with |n|2 ≤ 6 are shifted from the non-interacting two-hadron energy due to interactions. However, the A−1 irrep first
occurs in the |n|2 = 14 shell and its energy is dependent upon interactions with l ≥ 9.

III. ENERGY-EIGENVALUES, SOURCES AND SINKS

Lüschers formalism, as detailed in the previous section, is used to construct explicit relations between the energy-
eigenvalues of the Γ(i) and the interaction phase-shifts for l ≤ lmax = 6, the results of which are presented in this
section. Sources and sinks for LQCD calculations that transform as a given Γ(i) are constructed from the single-hadron
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momentum-eigenstates, and Fourier transformed into position-space. One pair of these sources and sinks would couple
only to a single energy-eigenstate in the absence of interactions between the hadrons. As the interactions do not induce
mixing between distinct Γ(i), these sources and sinks couple, in principle, to all states that transform in the same Γ(i).
To keep the presentation of results simple, explicit derivations are deferred to Appendix A, where calculations of the
even- and odd-parity systems with lmax = 4 are detailed, and which straightforwardly generalize to any lmax.

As the hadronic interactions considered in this work result from QCD with the strong CP-violating parameter θ
set equal to zero, and without the electroweak interactions, parity is a good quantum number. Consequently, the
contributions to the finite-volume function F (FV ) do not mix states of opposite parity, and therefore the required
calculations decompose into the parity-even and parity-odd sectors. If weak-interactions are included in the analysis,
as will necessarily be the case when hadronic parity-violating interactions are calculated with LQCD, mixing between
the parity-sectors will occur.

A. Positive Parity Systems

There are five positive parity irreps of the cubic group, A+
1 , A+

2 , E+, T+
1 , and T+

2 with dimensions 1, 1, 2, 3,and

3 respectively. Table I shows how the interactions in a given partial-wave contribute to each Γ(i). The energy-
eigenvalues, sources and sinks for the even-parity states are presented in the following sections: III A 1, III A 2, III A 3,
III A 4 and III A 5.

1. A+
1 Representation

The energy-eigenvalues of A+
1 states depend upon the phase-shifts in the l = 0, 4, 6, 8, ... partial-waves, as can be

seen in table I. Diagonalization of the blocks in the finite-volume function of the form F
(FV )
l;l for l = 0, 4, 6 gives the

states |A+
1 , Lz; l; j〉, as defined immediately before eq. (1), with

|A+
1 , 0; 0; 1〉 = |0, 0〉

|A+
1 , 0; 4; 1〉 =

1

2

√
5

6
|4, 4〉 +

1

2

√
7

3
|4, 0〉 +

1

2

√
5

6
|4,−4〉

|A+
1 , 0; 6; 1〉 =

√
7

4
|6, 4〉 − 1

2
√

2
|6, 0〉 +

√
7

4
|6,−4〉

(7)

for the A+
1 eigenstate of each F

(FV )

l;l in the orbital angular momentum (spherical-wave) basis |l,m〉. With these states

and the corresponding eigenvalues from F
(FV )

l;l , the procedures described in Appendix A allow for the contribution to

eq. (2) from A+
1 states to be written as

det


cotδ0 0 0

0 cotδ4 0

0 0 cotδ6

−
F

(FV,A+
1 )

0;0 F
(FV,A+

1 )

0;4 F
(FV,A+

1 )

0;6

F
(FV,A+

1 )

4;0 F
(FV,A+

1 )

4;4 F
(FV,A+

1 )

4;6

F
(FV,A+

1 )

6;0 F
(FV,A+

1 )

6;4 F
(FV,A+

1 )

6;6


 = 0 , (8)
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where the finite-volume contributions are

F
(FV,A+

1 )

0;0 =
Z0,0

(
1; q̃2

)
π3/2q̃

, F
(FV,A+

1 )

0;4 =
2
√

3
7Z4,0

(
1; q̃2

)
π3/2q̃5

, F
(FV,A+

1 )

0;6 = −
2
√

2Z6,0

(
1; q̃2

)
π3/2q̃7

F
(FV,A+

1 )

4;4 =
Z0,0

(
1; q̃2

)
π3/2q̃

+
108Z4,0

(
1; q̃2

)
143π3/2q̃5

+
80Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7
+

560Z8,0

(
1; q̃2

)
143
√

17π3/2q̃9

F
(FV,A+

1 )

4;6 = −
40
√

6
91Z4,0

(
1; q̃2

)
11π3/2q̃5

+
42
√

42Z6,0

(
1; q̃2

)
187π3/2q̃7

−
224
√

42
221Z8,0

(
1; q̃2

)
209π3/2q̃9

−
1008

√
2
13Z10,0

(
1; q̃2

)
323π3/2q̃11

F
(FV,A+

1 )

6;6 =
Z0,0

(
1; q̃2

)
π3/2q̃

−
126Z4,0

(
1; q̃2

)
187π3/2q̃5

−
160
√

13Z6,0

(
1; q̃2

)
3553π3/2q̃7

+
840Z8,0

(
1; q̃2

)
209
√

17π3/2q̃9

−
2016

√
21Z10,0

(
1; q̃2

)
7429π3/2q̃11

+
30492Z12,0

(
1; q̃2

)
37145π3/2q̃13

−
1848
√

1001Z12,4

(
1; q̃2

)
37145π3/2q̃13

,

and F
(FV,Γ(i))

i;j = F
(FV,Γ(i))

j;i . Equation (8) yields an infinite number of energy-eigenvalues and eigenstates, each of
which depend upon the phase-shift in the l =0, 4, and 6 partial waves.

In the |n|2-shells for which there is just one A+
1 state, as shown in table II, its energy-shift due to interactions

receives contributions from the l = 0, 4, 6, ... partial-waves. However, in the |n|2-shells in which there are multiple
A+

1 states (first occurring at |n|2 = 9), the energy-eigenstates are linear combinations of these states. In the large-
volume limit, the shift in the energy-eigenvalue of one combination is dominated by the interactions in the l = 0
partial-wave, the shift in a second combination is dominated by the interactions in the l = 4 partial-wave, the shift
in a third combination is dominated by the interactions in the l = 6 partial-wave, and so on. So while the naive
argument that A+

1 states receive contributions from interactions in the l = 0, 4, 6, ... partial-waves is generally true,
linear combinations of A+

1 states are formed such that it is not true in the infinite-volume limit. The energy-shift
of each occurrence of an A+

1 energy-eigenstate in a given |n|2-shell is dominated by the interaction in a different
partial-wave in the infinite-volume limit. To demonstrate this point, consider the situation where the phase-shift in
the l = 6 partial-wave vanishes, in which case eq. (8) becomes a 2× 2 matrix with the following two solutions:

cotδ0
2

+
cotδ4

2
−
Z0,0

(
1; q̃2

)
π3/2q̃

−
280Z8,0

(
1; q̃2

)
143
√

17π3/2q̃9
−

40Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7
−

54Z4,0

(
1; q̃2

)
143π3/2q̃5

±1

2

√(
560Z8,0 (1; q̃2)

143
√

17π3/2q̃9
+

80Z6,0 (1; q̃2)

11
√

13π3/2q̃7
+

108Z4,0 (1; q̃2)

143π3/2q̃5
+ cotδ0 − cotδ4

)2

+
48Z4,0 (1; q̃2)

2

7π3q̃10

= 0 . (9)

In the case of tanδ4 � tanδ0
5, the l = 0 dominated solution is

qcotδ0 =
2√
πL
Z0,0

(
1; q̃2

)
+

12288π7

7L10

Z4,0

(
1; q̃2

)2
[q9cotδ4]

+ O
(
tan2δ4

)
, (10)

and is valid for all |n|2-shells. If phase shifts in both the l = 4 and l = 6 partial-waves vanish, eq. (8) and eq. (10)
reduce to the familiar result found by Lüscher 6,

qcotδ0 =
2√
πL
Z0,0

(
1; q̃2

)
, (11)

5 For (non-nuclear) systems in which the l = 4 partial-wave might be resonant, and therefore tanδ0 � tanδ4, eq. (9) can be expanded to
obtain the l = 4 dominated solution,

q9cotδ4 =
512π15/2Z0,0

(
1; q̃2

)
L9

+
1769472π25/2Z4,0

(
1; q̃2

)
143L14q5

+
3145728π15Z4,0

(
1; q̃2

)2
7L18q9cotδ0

+O
(
tan2δ0

)
.

However, as argued later, the T+
1 system is better suited for extracting the phase-shift in this channel.

6 The “S-function”, S(q̃2), used in, for example, Ref. [58], is related to Z0,0(1; q̃2) by S(q̃2) =
√

4πZ0,0(1; q̃2).
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FIG. 1: The function Z0,0

(
1; q̃2

)
. The vertical dashed lines denote the position of the poles of the function corresponding to

the non-interacting energy-eigenvalues.

where the function Z0,0

(
1; q̃2

)
is shown in fig. 1. Performing a large-volume expansion of the solution (as discussed

in Appendix C) to eq. (11) in the |n|2 = 9-shell gives the energy-eigenvalue

E
A

+(1)
1

=
1

2µ

[
36π2

L2
− 20 tan δ0(|n|2 = 9)

L2
+ O(tan2 δ0) + ...

]
, (12)

while the second solution to eq. (9) has a perturbative expansion of the form

E
A

+(2)
1

=
1

2µ

[
36π2

L2
− 8960 tan δ4(|n|2 = 9)

243 L2
+ O(tan δ6) + ...

]
, (13)

where the contribution from the l = 0 partial-wave is strongly suppressed in the large-volume limit. While the two
basis states, ||n|2 = 9;A+

1 (1)〉 and ||n|2 = 9;A+
1 (2)〉, both have a non-vanishing overlap with |l,m〉 = |0, 0〉, it is

obvious that a linear combination can be formed that has vanishing overlap. Inserting the interactions once, as is
appropriate for determining the energy-eigenvalues in large volumes (i.e. first order perturbation theory in 1/L),
dictates the form of the expansions in eq. (12) and eq. (13).

Sources and sinks that have an overlap, and in general a range of overlaps, with the finite-volume energy-eigenstates
of hadronic systems are required for LQCD calculations. While the interactions between hadrons gives rise to energy-
eigenstates that are not products of single-hadron eigenstates of the linear-momentum operator, sources and sinks
can be constructed from the single-hadron momentum eigenstates that transform as a given Γ(i), that will have
non-zero overlap with the energy-eigenstates in the same irrep. Constructing sources and sinks from single hadrons
that have equal and opposite momenta ensures that the total momentum of the combined system vanishes. The
relative-momentum-eigenstates of definite parity, P, are denoted by

|~n , P〉 =

{
|~n〉 + P |−~n〉√

2
(~n 6= ~0)

|~n〉 (~n = ~0 and P = +1) ,
(14)

where P is the parity of the state (P = ±1) and ~n = (nx, ny, nz) is the triplet of integers that define the relative
momentum of the two-body system. The states in eq. (14) are eigenstates of the relative kinetic energy operator Trel,
with the eigenvalues displayed in eq. (6). By taking appropriate linear combinations of these momentum-eigenstates,
states in the A+

1 representation (or any other irrep) can be constructed in each |n|2-shell if the shell supports it (see
table II and Ref. [52]). For example, in the |n|2 = 0 shell the basis-state is

||n|2 = 0; A+
1 〉 = |(0, 0, 0) , P = +1〉 ,
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TABLE III: The momentum-space structure of A+
1 sources and sinks for |n|2=0, 3, and 6. These are shown graphically

in fig. 2.

|n|2=0 |n|2=3 |n|2=6

|(0,0,0) , +1〉 1

|(1,1,1) , +1〉 1
2

|(1,1,-1) , +1〉 1
2

|(1,-1,1) , +1〉 1
2

|(1,-1,-1) , +1〉 1
2

|(2,1,1) , +1〉 1

2
√

3
|(2,1,-1) , +1〉 1

2
√

3

|(2,-1,1) , +1〉 1

2
√

3
|(2,-1,-1) , +1〉 1

2
√

3

|(1,2,1) , +1〉 1

2
√

3
|(1,2,-1) , +1〉 1

2
√

3

|(1,1,2) , +1〉 1

2
√

3
|(1,1,-2) , +1〉 1

2
√

3

|(1,-1,2) , +1〉 1

2
√

3
|(1,-1,-2) , +1〉 1

2
√

3

|(1,-2,1) , +1〉 1

2
√

3
|(1,-2,-1) , +1〉 1

2
√

3

while for |n|2 = 1, the basis-state is

||n|2 = 1; A+
1 〉 =

|(1, 0, 0) , P = +1〉 + |(0, 1, 0) , P = +1〉 + |(0, 0, 1) , P = +1〉√
3

.

In general the coefficients of these basis vectors are valid up to an arbitrary phase. The momentum-space basis for
the A+

1 sources and sinks in select |n|2-shells are presented in table III.
The momentum-space representations of the sources and sinks (the left panels in fig. 2) show the n-vectors that

transform as an A+
1 in the given |n|2-shells. The widths of the vectors are proportional to the magnitude of their

amplitudes and their color denotes the sign (red=positive, blue=negative). The position-space representations of the
sources and sinks (the right panels in fig. 2) show the surfaces of constant ρn,P(r), defined by

ρn,P(r) = |〈 r | (nx, ny, nz) , P 〉|2 , (15)

which are obtained by Fourier transform. In the position-space representations, r refers to the relative distance
between the two particles and in the figures r̃ is defined to be r̃ = r/L.

