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A new method of stochastically estimating the low-lying effects of quark propagation is proposed
which allows accurate determinations of temporal correlations of single-hadron and multi-hadron
operators in lattice QCD. The method is well suited for calculations in large volumes. Contributions
involving quark propagation connecting hadron sink operators at the same final time can be handled
in a straightforward manner, even for a large number of final time slices. The method exploits
Laplacian Heaviside (LapH) smearing. ZN noise is introduced in a novel way, and variance reduction
is achieved using judiciously-chosen noise dilution projectors. The method is tested using isoscalar
mesons in the scalar, pseudoscalar, and vector channels, and using the two-pion system of total
isospin I = 0, 1, 2 on large anisotropic 243 × 128 lattices with spatial spacing as ∼ 0.12 fm and
temporal spacing at ∼ 0.034 fm for pion masses mπ ≈ 390 and 240 MeV.

PACS numbers: 12.38.Gc, 11.15.Ha, 12.39.Mk

I. INTRODUCTION

Recent discoveries of new hadronic resonances have
generated much excitement in the field of hadron spec-
troscopy. The current surge in experimental activity un-
derlines the need for a better understanding of excited
hadronic states from the theory of quantum chromody-
namics (QCD). Presently, Markov-chain Monte Carlo es-
timates of QCD path integrals defined on a space-time
lattice offer the best way to make progress in this regard.
Calculating the mass spectrum of excited-state hadron

resonances is a key goal in lattice QCD. However, such
calculations are very challenging. Computational limi-
tations cause simulations to be done with quark masses
that are unphysically large, leading to pion masses that
are heavier than observed and introducing systematic er-
rors in all other hadron energies. The use of carefully de-
signed quantum field operators is crucial for accurate de-
terminations of low-lying energies. To study a particular
state of interest, the energies of all states lying below that
state must first be extracted, and as the pion gets lighter
in lattice QCD simulations, more and more multi-hadron
states lie below the masses of the excited resonances. The
evaluation of correlations involving multi-hadron opera-
tors contains new challenges since not only must initial
to final time quark propagation be included, but also
final to final time quark propagation must be incorpo-
rated. The masses and widths of resonances (unstable
hadrons) cannot be calculated directly in finite-volume
Monte Carlo computations, but must be deduced from
the discrete spectrum of finite-volume stationary states
for a range of box sizes[1–4].
Our approach to constructing hadron operators appro-

priate for such calculations was outlined in Refs. [5, 6].
Our first study of the nucleon and ∆ excitations in the
quenched approximation was presented in Ref. [7], and

nucleon results for two flavors of dynamical quarks ap-
peared in Ref. [8]. A survey of excited-state energies
in small volume for the isovector mesons and kaons us-
ing Nf = 2 + 1 dynamical quarks was given in Ref. [9],
along with results for the Λ,Σ,Ξ baryons. Other recent
progress in calculating excited-state energies in lattice
QCD can be found in Refs. [10–15]. All of our results
to date have been achieved in small volume with pi-
ons having masses comparable to or heavier than about
390 MeV. Our goal now is to extend our efforts into larger
volumes and using lighter pions. To do this, the issue of
multi-hadron states must be addressed.
In this work, we focus on the problem of incorporat-

ing multi-hadron operators into finite-volume excited-
state spectrum calculations in lattice QCD. To compute
the finite-volume stationary-state energies of QCD, one
must first evaluate a matrix of temporal correlations
Cij(tF − t0) = 〈0|T Oi(tF )Oj(t0) |0〉, where T denotes

time-ordering, the source operators Oj(t0) create the
states of interest at an initial time t0, and the sink opera-
tors Oi(tF ) annihilate the states of interest at a later time
tF . The correlation functions Cij(t) can be expressed in

terms of “path” integrals over quark ψ, ψ fields and gluon
U fields involving the QCD action having the form

S[ψ, ψ, U ] = ψK[U ]ψ + SG[U ], (1)

where K[U ] is known as the Dirac matrix and SG[U ] is
the gauge-field action. Integration over the Grassmann-
valued quark fields introduces a detK and factors ofK−1

in the remaining integrals over the gluon U field, and
when formulated on a Euclidean space-time lattice, such
path integrals can be estimated using the Monte Carlo
method with Markov-chain importance sampling. Incor-
porating the detK in the Monte Carlo updating and eval-
uating the elements of K−1 (the quark propagators) are
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the most computationally demanding parts of the calcu-
lations.
Once estimates of a Hermitian matrix of tempo-

ral correlation functions Cij(t) are obtained, sev-
eral procedures for extracting the lowest stationary-
state energies E0, E1, E2, . . . in any given symme-
try channel are available[16, 17]. For example, let
λn(t, t0) denote the eigenvalues of the Hermitian matrix
C(t0)

−1/2 C(t)C(t0)
−1/2, where t0 is some fixed reference

time (typically small) and the eigenvalues, also known as
the principal correlation functions, are ordered such that
λ0 ≥ λ1 ≥ · · · as t becomes large. Then one can show
that

lim
t→∞

λn(t, t0) = e−En(t−t0). (2)

Determinations of the principal correlators λn(t, t0) for
sufficiently large temporal separations t yield the desired
energies En.
The rows and columns of the gauge-covariant Dirac

matrix K[U ] can be viewed as compound indices which
incorporate the lattice space-time site indices and the
quark color, flavor, and spin indices. Hence, K is a very
large matrix, and determining and storing all of the el-
ements of K−1 is not possible. Symmetries are used to
eliminate the need to compute allK−1 elements. Compu-
tations are usually arranged such that the linear system
of equations Kx = y needs to be solved for only a man-
ageable number of source vectors y. For temporal cor-
relations of single-hadron operators (excluding isoscalar
mesons), invariance under all spatial and temporal trans-
lations dramatically reduces the number ofK−1 elements
required. In such cases, the hadron creation operator
needs to be considered only on one initial time slice and
only at a single spatial site, yielding the so-called point-
to-all method. A handful of points can be used to in-
crease statistics.
To study a particular eigenstate, the procedure by

which energies are extracted from Monte Carlo estimates
of temporal correlation functions using Eq. (2) requires
that all eigenstates lying below the state of interest must
first be extracted. As the pion gets lighter in lattice QCD
simulations, more and more multi-hadron states will lie
below the excited resonances, and multi-hadron opera-
tors will be needed to accurately compute the energies
of such states. For example, a good baryon-meson sink
operator which annihilates a total zero momentum is typ-
ically a superposition of terms having the form

B(−p, t)M(p, t) =
1

V 2

∑

x,y

ϕB(x, t)ϕM (y, t)eip·(x−y),

where V is the spatial volume of the lattice, 2p is the
relative momentum, and ϕB(x, t) and ϕM (y, t) are ap-
propriate localized interpolating fields for a baryon and
a meson, respectively. In the evaluation of the temporal
correlations of such a multi-hadron operator, it is not pos-
sible to completely remove all summations over the spa-
tial sites on the source time slice using translation invari-
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FIG. 1: Examples of quark-line diagrams in multi-hadron cor-
relators involving the ψ field on the later time tF connecting
to a ψ field also on the later time slice tF . The initial time
is denoted by t0. (Left) A two-meson correlator. (Right) The
correlator of a baryon-meson system.

ance. Hence, the need for estimates of the quark prop-
agators K−1 from all spatial sites on a time slice to all
spatial sites on another time slice cannot be sidestepped.
Some correlators involve diagrams with quark lines orig-
inating at the sink time tF and terminating at the same
sink time tF (see Fig. 1), so quark propagators involving
a large number of quark-line starting times must also be
handled.

Finding better ways to incorporate the low-lying ef-
fects of such slice-to-slice quark propagation for large
numbers of quark source times is crucial to the success
of our excited-state hadron spectrum project at lighter
pion masses. A new method, known as distillation[18],
uses a novel quark-field smearing procedure that facili-
tates exact treatment of slice-to-slice quark propagation.
Although distillation was found to work well, calculations
with that method are costly, making it feasible only on
small lattices. Here, we propose to combine the quark-
field smearing used in Ref. [18] with a new stochastic
approach to estimating the quark propagators, result-
ing in a much more efficient treatment suitable for large
volumes[19]. Describing and testing this new method is
the aim of this work. This method was briefly introduced
with preliminary testing in Refs. [9, 20, 21].

The remainder of this paper is organized as follows.
The stochastic LapH method is described in Sec. II.
Laplacian Heaviside quark-field smearing is reviewed,
and our new stochastic treatment of quark propagation
is detailed. The method involves Monte Carlo estima-
tion of quark propagation using ZN noise in the LapH
subspace with variance reduction achieved through the
introduction of suitable noise dilution projectors. The
new method is compared to an earlier procedure which
uses noise introduced on the space-time lattice itself. The
number of inversions of the Dirac matrix needed in the
new method is demonstrated to be insensitive to the vol-
ume of the lattice. Details on how the temporal cor-
relations of hadron operators are evaluated using the
stochastic LapH method are then presented in Sec. III.
Full source-sink factorization is seen to be another ad-
vantageous feature of the method, especially for com-
putations of correlation matrices involving large sets of
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hadron operators. Various implementation details are
given in Sec. IV. Applications of the method to the
isoscalar mesons in the scalar, pseudoscalar, and vec-
tor channels and to the two-pion system of total isospin
I = 0, 1, 2 using anisotropic 243 × 128 lattices with pion
masses mπ ≈ 390 and 240 MeV are then presented in
Sec. V. Conclusions are summarized in Sec. VI.

II. DESCRIPTION OF THE METHOD

The use of smeared fields is crucial for successfully ex-
tracting the spectrum of QCD in our Monte Carlo com-
putations. Hadron operators constructed out of smeared
fields have dramatically reduced mixings with the high-
frequency modes of the theory that obscure the low-lying
eigenstates of interest. Our operators are constructed us-

ing spatially-smoothed link variables Ũj(x) and spatially-

smeared quark fields ψ̃(x).
The spatial links are smeared using the stout-link pro-

cedure described in Ref. [22]. Note that only spatial sta-
ples are used in the link smoothening; no temporal sta-
ples are used, and the temporal link variables are not
smeared.
The quark field for each quark flavor is smeared using

ψ̃aα(x) = Sab(x, y) ψbα(y), (3)

where x, y are lattice sites, a, b are color indices, α is a
Dirac spin component, and the smearing kernel S is such
that the smeared field behaves in exactly the same way
as the original field under all time-independent symmetry
transformations on a cubic lattice. For extracting ener-
gies from temporal correlations, it is important that only
spatial smearing is used. In other words, the smearing
kernel is diagonal in time: Sab(x, y) ∝ δx4y4

. In addition,
our smearing kernel is independent of spin.
We use the new Laplacian Heaviside (LapH) quark-

field smearing scheme which has been described in
Ref. [18] and is defined by

S = Θ
(
σ2
s + ∆̃

)
, (4)

where ∆̃ is the three-dimensional gauge-covariant Lapla-

cian defined in terms of the stout-smeared gauge field Ũ ,
and σs is the smearing cutoff parameter. The Laplacian
matrix is given by

∆̃ab(x, y;U) =

3∑

k=1

{
Ũab
k (x)δ(y, x + k̂)

+Ũ ba
k (y)∗δ(y, x− k̂)− 2δ(x, y)δab

}
, (5)

where x, y are lattice sites, and a, b are color indices.
This is a Hermitian matrix which is block-diagonal in
time. It is important to use the stout-smeared gauge
links when smearing the quark field since doing so dra-
matically reduces the statistical errors in the correlations
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FIG. 2: The effective masses for temporal separation ts = 1
for three representative nucleon operators against the LapH
smearing cutoff σ2

s . Results were obtained using Nf = 2 + 1
configurations on a 163 × 128 anisotropic lattice with spacing
as ∼ 0.12 fm for stout-link smearing with nξ = 10 iterations
and staple weight ξ = 0.1. The circles show results (shifted
downward by 0.04) for a single-site operator. The squares
correspond to a singly-displaced nucleon operator, and the
triangles are the results (shifted upward by 0.04) for a triply-
displaced-T operator. The value σ2

s ≈ 0.33 is observed to be
a good choice.

of the hadron operators we use which involve covariantly-
displaced quark fields[8]. The gauge-covariant Laplacian
operator is ideal for smearing the quark field since it is
one of the simplest operators that locally averages the
field in such a way that all relevant symmetry transfor-
mation properties of the original field are preserved.
Let V∆ denote the unitary matrix whose columns are

the eigenvectors of ∆̃, and let Λ∆ denote a diagonal ma-

trix whose elements are the eigenvalues of ∆̃ such that

∆̃ = V∆ Λ∆ V †
∆. (6)

The LapH smearing matrix is then given by

S = V∆ Θ
(
σ2
s + Λ∆

)
V †
∆. (7)

All of the eigenvalues in Λ∆ are real and less than zero.
Hence, the matrix Θ(σ2

s + Λ∆) has unit entries on those
diagonal elements corresponding to eigenvalues whose
magnitudes are less than σ2

s and zero entries for all other

elements. Given that ∆̃ is block-diagonal in time, each
eigenvector has nonzero elements only on one time slice,
so we can associate any given eigenpair with that particu-

lar time. The eigenvalues of ∆̃ always occur such that ap-
proximately Nv eigenvalues have magnitude smaller than
σ2
s on each time slice. We have observed that the number
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of eigenvalues on each time slice that survive the Heav-
iside function varies from time to time by only one or
two in cases where Nv exceeds sixty or more. Hence, the
Heaviside smearing matrix is well approximated by fix-
ing Nv to the same value on each time slice and for each
gauge configuration.
Let Vs denote the matrix whose columns are in one-to-

one correspondence with the eigenvectors associated with

the Nv lowest-lying eigenvalues of −∆̃ on each time slice.
Then our LapH smearing matrix is well approximated by
the Hermitian matrix

S = Vs V
†
s . (8)

This is the actual smearing matrix used in our calcula-
tions. Note that on a lattice having Nt time slices and
Ns sites in each of the spatial directions, the matrix Vs
has NvNt columns and NtN

3
sNc rows, where Nc = 3 is

the number of quark colors. The NvNt eigenvectors that
form the smearing matrix span the so-called LapH sub-
space.
To set the parameter σs, and hence Nv, several small

simulations were done varying this parameter while com-
puting the effective masses for a handful of simple meson
and baryon operators. We chose the value of σs that min-
imized the effective masses at a chosen early time sepa-
ration ts. The effective masses for ts = 1 for three repre-
sentative nucleon operators are shown in Fig. 2 against
values of σs. A single-site nucleon operator in which all
three quark fields are taken at the same site is shown,
as well as a singly-displaced nucleon operator in which
one of the quarks is displaced away from the other, and a
triply-displaced-T operator in which all three quarks are
displaced from the others in a T configuration. The value
σ2
s ≈ 0.33 was chosen. This value is insensitive to which

time interval is used as long as ts is small enough such
that contributions from excited states have not decayed
away. It is also insensitive to the choice of hadron oper-
ator used and the quark mass. We expect σs to change
little with the lattice spacing.
Evaluating the temporal correlations of our hadron op-

erators requires combining matrix elements associated
with various quark lines Q. Since we construct our
hadron operators out of covariantly-displaced, smeared
quark fields, each and every quark line in our computa-
tion involves the following product of matrices:

Q = D(j)SΩ−1SD(k)†, (9)

where Ω = γ4K and D(i) is a gauge-covariant displace-
ment of type i. The displacement type can be trivial (no
displacement), a displacement in a given single spatial di-
rection on the lattice by some number of links (typically
three), or a combination of two or more spatial lattice di-
rections. The use of Ω = γ4K is convenient for ensuring
baryon correlation matrices that are Hermitian.
An exact treatment of such a quark line is best accom-

plished by writing

Q = D(j)Vs (V †
s Ω

−1Vs) V
†
s D

(k)†, (10)
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FIG. 3: The effect of the spatial lattice volume on the eigen-
values of the gauge-covariant Laplacian operator. λn is the

n-th lowest eigenvalue of −∆̃ on a given time slice. The er-
ror bars show the variation over different time slices and over
a set of Nf = 2 + 1 configurations. The lattice spacings as
are both near 0.12 fm, and the pion masses are both near
0.70 GeV. Link smearing with nξ = 10 iterations and staple
weight ξ = 0.1 was used. For the 123 lattice, there are nine
eigenvalues between 0.3 and 0.4, whereas for the 163 lattice,
there are 22 eigenvalues between 0.3 and 0.4, demonstrating
that the density of eigenvalues is proportional to the spatial
volume of the lattice (at sufficiently high values). The lowest-
lying modes do not change very much with the lattice volume.

then one needs to compute and store only the elements of
the much smaller matrix V †

s Ω
−1Vs instead of computing

and storing a very large number of Ω−1 elements. Let
Nd = 4 denote the number of Dirac spin components,

and define y
(i,α)
cβ (x) = Vs(c, x; i) δαβ, where α, β are spin

indices, c indicates color, x is a lattice site, and i refers
to the column of Vs which is the i-th eigenvector of the
Laplacian. Then solving the linear system Ωx = y(i,α)

for x and all i, α by standard methods yields Ω−1V
(i)
s .

Hence, NvNtNd such inversions are required in order to
obtain the full matrix V †

s Ω
−1Vs for each quark mass and

each gauge configuration in the Monte Carlo ensemble.
If only one source time slice is used in the hadron cor-
relators, then NvNd inversions are required per quark
mass per gauge configuration. Once multi-hadron oper-
ators are included, however, sink-to-sink quark lines are
needed, so NvNsnkNd inversions must be done, where
Nsnk is the number of sink times. Generally, a hand-
ful of hadron source times are used to improve statistics,
so upon including multi-hadron operators, one finds that
the number of inversions needed in practice ends up near
NvNtNd.
Solving the linear systems Ωx = y is a major compo-

nent of the computational cost of evaluating the hadron
correlators once a Monte Carlo ensemble is generated.
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FIG. 4: The small effect of the light-quark mass on the eigen-
values of the gauge-covariant Laplacian operator. λn is the

n-th lowest eigenvalue of −∆̃ on a given time slice. The error
bars show the variation over different time slices and over a
set of Nf = 2+1 configurations on a 163×128 anisotropic lat-
tice with as ∼ 0.12 fm for link smearing nξ = 10 and ξ = 0.1.