2. A+
2 Representation

The other one-dimensional positive-parity irrep of the cubic group is the A+
2 . Due to its complexity, the lowest-

lying state transforming as a A+
2 is in the |n|2 = 5 shell, as indicated in table II. Further, the lowest partial-wave

contributing to its energy is l = 6, and as this analysis is truncated to partial-waves with l ≤ 6, the contribution to
the determinant in eq. (2) has the solution

q13cotδ6 =

(
2π

L

)13
1

π3/2
×(

q̃12Z0,0

(
1; q̃2

)
+

6q̃8Z4,0

(
1; q̃2

)
17

−
160
√

13q̃6Z6,0

(
1; q̃2

)
323

−
40q̃4Z8,0

(
1; q̃2

)
19
√

17

−
2592

√
21q̃2Z10,0

(
1; q̃2

)
7429

+
1980Z12,0

(
1; q̃2

)
7429

+
264
√

1001Z12,4

(
1; q̃2

)
7429

)

≡
(

2π

L

)13
1

π3/2
X+
A2

(
q̃2
)
. (16)

and the associated eigenstate of the F
(FV )

6;6 block is

|A+
2 , 2 : 6; 1〉 =

1

4

√
11

2
|6, 2〉 +

1

4

√
11

2
|6,−2〉 − 1

4

√
5

2
|6, 6〉 − 1

4

√
5

2
|6,−6〉 . (17)

The function X+
A2

is shown in fig. 3 as a function of q̃2. Its pole at q̃2=5, denoted by the vertical dashed line, corresponds

to the non-interacting (δ6 = 0) energy-eigenvalue. This is the only |n|2-shell with |n|2 < 6 which supports the A+
2
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FIG. 2: The momentum-space representations (left) and position-space representations (right) of two-body relative states in
the A+

1 representation for select |n|2 shells. Here r̃ = r/L.

irrep, as shown in table II. In fig. 4 we give the graphical representations of the source and sink that generates this
irrep in the |n|2 = 5-shell. As this is the lowest-lying state whose energy-eigenvalue is insensitive to l < 6 interactions,
it is LQCD correlation functions constructed to transform in the A+

2 irrep that will enable a calculation of δ6. However,
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FIG. 3: The function X+
A2

, as defined in eq. (16), as a function of q̃2. The vertical dashed line denotes the position of the pole
of the function corresponding to the non-interacting energy-eigenvalues.

FIG. 4: The momentum-space representation (left) and position-space representation (right) of two-body relative states in the
A+

2 representation for the |n|2 = 5 shell.

as the lowest energy contributing to an A+
2 correlation function occurs in the |n2| = 5-shell, relatively large lattice

volumes will be required in order to have this state lie below the inelastic threshold. The momentum-space structure
of the source and sink that couple to the A+

2 state in the |n|2 = 5-shell is given in table IV.

3. E+ Representation

The energy-eigenvalues of states transforming in the E+ irrep receive contributions from interactions in the l =
2, 4, 6, ... partial-waves. As the E+ irrep is two-dimensional, the contribution to the determinant in eq. (2) results from
a 6× 6 matrix when l ≤ 6. However, as the two states in the E+ irrep (with Lz = 0 and Lz = 2) are degenerate, and
orbital-angular momentum is conserved by the interactions (unlike the situation in the baryon-sector), the analysis

can be reduced to that of a 3× 3 matrix. The E+ Lz = 0 states associated with the F
(FV )

2;2 , F
(FV )

4;4 , and F
(FV )

6;6 blocks
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TABLE IV: The momentum-space structure of the A+
2 source and sink in the |n|2 = 5-shell. They are shown

graphically in fig. 4.

|n|2=5

|(2,1,0) , +1〉 − 1

2
√

3
|(2,0,1) , +1〉 1

2
√

3

|(2,0,-1) , +1〉 1

2
√

3
|(2,-1,0) , +1〉 − 1

2
√

3

|(1,2,0) , +1〉 1

2
√

3
|(1,0,2) , +1〉 − 1

2
√

3

|(1,0,-2) , +1〉 − 1

2
√

3
|(1,-2,0) , +1〉 1

2
√

3

|(0,2,1) , +1〉 − 1

2
√

3
|(0,2,-1) , +1〉 − 1

2
√

3

|(0,1,2) , +1〉 1

2
√

3
|(0,1,-2) , +1〉 1

2
√

3
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FIG. 5: The function X+
E , as defined in eq. (21), as a function of q̃2. The vertical dashed lines denote the position of the poles

in the function corresponding to the non-interacting energy-eigenvalues.

are

|E+, 0; 2; 1〉 = |2, 0〉

|E+, 0; 4; 1〉 =
1

2

√
7

6
|4, 4〉 − 1

2

√
5

3
|4, 0〉 +

1

2

√
7

6
|4,−4〉

|E+, 0; 6; 1〉 =
1

4
|6, 4〉 +

1

2

√
7

2
|6, 0〉 +

1

4
|6,−4〉 ,

(18)

and the contribution to eq. (2) becomes

det


cotδ2 0 0

0 cotδ4 0

0 0 cotδ6

−
F

(FV,E+)

2;2 F
(FV,E+)

2;4 F
(FV,E+)

2;6

F
(FV,E+)

4;2 F
(FV,E+)

4;4 F
(FV,E+)

4;6

F
(FV,E+)

6;2 F
(FV,E+)

6;4 F
(FV,E+)

6;6


 = 0 , (19)
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TABLE V: The momentum-space structure of E+, Lz = 2 sources and sinks for |n|2=1, 4, and 6. These are shown
graphically in fig. 6.

|n|2=1 |n|2=2 |n|2=4

|(1,0,0) , +1〉 − 1√
2

|(0,1,0) , +1〉 1√
2

|(2,0,0) , +1〉 − 1√
2

|(0,2,0) , +1〉 1√
2

|(2,1,1) , +1〉 − 1

2
√

2
|(2,1,-1) , +1〉 − 1

2
√

2

|(2,-1,1) , +1〉 − 1

2
√

2
|(2,-1,-1) , +1〉 − 1

2
√

2

|(1,2,1) , +1〉 1

2
√

2
|(1,2,-1) , +1〉 1

2
√

2

|(1,-2,1) , +1〉 1

2
√

2
|(1,-2,-1) , +1〉 1

2
√

2

where

F
(FV,E+)

2;2 =
Z0,0

(
1; q̃2

)
π3/2q̃

+
6Z4,0

(
1; q̃2

)
7π3/2q̃5

F
(FV,E+)

2;4 = −
30
√

3
13Z6,0

(
1; q̃2

)
11π3/2q̃7

−
40
√

3Z4,0

(
1; q̃2

)
77π3/2q̃5

F
(FV,E+)

2;6 =
8
√

14
1105Z8,0

(
1; q̃2

)
π3/2q̃9

+
4
√

14
5 Z6,0

(
1; q̃2

)
11π3/2q̃7

+
30
√

10
91Z4,0

(
1; q̃2

)
11π3/2q̃5

F
(FV,E+)

4;4 =
Z0,0

(
1; q̃2

)
π3/2q̃

+
392Z8,0

(
1; q̃2

)
143
√

17π3/2q̃9
−

64Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7
+

108Z4,0

(
1; q̃2

)
1001π3/2q̃5

F
(FV,E+)

4;6 = −
1512

√
2
65Z10,0

(
1; q̃2

)
323π3/2q̃11

−
128
√

210
221Z8,0

(
1; q̃2

)
209π3/2q̃9

−
18
√

210Z6,0

(
1; q̃2

)
187π3/2q̃7

−
8
√

30
91Z4,0

(
1; q̃2

)
11π3/2q̃5

F
(FV,E+)

6;6 =
Z0,0

(
1; q̃2

)
π3/2q̃

+
30492Z12,0

(
1; q̃2

)
37145π3/2q̃13

+
264
√

1001Z12,4

(
1; q̃2

)
37145π3/2q̃13

+
1152

√
21Z10,0

(
1; q̃2

)
7429π3/2q̃11

+
280Z8,0

(
1; q̃2

)
209
√

17π3/2q̃9
+

480
√

13Z6,0

(
1; q̃2

)
3553π3/2q̃7

+
114Z4,0

(
1; q̃2

)
187π3/2q̃5

.

It is obvious that the solutions of eq. (19) depend upon the l = 2, 4, and 6 partial-waves in a non-trivial manner.
In the limit of vanishing interactions in partial-waves with l > 4, the contribution from the E+ irrep to eq. (19)

results from a 2× 2 matrix, and has solutions

cotδ2
2

+
cotδ4

2
−
Z0,0

(
1; q̃2

)
π3/2q

−
196Z8,0

(
1; q̃2

)
143
√

17π3/2q̃9
+

32Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7
−

69Z4,0

(
1; q̃2

)
143π3/2q̃5

=

±1

2

(392Z8,0

(
1; q̃2

)
143
√

17π3/2q̃9
−

64Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7
−

750Z4,0

(
1; q̃2

)
1001π3/2q̃5

+ cotδ2 − cotδ4

)2

+4

30
√

3
13Z6,0

(
1; q̃2

)
11π3/2q̃7

+
40
√

3Z4,0

(
1; q̃2

)
77π3/2q̃5

2
1/2

. (20)

In the limit that tan δ4 << tan δ2, the l = 2 dominated solutions to eq. (20) result from

q5cotδ2 =

(
2π

L

)5
1

π3/2

(
q̃4Z0,0

(
1; q̃2

)
+

6

7
Z4,0

(
1; q̃2

))
=

(
2π

L

)5
1

π3/2
X+
E

(
q̃2
)
, (21)

where function X+
E is shown in fig. 5 as a function q̃2 7. The graphical representations of the sources and sinks that

7 This expression has been derived previously by R. Briceno [57].



15

FIG. 6: The momentum-space representations (left) and position-space representations (right) of two-body relative states in
the E+ representation with Lz = 2 in the |n|2=1, 4, and 6 shells.
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FIG. 7: The function X+
T1

, as defined in eq. (25), as a function of q̃2. The vertical dashed lines denote the position of the poles
of the function corresponding to the non-interacting energy-eigenvalues.

generate this irrep for particular |n|2 ≤ 6-shell are shown in fig. 6 in the case of Lz = 2, and the momentum-space
structures are given explicitly in table V.

There are two occurrences of the E+ irrep in the |n|2 = 5-shell. Linear combinations of the basis states can be
formed: one that is dominated by δ2, and one that is dominated by δ4 in the infinite-volume limit. As is the case in
the A+

1 sector, these states are not energy-eigenstates since they have a non-zero projection, in principle, onto all E+

states. The perturbative expansions of the energy-eigenvalues in the large-volume limit can be found in Appendix C.

4. T+
1 Representation

The energy-eigenvalues of states transforming in the T+
1 irrep receive contributions from interactions in the l =

4, 6, ... partial-waves. The T+
1 irrep is three-dimensional, with states identified by Lz = 0, 1, 3, and provides a

contribution to the determinant in eq. (2) that results from a 6 × 6 matrix for l ≤ 6. As the three Lz-states are

degenerate, the analysis collapses down to that of a 2 × 2 matrix. The T+
1 Lz = 0 states associated with the F

(FV )

4;4

and F
(FV )

6;6 blocks are

|T+
1 , 0; 4; 1〉 =

1√
2
|4, 4〉 − 1√

2
|4,−4〉 , |T+

1 , 0; 6; 1〉 =
1√
2
|6, 4〉 − 1√

2
|6,−4〉 , (22)

and the contribution to eq. (2) is

det

(cotδ4 0

0 cotδ6

)
−

F (FV,T+
1 )

4;4 F
(FV,T+

1 )

4;6

F
(FV,T+

1 )

6;2 F
(FV,T+

1 )

6;6

 = 0 , (23)
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TABLE VI: The momentum-space structure of T+
1 , Lz = 0 sources and sinks. These are shown graphically in fig. 8.

|n|2=5 |n|2=6

|(2,1,0) , +1〉 1
2

|(2,-1,0) , +1〉 − 1
2

|(1,2,0) , +1〉 − 1
2

|(1,-2,0) , +1〉 1
2

|(2,1,1) , +1〉 1

2
√

2
|(2,1,-1) , +1〉 1

2
√

2

|(2,-1,1) , +1〉 − 1

2
√

2
|(2,-1,-1) , +1〉 − 1

2
√

2

|(1,2,1) , +1〉 − 1

2
√

2
|(1,2,-1) , +1〉 − 1

2
√

2

|(1,-2,1) , +1〉 1

2
√

2
|(1,-2,-1) , +1〉 1

2
√

2

where

F
(FV,T+

1 )

4;4 =
Z0,0

(
1; q̃2

)
π3/2q̃

−
448Z8,0

(
1; q̃2

)
143
√

17π3/2q̃9
−

4Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7
+

54Z4,0

(
1; q̃2

)
143π3/2q̃5

F
(FV,T+

1 )

4;6 =
576
√

21
65Z10,0

(
1; q̃2

)
323π3/2q̃11

+
112
√

5
221Z8,0

(
1; q̃2

)
209π3/2q̃9

+
42
√

5Z6,0

(
1; q̃2

)
187π3/2q̃7

−
12
√

5
13Z4,0

(
1; q̃2

)
11π3/2q̃5

F
(FV,T+

1 )

6;6 =
Z0,0

(
1; q̃2

)
π3/2q̃

−
26136Z12,0

(
1; q̃2

)
37145π3/2q̃13

+
1584
√

1001Z12,4

(
1; q̃2

)
37145π3/2q̃13

+
624
√

21Z10,0

(
1; q̃2

)
7429π3/2q̃11

+
120Z8,0

(
1; q̃2

)
209
√

17π3/2q̃9
−

80
√

13Z6,0

(
1; q̃2

)
3553π3/2q̃7

−
96Z4,0

(
1; q̃2

)
187π3/2q̃5

.

The solutions to eq. (23) are obtained from

cotδ4
2

+
cotδ6

2
−

312
√

21Z10,0

(
1; q̃2

)
7429π3/2q̃11

+
13068Z12,0

(
1; q̃2

)
37145π3/2q̃13

−
792
√

1001Z12,4

(
1; q̃2

)
37145π3/2q̃13

−
Z0,0

(
1; q̃2

)
π3/2q̃

+
15Z4,0

(
1; q̃2

)
221π3/2q̃5

+
106Z6,0

(
1; q̃2

)
323
√

13π3/2q̃7
+

316Z8,0

(
1; q̃2

)
247
√

17π3/2q̃9
=

±1

2

[(
624
√

21Z10,0

(
1; q̃2

)
7429π3/2q̃11

−
26136Z12,0

(
1; q̃2

)
37145π3/2q̃13

+
1584
√

1001Z12,4

(
1; q̃2

)
37145π3/2q̃13

−
2166Z4,0

(
1; q̃2

)
2431π3/2q̃5

+
252Z6,0

(
1; q̃2

)
3553

√
13π3/2q̃7

+
10072Z8,0

(
1; q̃2

)
2717
√

17π3/2q̃9
+ cotδ4 − cotδ6

)2

+
4

π3

576
√

21
65Z10,0

(
1; q̃2

)
323q̃11

−
12
√

5
13Z4,0

(
1; q̃2

)
11q̃5

+
42
√

5Z6,0

(
1; q̃2

)
187q̃7

+
112
√

5
221Z8,0

(
1; q̃2

)
209q̃9

2
1/2

. (24)

In the situation where the interaction in the l = 6 (and higher) partial-wave vanishes, the energy-eigenvalues are
sensitive to the l = 4 interaction alone, and can be found from

q9cotδ4 =

(
2π

L

)9
1

π3/2

(
q̃8Z0,0

(
1; q̃2

)
−

448Z8,0

(
1; q̃2

)
143
√

17
−

4q̃2Z6,0

(
1; q̃2

)
11
√

13
+

54q̃4Z4,0

(
1; q̃2

)
143

)

≡
(

2π

L

)9
1

π3/2
X+
T1

(
q̃2
)

, (25)

where the function X+
T1

(
q̃2
)

is shown in fig. 7.