It turns out that the number Nv of required eigenvec-
tors on each time slice rises in direct proportion to the
spatial volume of the lattice, as shown in Fig. 3. The
number of eigenvectors is also fairly insensitive to the
light quark mass, as shown in Fig. 4. Initial calculations
on 163 lattices with spatial spacing as ≈ 0.12 fm showed
that Nv = 32 worked well. On 203 lattices, Nv = 64
was needed, and for the 243 × 128 lattices used in this
study, we found that Nv = 112 levels were below the
σ2
s cutoff. We have generated gauge configurations on

323 × 256 anisotropic lattices. On these lattices, we find
that Nv = 264, so the number of inversions needed be-
comes NvNtNd > 270, 000 for each configuration and
each quark mass, which is far too large to be feasible
with current computing resources.

Fortunately, an exact treatment of the quark lines is
not needed. In fact, we have found that exact treatment
of the quark lines is very wasteful. Given our use of the
Monte Carlo method to evaluate the path integrals over
the gauge link variables, the statistical errors in our es-
timates of the hadron correlators are ultimately limited
by the statistical fluctuations arising from the gauge-field
sampling. Thus, we only need to estimate the quark lines
to an accuracy comparable to the gauge noise from the
Monte Carlo method. Such estimates can be obtained
with far fewer inversions than required by an exact treat-
ment of the quark lines.

Random noise vectors η which satisfy E(ηi) = 0 and
E(ηiη

∗
j ) = δij , where E() denotes an expected value as

defined in probability theory, are useful for stochastically
estimating the inverse of a large matrix Ω as follows. As-

sume that for each of NR noise vectors, we can solve the
following linear system of equations: ΩXr = ηr for Xr,
where r labels the noise vectors r = 1, 2, · · · , NR. Then
Xr = Ω−1ηr, and E(Xiη

∗
j ) = Ω−1

ij so that a Monte Carlo

estimate of Ω−1
ij is given by Ω−1

ij ≈ N−1
R

∑NR

r=1X
r
i η

r∗
j .

Unfortunately, this equation usually produces stochastic
estimates with variances which are much too large to be
useful. Variance reduction is done by diluting the noise
vectors[23–25]. A given dilution scheme can be viewed as
the application of a complete set of projection operators
P (b). Define ηr[b] = P (b)ηr, and define Xr[b] as the solu-
tion of ΩXr[b] = ηr[b], then a much better Monte Carlo
estimate of Ω−1

ij is

Ω−1
ij ≈ 1

NR

NR∑

r=1

∑

b

X
r[b]
i η

r[b]∗
j . (11)

The dilution projections ensure exact zeros for many of
the E(ηiη

∗
j ) elements instead of estimates that are only

statistically zero, resulting in a dramatic reduction in the
variance of the Ω−1 estimates. The use of ZN noise en-
sures zero variance in our estimates of the diagonal ele-
ments E(ηiη

∗
i ). The effectiveness of the variance reduc-

tion depends on the projectors chosen.
Earlier stochastic methods[26, 27] introduced noise in

the full spin-color-space-time vector space, that is, on
the entire lattice itself. However, since we intend to use
Laplacian Heaviside quark-field smearing, an alternative
is possible: noise vectors ρ can be introduced only in the

LapH subspace. The noise vectors ρ now have spin, time,
and Laplacian eigenmode number as their indices. Color
and space indices get replaced by Laplacian eigenmode
number. Again, each component of ρ is a random ZN

variable so that E(ρ) = 0 and E(ρρ†) = Id, where Id
is the identity matrix. Dilution projectors P (b) are now
matrices in the LapH subspace. In the stochastic LapH
method, a quark line on a gauge configuration is evalu-
ated as follows:

Q = D(j)SΩ−1SD(k)†,

= D(j)SΩ−1VsV
†
s D

(k)†,

=
∑

bD
(j)SΩ−1VsP

(b)P (b)†V †
s D

(k)†,

=
∑

bD
(j)SΩ−1VsP

(b)E(ρρ†)P (b)†V †
s D

(k)†,

=
∑

b E
(
D(j)SΩ−1VsP

(b)ρ (D(k)VsP
(b)ρ)†

)
. (12)

Displaced-smeared-diluted quark source and quark sink
vectors can be defined by

̺[b](ρ) = D(j)VsP
(b)ρ, (13)

ϕ[b](ρ) = D(j)SΩ−1 VsP
(b)ρ, (14)

and each quark line on a given gauge configuration can
be estimated using

Q(AB)
uv ≈ 1

NR
δAB

NR∑

r=1

∑

b

ϕ[b]
u (ρr) ̺[b]v (ρr)∗, (15)
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where the subscripts u, v are compound indices combin-
ing space, time, color, spin, and quark displacement type,
B is the flavor of the source field and A is the flavor of
the sink field. The above quark line estimate has the
form of an outer product expansion. Such estimates are
frequently used in the compression of digital images, so
the stochastic LapH estimate can be viewed as a lossy
compression of the quark propagation.
Occasionally, it is useful to estimate a quark line using

γ5-Hermiticity to switch the source and sink. UsingK† =
γ5Kγ5, it is straightforward to see that another way to
estimate a quark line is using

Q(AB)
uv ≈ 1

NR
δAB

NR∑

r=1

∑

b

̺[b]u (ρr) ϕ[b]
v (ρr)∗, (16)

defining

̺(ρ) = −γ5γ4̺(ρ), ϕ(ρ) = γ5γ4ϕ(ρ). (17)

Eqs. (15) and (16) are meant to be used inside Monte
Carlo estimates of path integrals over the gauge link vari-
ables. To simplify matters, the Monte Carlo within a
Monte Carlo computation can be combined into a single
larger Monte Carlo calculation over both gauge link vari-
ables and quark line noises, effectively setting NR = 1
for each gauge configuration. However, each quark line
in a hadron correlator needs an independent noise to en-
sure unbiased estimation. For example, a baryon correla-
tor requires at least three noises per gauge configuration.
Once inversions are done for a handful of such noise vec-
tors for a given configuration, noise permutations can be
used to increase statistics.
The dilution projectors we use are products of time di-

lution, spin dilution, and LapH eigenvector dilution pro-
jectors. The full projector index b = (bT , bS, bL) is a
triplet of indices, where bT is the time projector index, bS
is the spin projector index, and bL is the LapH eigenvec-
tor projector index. Our noise-dilution projectors have
the form

P
(b)
tαn; t′α′n′ = P

(bT )
t;t′ P

(bS)
α;α′ P

(bL)
n;n′ , (18)

where t, t′ refer to time slices, α, α′ are Dirac spin in-
dices, and n, n′ are LapH eigenvector indices. For each
type (time, spin, LapH eigenvector) of dilution, we stud-
ied four different dilution schemes. Let N denote the
dimension of the space of the dilution type of interest.
For time dilution, N = Nt is the number of time slices
on the lattice. For spin dilution, N = 4 is the number
of Dirac spin components. For LapH eigenvector dilu-
tion, N = Nv is the number of eigenvectors retained on
each time slice. The four schemes we studied are defined
below:

P
(b)
ij = δij , b = 0, (no dilution)

P
(b)
ij = δij δbi, b = 0, . . . , N − 1 (full dilution)

P
(b)
ij = δij δb, ⌊Ji/N⌋ b = 0, . . . , J − 1, (block-J)

P
(b)
ij = δij δb, i mod J b = 0, . . . , J − 1, (interlace-J)
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−½
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σ/
σ gn

LapH noise
lattice noise

C(t=5) triply-displaced-T nucleon

FIG. 5: Comparison of the new stochastic LapH method (tri-
angles) with the earlier stochastic method using noise on the
full lattice (squares) for the correlator C(t = 5) of a triply-
displaced-T nucleon operator on a 163 × 128 lattice. The
vertical scale is the ratio of statistical error σ (with no aver-
aging over the six permutations of the three noises) over the
error in the gauge-noise limit σgn, and in the horizontal scale,
ND is the number of Dirac-matrix inversions per source per
quark line. Each point shows an error ratio using a particular
dilution scheme. The LapH points lie significantly below the
results from the lattice noise method, indicating a dramatic
variance reduction.

where i, j = 0, . . . , N − 1, and we assume N/J is an inte-
ger. Note that each projector is a diagonal matrix with
some or all of the diagonal elements set to unity and all
other elements vanishing. We use a triplet (T, S, L) to
specify a given dilution scheme, where “T” denote time,
“S” denotes spin, and “L” denotes LapH eigenvector di-
lution. The schemes are denoted by 1 for no dilution, F
for full dilution, and BJ and IJ for block-J and interlace-
J , respectively. For example, full time and spin dilution
with interlace-8 LapH eigenvector dilution is denoted by
(TF, SF, LI8).