The graphical representations of the sources and sinks that generate the T+
1 irrep for the low-lying |n|2-shells are

shown in fig. 8, and the momentum-space structures for Lz = 0 are given explicitly in table VI.

5. T+
2 Representation

The energy-eigenvalues of states transforming in the T+
2 irrep receive contributions from interactions in the l =

2, 4, 6, ... partial-waves. The T+
2 irrep is three-dimensional, with states defined by Lz = 1, 2, 3, and provides a
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FIG. 8: The momentum-space representations (left) and position-space representations (right) of two-body relative states in
the T+

1 representation with Lz = 0 in the |n|2=5 and 6 shells.

contribution to the determinant in eq. (2) that results from a 12 × 12 matrix for l ≤ 6 (it is 12 × 12 and not 9 × 9
because there are two T+

2 ’s in the decomposition of l = 6, see table I). As the three Lz-states are degenerate, the

analysis collapses down to that of a 4×4 matrix. The T+
2 Lz = 2 states associated with the F

(FV )

2;2 , F
(FV )

4;4 , and F
(FV )

6,6

blocks are

|T+
2 , 2; 2; 1〉 =

1√
2

(|2, 2〉 − |2,−2〉) , |T+
2 , 2; 4; 1〉 =

1√
2

(|4, 2〉 − |4,−2〉) ,

|T+
2 , 2; 6; 1〉 =

1√
2

(|6, 2〉 − |6,−2〉) , |T+
2 , 2; 6; 2〉 =

1√
2

(|6, 6〉 − |6,−6〉) .

(26)

With these basis states, the contribution to the determinant in eq. (2) becomes

det




cotδ2 0 0 0

0 cotδ4 0 0

0 0 cotδ6 0

0 0 0 cotδ6

−

F

(FV,T+
2 )

2;2 F
(FV,T+

2 )

2;4 F
(FV,T+

2 )

2;61
F

(FV,T+
2 )

2;62

F
(FV,T+

2 )

4;2 F
(FV,T+

2 )

4;4 F
(FV,T+

2 )

4;61
F

(FV,T+
2 )

4;62

F
(FV,T+

2 )

61;2 F
(FV,T+

2 )

61;4 F
(FV,T+

2 )

61;61
F

(FV,T+
2 )

61,62

F
(FV,T+

2 )

62;2 F
(FV,T+

2 )

62;4 F
(FV,T+

2 )

62;61
F

(FV,T+
2 )

62,62



 = 0 , (27)
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FIG. 9: The function X+
T2

, as defined in eq. (30), as a function of q̃2. The vertical dashed lines denote the position of the poles

of the function corresponding to the T+
2 non-interacting energy-eigenvalues.

where

F
(FV,T+

2 )

2,2 =
Z0,0

(
1; q̃2

)
π3/2q̃

−
4Z4,0

(
1; q̃2

)
7π3/2q̃5

F
(FV,T+

2 )

2,4 =
40
√

3
13Z6,0

(
1; q̃2

)
11π3/2q̃7

−
20
√

3Z4,0

(
1; q̃2

)
77π3/2q̃5

F
(FV,T+

2 )

4,4 =
Z0,0

(
1; q̃2

)
π3/2q̃

−
54Z4,0

(
1; q̃2

)
77π3/2q̃5

+
20Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7

F
(FV,T+

2 )

2,61
=

5
√

13
14Z4,0

(
1; q̃2

)
11π3/2q̃5

−
5
√

14Z6,0

(
1; q̃2

)
11π3/2q̃7

F
(FV,T+

2 )

4,61
= −

28
√

42
221Z8,0

(
1; q̃2

)
19π3/2q̃9

+
10
√

6
91Z4,0

(
1; q̃2

)
11π3/2q̃5

+

√
21
2 Z6,0

(
1; q̃2

)
187π3/2q̃7

+
1008

√
2
13Z10,0

(
1; q̃2

)
323π3/2q̃11

F
(FV,T+

2 )

61,61
= −

45Z8,0

(
1; q̃2

)
19
√

17π3/2q̃9
+
Z0,0

(
1; q̃2

)
π3/2q̃

−
59Z4,0

(
1; q̃2

)
187π3/2q̃5

+
620
√

13Z6,0

(
1; q̃2

)
3553π3/2q̃7

+
162
√

21Z10,0

(
1; q̃2

)
7429π3/2q̃11

+
3267Z12,0

(
1; q̃2

)
7429π3/2q̃13

−
198
√

1001Z12,4

(
1; q̃2

)
7429π3/2q̃13
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TABLE VII: The momentum-space structure of T+
2 , Lz = 2 sources and sinks for |n|2=2, 3, and 5. These are shown

graphically in fig. 10.

|n|2=2 |n|2=3 |n|2=5

|(1,1,0) , +1〉 − 1√
2

|(1,-1,0) , +1〉 1√
2

|(1,1,1) , +1〉 1
2

|(1,1,-1) , +1〉 1
2

|(1,-1,1) , +1〉 − 1
2

|(1,-1,-1) , +1〉 − 1
2

|(2,1,0) , +1〉 − 1
2

|(2,-1,0) , +1〉 1
2

|(1,2,0) , +1〉 − 1
2

|(1,-2,0) , +1〉 1
2

F
(FV,T+

2 )

2,62
=

15
√

5
2002Z4,0

(
1; q̃2

)
π3/2q̃5

+

√
14
55Z6,0

(
1; q̃2

)
π3/2q̃7

−
64
√

14
12155Z8,0

(
1; q̃2

)
3π3/2q̃9

F
(FV,T+

2 )

4,62
= −

2
√

30
1001Z4,0

(
1; q̃2

)
π3/2q̃5

−
9
√

105
22 Z6,0

(
1; q̃2

)
17π3/2q̃7

+
20
√

210
2431Z8,0

(
1; q̃2

)
19π3/2q̃9

+
336
√

22
65Z10,0

(
1; q̃2

)
323π3/2q̃11

F
(FV,T+

2 )

61,62
=

3
√

5
11Z4,0

(
1; q̃2

)
17π3/2q̃5

+
140
√

65
11Z6,0

(
1; q̃2

)
323π3/2q̃7

+
5
√

5
187Z8,0

(
1; q̃2

)
57π3/2q̃9

−
666
√

231
5 Z10,0

(
1; q̃2

)
7429π3/2q̃11

−
1287

√
11
5 Z12,0

(
1; q̃2

)
7429π3/2q̃13

+
858
√

91
5 Z12,4

(
1; q̃2

)
7429π3/2q̃13

F
(FV,T+

2 )

62,62
=
Z0,0

(
1; q̃2

)
π3/2q̃

+
9Z4,0

(
1; q̃2

)
17π3/2q̃5

−
20
√

13Z6,0

(
1; q̃2

)
323π3/2q̃7

+
5Z8,0

(
1; q̃2

)
19
√

17π3/2q̃9
−

18
√

21Z10,0

(
1; q̃2

)
7429π3/2q̃11

−
23991Z12,0

(
1; q̃2

)
37145π3/2q̃13

−
594
√

1001Z12,4

(
1; q̃2

)
37145π3/2q̃13

.

(28)

The solutions to eq. (27) must be determined numerically and will, in general, depend upon the interactions in the
l = 2, 4, and 6 partial-waves. In the limit where the interactions in the l = 6 and higher partial-waves vanish, leaving
contributions only from interactions in the l = 2, 4 partial-waves, the contribution to the determinant in eq. (27)
collapses down to that of a 2× 2 matrix, which has solutions

cotδ2

2
+

cotδ4

2
−
Z0,0

(
1; q̃2

)
π3/2q̃

+
7Z4,0

(
1; q̃2

)
11π3/2q̃5

−
10Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7

= ±1

2

(−10Z4,0

(
1; q̃2

)
77π3/2q̃5

+
20Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7
+ cotδ2 − cotδ4

)2

+ 4

20
√

3Z4,0

(
1; q̃2

)
77π3/2q̃5

−
40
√

3
13Z6,0

(
1; q̃2

)
11π3/2q̃7

2
1/2

. (29)

In the limit that tan δ4 << tan δ2 the energy-eigenvalues are the solutions to

q5cotδ2 =

(
2π

L

)5
1

π3/2

(
q̃4Z0,0

(
1; q̃2

)
− 4

7
Z4,0

(
1; q̃2

))
=

(
2π

L

)5
1

π3/2
X+
T2

(
q̃2
)

, (30)

where X+
T2

is shown as a function of q̃2 in fig. 9. The T+
2 irrep first appears in the |n|2 = 2-shell, as can be seen in

fig. 9. The graphical representations of the sources and sinks that generate the T+
2 irrep for the low-lying |n|2-shells

are shown in fig. 10, and the momentum-space structures for Lz = 2 are given explicitly in table VII.
The l = 2 phase-shift was calculated from the energies of states in both the E+ and T+

2 irreps in recent work by
Dudek et al [19]. Two states in each irrep were calculated below the 2π → 4π inelastic threshold at the pion mass of
the calculation. The contamination in the extraction of δ2 from the higher partial-waves was estimated to be small.
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FIG. 10: The momentum-space representations (left) and position-space representations (right) of two-body relative states in
the T+

2 representation with Lz = 2 for |n|2=2, 3, and 5 shells.
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FIG. 11: The function X−A2
, as defined in eq. (31), as a function of q̃2. The vertical dashed lines denote the position of the

poles of the function corresponding to the non-interacting energy-eigenvalues.

B. Negative Parity Systems

The analysis of the odd-parity energy-levels, and their associated sources and sinks, parallels that of the even-
parity states. There are five negative parity irreps of the cubic group, A−1 , A−2 , E−, T−1 , and T−2 with dimensions
1, 1, 2, 3, and 3 respectively. The energy-eigenvalues, sources and sinks for the negative-parity states are presented in
the following sections: III B 1, III B 2, III B 3, III B 4 and III B 5. As discussed previously, the A−1 irrep first appears
relatively high in the spectrum, in the |n|2 = 14 shell, and is sensitive to the l = 9 and higher partial-waves.

1. A−2 Representation

The energy-eigenvalues of states transforming in the A−2 irrep (Lz = 2) receive contributions only from interactions

in the l = 3 partial-wave for l ≤ 6, as presented in table I. The A−2 state associated with the F
(FV )

3;3 block is (in the
|l,m〉 basis)

|A−2 , 2; 3; 1〉 =
1√
2
|3, 2〉 − 1√

2
|3,−2〉 ,

and the solutions to eq. (2) from this irrep result from

q7cotδ3 =

(
2π

L

)7
1

π3/2

(
q̃6Z0,0

(
1; q̃2

)
− 12

11
q̃2Z4,0

(
1; q̃2

)
+

80

11
√

13
Z6,0

(
1; q̃2

))
≡
(

2π

L

)7
1

π3/2
X−A2

(
q̃2
)

,

(31)

where the function X−A2
(q̃2) is shown in fig. 11. The graphical representations of the sources and sinks that generate

the A−2 irrep in the low-lying |n|2-shells (|n|2 = 3 and |n|2 = 6) are shown in fig. 12, and the momentum-space
structures are given explicitly in table VIII.

The A−2 irrep first appears in the |n|2 = 3-shell and l = 3 is the lowest contributing partial-wave. LQCD cal-
culations of correlation functions from sources and sinks transforming as A−2 will provide determinations of δ3 with
contamination from partial-waves with l ≥ 7, i.e. the energy of the A−2 states receive contributions from l = 3, 7, ....
This is in contrast to states in the T−2 irrep, which will be considered subsequently, whose energy-eigenvalues receive
contributions from partial-waves with l = 3, 5, .... This suggests that the A−2 irrep is optimal for determining δ3.
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FIG. 12: The momentum-space representations (left) and position-space representations (right) of two-body relative states in
the A−2 representation for the lowest-lying |n|2-shells.

TABLE VIII: The momentum-space structure of A−2 sources and sinks. These are shown graphically in fig. 12.

|n|2=3 |n|2=6

|(1,1,1) , -1〉 1
2

|(1,1,-1) , -1〉 − 1
2

|(1,-1,1) , -1〉 − 1
2

|(1,-1,-1) , -1〉 1
2

|(2,1,1) , -1〉 1

2
√

3
|(2,1,-1) , -1〉 − 1

2
√

3

|(2,-1,1) , -1〉 − 1

2
√

3
|(2,-1,-1) , -1〉 1

2
√

3

|(1,2,1) , -1〉 1

2
√

3
|(1,2,-1) , -1〉 − 1

2
√

3

|(1,1,2) , -1〉 1

2
√

3
|(1,1,-2) , -1〉 − 1

2
√

3

|(1,-1,2) , -1〉 − 1

2
√

3
|(1,-1,-2) , -1〉 1

2
√

3

|(1,-2,1) , -1〉 − 1

2
√

3
|(1,-2,-1) , -1〉 1

2
√

3

2. E− Representation

The energy-eigenvalues of E− states receive contributions only from interactions in the l = 5 partial-wave for l ≤ 6,
as presented in table I. As the E− irrep is two-dimensional, the contribution to the determinant in eq. (2) results
from a 2× 2 matrix for l ≤ 6, which collapses down to a one-dimensional factor as the Lz = 0 and Lz = 2 states are

degenerate. The E− Lz = 0 state associated with the F
(FV )

5,5 block is
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FIG. 13: The function X−E , as defined in eq. (32), as a function of q̃2. The vertical dashed lines denote the position of the poles
of the function corresponding to the non-interacting energy-eigenvalues.

TABLE IX: The momentum-space structure of E−, Lz = 0 sources and sinks. The Lz = 0 case is shown graphically
in fig. 14.

|n|2=6

|(2,1,1) , -1〉 − 1

2
√

2
|(2,1,-1) , -1〉 1

2
√

2

|(2,-1,1) , -1〉 1

2
√

2
|(2,-1,-1) , -1〉 − 1

2
√

2

|(1,2,1) , -1〉 1

2
√

2
|(1,2,-1) , -1〉 − 1

2
√

2

|(1,-2,1) , -1〉 − 1

2
√

2
|(1,-2,-1) , -1〉 1

2
√

2

|E−, 0; 5; 1〉 =
1√
2
|5, 4〉 − 1√

2
|5,−4〉 .

The solution to eq. (2) from the E− irrep results from

q11cotδ5 =

(
2π

L

)11
1

π3/2
×(

q̃10Z0,0

(
1; q̃2

)
−

6q̃6Z4,0

(
1; q̃2

)
13

+
32q̃4Z6,0

(
1; q̃2

)
17
√

13
−

672q̃2Z8,0

(
1; q̃2

)
247
√

17
+

1152
√

21Z10,0

(
1; q̃2

)
4199

)

≡
(

2π

L

)11
1

π3/2
X−E

(
q̃2
)

. (32)

where the function X−E (q̃2) is shown in fig. 13. The graphical representations of the source and sink that generate the
E− irrep in the |n|2 = 6-shell are shown in fig. 14, and the momentum-space structure is given explicitly in table IX.

The E− irrep first appears in the |n|2 = 6-shell and l = 5 is the lowest contributing partial-wave. LQCD cal-
culations of correlation functions from sources and sinks transforming as E− will provide determinations of δ5 with
contamination from partial-waves with l ≥ 7, i.e. the energy of the E− states receive contributions from l = 5, 7, ....
The LQCD calculations will need to be performed in relatively large volumes, as we discuss later, in order for the
|n|2 = 6 shell to lie below the inelastic threshold.
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FIG. 14: The momentum-space representations (left) and position-space representations (right) of two-body relative states in
the E− representation with Lz = 0 for the |n|2 = 6 shell.
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FIG. 15: The function X−T1
, as defined in eq. (36), as a function of q̃2. The vertical dashed lines denote the position of the poles

of the function corresponding to the non-interacting energy-eigenvalues.

3. T−1 Representation

The energy-eigenvalues of states transforming in the T−1 irrep receive contributions from interactions in the l =
1, 3, 5, ... partial-waves, as presented in table I. As the T−1 irrep is three-dimensional, the contribution to eq. (2) is the
determinant of a 12 × 12 matrix for l ≤ 6 (there are two T−1 ’s in the decomposition of l = 5), which collapses down
to the determinant of a 4× 4 matrix as the Lz = 0, Lz = 1 and Lz = 3 states are degenerate. The T−1 Lz = 0 states

associated with the F
(FV )

1;1 , F
(FV )

3;3 , and F
(FV )

5;5 blocks are

|T−1 , 0; 1; 1〉 = |1, 0〉 , |T−1 , 0; 3; 1〉 = |3, 0〉 , |T−1 , 0; 5; 1〉 = |5, 0〉 ,

|T−1 , 0; 5; 2〉 =
1√
2

( |5, 4〉 + |5,−4〉 ) .
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With these four basis states, the T−1 contribution to eq. (2) becomes

det




cotδ1 0 0 0

0 cotδ3 0 0

0 0 cotδ5 0

0 0 0 cotδ5

 −

F

(FV,T−1 )

1;1 F
(FV,T−1 )

1;3 F
(FV,T−1 )

1;51
F

(FV,T−1 )

1;52

F
(FV,T−1 )

3;1 F
(FV,T−1 )

3;3 F
(FV,T−1 )

3;51
F

(FV,T−1 )

3;52

F
(FV,T−1 )

51;1 F
(FV,T−1 )

51;3 F
(FV,T−1 )

51;51
F

(FV,T−1 )

51,52

F
(FV,T−1 )

52;1 F
(FV,T−1 )

52;3 F
(FV,T−1 )

52,51
F

(FV,T−1 )

52,52



 = 0 , (33)

where

F
(FV,T−1 )

1,1 =
Z0,0

(
1; q̃2

)
π3/2q̃

, F
(FV,T−1 )

1,3 =
4Z4,0

(
1; q̃2

)
√

21π3/2q̃5

F
(FV,T−1 )

1,51
=

5Z4,0

(
1; q̃2

)
√

33π3/2q̃5
+

6
√

3
143Z6,0

(
1; q̃2

)
π3/2q̃7

F
(FV,T−1 )

1,52
=

√
15
77Z4,0

(
1; q̃2

)
π3/2q̃5

−
2
√

105
143Z6,0

(
1; q̃2

)
π3/2q̃7

F
(FV,T−1 )

3,3 =
Z0,0

(
1; q̃2

)
π3/2q̃

+
100Z6,0

(
1; q̃2

)
33
√

13π3/2q̃7
+

6Z4,0

(
1; q̃2

)
11π3/2q̃5

F
(FV,T−1 )

3,51
=

60Z4,0

(
1; q̃2

)
13
√

77π3/2q̃5
+

7
√

7
143Z6,0

(
1; q̃2

)
3π3/2q̃7

+
56
√

7
187Z8,0

(
1; q̃2

)
13π3/2q̃9

F
(FV,T−1 )

3,52
= −

12
√

5
11Z4,0

(
1; q̃2

)
13π3/2q̃5

+
7
√

5
143Z6,0

(
1; q̃2

)
π3/2q̃7

+
56
√

5
187Z8,0

(
1; q̃2

)
39π3/2q̃9

F
(FV,T−1 )

51,51
=
Z0,0

(
1; q̃2

)
π3/2q̃

+
6Z4,0

(
1; q̃2

)
13π3/2q̃5

+
80Z6,0

(
1; q̃2

)
51
√

13π3/2q̃7
+

490Z8,0

(
1; q̃2

)
247
√

17π3/2q̃9
+

756
√

21Z10,0

(
1; q̃2

)
4199π3/2q̃11

F
(FV,T−1 )

51,52
=

6
√

5
7Z4,0

(
1; q̃2

)
13π3/2q̃5

+
8
√

35
13Z6,0

(
1; q̃2

)
17π3/2q̃7

−
154
√

35
17Z8,0

(
1; q̃2

)
741π3/2q̃9

−
2772

√
3
5Z10,0

(
1; q̃2

)
4199π3/2q̃11

F
(FV,T−1 )

52,52
=
Z0,0

(
1; q̃2

)
π3/2q̃

−
6Z4,0

(
1; q̃2

)
13π3/2q̃5

+
32Z6,0

(
1; q̃2

)
17
√

13π3/2q̃7
+

14
√

17Z8,0

(
1; q̃2

)
247π3/2q̃9

−
84
√

21Z10,0

(
1; q̃2

)
323π3/2q̃11

.

(34)

In the limit of vanishing interactions in the l = 5 partial-wave, eq. (33) collapses down to the determinant of a 2× 2
matrix, which has solutions

cotδ1

2
+

cotδ3

2
−
Z0,0

(
1; q̃2

)
π3/2q̃

−
3Z4,0

(
1; q̃2

)
11π3/2q̃5

−
50Z6,0

(
1; q̃2

)
33
√

13π3/2q̃7

= ±1

2

√(
6Z4,0 (1; q̃2)

11π3/2q̃5
+

100Z6,0 (1; q̃2)

33
√

13π3/2q̃7
+ cotδ1 − cotδ3

)2

+
64Z4,0 (1; q̃2)

2

21π3q̃10
. (35)

In the situation where tan δ3 << tan δ1, eq. (35) can be perturbatively expanded to give the l = 1 dominant solution

q3cotδ1 =

(
2π

L

)3
1

π3/2
q̃2Z0,0

(
1; q̃2

)
≡

(
2π

L

)3
1

π3/2
X−T1

(
q̃2
)

, (36)

where the function X−T1

(
q̃2
)

is shown in fig. 15. The graphical representations of the source and sink that generate

the T−1 irrep for the three lowest-lying |n|2-shells are shown in fig. 16, and the momentum-space structure is given
explicitly in table X.

The T−1 irrep first appears in the |n|2 = 1-shell and l = 1 is the lowest contributing partial-wave. LQCD calculations
of correlation functions from sources and sinks transforming as T−1 will provide determinations of δ1 with contamination
from partial-waves with l ≥ 3. LQCD calculations of the phase-shift in this partial-wave are presently being performed,
and the ρ-resonance is beginning to be mapped out, e.g. Ref. [47].
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FIG. 16: The momentum-space representations (left) and position-space representations (right) of two-body relative states in
the T−1 representation with Lz = 0 for the |n|2 = 1, 2, 3-shells.
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TABLE X: The momentum-space structure of T−1 , Lz = 0 sources and sinks for |n|2=1-3. These are shown graphically
in fig. 16.

|n|2=1 |n|2=2 |n|2=3

|(0,0,1) , -1〉 1

|(1,0,1) , -1〉 1
2

|(1,0,-1) , -1〉 − 1
2

|(0,1,1) , -1〉 1
2

|(0,1,-1) , -1〉 − 1
2

|(1,1,1) , -1〉 − 1
2

|(1,1,-1) , -1〉 1
2

|(1,-1,1) , -1〉 − 1
2

|(1,-1,-1) , -1〉 1
2

4. T−2 Representation

The energy-eigenvalues of states transforming in the T−2 irrep receive contributions from interactions in the l =
3, 5, ... partial-waves, as presented in table I. As the T−2 irrep is three-dimensional, the contribution to the determinant
in eq. (2) results from a 6 × 6 matrix for l ≤ 6, which collapses down to the determinant of a 2 × 2 matrix as the

Lz = 1, Lz = 2 and Lz = 3 states are degenerate. The T−2 Lz = 2 states associated with the F
(FV )

3;3 and F
(FV )
5;5 blocks

are

|T−2 , 2; 3; 1〉 =
1√
2
|3, 2〉 +

1√
2
|3,−2〉 , |T−2 , 2; 5; 1〉 =

1√
2
|5, 2〉 +

1√
2
|5,−2〉 ,

in terms of which, the T−2 contribution to eq. (2) becomes

det

(cotδ3 0

0 cotδ5

)
−

F (FV,T−2 )

3;3 F
(FV,T−2 )

3;5

F
(FV,T−2 )

5;3 F
(FV,T−2 )

5;5

 = 0 , (37)

where

F
(FV,T−2 )

3;3 =
Z0,0

(
1; q̃2

)
π3/2q̃

−
2Z4,0

(
1; q̃2

)
11π3/2q̃5

−
60Z6,0

(
1; q̃2

)
11
√

13π3/2q̃7

F
(FV,T−2 )

3;5 = −
20Z4,0

(
1; q̃2

)
13
√

11π3/2q̃5
−

14Z6,0

(
1; q̃2

)
√

143π3/2q̃7
+

112Z8,0

(
1; q̃2

)
13
√

187π3/2q̃9

F
(FV,T−2 )

5;5 =
Z0,0

(
1; q̃2

)
π3/2q̃

+
4Z4,0

(
1; q̃2

)
13π3/2q̃5

−
80Z6,0

(
1; q̃2

)
17
√

13π3/2q̃7
−

280Z8,0

(
1; q̃2

)
247
√

17π3/2q̃9
−

432
√

21Z10,0

(
1; q̃2

)
4199π3/2q̃11

.

The solutions to this equation result from

cotδ3
2

+
cotδ5

2
−
Z0,0

(
1; q̃2

)
π3/2q̃

−
9Z4,0

(
1; q̃2

)
143π3/2q̃5

+
950Z6,0

(
1; q̃2

)
187
√

13π3/2q̃7
+

140Z8,0

(
1; q̃2

)
247
√

17π3/2q̃9
+

216
√

21Z10,0

(
1; q̃2

)
4199π3/2q̃11

=

±1

2

(−432
√

21Z10,0

(
1; q̃2

)
4199π3/2q̃11

+
70Z4,0

(
1; q̃2

)
143π3/2q̃5

+
140Z6,0

(
1; q̃2

)
187
√

13π3/2q̃7
−

280Z8,0

(
1; q̃2

)
247
√

17π3/2q̃9
+ cotδ3 − cotδ5

)2

+
4

π3

(
20Z4,0

(
1; q̃2

)
13
√

11q̃5
+

14Z6,0

(
1; q̃2

)
√

143q̃7
−

112Z8,0

(
1; q̃2

)
13
√

187q̃9

)2
1/2

. (38)

In the limit of vanishing interactions in the l = 5 partial-wave, eq. (37) collapses down to

q7cotδ3 =

(
2π

L

)7
1

π3/2

(
q̃6Z0,0

(
1; q̃2

)
−

2q̃2Z4,0

(
1; q̃2

)
11

−
60Z6,0

(
1; q̃2

)
11
√

13

)

≡
(

2π

L

)7
1

π3/2
X−T2

(
q̃2
)

,

(39)
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FIG. 17: The function X−T2
, as defined in eq. (39), as a function of q̃2. The vertical dashed lines denote the position of the poles

of the function corresponding to the non-interacting energy-eigenvalues.

TABLE XI: The momentum-space structure of T−2 , Lz = 2 sources and sinks. These are shown graphically in fig. 18.

|n|2=2 |n|2=5(l=3) |n|2=5(l=5)

|(1,0,1) , -1〉 − 1
2

|(1,0,-1) , -1〉 1
2

|(0,1,1) , -1〉 1
2

|(0,1,-1) , -1〉 − 1
2

|(2,0,1) , -1〉 − 1√
5

|(2,0,-1) , -1〉 1√
5

|(1,0,2) , -1〉 − 1

2
√

5

|(1,0,-2) , -1〉 1

2
√

5

|(0,2,1) , -1〉 1√
5

|(0,2,-1) , -1〉 − 1√
5

|(0,1,2) , -1〉 1

2
√

5

|(0,1,-2) , -1〉 − 1

2
√

5

|(2,0,1) , -1〉 1

2
√

5

|(2,0,-1) , -1〉 − 1

2
√

5

|(1,0,2) , -1〉 − 1√
5

|(1,0,-2) , -1〉 1√
5

|(0,2,1) , -1〉 − 1

2
√

5

|(0,2,-1) , -1〉 1

2
√

5

|(0,1,2) , -1〉 1√
5

|(0,1,-2) , -1〉 − 1√
5

where the function X−T2

(
q̃2
)

is shown in fig. 17. The graphical representations of the source and sink that generate

the T−2 irrep for the lowest-lying |n|2-shells are shown in fig. 18, and the momentum-space structure is given explicitly
in tables XI.