Introducing noise in this way produces correlation
functions with significantly reduced variances, as shown
in Fig. 5. Let C(t) denote the correlation function of
a representative triply-displaced-T nucleon operator at
temporal separation t. Let σgn represent the statisti-
cal error in C(t = 5) using exactly-determined slice-to-
slice quark propagators. In other words, σgn arises solely
from the statistical fluctuations in the gauge configura-
tions themselves (the gauge noise limit). Let σ denote the
error in C(t = 5) using stochastic estimates of the quark
propagators. The vertical axis in Fig. 5 is the ratio of
the statistical error σ in C(t = 5) over σgn. Results are
shown for a variety of different dilution schemes. In the
lattice noise method, variance reduction is achieved with
projectors which dilute in the time, spin, and color in-
dices. Simple spatial dilutions are also used. The squares
show results for dilution schemes with noise introduced
in the larger spin-color-space-time vector space, and the
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FIG. 6: Comparison of the new stochastic LapH method on
163 (triangles) and 203 (squares) lattices for the correlator
C(t = 5) of a triply-displaced-T nucleon operator. The ver-
tical scale is the ratio of statistical error σ (with averaging
over the six permutations of the three noises) over the er-
ror in the gauge-noise limit σgn, and in the horizontal scale,
ND is the number of Dirac-matrix inversions per source per
quark line. Each point shows an error ratio using a partic-
ular dilution scheme. The number of Laplacian eigenvectors
needed is 32 on the 163 lattice and 64 on the 203 lattice. The
leftmost points correspond to the dilution scheme (TF, SF,
LI8). For this scheme, σ/σgn = 1.31 on the 163 lattice and
σ/σgn = 1.32 on the 203 lattice. For 100 configurations, the
ratio of the fractional error in the gauge noise limit of this
quantity for the 203 lattice over that for the 163 lattice is
approximately 0.73.

triangles show results for different dilution schemes using
noise introduced only in the LapH subspace. The trian-
gles show nearly an order of magnitude reduction in the
statistical error, compared to the square symbols. The
correlator for other time separations t and for a variety
of other hadron operators were also examined. All of the
observables we studied showed the same dramatic reduc-
tion in the variance using the new LapH-noise method
compared to the lattice-noise method.

The number of Dirac matrix inversions needed in the
stochastic LapH method to achieve a target statistical
precision was found to be insensitive to the spatial vol-
ume, despite the rapid increase in the number of LapH
eigenvectors. Calculations on a 163 and a 203 lattice were
carried out and the ratios σ/σgn for various correlators at
various time separations were compared. The error ratios
for the representative triply-displaced-T nucleon correla-
tor for time separation t = 5 on a 163 lattice (triangles)
are compared to those from a 203 lattice (squares) in
Fig. 6. For the (TF, SF, LI8) dilution scheme, we found
σ/σgn = 1.31 for this quantity on the 163 lattice and
σ/σgn = 1.32 on the 203 lattice. Not only is the equality
of these ratios on the two volumes remarkable, but also
their closeness to unity is striking. Keep in mind that
the number of Laplacian eigenvectors needed doubles in

going from the smaller to the larger volume. These re-
sults show that once a sufficient number of dilution pro-
jectors are used, the number of inversions required by
the stochastic LapH method does not increase with the
lattice volume and are sufficient to essentially reach the
gauge noise limit. Additional inversions of the Dirac ma-
trix are totally unnecessary since they do not lower the
error any further. Other time separations and a variety
of other hadron operators were also studied and led to
the same conclusions.
Different dilution schemes were explored using 163,

203, and 243 spatial lattices with spacing as ∼ 0.12 fm
and light quark masses yielding pion masses ranging from
240 MeV to 500 MeV, and we have found that the scheme
(TF, SF, LI8) produces variances near that of the gauge
noise limit for correlators which involve only quark lines
that connect the source and sink time slices. Interlace-J
and block-J were observed to work equally well for spin
and LapH eigenvector dilutions. For correlators which in-
volve quark lines that originate and terminate at the final
sink time, the dilution scheme (TI16, SF, LI8) was found
to work well. The interlacing in time enables us to evalu-
ate quark lines that originate on any time slice. Results
for several isoscalar correlators using (TI32, SF, LI8) on
20 configurations were compared with (TI16, SF, LI8)
and no differences in the variances were discernible, sug-
gesting the gauge noise limit has essentially been reached.
In the stochastic LapH method, the number of times

that Ωx = y must be solved is NρNP for each gauge-
field configuration, where Nρ is the number of ZN noises
used and NP is the number of dilution projectors. Us-
ing full time dilution (with four choices of source time
t0), full spin dilution and interlace-8 LapH eigenvector
dilution, then the t0-to-tF (for sink time tF ) quark lines
require 128 inversions for each noise on each configura-
tion. To accommodate a baryon-meson system, at least
5 noises for these quark lines are needed. The tF -to-
tF quark lines use interlace-16 time dilution, full spin
dilution, and interlace-8 LapH eigenvector dilution, re-
quiring 512 inversions per noise per configuration. Two
noises are required for these quark lines. Hence, a total
of 5× 128 + 2× 512 = 1664 inversions per configuration
are needed to compute all baryons and mesons composed
of u, d quarks. This number of inversions is the same
for both the 243 and 323 lattices that we plan to use.
An exact treatment of the quark propagation requires
57,344 inversions per configuration on 243 × 128 lattices
for Nv = 112 and 270,336 inversions per configuration on
323 × 256 lattices for Nv = 264.

III. TEMPORAL CORRELATIONS OF
HADRON OPERATORS

Details on how the temporal correlations of hadron op-
erators are evaluated using the stochastic LapH method
are presented in this section. We limit our attention
to four cases: baryon to baryon, meson to meson, two-
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meson to meson, and two-meson to two-meson systems.
Other source to sink cases are straightforward general-
izations of the four examples below.

A. Baryon to baryon correlations

All of our hadrons are assemblages of basic building
blocks which are covariantly-displaced, LapH-smeared
quark fields:

qAaαj = D(j)ψ̃(A)
aα , qAaαj = ψ̃

(A)

aα γ4D
(j)†, (19)

where a is a color index, α is a Dirac spin component, j is
a displacement type, and A is a quark flavor. To simplify
notation, the Dirac spin component and the displacement
type are combined into a single index in what follows.
Each baryon operator destroying a three-momentum

p is a linear superposition of so-called elemental three-
quark operators, which are gauge-invariant terms of the
form

ΦABC
αβγ (p, t) =

∑

x

e−ip·xεabc q
A
aα(x, t) q

B
bβ(x, t) q

C
cγ(x, t).

The “barred” three-quark elemental operators which cre-
ate a momentum p have the form

Φ
ABC

αβγ (p, t) =
∑

x

eip·xεabc q
C
cγ(x, t) q

B
bβ(x, t) q

A
aα(x, t).

We use hadron operators which transform irreducibly un-
der all symmetries of the three-dimensional cubic lattice.
Each baryon sink operator, being a linear superposition
of the three-quark elemental operators, has the form

Bl(t) = c
(l)
αβγ ΦABC

αβγ (t), (20)

where l is a compound index comprised of a three-
momentum p, an irreducible representation (irrep) Λ of
the lattice symmetry group, the row λ of the irrep, isospin
and other flavor quantum numbers, and an identifier la-
beling the different operators in each symmetry channel.
The corresponding source operators are

Bl(t) = c
(l)∗
αβγ Φ

ABC

αβγ (t). (21)

The baryon correlation matrix elements are given by

Cll(tF −t0) =
1

Nt

∑

t0

〈 Bl(tF ) Bl(t0) 〉, (22)

where 〈. . .〉 denotes a vacuum expectation value, which is
given by the usual ratio of path integrals over the fermion
and gauge fields Wick-rotated into imaginary time. To
simplify notation, we replace the average over all source
times by a single fixed time t0, exploiting time-translation
invariance, and obtain

Cll(tF −t0) = c
(l)
αβγc

(l)∗

αβγ
〈 ΦABC

αβγ (tF ) Φ
ABC

αβγ (t0) 〉.

Expand the three-quark elemental operators in terms of
the covariantly-displaced smeared quark fields,

Cll(tF −t0) = c
(l)
αβγc

(l)∗

αβγ

∑

xx

εabc εabce
−ip·(x−x)

×〈 qAaα(x, tF ) qBbβ(x, tF ) qCcγ(x, tF )

× qCcγ(x, t0) q
B
bβ
(x, t0) q

A
aα(x, t0) 〉,

where the three-momenta associated with l and l are as-
sumed to be the same p, then evaluate the path integrals
over the Grassmann fields to obtain a sum over products
of quark lines, defining t = tF − t0:

Cll(t) = c
(l)
αβγc

(l)∗

αβγ

∑

xx

εabc εabce
−ip·(x−x)

×
〈
Q(AA)

aα;aαQ
(BB)

bβ;bβ
Q(CC)

cγ;cγ −Q(AA)
aα;aαQ

(BC)
bβ;cγQ

(CB)

cγ;bβ

− Q(AB)

aα;bβ
Q(BA)

bβ;aαQ
(CC)
cγ;cγ −Q(AC)

aα;cγQ
(BB)

bβ;bβ
Q(CA)

cγ;aα

+ Q(AC)
aα;cγQ

(BA)
bβ;aαQ

(CB)

cγ;bβ
+Q(AB)

aα;bβ
Q(BC)

bβ;cγQ
(CA)
cγ;aα

〉

U
,

where time and spatial labels have been omitted, and
〈. . .〉U is an expectation value defined as a ratio of path
integrals over the gauge field U only, using the gauge field
action and the fermion determinant as the path integral
weight. Note that each quark propagator Q connects
each source site x to each sink site x, as well as connect-
ing color and spin components between the source and
sink. Hence, the summations in the above equation are
quite costly to carry out, and must be repeated over and
over again for every pair of baryon operators.
A dramatic simplification of the above equation can be

achieved by using Eq. (15) to estimate each quark line.
The following quantity emerges as a key component of
the resulting estimate:

B[b1b2b3]
l (ϕ1, ϕ2, ϕ3; t) = c

(l)
αβγ

∑

x

e−ip·xεabc

×ϕ[b1]
aαxt(ρ1) ϕ

[b2]
bβxt(ρ2) ϕ

[b3]
cγxt(ρ3), (23)

where b1, b2, b3 are noise dilution projector indices, and
the short-hand notation ϕk = ϕ(ρk) has been used, where
ϕ is the quantity defined in Eq. (14). The baryon corre-
lation matrix element is then given by

Cll(tF −t0) =
〈
B[b1b2b3]
l (ϕ1, ϕ2, ϕ3; tF )

×
(
δABC
ABC B[b1b2b3]

l
(̺1, ̺2, ̺3; t0)

− δACB
ABC B[b1b3b2]

l
(̺1, ̺3, ̺2; t0)

− δBAC
ABC B[b2b1b3]

l
(̺2, ̺1, ̺3; t0)

− δCBA
ABC B[b3b2b1]

l
(̺3, ̺2, ̺1; t0)

+ δCAB
ABC B[b2b3b1]

l
(̺2, ̺3, ̺1; t0)

+ δBCA
ABC B[b3b1b2]

l
(̺3, ̺1, ̺2; t0)

)∗〉

U,ρ
(24)
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FIG. 7: Graphical depiction of Eq. (24) for a baryon cor-
relator C

ll
(tF − t0) with source time t0 and later sink time

tF . Each box represents a baryon function given by Eq. (23)
with the first quark located at the top of the box. Lines con-
necting a ̺ with a ϕ indicate summation over their dilution
projector identifiers. The same noise must be used at the two
ends of any single line, and different noises should be used
for different lines. Any line connecting quarks of different fla-
vors represents a zero value. The asterisks indicate complex
conjugation.

where δDEF
ABC = δADδBEδCF and 〈. . .〉U,ρ indicates an ex-

pectation value over the gauge field U and any ZN noises
ρk. Again, the above equation uses the short-hand nota-
tion ϕk = ϕ(ρk) and ̺k = ̺(ρk), where the quark sinks
ϕ are defined in Eq. (14) and the quark sources ̺ are
defined in Eq. (13). A,B,C are the quark flavors of the
first, second, and third quarks as ordered in the B func-
tions. To increase statistics, an average of the six permu-
tations of the 1, 2, 3 superscripts labeling the quark lines
can be used, and if the masses of all three quark lines are
the same, this requires no further inversions of the Dirac
matrix.
A very useful feature of Eq. (24) is the fact that the

baryon correlator completely factorizes into a function
associated with the sink time slice tF , and another func-
tion associated with the source time slice t0. Summations
over color, spin, and spatial sites at the source have been
completely separated from the color, spin, and spatial
summations at the sink. The stochastic LapH method
leads to complete factorization of hadron sources and
sinks in temporal correlations, which greatly simplifies
the logistics of evaluating correlation matrices involving
large numbers of operators. Eq. (24) also shows that im-
plementing the Wick contractions of the quark lines is
also straightforward. Contributions from different Wick
orderings within a class of quark-line diagrams differ only
by permutations of the noises at either the source or the
sink. In Eq. (24), permutations of the noises at the source
have been used since this is generally much less costly.
Given the plethora of indices, a graphical representa-

tion of the above equation is useful and is shown in Fig. 7.
The quark field ψ is represented by a quark sink ϕ or a
̺, and ψ becomes a ̺ or a ϕ. We represent a baryon
given by Eq. (23) by a box containing the quark sources
or sinks vertically aligned with the first quark on the left
in Eq. (23) located at the top of the box. We use lines
connecting a ̺ with a ϕ (or a ̺ with a ϕ) to denote
summation over the dilution indices associated with the
connected ̺ and ϕ. The same noise must be used at the

t0
l
_δ_

ϕ
_

l
_ I=0 I=0

∗
ϕ

δ

t
l− + ϕ

δ

∗

δϕ
t

l
t0F F

FIG. 8: Graphical depiction of Eq. (33) for a meson correlator
C

ll
(tF −t0) with source time t0 and later sink time tF . Each

box represents a meson function given by Eq. (32) with the
first quark field located at the top of the box. Lines connecting
a ̺ with a ϕ or a ̺ with a ϕ indicate summation over their
dilution projector identifiers. The same noise must be used
at the two ends of any single line, and different noises should
be used for different lines. Any line connecting quarks of
different flavors represents a zero value. The asterisks indicate
complex conjugation. Contributions from the meson internal
lines occur only for isoscalar mesons.

two ends of any single line, and different noises should be
used for different lines.

B. Meson to meson correlations

Each meson operator destroying a three-momentum p

is a linear superposition of quark-antiquark elemental op-
erators which are linear superpositions of gauge-invariant
terms of the form

ΦAB
αβ (t) =

∑

x

e−ip·(x+ 1

2
(dα+dβ))δab q

A
aα(x, t) q

B
bβ(x, t),

(25)
where q, q are defined in Eq. (19), dα,dβ are the spa-
tial displacements of the q, q fields, respectively, from
x, A,B indicate flavor, and α, β are compound indices
incorporating both spin and quark-displacement types.
The phase factor involving the quark-antiquark displace-
ments is needed to ensure proper transformation prop-
erties under G-parity for arbitrary displacement types.
The “barred” operators which create a momentum p then
take the form

Φ
AB

αβ (t) =
∑

x

eip·(x+
1

2
(dα+dβ))δab q

B
bβ(x, t) q

A
aα(x, t).

(26)
Each meson sink operator has the form

Ml(t) = c
(l)
αβ ΦAB

αβ (t), (27)

(or is a flavor combination of the above form), where
again, the l label includes the momentum p, the symme-
try group irrep Λ, the row λ of the irrep, and an identifier
specifying the different operators in each symmetry chan-
nel. The corresponding source operators are

M l(t) = c
(l)∗
αβ Φ

AB

αβ (t). (28)

The meson correlation matrix elements are given by

Cll(tF −t0) =
1

Nt

∑

t0

〈 Ml(tF ) M l(t0) 〉. (29)
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FIG. 9: Computation of the temporal correlation of a two-
meson source at time t0 and a single-meson sink at time tF .
The source mesons are assumed to be non-isoscalars. Each
box represents a meson function given by Eq. (32) with the
first quark field located at the top of the box. Lines connecting
a ̺ with a ϕ or a ̺ with a ϕ indicate summation over their
dilution projector identifiers. The same noise must be used at
the two ends of any single line, and different noises should be
used for different lines. Any line connecting quarks of different
flavors represents a zero value. The asterisks indicate complex
conjugation. The diagram with an internal line contributes
only for isoscalar mesons.