The T−2 irrep first appears in the |n|2 = 2-shell and l = 3 is the lowest contributing partial-wave. LQCD calculations
of correlation functions from sources and sinks transforming as T−2 will provide determinations of δ3 with contamination
from partial-waves with l ≥ 5.

5. A−1 Representation

The lowest-lying state transforming in the A−1 irrep is in the |n|2 = 14-shell. The energy-eigenvalues are sensitive
to interactions in odd partial-waves with l ≥ 9, and the energy-splitting in the large volume limit is dominated by
the l = 9 partial-wave. Using the methods of the previous section to isolate the state and determine the appropriate

energy-eigenvalue equation is tedious as F
(FV )
9;9 is a 19× 19 matrix. Using the following spherical basis state,

|A−1 , 0; 9; 1〉 =
1

4

√
7

3
(|9, 8〉 − |9,−8〉)− 1

4

√
17

3
(|9, 4〉 − |9,−4〉) , (40)
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FIG. 18: The momentum-space representations (left) and position-space representations (right) of two-body relative states in
the T−2 representation with Lz = 2 for select |n|2-shells.
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FIG. 19: The function X−A1
, as defined in eq. (41), as a function of q̃2. The vertical dashed line denotes the position of the first

pole of the function corresponding to the non-interacting energy-eigenvalue.

the eigenvalue-equation for the interaction in the l = 9 partial-wave is

q19 cot δ9 =

(
2π

L

)19
1

π3/2

(
q̃18Z0,0(1; q̃2)− 6q̃14Z4,0(1; q̃2)

23
− 32

√
13q̃12Z6,0(1; q̃2)

115

−56
√

17q̃10Z8,0(1; q̃2)

345
+

1568
√

7q̃8Z10,0(1; q̃2)

3335
√

3
+

308q̃6Z12,0(1; q̃2)

2139

+
616
√

1001q̃6Z12,4(1; q̃2)

20677
+

53248q̃4Z14,0(1; q̃2)

10695
√

29
− 1664

√
11q̃2Z16,0(1; q̃2)

3565
√

3

+
832
√

46189q̃2Z16,4(1; q̃2)

103385
√

7
+

2206464Z̃18,0(1; q̃2)

103385
√

37
+

28288
√

3553Z18,4(1; q̃2)

20677
√

259

)

=

(
2π

L

)19
1

π3/2
X−A1

(
q̃2
)

, (41)

where the function X−A1

(
q̃2
)

is shown in fig. 19. The graphical representations of the source and sink that generate

the A−1 irrep for the |n|2 = 14-shell are shown in fig. 20, and the momentum-space structure is given explicitly in
table XII. It is interesting to note that these odd-parity singlet states require the integers comprising the integer triplet
to differ from each other. The first |n|2-shell for which this is possible has |n|2 = 14, and the next has |n|2 = 21.
Given the first appearance of this irrep is high in the spectrum, a LQCD calculation of the l = 9 phase-shift will
require enormous lattice volumes in order for the state to lie below inelastic thresholds. Thus, this calculation cannot
be expected to be performed in the near future.

IV. DISCUSSION

A. Strategy for Extracting Phase-Shifts from Lattice QCD

In Lattice QCD calculations, sources and sinks with the quantum numbers of the hadronic states of interest generate
correlation functions, which in general are sums of exponentials with arguments that depend upon the energy of
the eigenstates in the lattice volume. One path for LQCD calculations to follow is to form sources and/or sinks
that transform as irreps of the cubic group from the eigenstates of linear-momentum (generated by the Fourier-
transform of single-hadron objects). Clearly, such sources are not the energy-eigenstates in the lattice-volume due to
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FIG. 20: The momentum space representations (left) and position-space representations (right) of two-body relative states in
the A−1 representation with Lz = 0 for the |n2| = 14-shell.

TABLE XII: The momentum-space structure of A−1 , Lz = 0 sources and sinks. These are shown graphically in fig. 20.

The coefficients of the state vectors are of the form ci ∼ ε|nx|,|ny|,|nz |sgn(nx)sgn(ny)sgn(nz).

|n|2=14

|(1,2,3) , -1〉 1√
24

|(1,2,-3) , -1〉 − 1√
24
|(1,-2,3) , -1〉 − 1√

24

|(1,-2,-3) , -1〉 1√
24

|(1,3,2) , -1〉 − 1√
24
|(1,3,-2) , -1〉 1√

24

|(1,-3,2) , -1〉 1√
24
|(1,-3,-2) , -1〉 − 1√

24
|(2,1,3) , -1〉 − 1√

24

|(2,1,-3) , -1〉 1√
24

|(2,-1,3) , -1〉 1√
24
|(2,-1,-3) , -1〉 − 1√

24

|(2,3,1) , -1〉 1√
24

|(2,3,-1) , -1〉 − 1√
24
|(2,-3,1) , -1〉 − 1√

24

|(2,-3,-1) , -1〉 1√
24

|(3,2,1) , -1〉 − 1√
24
|(3,2,-1) , -1〉 1√

24

|(3,-2,1) , -1〉 1√
24
|(3,-2,-1) , -1〉 − 1√

24
|(3,1,2) , -1〉 1√

24

|(3,1,-2) , -1〉 − 1√
24
|(3,-1,2) , -1〉 − 1√

24
|(3,-1,-2) , -1〉 1√

24

the interactions between the particles, and as such these sources and sinks will couple, in principle, to all states in the
lattice-volume with the appropriate quantum numbers. Since cubic irreps are not diagonal in the partial waves, one
could in principle extract information about multiple δl’s within each cubic irrep. For example, correlation functions
in the A+

1 irrep, determined from an A+
1 source constructed from momentum eigenstates with |n|2 � 0, would give

information on the l = 0 and l = 4 (and higher) phase-shifts. However, at large times such correlation functions
will depend exponentially upon the energy of the lowest A+

1 eigenstate. Of course, the overlap onto the ground-state
may be small, in which case this state dominates only after a large number of time-slices. With this in mind, the
extraction of any particular δl for l ≤ 6 is most simply performed using the cubic irrep whose lowest energy-eigenvalue
is dominated by that particular δl. These irreps are shown in table XIII, along with the |n|2-shell of the lowest-lying
energy-eigenstate that contributes to the corresponding partial wave. For example, the cleanest way to determine δ4
is to use sources with T+

1 symmetry, as opposed to A+
1 . This procedure was used in Ref.[19] by using different |n|2

states of a given cubic irrep as a variational basis to determine δ0 and δ2 for π+π+ scattering at different energies
within a single lattice volume.

Table XIII shows that with just the lowest two |n|2-shells, |n|2 = 0, 1, the phase-shifts in the lowest three partial-
waves, δ0,1,2, can be determined. In order to determine the phase-shifts in all partial-waves with l ≤ 6, correlation
functions must be formed for states that have ground-states in the shells up to |n|2 = 6. Determining the phase-shift
for l ≥ 7 can be seen to be decidedly more difficult than for l ≤ 6 as there is only one further irrep of the cubic group,
the A−1 which first occurs in the |n|2 = 14 and is dominated by the interactions in the l = 9 partial-wave in the large
volume limit.

For shells in which there are multiple occurrences of a given Γ(i), the partial-diagonalization of the states in the



33

TABLE XIII: The |n|2-shell of the lowest-lying energy-eigenstate transforming as Γ(i), and the angular-momentum
of the dominant interaction in the large-volume limit.

Γ A+
1 T−1 E+ T+

2 T−2 A−2 T+
1 A+

2 E− A−1
|n|2 0 1 1 2 2 3 5 5 6 14

l 0 1 2 2 3 3 4 6 5 9

infinite-volume limit in terms of the angular-momentum of the interactions is possible. However, sources cannot be
constructed to isolate these states due to interactions, and in general, closely spaced-states will be encountered in the
spectrum. In this case a large variational basis of sources in the Γ(i) is needed to resolve these states [60].

B. Expectations for the ππ Energy-Eigenvalues

In order to estimate the computational resources required to extract the ππ phase-shifts in higher partial-waves, the
experimentally determined (and parameterized) phase-shifts can be used to determine the energy-eigenvalues for a
range of lattice volumes. The ππ phase-shifts for l = 0, 1, 2, and 3 partial-waves extracted from experimental data
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FIG. 21: The ππ phase-shifts, δIl , as a function of
√
s < 4mπ for l = 0, 1, 2, 3, as parameterized in Ref. [59].

and parameterized with functions that satisfy unitarity and analyticity, and specifically incorporate any lowest-lying
resonances in the channel [59] 8 are shown in fig. 21. The central values of the parameters describing each partial-wave
provided in Ref. [59] are used in the analysis, but, as only estimates of the energy-eigenvalues are being explored, a
systematic propagation of the uncertainties has not been performed. Further, we assume isospin symmetry in our
analysis. As Lüscher’s formalism is valid below inelastic thresholds, only the phase-shifts in the kinematic regime√
s < 4mπ (at the physical pion mass) are considered.
Figure 22 shows the energy-eigenvalues associated with two non-interacting pions with vanishing total momentum

in the lattice volume (also shown in fig. 1 of Ref. [1]). At the physical pion mass, LQCD calculations in volumes with

L>∼ 6 fm are highly desirable in order to suppress the exponential corrections that are not included in the formalism

of Lüscher [56]. The energy-shift between the non-interacting state and the interacting I = 0 A+
1 and I = 2 A+

1

states in the |n|2 = 0 shell are shown in fig. 23. The energy-shifts for the eigenstates in the |n|2 = 1, 2, 3, 4 shells
are shown in figs. 24-27, respectively. The energy-shifts for the |n|2 = 0 A+

1 states and the |n|2 = 1 T−1 state can
also be found in fig. 7 of Ref. [1]. The energy-shifts of the states due to the s-wave and p-wave interactions are of
comparable size. As the s-wave interactions are currently being calculated in volumes with L ∼ 3.5 fm, we do not

8 The real-part of the inverse scattering amplitude, cot δIl , is expanded as a power-series in the function w(s) =
√
s−
√
si−s√

s+
√
si−s

, where si is

the energy above which inelastic processes cannot be neglected.
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0). Both the

L-axis and the ∆E-axis are scaled logarithmically (log10).

anticipate significant difficulty in performing these calculations at the physical pion mass in lattices with L>∼ 6 fm.
In contrast, the energy-shifts of states due to the d-wave (l = 2) and f-wave (l = 3) interactions are more than an
order of magnitude smaller than those of the A+

1 irrep. Significantly more computational resources will be required
to extract the phase-shifts beyond the s-wave and p-wave. It is difficult to make estimates for the energy-shifts due
to interactions beyond the f-wave as the experimental measurements of these phase-shifts have large uncertainties or
are absent. Given the results obtained for l ≤ 3, it is not difficult to speculate as to the size of the energy-shifts of
partial-waves beyond l = 3, and the associated difficulty in their extraction from LQCD calculations.

In order to estimate the amount of mixing of higher partial waves to a given phase-shift from the energy-eigenvalues,
it is important to understand the expected contributions from (all of) the partial-waves. The energy-splitting of the
T−1 irrep in the |n|2 = 1-shell from the l = 1 phase-shift, δ1

1 , and the l = 3 phase-shift, δ1
3 , are shown in fig. 28.

As expected, the contribution from δ1
3 is approximately two-orders of magnitude smaller than that from δ1

1 over the
range of lattice volumes for which the analysis is applicable. Therefore, to high precision it is sufficient to use the
perturbative expansion of the energy-splitting in terms of tan δ1

1 .



35

6 10 15 20

-0.02

-1

-20

L HfmL

D
E

HM
eV

L
I=0 E+

I=0 A1
+

6 10 15 20

-0.1

-1

-5

L HfmL

D
E

HM
eV

L I=1 T1
-

6 10 15 20

0.01

1

20

L HfmL

D
E

HM
eV

L

I=2 E+

I=2 A1
+

FIG. 24: The expected ππ energy-shifts in the |n|2 = 1 shell due to strong interactions. The left panel shows the shift in the
I = 0 A+

1 , E+ irreps (dominated by δ0
0 and δ0

2 , respectively), the center panel shows the shift in the I = 1 T−1 irrep (dominated
by δ1

1) and the right panel shows the shift in the I = 2 A+
1 , E+ irreps (dominated by δ2

0 and δ2
2 , respectively). Both the L-axis

and the ∆E-axis are scaled logarithmically (log10).
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FIG. 25: The expected ππ energy-shifts in the |n|2 = 2 shell due to strong interactions. The left panel shows the shift in the
I = 0 A+

1 , E+, T+
2 irreps (dominated by δ0

0 , δ0
2 and δ0

2 , respectively), the center panel shows the shift in the I = 1 T−1 , T−2
irrep (dominated by δ1

1 and δ1
3) and the right panel shows the shift in the I = 2 A+

1 , E+, T+
2 irreps (dominated by δ2

0 , δ2
2 and

δ2
2 , respectively). Both the L-axis and the ∆E-axis are scaled logarithmically (log10).
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FIG. 26: The expected ππ energy-shifts in the |n|2 = 3 shell due to strong interactions. The left panel shows the shift in the
I = 0 A+

1 , T+
2 irreps (dominated by δ0

0 and δ0
2 , respectively), the center panel shows the shift in the I = 1 T−1 , A−2 irreps

(dominated by δ1
1 and δ1

3 , respectively) and the right panel shows the shift in the I = 2 A+
1 , T+

2 irreps (dominated by δ2
0 and

δ2
2 , respectively). Both the L-axis and the ∆E-axis are scaled logarithmically (log10).