In terms of the elemental operators and using translation
invariance, the above equation becomes,

Cll(tF −t0) = c
(l)
αβc

(l)∗

αβ
〈 ΦAB

αβ (tF ) Φ
AB

αβ (t0) 〉, (30)

using translation invariance to fix to a single t0 for no-
tational convenience. Expand the elemental operators in
terms of the covariantly-displaced smeared quark fields:

Cll(tF −t0) = c
(l)
αβc

(l)∗

αβ

∑

xx

e−ip·(x+ 1

2
(dα+dβ))

×eip·(x+
1

2
(dα+d

β
))〈 qAaα(x, tF ) qBaβ(x, tF )

× qB
aβ
(x, t0) q

A
aα(x, t0) 〉,

where the three-momenta associated with l and l are as-
sumed to be the same p. Next, the path integrals over
the Grassmann fields are carried out, and one obtains,
for t = tF − t0,

Cll(t) = c
(l)
αβc

(l)∗

αβ

∑

xx

e−ip·(x+ 1

2
(dα+dβ))

×eip·(x+
1

2
(dα+d

β
))
〈
−Q(AA)

aα;aα Q(BB)

aβ;aβ

+Q(BA)
aβ;aαQ(AB)

aα; aβ

〉

U
, (31)

omitting time and spatial labels. Eq. (15) or Eq. (16)
can then be used to estimate the two quark propagators.
In the first term, we find that it is advantageous to use
Eq. (16) for the A quark line and Eq. (15) for the B quark
line.
To proceed, define the following meson function:

M[b1b2]
l (̺1, ϕ2; t) = c

(l)
αβ

∑

x

e−ip·(x+ 1

2
(dα+dβ))

×̺[b1]aαxt(ρ1)
∗ ϕ

[b2]
aβxt(ρ2), (32)
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FIG. 10: Computation of the temporal correlation of a two-
meson source at time t0 with a two-meson sink at time tF .
All four mesons are assumed to be non-isoscalars. Each box
represents a meson function given by Eq. (32) with the first
quark field located at the top of the box. Lines connecting
a ̺ with a ϕ or a ̺ with a ϕ indicate summation over their
dilution projector identifiers. The same noise must be used at
the two ends of any single line, and different noises should be
used for different lines. Any line connecting quarks of different
flavors represents a zero value. The asterisks indicate complex
conjugation.

where b1, b2 are noise dilution projector indices, and the
short-hand notation ϕk = ϕ(ρk) has been used again.
The meson correlator is given by

Cll(tF −t0)

=
〈
−δAB

AB M[b1b2]
l (ϕ1, ϕ2; tF ) M[b1b2]

l
(̺1, ̺2; t0)

∗

+ δBB
AA

M[b1b1]
l (̺1, ϕ1; tF ) M[b2b2]

l
(ϕ2, ̺2; t0)

∗
〉

U,ρ
(33)

where δCD
AB = δACδBD. The second term only contributes

to isoscalar mesons. Again, color, spin, and spatial sum-
mations at the sink have completely factorized from the
summations at the source. This equation is graphically
represented in Fig. 8.

C. More complicated correlations

The graphical rules developed in the preceding sections
can be applied to more complicated correlation matrix
elements. The correlation of a two meson source with
a single-meson sink is represented in Fig. 9. The source
mesons are assumed to be non-isoscalars, otherwise there
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would be additional diagrams involving meson internal
lines. The correlation of a two-meson source with a two-
meson sink is illustrated in Fig. 10. All four mesons are
assumed to be non-isoscalars. We apply γ5 Hermiticity
only in cases where a ψ(t0) at the source connects with
a ψ(tF ) at the sink. Full time dilution is the best choice
for all quark lines connecting t0 and tF and t0 to t0. For
all tF -to-tF quark lines, interlacing in source time must
be used.
To evaluate any correlation matrix element using the

stochastic LapH method, one first must identify the vari-
ous hadron functions that are needed and calculate them
using Eqs. (23) and (32). These can be evaluated for a
large set of hadron operators and stored on disk. The
quark propagators are needed only at this stage of the
computation. All color contractions and spatial sums
are carried out in evaluating the hadron functions. Each
hadron function for a given choice of noises takes up very
little space on disk since each is an array over time and
dilution indices only. The correlation matrix elements
are then combinations of the different hadron functions
for different noise selections. These final contractions in-
volve only summations of dilutions indices. In this way,
a large number of correlation matrices can be evaluated
very efficiently.

IV. IMPLEMENTATION DETAILS

Our software is written in C++ and links to the
USQCD QDP++/Chroma library[28]. Parts of our com-
putations must be done using the full four-dimensional
lattice, but other parts are best handled time slice by
time slice in three dimensions. QDP++ does not handle
both three and four dimensional lattices simultaneously,
so the different parts of the computations were done in
separate runs using both 3d and 4d versions of our soft-
ware. Special input/output routines were written to en-
able 4d QDP++ to read and write 3d time slices of the
lattice.
Our computations are done as a sequence of tasks for

each gauge configuration in the Monte Carlo ensemble.
In the first task, the spatial links of the gauge configu-
ration are smeared using the stout-link procedure. This
task is done using a four-dimensional version of our soft-
ware, but the smeared spatial links are written to disk
as individual time slices suitable for input to the three-
dimensional version of our software. In the second task,
computation of the Laplacian eigenvectors is done time
slice by time slice in three dimensions. In the third
task, the eigenvectors for the different time slices are re-
organized into four-dimensional eigenvectors correspond-
ing to the different eigenvalues. The fourth task is the
computation of the quark propagators. The inversions
of the Dirac matrix must be done using the full four-
dimensional lattice, but our results are written to disk
once again as three-dimensional time slices. Formation
of the hadron sources and sinks is accomplished in the

fifth task using the three-dimensional version of our soft-
ware. All of our hadron operators have definite three
momenta which involve summations over all spatial sites
of the lattice, so the resulting hadron sources and sinks
are no longer lattice quantities. The final task is the
assembly of the hadron sinks and sources to form the
hadron correlation functions which can be accomplished
using a serial version of our software.

The eigenvectors of the gauge-covariant Laplacian are
evaluated using a Krylov-Spectral Restarted Lanczos
(KSRL) method which is a modification of the thick
restarted Lanczos method described in Ref. [29]. Let A
denote a Hermitian matrix whose lowest-lying or highest-
lying eigenvectors are sought. Given a starting vector u,
the KSRL method begins by constructing a Krylov space
spanned by vectors u,Au,A2u, . . . , Amu. The submatrix
of A defined in this basis is then diagonalized, and the
eigenvalues and eigenvectors of this submatrix, known
as the Ritz values and Ritz vectors, are approximations
to those of the full matrix A. Convergence to the ex-
act eigenpairs occurs as the Krylov space dimension in-
creases, but a better procedure is to stop the growth of
the Krylov space at some point, typically just above the
number of desired eigenpairs, and restart the procedure
using a different starting vector or vectors. The use of a
certain number of Ritz vectors to restart the procedure is
known as Krylov-Spectral restarting. Key issues in the
method are determining how many Ritz vectors to use
in restarting, determining the size of the Krylov space to
use, and maintaining orthogonality of the Lanczos vec-
tors in finite-precision mathematics.

In our calculations, we use either a random vector or
the vector whose components are all equal for the start-
ing vector. Full global reorthogonalization is used at all
steps. The decision to reorthogonalize multiple times is
based on a simple criterion[30]: if the norm of the vector

decreases by 1/κ, where κ =
√
2, then further reorthgo-

nalization is done. A maximum of four reorthogonaliza-
tions is enforced. Equation 5 in Ref. [31] is used to choose
the number of Ritz vectors to keep, except that the num-
ber must be at least as large as the number of converged
vectors and cannot exceed the dimension of the Krylov
space minus the number of converged and locked vectors
minus twelve. For an approximate eigenvector x (with
unit norm) and an estimate λ of its corresponding eigen-
value, the residual norm is defined by r = ||Ax − λx||.
An eigenpair is considered converged when r < tol||A||,
where tol is the desired tolerance and the matrix 2-norm
is defined by ||A|| = maxx 6=0 ||Ax||/||x||, and can be es-
timated by the largest absolute value of any Ritz value
encountered in the computation.

In calculating the eigenvectors of ∆̃, Chebyshev accel-

eration is used. The eigenvalues of −∆̃ are all real and
lie between 0 and some maximum value denoted by λL.
We wish to determine the eigenvectors corresponding to
the lowest-lying eigenvalues lying between 0 and some
cutoff λC . The rate of convergence to solution increases
with the spacing between the levels. Convergence is much
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FIG. 11: Masses mfit(t) obtained by fitting the correlators for single-site π,Ω, N operators to a cosh(exponential) form for the
π(Ω, N) in the temporal range tmin to tmax. Results are shown for different tmin with tmax fixed to the value stated in the lower
left corner of each plot. Open symbols indicate unacceptable fit qualities, and solid symbols show results with acceptable fit
qualities Q. The top row shows results using 551 configurations of the 390 ensemble on a 243 × 128 lattice, and the bottom
row shows results with 584 configurations of the 240 ensemble on a 243 × 128 lattice. The dilution scheme (TF, SF, LI8) is
used with four widely-separated source times t0 on each configuration. The fit value given in each plot corresponds to the fit
indicated by the red point.

faster for widely spaced levels. Hence, convergence can
be accelerated by transforming the spectrum so that the
desired part of the spectrum is more widely spaced. The
following transformation is applied first:

B = 1 +
2

(λL − λC)

(
∆̃ + λC

)
. (34)

The above transformation maps the unwanted spectrum
to the range −1 · · · 1, and the desired part lies above 1.
Chebyshev polynomials are then applied:

A = Tn(B). (35)

Eigenvalues lying between -1 and 1 stay between -1..1,
and the desired eigenvalues above 1 get spaced out to
large and widely-separated values above 1. The lowest-

lying eigenvalue of −∆̃ becomes the highest-lying eigen-
value of A. Transforming the desired levels to the re-
gion above 1 is most convenient since it allows the use
of Chebyshev polynomials of any order, both even and

odd. The Chebyshev polynomials are applied using the
following recurrence relation:

T0(x) = 1, T1(x) = x, (36)

Tn(x) = 2x Tn−1(x)− Tn−2(x). (37)

For calculations done on our anisotropic 243× 128 lat-
tices, we need to compute the lowest-lying Nv = 112
eigenvectors on each time slice. A Krylov space dimen-
sion of 160 was found to work well, and λL = 15 and
λC = 0.5 were appropriate. Chebyshev polynomials of
order 8 were used, and the residual tolerance was set to
10−9. Convergence of all Nv levels occurred within a
dozen or less restarts.
The LapH eigenvectors are uniquely determined only

to within an overall phase. Given the way in which ZN

noise is injected in the LapH subspace, one sees that
a given quark line is not invariant under a change of
the phase multiplying each eigenvector (due to the off-
diagonal pieces not being exactly zero). It turns out that
changing the phase is equivalent to changing the noise by
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FIG. 12: Products of at and the nucleon and Ω-baryon masses
against (mπ/mΩ)

2 for fixed β = 1.5, ms = −0.0743 and vary-
ing mu = md. The two leftmost points for each baryon
are from this work, and the three rightmost points are from
Ref. [32]. The vertical dashed line indicates the physical value
of (mπ/mΩ)

2.

a U(1) phase. This is not a problem, but erroneous re-
sults can occur if the original eigenvector files used to de-
termine the quark sinks get deleted and the eigenvectors
have to be reconstructed for making the hadrons. With
different run parameters, the eigensolver could produce a
different phase. The introduction of a phase convention
eliminates this potential problem.

Once the needed eigenvectors of the Laplacian are com-
puted and stored, the next step is to compute all ele-
ments of V †

s Ω
−1VsP

[b]ρr. There are only NtNv elements
to store for each noise r and each dilution projector b, so
storage of these quark propagation coefficients is modest.
Disk storage is actually dominated by the LapH eigen-
vectors. Another nice feature is the fact that the quark
propagation coefficients are gauge invariant, as long as
the eigenvector phases are handled appropriately. Solv-
ing Ωx = y for x with y = VsP

[b]ρr is accomplished
using a mixed-precision improved version of the bicon-
jugate gradient method with even-odd preconditioning.
This was found to be the fastest inverter available in
Chroma. Occasionally convergence is not achieved, and
a slower conjugate gradient solver is applied to the sys-
tem Ω†Ωx = Ω†y.

Our correlator estimates and their variances are insen-
sitive to the value of N used for the ZN noise, as long
as N is not too small. We found that N = 4 produced
results indistinguishable in quality from those of larger
N . Hence, we use Z4 noise in all of our computations.
We identify a Z4 noise vector for an ensemble of gauge

configurations by a 16-bit unsigned integer s. To create
a noise vector ρ(s) for a gauge configuration labeled by
an RHMC trajectory number k (assumed to have a value
ranging from 0 to 216−1), a 32-bit unsigned integer m is
first formed in a particular manner using the 16 binary
digits of s and the 16 bits of k. Although the procedure of
forming m is arbitrary, the same procedure must be used
in every instance. The 32-bit unsigned integer m is then
taken as a seed to the 32-bit Mersenne twister random
number generator which is used to create the Z4 noise
ρ(s)(t, i, α) for each LapH eigenvector, labeled by time
t and level i, and for each spin index α. The elements
of ρ(s) are generated in a particular order that is always
the same. Each Z4 element is chosen using the sequence
of bits obtained from the current state of the Mersenne
twister, taking two bits at a time. It was found that the
linear congruential generator in QDP++/Chroma is not
adequate for generating the Z4 noise and leads to serious
errors in some instances.

V. INITIAL APPLICATIONS

Our initial development of the stochastic LapH method
was done using a small 163 spatial lattice which is not
very interesting for hadron physics. Since the main rea-
son for pursuing the method is to apply it on large lattices
for both single-hadron and multi-hadron correlators, we
proceeded to test the method by studying several simple
hadronic systems requiring sink-to-sink quark lines on a
reasonably large 243×128 anisotropic lattice having spa-
tial volume (3 fm)3.
Two ensembles of gauge configurations were used.

These ensembles were generated using the Rational
Hybrid Monte Carlo (RHMC) algorithm[33], which is
a variant of the hybrid molecular-dynamics (HMC)
algorithm[34] suitable for Nf = 2+ 1 quark flavors. The
updating algorithm is a Metropolis method with a so-
phisticated means of proposing a global change to the
gauge and pseudofermion fields. A fictitious momentum
is introduced for each link variable with a Gaussian dis-
tribution and Hamilton’s equations involving these mo-
menta and the original action as a potential energy are
approximately solved for some length of fictitious time,
known as an RHMC trajectory. An improved anisotropic
clover fermion action and an improved gauge field ac-
tion were used[32]. In both ensembles, β = 1.5 is used
and the s quark mass parameter is set to ms = −0.0743
in order to reproduce a specific combination of hadron
masses[32]. In one ensemble, the light quark mass pa-
rameters are set to mu = md = −0.0840 so that the pion
mass is around 390 MeV using one particular way of set-
ting the scale, discussed below. In the other ensemble,
mu = md = −0.0860 are used, resulting in a pion mass
around 240 MeV. We refer to these ensembles as the 390
and 240 ensembles, respectively.
We calculated the masses of the pion, the nucleon, and

the Ω-baryon. Our results are shown in Fig. 11 for the
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FIG. 13: Correlators C(t) against temporal separation t for single-site operators which produce the isoscalar pseudoscalar (PS),
vector (V), and scalar (S) mesons. Results in the top row were obtained using 210 configurations (135 for the scalar channel) of
the 390 ensemble. Results in the bottom row were obtained using 198 configurations of the 240 ensemble. In the legends, “fwd”
refers to contributions from the diagram containing only forward-time source-to-sink quark lines, “smt” refers to contributions
from the diagram containing only quark lines that originate and terminate at the same time. For the scalar channel, the “smt”
contribution has a vacuum expectation value subtraction. Forward-time quark lines use dilution scheme (TF, SF, LI8) and
same-time quark lines use (TI16, SF, LI8). The lattice size is 243 × 128 for all the results shown here.

two ensembles on a 243× 128 lattice. This figure demon-
strates that the use of our stochastic estimates of the
smeared quark propagators still leads to high accuracy
results of standard quantities. The nucleon and Ω-baryon
masses times at are shown in Fig. 12 against (mπ/mΩ)

2.
Results from Ref. [32] are also included in this figure.
Our goal in this work is simply to present and test the
stochastic LapH method, so we defer a detailed analy-
sis of these results until a later publication. However,
it is encouraging that fitting the three leftmost Ω-baryon
points to a form linear in (mπ/mΩ)

2 and fitting the three
leftmost nucleon points to an empirical form linear in
mπ/mΩ yields mN/mΩ ≈ 0.556 at the physical value of
mπ/mΩ, which compares well with the observed 0.561
value.

Our calculations determine all hadron masses in terms
of the temporal lattice spacing at. In order to express the
hadron masses in terms of MeV, a value of a−1

t must be
specified using an appropriate renormalization scheme.
Away from the physical point, different renormalization

schemes will lead to different choices of a−1
t . One partic-

ular scheme that has been used in the past uses the mass
of the Ω baryon to set the scale when the strange quark
mass is close to the value that reproduces the physical
value of (2m2

K − m2
π)/m

2
Ω. Using this scheme, we find

an inverse temporal spacing a−1
t = 5.661(17) GeV for

the 390 ensemble and a−1
t = 6.015(17) GeV for the 240

ensemble. Since the ratio of spatial spacing over tempo-
ral spacing has been tuned to a value near 3.5, we have
as ∼ 0.12 fm for both of these ensembles. Our values for
the pion and nucleon masses are mπ = 0.3911(14) GeV
and mN = 1.1781(58) GeV on the 390 ensemble, and
mπ = 0.2439(20) GeV and mN = 1.048(14) GeV on the
240 ensemble. An alternative scale-setting scheme would
be to extrapolate the Ω-baryon mass results for different
mu,md but fixed β,ms to the physical value of mπ/mΩ

using a form linear in (mπ/mΩ)
2 motivated by heavy

baryon chiral perturbation theory, then use the Ω mass
to determine a−1

t . Doing this yields a−1
t ∼ 6.3 GeV and

pion masses 250 and 430 MeV for our two ensembles.
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FIG. 14: Masses mfit(t) obtained by fitting the correlators C(t) shown in Fig. 13 to a cosh form in the temporal range tmin to
tmax. Results are shown for different tmin with tmax fixed to the value stated in the lower left corner of each plot. Open symbols
indicate unacceptable fit qualities, and solid symbols show results with acceptable fit qualities Q. The top row corresponds to
the 390 ensemble, and the bottom row corresponds to the 240 ensemble. The left-hand-side plots show results for the η and
π pseudoscalar mesons, and the right-hand-side plots show results for the ω and ρ vector mesons. The scalar channel is not
shown here since a reliable extraction of the lowest-lying energy in this channel needs a two-pion operator. The lattice size is
243 × 128 for all the results shown here.