C. Signal-to-Noise Issues

There is also a signal-to-noise “problem” in the extraction of the δl for l ≥ 1 as the signal-to-noise ratio degrades
exponentially at large times. To demonstrate this behavior we return to the argument given by Lepage [61]. Consider
the correlation function resulting from a source that creates a π+π+-state that transforms in the E+ irrep of the cubic
group,

x(t) = 〈θ̂E+(t)〉 = 〈0| SE+(t)S†E+(0) |0〉 → ZE+ e
−E(π+π+)

0,E+ t
, (42)

where SE+(t) annihilates a π+π+ in the E+ irrep at the time t. At large times this correlation function depends

exponentially upon the ground-state energy which, in the absence of interactions, is E
(π+π+)
0,E+ = 2

√(
2π
L

)2
+m2

π. The
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FIG. 27: The expected ππ energy-shifts in the |n|2 = 4 shell due to strong interactions. The left panel shows the shift in the
I = 0 A+

1 , E+ irreps (dominated by δ0
0 and δ0

2 , respectively), the center panel shows the shift in the I = 1 T−1 irrep (dominated
by δ1

1) and the right panel shows the shift in the I = 2 A+
1 , E+ irreps (dominated by δ2

0 and δ2
2 , respectively). Both the L-axis

and the ∆E-axis are scaled logarithmically (log10).
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FIG. 28: The contributions to the energy-splitting of the T−1 irrep in the |n|2 = 1-shell due to δ1
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the ∆E-axis are scaled logarithmically (log10).

variance of this correlation function is given by

σ2(t) = 〈
(
θ̂E+(t)

)2

〉 − 〈θ̂E+(t)〉2 = 〈0| SE+(t)S†E+(t)S†E+(0)SE+(0) |0〉 − 〈θ̂E+(t)〉2

=
∑

Γ∈E+⊗E+

CΓ 〈0| S̃Γ(t)S̃Γ(0) |0〉 − 〈θ̂E+(t)〉2

→ Z̃A+
1
e
−2E

(π+π+)

0,A
+
1

t
− Z2

E+ e
−2E

(π+π+)

0,E+ t
, (43)

where CΓ are the Clebsch-Gordan coefficients in the expansion E+⊗E+ = A+
1 ⊕A

+
2 ⊕E+ [52, 54, 62]. The energy, ∆NS,

that dictates the long-time behavior of the variance correlation function is that of the lowest-lying irrep composed of

four pions, which is the lowest-lying A+
1 -irrep that has an energy of 2E

(π+π+)

0,A+
1

= 4mπ in the absence of interactions.

Therefore, at large times, the noise-to-signal ratio behaves as

σ(t)

x(t)
→

√
Z̃A+

1

ZE+

e∆NSt , ∆NS = 2

 √(2π

L

)2

+m2
π −mπ

 , (44)

which grows exponentially at large times.
This argument generalizes to all of the cubic irreps, and the extraction of the δl for each l ≥ 1 suffers from a

signal-to-noise problem, with an energy-scale that is approximately

∆
(|n|2)
NS = 2

 √(2π

L

)2

|n|2 +m2
π −mπ

 . (45)
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Obviously, in large volumes, the degradation of the signal obtained for low-lying states will not dramatically impact

the determination of the energy-eigenvalues as the energy-scale behaves as ∆
(|n|2)
NS → |n|2/(mπL

2). However, for
present-day calculations in modest lattice volumes, the degradation of the signal may impact the extraction of the
phase-shifts in higher partial-waves, and numerical exploration is required to determine its impact. We note that this
signal-to-noise degradation is not apparent in the calculations of δ2 in Ref. [19], which we attribute to the large values
of the pion masses. A closer study of the signal-to-noise ratio in those calculations would be enlightening.

V. CONCLUSION

We have explored the phenomenology of Lüscher’s method in the extraction of the phase-shifts in higher partial-waves
describing meson-meson scattering below inelastic thresholds using Lattice QCD, the formalism for which is contained
in the works of Lüscher. The lowest-lying s-wave and p-wave interactions were explored in those works, and at the
time, Lattice QCD calculations of scattering beyond the s-wave and p-wave were in the distant future. However, the
rapidly increasing computational resources that are being directed towards Lattice QCD calculations will allow for
the calculation of the phase-shifts in higher partial-waves in both mesonic and baryonic processes in the near future.
We have considered the low-lying spectrum of two-meson states in a finite cubic lattice-volume, and determined
contributions from the partial-waves with l ≤ 6 and l = 9. There are a sufficient number of irreps of the cubic group
that will allow for the calculation of the phase-shifts, δl for l ≤ 6, and possibly l = 9. There are no irreps of the cubic
group with ground-state energy-splittings that are dominated by interactions in the l = 7 and l = 8 partial-waves.
As such, there appears to be no clean way to calculate these phase-shifts from Lattice QCD calculations performed
in cubic volumes. High precision calculations of the energy of states in other irreps may allow for their extraction by
forming differences of energies, but this will require significantly more computational resources than the extraction
of the phase-shifts in lower partial-waves. We have provided the structure of sources that will produce the irreps of
the cubic group, in both momentum and position space, that will generate the relevant states in LQCD calculations.
Further, we have given the explicit formula, and their perturbative solutions, that are required to analyze the results
of such LQCD calculations. We recapitulate the leading contributions to the energy-eigenvalue equations and their
solutions in the large-volume limit in table XIV and table XV, respectively.

Experimental measurements of the ππ phase-shifts are difficult, with precision currently at the few-percent level in
the s-wave and p-wave, but much larger uncertainties are associated with the phase-shifts in the higher partial-waves.
It would appear that Lattice QCD calculations will be able to provide low-energy meson-meson phase-shifts in the
low partial-waves with significantly more precision than the corresponding experimental measurements. While the
contributions to energy-splittings rapidly become smaller with higher partial-waves, we conclude that it is presently
possible to extract phase-shifts for partial-waves with l ≤ 3. The implications of the recent preliminary calculations [19]
of the l = 2 phase-shift, δ2

2 , at unphysical pion masses are very encouraging for future calculations.

Appendix A: Block-Diagonalization of F (FV )

As the number of partial-waves with non-zero phase-shifts increases, so does the complexity of the calculation of
the energy-eigenvalues in a finite cubic volume. To illustrate the method for determining the energy-eigenvalues,
we provide the details of the calculation when δl 6= 0 for l ≤ 4. As is true in all cases involving parity-conserving
interactions, the analysis in the even-parity sector (l = 0, 2, 4) decouples from that in the odd-parity sector (l = 1, 3).
The calculations that are required for δl 6= 0 for l > 4 become more complicated due to the dimensionality of the
matrices involved, the contributions from the Zl,m for higher values of l, and to multiple occurrences of the same

cubic irreps. This last feature means that the diagonalization of the finite-volume functions, F
(FV )
l;l , are not dictated

entirely by geometry due to mixing between the multiple occurrences of a given Γ(i). However, such calculations are
a straightforward extension of what follows.
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TABLE XIV: A summary of the energy-eigenvalue equations for the lowest-lying state in each Γ(i) arising from the
interaction in the dominant partial-wave.

l [Γ(i)] Leading Eigenvalue Equation Section

0 [A+
1 ] qcotδ0 = 2√

πL
Z0,0

(
1; q̃2

)
III A 1

1 [T−1 ] q3cotδ1 =
(

2π
L

)3 1

π3/2 q̃
2Z0,0

(
1; q̃2

)
III B 3

2 [E+] q5cotδ2 =
(

2π
L

)5 1

π3/2

(
q̃4Z0,0

(
1; q̃2

)
+ 6

7
Z4,0

(
1; q̃2

))
III A 3

2 [T+
2 ] q5cotδ2 =

(
2π
L

)5 1

π3/2

(
q̃4Z0,0

(
1; q̃2

)
− 4

7
Z4,0

(
1; q̃2

))
III A 5

3 [T−2 ] q7cotδ3 =
(

2π
L

)7 1

π3/2

(
q̃6Z0,0

(
1; q̃2

)
− 2q̃2Z4,0(1;q̃2)

11
− 60Z6,0(1;q̃2)

11
√

13

)
III B 4

3 [A−2 ] q7cotδ3 =
(

2π
L

)7 1

π3/2

(
q̃6Z0,0

(
1; q̃2

)
− 12

11
q̃2Z4,0

(
1; q̃2

)
+ 80

11
√

13
Z6,0

(
1; q̃2

))
III B 1

4 [T+
1 ] q9cotδ4 =

(
2π
L

)9 1

π3/2

(
q̃8Z0,0

(
1; q̃2

)
− 448Z8,0(1;q̃2)

143
√

17
− 4q̃2Z6,0(1;q̃2)

11
√

13
+

54q̃4Z4,0(1;q̃2)
143

)
III A 4

5 [E−]
q11cotδ5 =

(
2π
L

)11 1

π3/2×(
q̃10Z0,0

(
1; q̃2

)
− 6q̃6Z4,0(1;q̃2)

13
+

32q̃4Z6,0(1;q̃2)
17
√

13
− 672q̃2Z8,0(1;q̃2)

247
√

17
+

1152
√

21Z10,0(1;q̃2)
4199

)
III B 2

6 [A+
2 ]

q13cotδ6 =
(

2π
L

)13 1

π3/2×(
q̃12Z0,0

(
1; q̃2

)
+

6q̃8Z4,0(1;q̃2)
17

− 160
√

13q̃6Z6,0(1;q̃2)
323

− 40q̃4Z8,0(1;q̃2)
19
√

17

− 2592
√

21q̃2Z10,0(1;q̃2)
7429

+
1980Z12,0(1;q̃2)

7429
+

264
√

1001Z12,4(1;q̃2)
7429

) III A 2

9 [A−1 ]

q19 cot δ9 =
(

2π
L

)19 1

π3/2×(
q̃18Z0,0(1; q̃2)− 6q̃14Z4,0(1;q̃2)

23
− 32

√
13q̃12Z6,0(1;q̃2)

115
− 56

√
17q̃10Z8,0(1;q̃2)

345

+
1568
√

7q̃8Z10,0(1;q̃2)

3335
√

3
+

308q̃6Z12,0(1;q̃2)

2139
+

616
√

1001q̃6Z12,4(1;q̃2)

20677
+

53248q̃4Z14,0(1;q̃2)

10695
√

29

− 1664
√

11q̃2Z16,0(1;q̃2)

3565
√

3
+

832
√

46189q̃2Z16,4(1;q̃2)

103385
√

7
+

2206464Z̃18,0(1;q̃2)

103385
√

37
+

28288
√

3553Z18,4(1;q̃2)

20677
√

259

) III B 5
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TABLE XV: The perturbative expansions of the energy-eigenvalues of the lowest-lying state in each Γ(i).

|n|2 [Γ(i)] |q|2

0 [A+
1 ] − 4πa0

L3

[
1 − 2.8373

(
a0
L

)
+ 6.3752

(
a0
L

)2 ]
+ ...

1 [T−1 ] 4π2

L2

[
1− 3

π2 tan δ1 (1− 0.3653 tan δ1) + ...
]

1 [E+] 4π2

L2

[
1− 15

2π2 tan δ2 (1− 1.5672 tan δ2) + ...
]

2 [T+
2 ] 4π2

L2

[
2− 15

2
√

2π2 tan δ2 (1− 0.4830 tan δ2) + ...
]

2 [T−2 ] 4π2

L2

[
2− 105

8
√

2π2 tan δ3 + ...
]

3 [A−2 ] 4π2

L2

[
3− 140

9
√

3π2 tan δ3 + ...
]

5 [T+
1 ] 4π2

L2

[
5− 2268

125
√

5π2 tan δ4 + ...
]

5 [A+
2 ] 4π2

L2

[
5− 162162

3125
√

5π2 tan δ6 + ...
]

6 [E−] 4π2

L2

[
6− 385

12
√

6π2 tan δ5 + ...
]

14 [A−1 ] 4π2

L2

[
14− 4208972625

46118408
√

14π2 tan δ9 + ...
]

1. Odd-Parity Sector with δ1,3 6= 0

In the odd-parity sector with only δ1,3 6= 0, the finite-volume corrections are encapsulated in F
(FV )
− which is a 10×10

matrix. It has block form

F
(FV )
− =


F

(FV )
1;1 F

(FV )
1;3

F
(FV )
3;1 F

(FV )
3;3


, (A1)
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where the component matrices in the |l,m〉-basis are 9

F
(FV )
1;1 =

1

π3/2

1

q̃
Z0,0(1; q̃2) diag (1, 1, 1)

F
(FV )
1;3 =

(
F

(FV )
3;1

)T
=

1

π3/2

1

q̃5
Z4,0(1; q̃2)

2√
21


0 0 −

√
3
2 0 0 0 −

√
5
2

0 0 0 2 0 0 0

−
√

5
2 0 0 0 −

√
3
2 0 0


F

(FV )

3;3 =
1

π3/2

1

q̃
Z0,0(1; q̃2) diag (1, 1, 1, 1, 1, 1, 1)

+
1

π3/2

1

q̃5
Z4,0(1; q̃2)

1

11



3 0 0 0
√

15 0 0

0 −7 0 0 0 5 0

0 0 1 0 0 0
√

15

0 0 0 6 0 0 0√
15 0 0 0 1 0 0

0 5 0 0 0 −7 0

0 0
√

15 0 0 0 3


(A2)

+
1

π3/2

1

q̃7
Z6,0(1; q̃2)

5

33
√

13



−1 0 0 0 7
√

15 0 0

0 6 0 0 0 −42 0

0 0 −15 0 0 0 7
√

15

0 0 0 20 0 0 0

7
√

15 0 0 0 −15 0 0

0 −42 0 0 0 6 0

0 0 7
√

15 0 0 0 −1


,

where the relevant relations between the Zl,m, that can be found in eq. (B7), have been used, and where diag(a, b, ...)

denotes a diagonal matrix. It is convenient to first diagonalize the F
(FV )
l;l blocks (F

(FV )
1;1 is already diagonal in this

basis). The block-diagonal matrix, S−, is defined to have the form

S− =

(
S11 0

0 S33

)
, (A3)

and when acting on F
(FV )
− produces a matrix, F

(FV )

− = S−.F
(FV )
− .S†−, which can be re-arranged into block-diagonal

form where each block is associated with a Γ(i). The matrices cos δ and sin δ in eq. (3) are invariant under this
transformation,

cosδ = diag (c1, c1, c1, c3, c3, c3, c3, c3, c3, c3) , (A4)

where c1 and c3 denote cos δ1 and cos δ3, respectively, and similarly for sinδ. The components of S− in eq. (A3) are

S11 =

 1 0 0

0 1 0

0 0 1

 , S33 =



0 0 −
√

5
8 0 0 0

√
3
8

0 1√
2

0 0 0 1√
2

0

−
√

3
8 0 0 0

√
5
8 0 0

0 − 1√
2

0 0 0 1√
2

0

0 0
√

3
8 0 0 0

√
5
8√

5
8 0 0 0

√
3
8 0 0

0 0 0 1 0 0 0


, (A5)

9 Explicitly, the basis is {|1, 1〉, |1, 0〉, |1,−1〉, |3, 3〉, |3, 2〉, |3, 1〉, |3, 0〉, |3,−1〉, |3,−2〉, |3,−3〉}.
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and the matrix F
(FV )

− is of the form

F
(FV )

− =


F

(FV )

1;1 F
(FV )

1;3

F
(FV )

3;1 F
(FV )

3;3


, (A6)

where

F
(FV )

1;1 =
1

π3/2

1

q̃
Z0,0(1; q̃2) diag (1, 1, 1)

F
(FV )

1;3 =
(
F

(FV )

3;1

)T
=

1

π3/2

1

q̃5
Z4,0(1; q̃2)

4√
21

 0 0 0 0 −1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 0


F

(FV )

3;3 =
1

π3/2

1

q̃
Z0,0(1; q̃2) diag (1, 1, 1, 1, 1, 1, 1)

+
1

π3/2

1

q̃5
Z4,0(1; q̃2)

2

11
diag (−1,−1,−1,−6, 3, 3, 3)

+
1

π3/2

1

q̃7
Z6,0(1; q̃2)

20

33
√

13
diag (−9,−9,−9, 12, 5, 5, 5) . (A7)

From the structure of F
(FV )

− it is clear that the ordering of the Γ(i) along the diagonal of F
(FV )

3;3 is T−2 , A−2 and

T−1 , respectively, and the equations that dictate the energy-eigenvalues of each of the Γ(i), given in eqs. (31), (35),

and (39), follow directly from eq. (A7). The matrix S− that diagonalizes F
(FV )
− is independent of the Zl,m functions

because, with each relevant Γ(i) occurring only once, the decomposition depends upon geometry only.