Results for the isoscalar mesons in the pseudoscalar,
vector, and scalar channels and the two-pion system of
total isospin I = 0, 1, 2 are presented in Figs. 13, 14, 15,
and 16. In these results, the dilution scheme (TF, SF,
LI8) is used for all quark lines connecting source time t0
to the sink time tF and t0 to t0. Four widely-separated
source times t0 were used on each gauge configuration.
For all tF -to-tF quark lines, the dilution scheme (TI16,
SF, LI8) is used. Observables are evaluated using con-
figurations separated by nsep RHMC trajectories, where
nsep = 20 for the two-pion correlators and nsep = 40 for
the isoscalar meson correlators. Jackknife binning shows
autocorrelations to be suitably small.

Our goal here is simply to test the stochastic LapH
method, so simple single-site operators involving only the
light u, d quarks are used for the isoscalar mesons, and
single-site pion operators are used to make the two-pion

states with zero and non-zero relative momenta. The
temporal correlations of such simple operators have sig-
nificant contaminations from higher-lying states, so that
the effective masses associated with these correlations
tend to a plateau rather slowly. Future work will make
use of more sophisticated spatially-extended operators.
The issue of mixing with ss operators is not addressed
in these tests, and no vacuum-expectation-value subtrac-
tion is used for the η correlator. In chirally-symmetric
fermion formulations, the expectation value of the un-
smeared, isosinglet pseudoscalar operator would be pro-
portional to the topological charge, which has notoriously
long autocorrelation times and may not be sampled prop-
erly in a Monte Carlo simulation[35, 36]. This can show
up as a non-zero vacuum expectation value for the η,
which disappears as the volume increases. Our test re-
sults do not take such effects into account, but future
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FIG. 15: Correlators C(t) against temporal separation t for two-pion operators with total isospin I = 0, 1, 2 and zero total
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obtained using 584 configurations of the 240 ensemble. In the legends, “fwd” refers to contributions from diagrams containing
only forward-time source-to-sink quark lines, “smt” refers to contributions from diagrams containing only quark lines that
originate and terminate at the same time, and “box” refers to diagrams containing both kinds of quark lines. Forward-time
quark lines use dilution scheme (TF, SF, LI8) and same-time quark lines use (TI16, SF, LI8). The lattice size is 243 × 128 for
all the results shown here.

work will investigate this.

In Fig. 13, the contributions to the isoscalar tempo-
ral correlations C(t) from the diagram containing only
forward-time source-to-sink quark lines are shown with
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FIG. 16: Energies Efit(t) obtained by fitting the correlators
C(t) shown in Fig. 15 to a cosh + constant form in the tem-
poral range tmin to tmax. Results are shown for different tmin

with tmax fixed to the value stated in the lower left corner of
the figure. Open symbols indicate unacceptable fit qualities,
and solid symbols show results with acceptable fit qualities
Q. These results were obtained using 584 configurations of
the 240 ensemble. The horizontal dashed lines indicate the
energy of two free pions at rest. The lattice size is 243 × 128.

label “fwd”, and the contributions from the diagram con-
taining only quark lines that originate and terminate at
the same time are shown with label “smt”. The total
correlator is also shown in each case. In the vector chan-
nel, the contribution from the same-time diagram is very
small and the total correlator can barely be distinguished
from the forward-line diagram contribution, so the “fwd”
contribution is not shown. In the scalar channel, the ac-
curacy of the “smt” contribution is particularly remark-
able since a large vacuum expectation value has been
subtracted.

The correlators in Fig. 13 were used to extract various
isoscalar meson masses. The pion and ρ masses can be
obtained from the forward-line contributions to the pseu-
doscalar and vector correlators, respectively. Correlated-
χ2 fits to A(e−mt + e−m(Nt−t)) for temporal separations
between tmin and tmax were done to extract the masses
of the particles. Jackknife sampling was used to estimate
the data covariance matrix, and bootstrap sampling was
used to compute the uncertainties in the fit parameters.
Results are shown in Fig. 14 for various tmin values, with
tmax fixed to the value stated in each plot. Even us-
ing such simple hadron operators, fairly accurate mass
extractions are obtained. Future use of better opera-
tors will certainly improve these results. Results are not
shown for the scalar channel since the lowest-lying energy
in this channel is a two-pion state. Extractions of the
energies in the scalar channel are best done with a corre-
lator matrix using both single-hadron and two-pion oper-
ators. The excellent statistical precision obtained for the
correlators at small temporal separations suggests that
diagonalizations of future correlation matrices estimated
with stochastic LapH will be stable and accurate.

With current Monte Carlo algorithms on presently
available computing resources, it remains impractical to
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use light u, d quark masses tuned to properly reproduce
the pion mass. Hence, the u, d quark masses used here
yield a pion mass which is too heavy, making compar-
ison to experiment somewhat problematical. Using the
Ω-baryon mass to set the inverse temporal spacing, we
find masses mη = 576(59) MeV, mρ = 820(13) MeV,
and mω = 863(21) using 198 configurations of the 240
ensemble. The experimental values are mη = 548 MeV,
mρ = 776 MeV, and mω = 783 MeV. Future work will
use better operators and all 584 configurations to achieve
improved results.
Our results for the energies of two light pions are shown

in Figs. 15 and 16. We studied S-wave states of zero rel-
ative momentum and total isospin I = 0 and I = 2,
as well as a P -wave with minimal non-zero on-axis rela-
tive momenta in the I = 1 channel. In Fig. 15, contri-
butions to the correlators from the diagrams containing
only forward-time source-to-sink quark lines are labeled
by “fwd”, contributions from diagrams containing only
quark lines that originate and terminate at the same time
are shown as “smt”, and contributions labeled by “box”
are those from the diagrams containing both kinds of
quark lines (see Fig. 10). Energies were extracted using
correlated-χ2 fits to the form A + B(e−Et + e−E(Nt−t))
in the range tmin to tmax. The results for different tmin

are shown in Fig. 16, for tmax fixed to the value stated
in the figure. Open symbols indicate unacceptable fit
qualities, whereas solid symbols indicate results from fits
of acceptable quality Q. The constant term in the fit
form arises from a source pion propagating forward in
time interacting with a sink pion propagating backwards
in time and other similar contributions. The constant
term was clearly evident in the I = 2 channel, but was
consistent with zero in the I = 0 channel. Hence, the
I = 0 results shown in Fig. 15 were done setting the con-
stant term to zero. This figure demonstrates that the
stochastic LapH method can provide sufficient accuracy
to see the difference of these two-pion energies from the
energy of two free pions at rest, indicated by the horizon-
tal dashed lines. In the I = 1 channel, the ρ-meson is ex-
pected to be the lowest-lying energy level, so a correlator
matrix including single-hadron and two-pion operators is
necessary to reliably extract the low-lying spectrum in
this channel. This will be done in future work. Again,
we emphasize that only very simple operators were used
here, and future use of better operators will improve the
accuracy of these energies.

VI. CONCLUSION

A new method of stochastically estimating the low-
lying effects of quark propagation was proposed which
allows accurate determinations of temporal correlations
of single-hadron and multi-hadron operators in lattice

QCD. The method enables accurate treatment of hadron
correlators involving quark propagation from all spatial
sites on one time slice to all spatial sites on another time
slice. Contributions involving quark lines originating at
the sink time tF and terminating at the same sink time tF
are easily handled, even for a large number of tF times.
The effectiveness of the method can be traced to two of

its key features: the use of noise dilution projectors that
interlace in time and the use of ZN noise in the subspace
defined by the Laplacian Heaviside quark-field smearing.
Introducing noise in the LapH subspace results in greatly
reduced variances in temporal correlations compared to
methods that introduce noise on the entire lattice. Al-
though the number of Laplacian eigenvectors needed to
span the LapH subspace rises dramatically with the spa-
tial volume, we found that the number of inversions of the
Dirac matrix needed for a target accuracy was remark-
ably insensitive to the lattice volume, once a sufficient
number of dilution projectors were introduced.
In addition to increased efficiency, the stochastic LapH

method has other advantages. The method leads to com-
plete factorization of hadron sources and sinks in tempo-
ral correlations, which greatly simplifies the logistics of
evaluating correlation matrices involving large numbers
of operators. Implementing the Wick contractions of the
quark lines is also straightforward. Contributions from
different Wick orderings within a class of quark-line di-
agrams differ only by permutations of the noises at the
source.
The method was tested using the isoscalar mesons in

the scalar, pseudoscalar, and vector channels, and using
the two-pion system of total isospin I = 0, 1, 2 on large
anisotropic 243×128 lattices with pion masses mπ ≈ 390
and 240 MeV. Given the success of these tests, we are
now applying the stochastic LapH method to compute
the excitation spectrum of both mesonic and baryonic
stationary-states of QCD in large finite volume.
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