2. Even-Parity Sector with δ0,2,4 6= 0

In the even-parity sector with only δ0,2,4 6= 0, the finite-volume corrections are encapsulated in F
(FV )
+ which is a

15× 15 matrix. It has block form

F
(FV )
+ =



F
(FV )
0;0 F

(FV )
0;2 F

(FV )
0;4

F
(FV )
2;0 F

(FV )
2;2 F

(FV )
2;4

F
(FV )
4;0 F

(FV )
4;2 F

(FV )
4;4


, (A8)
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where

F
(FV )
0;0 =

1

π3/2

1

q̃
Z0,0(1; q̃2) , F

(FV )
0;2 =

(
0 0 0 0 0

)
F

(FV )
0;4 =

1

π3/2

1

q̃5
Z4,0(1; q̃2)

( √
5
14 0 0 0 1 0 0 0

√
5
14

)
F

(FV )
2;2 =

1

π3/2

1

q̃
Z0,0(1; q̃2) diag (1, 1, 1, 1, 1)

+
1

π3/2

1

q̃5
Z4,0(1; q̃2)

1

7


1 0 0 0 5

0 −4 0 0 0

0 0 6 0 0

0 0 0 −4 0

5 0 0 0 1



F
(FV )
2;4 =

1

π3/2

1

q̃5
Z4,0(1; q̃2)

10
√

3

77
√

2


0 0 −3

√
2 0 0 0 −

√
2 0 0

0 0 0 1 0 0 0 −
√

7 0

−2
√

7
3 0 0 0 2

√
10
3 0 0 0 −2

√
7
3

0 −
√

7 0 0 0 1 0 0 0

0 0 −
√

2 0 0 0 −3
√

2 0 0



+
1

π3/2

1

q̃7
Z6,0(1; q̃2)

5
√

3

11
√

13


0 0 1 0 0 0 −7 0 0

0 0 0 −2
√

2 0 0 0 2
√

14 0

−
√

21
2 0 0 0

√
15 0 0 0 −

√
21
2

0 2
√

14 0 0 0 −2
√

2 0 0 0

0 0 −7 0 0 0 1 0 0
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F
(FV )
4;4 =

1

π3/2

1

q̃
Z0,0(1; q̃2) diag (1, 1, 1, 1, 1, 1, 1, 1, 1)

+
1

π3/2

1

q̃5
Z4,0(1; q̃2)

27

1001



14 0 0 0
√

70 0 0 0 0

0 −21 0 0 0 5
√

7 0 0 0

0 0 −11 0 0 0 15 0 0

0 0 0 9 0 0 0 5
√

7 0√
70 0 0 0 18 0 0 0

√
70

0 5
√

7 0 0 0 9 0 0 0

0 0 15 0 0 0 −11 0 0

0 0 0 5
√

7 0 0 0 −21 0

0 0 0 0
√

70 0 0 0 14



+
1

π3/2

1

q̃7
Z6,0(1; q̃2)

1

11
√

13



−4 0 0 0 6
√

70 0 0 0 0

0 17 0 0 0 −3
√

7 0 0 0

0 0 −22 0 0 0 −42 0 0

0 0 0 −1 0 0 0 −3
√

7 0

6
√

70 0 0 0 20 0 0 0 6
√

70

0 −3
√

7 0 0 0 −1 0 0 0

0 0 −42 0 0 0 −22 0 0

0 0 0 −3
√

7 0 0 0 17 0

0 0 0 0 6
√

70 0 0 0 −4



+
1

π3/2

1

q̃9
Z8,0(1; q̃2)

7

143
√

17



1 0 0 0
√

70 0 0 0 65

0 −8 0 0 0 −8
√

7 0 0 0

0 0 28 0 0 0 28 0 0

0 0 0 −56 0 0 0 −8
√

7 0√
70 0 0 0 70 0 0 0

√
70

0 −8
√

7 0 0 0 −56 0 0 0

0 0 28 0 0 0 28 0 0

0 0 0 −8
√

7 0 0 0 −8 0

65 0 0 0
√

70 0 0 0 1


, (A9)

which can be made partially block-diagonalized by

S+ =

 S0,0 0 0

0 S22 0

0 0 S44

 , (A10)
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with

S0,0 = 1 , S22 =


− 1√

2
0 0 0 1√

2

0 0 0 1 0

0 1 0 0 0
1√
2

0 0 0 1√
2

0 0 1 0 0



S44 =



√
7

2
√

6
0 0 0 −

√
5

2
√

3
0 0 0

√
7

2
√

6

0 0 1√
2

0 0 0 1√
2

0 0

− 1√
2

0 0 0 0 0 0 0 1√
2

0 0 0
√

7
2
√

2
0 0 0 1

2
√

2
0

0 1
2
√

2
0 0 0

√
7

2
√

2
0 0 0

√
5

2
√

6
0 0 0

√
7

2
√

3
0 0 0

√
5

2
√

6

0 0 0 − 1
2
√

2
0 0 0

√
7

2
√

2
0

0 0 − 1√
2

0 0 0 1√
2

0 0

0 −
√

7
2
√

2
0 0 0 1

2
√

2
0 0 0



. (A11)

After this partial-diagonalization, finite-volume function becomes F
(FV )

+ = S+.F
(FV )
+ .S†+ where

F
(FV )

0,0 =
1

π3/2

1

q̃
Z0,0(1; q̃2) , F

(FV )

0;2 =
(

0 0 0 0 0
)

F
(FV )

0;4 =
1

π3/2

1

q̃5
Z4,0(1; q̃2)

2
√

3√
7

(
0 0 0 0 0 1 0 0 0

)
F

(FV )

2;2 =
1

π3/2

1

q̃
Z0,0(1; q̃2) diag (1, 1, 1, 1, 1)

+
1

π3/2

1

q̃5
Z4,0(1; q̃2)

2

7
diag (−2,−2,−2, 3, 3)

F
(FV )

2;4 =
1

π3/2

1

q̃5
Z4,0(1; q̃2)

20
√

3

77


0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0 0

0 −2 0 0 0 0 0 0 0

−2 0 0 0 0 0 0 0 0



+
1

π3/2

1

q̃7
Z6,0(1; q̃2)

40
√

3

11
√

13


0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0 0

0 − 3
4 0 0 0 0 0 0 0

− 3
4 0 0 0 0 0 0 0 0

 . (A12)

F
(FV )

4;4 =
1

π3/2

1

q̃
Z0,0(1; q̃2) diag (1, 1, 1, 1, 1, 1, 1, 1, 1)

+
1

π3/2

1

q̃5
Z4,0(1; q̃2)

54

1001
diag (2, 2, 7, 7, 7, 14,−13,−13,−13)

+
1

π3/2

1

q̃7
Z6,0(1; q̃2)

4

11
√

13
diag (−16,−16,−1,−1,−1, 20, 5, 5, 5)

+
1

π3/2

1

q̃9
Z8,0(1; q̃2)

392

1001
√

17
diag (7, 7,−8,−8,−8, 10, 0, 0, 0) . (A13)

It is clear from the form of the matrix F
(FV )

+ that the ordering of the Γ(i) in the F
(FV )

4;4 -block is E+, T+
1 , A+

1 and T+
2 ,

respectively, and the equations that dictate the energy-eigenvalues of each of the Γ(i), given in eqs. (9), (20), (25),
and (29), follow directly from these expressions.
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Appendix B: Zl,m(1; q̃2) Functions

The two-hadron Green functions in the finite lattice volume depend upon summations over plane-wave states subject
to periodic boundary conditions and with amplitudes that depend upon the strength of the interactions in each of
the partial-waves that generate the two-hadron T-matrix. The summations that define the energy-eigenvalues in the
volume are [1, 2]

Zl,m(1; q̃2) =
∑
n

|n|l Ylm(Ωn)

[ |n|2 − q̃2 ]
, (B1)

a special case of the sums defined in eq. (5). The l = 0 summation is special as it requires UV regulation in order to
be defined, while sums with l ≥ 1 are finite due to contribution from the solitary Ylm. However, brute-force evaluation
of the sums is quite inefficient and Lüscher presented a method to evaluate the sums that exponentially accelerates
their evaluation [1, 2], making use of the Poisson resummation formula. In this appendix, we reproduce Lüscher’s
results, and then present each of the Zl,m(1; q̃2) that contribute to the energy-eigenvalues considered in the body of
this paper.

Numerical evaluation of the Z0,0(1; q̃2) can be evaluated by brute force through the definition

Z0,0(1; q̃2) =
1√
4π

lim
Λn→∞

[
Λn∑
n

1

|n|2 − q̃2
− 4πΛn

]
, (B2)

or through the exponentially-accelerated relation [1, 2, 63] 10

Z0,0(1; q̃2) = πeq̃
2

(2q̃2 − 1) +
eq̃

2

2
√
π

∑
n

e−|n|
2

|n|2 − q̃2

− π

2

∫ 1

0

dt
etq̃

2

t3/2

 4t2q̃4 −
∑
m 6=0

e
−π2|m|2

t

 . (B4)

For l 6= 0, the exponentially accelerated evaluation can be accomplished with 11

Zl,m(1; q̃2) =
∑
n

|n|l Ylm(Ωn) e−Λ(|n|2−q̃2)

[ |n|2 − q̃2 ]

+
∑
p

∫ Λ

0

dλ
(π
λ

)l+3/2

eλq̃
2

|p|l Ylm(Ωp) e−
π2|p|2
λ . (B6)

10 The Poisson resummation formula ∑
n

δ3(y − n) =
∑
m

ei2πm·y , (B3)

has been used in obtaining eq. (B4).
11 We have used a relation that is similar to that used by Lüscher [2],∫

d3x g(x) e−λ|x|
2
ei2πp·x = g(

−i
2π
∇p)

∫
d3x e−λ|x|

2
ei2πp·x =

(π
λ

)3/2
g(
iπ

λ
p) e−

π2|p|2
λ . (B5)
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There are exact relations that exist between the Zl,m(1; q̃2) for fixed l:

Z4,±4(1; q̃2) =

√
5

14
Z4,0(1; q̃2) , Z6,±4(1; q̃2) = −

√
7

2
Z6,0(1; q̃2)

Z8,±4(1; q̃2) =

√
154

33
Z8,0(1; q̃2) , Z8,±8(1; q̃2) =

√
1430

66
Z8,0(1; q̃2)

Z10,±4(1; q̃2) = −
√

66

65
Z10,0(1; q̃2) , Z10,±8(1; q̃2) = −

√
187

130
Z10,0(1; q̃2)

Z12,±8(1; q̃2) =

√
429

646
Z12,0(1; q̃2) − 4

√
42

323
Z12,±4(1; q̃2)

Z12,±12(1; q̃2) = 4

√
91

7429
Z12,0(1; q̃2) + 9

√
11

7429
Z12,±4(1; q̃2)

Z14,±4(1; q̃2) = −3

2

√
143

595
Z14,0(1; q̃2) , Z14,±8(1; q̃2) = −

√
741

1190
Z14,0(1; q̃2)

Z14,±12(1; q̃2) = −1

2

√
437

119
Z14,0(1; q̃2)

Z16,±8(1; q̃2) = −6

√
6

805
Z16,4(1; q̃2) +

√
442

2185
Z16,0(1; q̃2)

Z16,±12(1; q̃2) = −31

5

√
13

483
Z16,4(1; q̃2) +

16

5

√
17

437
Z16,0(1; q̃2)

Z16,±16(1; q̃2) = 4

√
754

74865
Z16,4(1; q̃2) + 7

√
493

135470
Z16,0(1; q̃2)

Z18,±8(1; q̃2) = −58

5

√
22

161
Z18,4(1; q̃2) − 3

5

√
646

23
Z18,0(1; q̃2)

Z18,±12(1; q̃2) =
501

5

√
11

4669
Z18,4(1; q̃2) +

16

5

√
323

667
Z18,0(1; q̃2)

Z18,±16(1; q̃2) = −4

√
3162

23345
Z18,4(1; q̃2) −

√
19437

6670
Z18,0(1; q̃2) . (B7)

Unlike the cases of l = 0, 4, 6, 8, 10, 14 which have only one occurrence of the A+
1 irrep in their decomposition,

l = 12, 16, 18 have two, and as such the Z12,±4k (k is an integer) are not simply proportional to Z12,0, as demonstrated
in eq. (B7), and a similar statement can be made about Z16,±4k and Z18,±4k.

In an effort to better understand the origins of the structure of the functions determining the energy-eigenvalues
of each of the Γ(i), it is useful to explicitly display the functions Zl,m(1; q̃2). The function Z0,0(1; q̃2) is shown in the
body of this paper in fig. 1. As discussed by Lüscher, the functions Zl,m(1; q̃2) vanish for all odd-l, and also vanishes
for l = 2. The function Z4,0(1; q̃2) is shown in fig. 29, and exhibits some structure that is not present in Z0,0(1; q̃2).
There are branches of Z4,0(1; q̃2) that are non-monotonic, for instance, between q̃2 = 1 and q̃2 = 2. This behavior is
found in all of the Zl,m’s with l > 0. The functions Z8,0(1; q̃2) and Z10,0(1; q̃2) are shown in fig. 30, Z12,0(1; q̃2) and
Z12,4(1; q̃2) in fig. 31, Z16,0(1; q̃2) and Z16,4(1; q̃2) in fig. 33, and finally Z18,0(1; q̃2) and Z18,4(1; q̃2) in fig. 34.

In constructing the perturbative expressions for the energy-eigenvalues in terms of the δl, the leading contributions
result from the residue of the pole of the leading function. We present a few of these residues of the Zl,m(1; q̃2)
functions in table XVI and table XVII.

Appendix C: Perturbative Expressions

In many instances the energy-shifts due to the interactions are small because the phase-shift is small and/or the
lattice volume is large. In such instances, a perturbative expression can be used to extract the phase-shift from an
energy-eigenvalue instead of solving the full expression, as discussed by Lüscher [1, 2]. The energy-eigenvalues for
a given Γ(i) in a given |n|2-shell, and more specifically q̃2, can be expanded in terms of the dimensionless quantity



47

0 5 10 15
-200

-100

0

100

200

q�2

Z
4,

0H1
;q� 2

L

0 5 10 15

-500

0

500

q�2

Z
6,

0H1
;q� 2

L

FIG. 29: The functions Z4,0(1; q̃2) (left-panel) and Z6,0(1; q̃2) (right-panel).
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FIG. 30: The functions Z8,0(1; q̃2) (left-panel) and Z10,0(1; q̃2) (right-panel).
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FIG. 31: The functions Z12,0(1; q̃2) (left-panel) and Z12,4(1; q̃2) (right-panel).

(
L(2l+1q2l+1 cot δIl

)−1 12. In the case of a single partial-wave, the general form for the energy of an irrep, Γ(i), in the

12 The corresponding expansion that is appropriate for systems near unitarity, an expansion in terms of (Lq cot δ) for s-wave interactions
that is small for large scattering lengths, can be found in Ref. [58].
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FIG. 32: The function Z14,0(1; q̃2).
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FIG. 33: The functions Z16,0(1; q̃2) (left-panel) and Z16,4(1; q̃2) (right-panel).
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FIG. 34: The functions Z18,0(1; q̃2) (left-panel) and Z18,4(1; q̃2) (right-panel).

|n|2-shell is

q2l+1 cot δIl =
1

πL

(
2π

L

)2l
α(|n|2,Γ(i))
−1

δq̃2
+ α

(|n|2,Γ(i))
0 + α

(|n|2,Γ(i))
1 δq̃2 + ...

 , (C1)
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TABLE XVI: Residues of the functions
√

4π Zl,m(1; q̃2) for l ≤ 12, i.e. the coefficient of − 1

Q̃2 where q̃2 = |n|2 + Q̃2.

|n|2 R
[√

4πZ0,0

]
R
[√

4πZ4,0

]
R
[√

4πZ6,0

]
R
[√

4πZ8,0

]
R
[√

4πZ10,0

]
R
[√

4πZ12,0

]
R
[√

4πZ12,4

]
0 1 0 0 0 0 0 0

1 6 21
2

3
√

13
4

99
√

17
32

65
√

21
64

3715
256

75
√

1001
512

2 12 -21 − 39
√

13
2

891
√

17
16

− 65
√

21
32

- 43885
128

− 8085
√

1001
256

3 8 -84 48
√

13 99
√

17 −520
√

21 2225
2

− 555
√

1001
4

4 6 168 48
√

13 792
√

17 1040
√

21 59440 600
√

1001

5 24 210 −255
√

13 − 13365
√

17
8

− 204425
√

21
16

21172895
64

1262535
√

1001
128

6 24 -378 333
√

13 − 51381
√

17
8

408915
√

21
16

58441035
64

− 324765
√

1001
128

14 48 −4116 −1806
√

13 − 455301
√

17
4

19718335
√

21
8

2472346835
32

309589035
√

1001
64

TABLE XVII: Residues of the functions
√

4π Zl,m(1; q̃2) for 14 ≤ l ≤ 18, i.e. the coefficient of − 1

Q̃2 where q̃2 =

|n|2 + Q̃2.

|n|2 R
[√

4πZ14,0

]
R
[√

4πZ16,0

]
R
[√

4πZ16,4

]
R
[√

4πZ18,0

]
R
[√

4πZ18,4

]
1 595

√
29

512
22819

√
33

8192
33
√

323323
4096

20613
√

37
16384

− 39
√

920227
8192

2 − 52955
√

29
256

2627491
√

33
4096

5937
√

323323
2048

− 234021
√

37
8192

9063
√

920227
4096

3 3570
√

29 − 135261
√

33
16

873
√

323323
8

−12453
√

37 18
√

920227

4 19040
√

29 182552
√

33 528
√

323323 329808
√

37 −1248
√

920227

5 − 9356375
√

29
128

3105175795
√

33
2048

1267665
√

323323
1024

− 2195267925
√

37
4096

− 12933225
√

920227
2048

6 − 144911655
√

29
128

1849263939
√

33
2048

15619473
√

323323
1024

− 40787860977
√

37
4096

− 26504469
√

920227
2048

14 6869655205
√

29
64

− 12080581399901
√

33
1024

4554268593
√

323323
512

44894607368667
√

37
2048

51258039399
√

920227
1024

where the solutions to eq. (C1) can be written as

q̃2
|n|2,Γ = |n|2 + δq̃2 =

(
qL

2π

)2

= |n|2 + g
(|n|2,Γ(i))
0 tan δIl

(
1 + g

(|n|2,Γ(i))
1 tan δIl + g

(|n|2,Γ(i))
2 tan2 δIl + ...

)
+ h

(|n|2,Γ(i))
0

d
d(Lq)2

(
(Lq)2l+1 cot δIl

)[
(Lq)2l+1 cot δIl

]3 + ... , (C2)

where the phase-shift is evaluated at the unperturbed energy of the state, and the coefficients are

g
(|n|2,Γ(i))
0 =

α
(|n|2,Γ(i))
−1

2π2|n|2l+1
, g

(|n|2,Γ(i))
1 =

α
(|n|2,Γ(i))
0

2π2|n|2l+1

g
(|n|2,Γ(i))
2 =

(α
(|n|2,Γ(i))
0 )2 + α

(|n|2,Γ(i))
−1 α

(|n|2,Γ(i))
1

2π2|n|2l+1
. (C3)

For the terms in eq. (C2), the contributions scale as

q̃2
|n|2,Γ ∼ O (1) +O

(
1

L2l+1

)
+O

(
1

L4l+2

)
+O

(
1

L6l+3

)
+O

(
1

L4l+4

)
+ ... , (C4)

from which it can be determined when the contributions from higher partial-waves become important. For instance,
the energy-shifts in the T−1 irrep are dominated by δ1, and the expansion is of the form

q̃2
|n|2,T−1

∼ O (1) + O
(

1

L3

)
+ O

(
1

L6

)
+ O

(
1

L9

)
+ O

(
1

L8

)
+ ... , (C5)
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TABLE XVIII: The coefficients, g
(|n|2,A+

1 )

i that contribute to the perturbative expansion of the energy-eigenvalues of
states in the A+

1 irrep of the cubic group, as given in eq. (C2), in terms of s-wave phase-shift δ0.

|n|2 g
(|n|2,A+

1 )

0 g
(|n|2,A+

1 )

1 g
(|n|2,A+

1 )

2

1 − 3
π2 -0.06137 -0.3542

2 − 3
√

2
π2 -0.1826 -0.3618

3 − 4√
3π2 -0.1981 -0.1996

4 − 3
2π2 0.2415 -0.1328

5 − 12√
5π2 0.1590 -0.5155

6 − 2
√

6
π2 -0.4798 -0.2025

TABLE XIX: The coefficients, g
(|n|2,T−(1)

1 )

i that contribute to the perturbative expansion of the energy-eigenvalues of
states in the (first occurrence of the) T−1 irrep of the cubic group, as given in eq. (C2), in terms of l = 1 phase-shift
δ1.

|n|2 g
(|n|2,T−(1)

1 )

0 g
(|n|2,T−(1)

1
1 g

(|n|2,T−(1)
1 )

2

1 − 3
π2 -0.3653 -0.2058

2 − 3
√

2
π2 -0.3975 -0.1979

3 − 4√
3π2 -0.2761 -0.1471

4 − 3
2π2 0.2035 -0.1589

5 − 12√
5π2 0.05024 -0.5555

6 − 2
√

6
π2 -0.5625 -0.07659

respectively, and the l = 3 partial-wave first contributes at O
(

1
L7

)
. In the case of the T+

1 irrep, which is dominated
by δ4, the expansion is of the form

q̃2
|n|2,T+

1
∼ O (1) + O

(
1

L9

)
+ O

(
1

L18

)
+ O

(
1

L27

)
+ O

(
1

L20

)
+ ... , (C6)

and δ6 contributions are of the form O
(
L−13

)
. Therefore, the order at which the higher partial-waves contribute in

the large-volume limit depends upon the Γ(i).
The perturbative expansions of the lowest few A+

1 energy-eigenvalues in terms of the l = 0 phase-shift δ0 were
given by Lüscher [1], and here we simply extend those results to levels with |n|2 ≤ 6 with the coefficients given in
table XVIII. The energy of the A+

1 state in the |n|2 = 0 level can be expressed in terms of the s-wave scattering
parameters defining the low-energy behavior of the phase-shift, and it is well-known that

q̃2
|0|2,A+

1
= − a0

πL

(
1 + c1

(a0

L

)
+ c2

(a0

L

)2

+ ...

)
+ ... . (C7)

where the particle-physics convention for defining the scattering length has been used, and the coefficients are c1 =
−2.8373 and c2 = 6.3752.

An important point to note is that the perturbative energy-shifts that are presented in table XVIII-table XXI are
for one of the occurrences of the Γ(i) that form a given |n|2-shell. Other occurrences are unperturbed at leading order.
When multiple occurrences of a given irrep appear in a given |n|2-shell, the leading interactions will perturb the
energy of one combination, while leaving the other states unperturbed, but the interactions in higher partial-waves
will perturb these remaining states. The expansion coefficients for the lowest-lying T−1 (dominated by δ1

1), the E+

and T+
2 (both dominated by δI2) are shown in table XIX, table XX, and table XXI, respectively. We note that the

coefficients in the perturbative expansion of the energy-eigenstates in the T−1 irrep given in table XIX differ from

those given by Lüscher [2]. This can be attributed to the fact that q(2l+1)cotδl can be expanded in a power-series in
energy about threshold 13, as performed in this work, while qcotδl does not have such an expansion for l > 0. For

13 This is the effective range expansion which is valid below the threshold of the t-channel cut, |q| = mπ for ππ → ππ.
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TABLE XX: The coefficients, g
(|n|2,E+(1))
i that contribute to the perturbative expansion of the energy-eigenvalues of

states in the (first occurrence of the) E+ irrep of the cubic group, as given in eq. (C2), in terms of l = 2 phase-shift
δ2.

|n|2 g
(|n|2,E+(1))
0 g

(|n|2,E+(1))
1 g

(|n|2,E+(1))
2

1 − 15
2π2 -1.5672 2.5842

2 − 15

4
√

2π2 -0.8065 0.54

4 − 15
4π2 0.3272 -0.421

5 − 78

5
√

5π2 -0.447 -0.4331

6 − 5
2π2

√
3
2

-0.7884 0.3746

TABLE XXI: The coefficients, g
(|n|2,T+(1)

2 )

i that contribute to the perturbative expansion of the energy-eigenvalues of
states in the (first occurrence of the) T+

2 irrep of the cubic group, as given in eq. (C2), in terms of l = 2 phase-shift
δ2.

|n|2 g
(|n|2,T+(1)

2 )

0 g
(|n|2,T+(1)

2 )

1 g
(|n|2,T+(1)

2 )

2

2 − 15

2
√

2π2 -0.4830 -0.1828

3 − 20

3
√

3π2 -0.6737 0.2128

5 − 48

5
√

5π2 0.2004 -0.4515

6 − 5
√

3
2

π2 -0.5497 -0.0902

TABLE XXII: The coefficients, g
(|n|2,Γ)
0 that contribute to the perturbative expansion of the energy-eigenvalues of

states in the A−2 , T−2 , T+
1 , E− and A+

2 , as given in eq. (C2), in terms of dominant phase-shifts δ3, δ3, δ4, δ5, and δ6,
respectively. Also given are the coefficients in the perturbative expansion of the second occurrence of E+, T+

2 , T−1
and T−2 , in terms of dominant phase-shifts δ4, δ4, δ3, and δ5, respectively.

|n|2 g
(|n|2,A−2 )

0 g
(|n|2,T−2 )

0 g
(|n|2,T+

1 )

0 g
(|n|2,E−)
0 g

(|n|2,A+
2 )

0 g
(|n|2,E+(2))
0 g

(|n|2,T+(2)
2 )

0 g
(|n|2,T−(2)

1 )

0 g
(|n|2,T−(2)

2 )

0

2 0 − 105

8
√

2π2 0 0 0 0 0 0 0

3 − 140

9
√

3π2 0 0 0 0 0 0 0 0

5 0 − 84

5
√

5π2 − 2268

125
√

5π2 0 − 162162

3125
√

5π2 − 23814

1625
√

5π2 0 − 252

25
√

5π2 − 74844

3125
√

5π2

6 − 35
√

2
3

3π2 − 35

4
√

6π2 − 35
√

2

4
√

3π2 − 385

12
√

6π2 0 0 − 245
√

2

36
√

3π2 − 175
√

2

36
√

3π2 0

the remaining irreps, the T−2 , A−2 , T+
1 , A+

2 and E−, the expansion converges rapidly with just one non-trivial term,
O
(
tan δIl

)
. The leading coefficients for these expansion of the energy-eigenvalues for each of these irreps are given in

table XXII, along with the coefficients in the expansions for the second occurrences of the E+, T+
2 , T−1 and T−2 . The

perturbative expansion of the lowest-lying A−1 state is given in table XV.
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