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We present results for leading-twist azimuthal asymmetries in semi-inclusive lepton-nucleon deep-
inelastic scattering due to naively time-reversal odd transverse-momentum dependent parton dis-
tribution functions from the light-cone constituent quark model. We carefully discuss the range of
applicability of the model, especially with regard to positivity constraints and evolution effects. We
find good agreement with available experimental data from COMPASS and HERMES, and present
predictions to be tested in forthcoming experiments at Jefferson Lab.
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I. INTRODUCTION

Two out of the 18 structure functions describing
the semi-inclusive lepton-nucleon deep-inelastic scatter-
ing (SIDIS) process [1, 2], see Fig. 1, are associated at
leading order of the hard scale Q with naively time-
reversal odd (T-odd) transverse-momentum dependent
parton distributions (TMDs), the Sivers [3] and Boer-
Mulders [4] functions. Their existence is ultimately re-
lated to initial and final state interactions in QCD [5]
encoded in appropriately defined Wilson lines [6, 7]. T-
odd TMDs have unusual “universality” properties, and
are predicted to have opposite signs [6] in SIDIS and
the Drell-Yan process. The basis for this description is
a generalized factorization approach which applies when
the final state transverse momentum is small compared
to the hard scale [8–10], i.e. Ph⊥ ≪ Q in SIDIS.

Data on the Sivers Boer-Mulders effect from SIDIS are
available or forthcoming [11–24] (for a recent review, see
Ref. [25]). Both effects were subject to phenomenological
studies in SIDIS [26–33] and DY [34–39]. General aspects
of the Sivers and Boer-Mulders functions were discussed
in [40–43], and quark model calculations were reported
in [5, 44–53]. Common to the quark model approaches is
that the final (in SIDIS) or initial (in DY) state interac-
tions are modeled by means of a one-gluon exchange (in
[52] steps were made to go beyond that).

Among the most recent studies are the calculations in
the light-cone constituent quark model (LCCQM) [53].
On the basis of the one-gluon-exchange approximation
formulated in the light-cone quantization formalism [54]
the Sivers and Boer-Mulders were modeled in [53] us-
ing light-cone wave-functions which were previously ap-
plied with success to calculations of transversity, elec-
troweak properties of the nucleon, generalized parton dis-
tributions, distribution amplitudes [55–57], and T-even
leading-twist TMDs [58]. The results illustrate the rele-
vance of different orbital angular momentum components
of the nucleon light-cone wave function.

The T-even TMDs from this model [58] were shown
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FIG. 1: Kinematics of the SIDIS process lN → l′hX. The
azimuthal angles of produced hadron and nucleon polariza-
tion vector are φh and φS . The transverse momentum of the
hadron is Ph⊥ ≪ Q where Q2 = −q2 = (l − l′)2.

to yield results in satisfactory agreement with available
SIDIS data [59]. The purpose of this work is to explore
whether also the T-odd TMDs from this approach [53]
can explain the corresponding SIDIS data. It is impor-
tant to consider that in contrast to previous studies [55–
58], we here probe more than the modeled nucleon light-
cone wave-functions. In the present work we moreover
also probe to which extent the “one-gluon-exchange ap-
proximation” for T-odd TMDs works.

The article is organized as follows. In Sec. II the SIDIS
process, and relevant observables are briefly presented.
In Sec. III the calculation of the T-odd TMDs [53] is
reviewed, positivity and evolution effects are discussed,
and limitations of the approach conservatively disclosed.
In Secs. IV and V we discuss the numerical results for the
asymmetries and compare them to SIDIS data. Conclu-
sions are drawn in Sec. VI. The appendix contains some
remarks about the corrections due to the Cahn effect in
the cos(2φh)-asymmetry in unpolarized SIDIS.
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II. SIVERS AND BOER-MULDERS IN SIDIS

The kinematics of the SIDIS process, the momenta
l, l′, q, Q2 and Ph⊥ = |Ph⊥| are defined in Fig. 1. The
SIDIS variables are x = Q2/(2P · q), y = (P · q)/(P · l),
and z = (P · Ph)/(P · q) where P is the nucleon momen-
tum. Denoting by σ0 its spin- and φh-independent part,
the SIDIS cross-section σ (differential in x, y, z and the
azimuthal angle φh which we do not indicate for brevity)
can be written as

d4σ = d4σ0

{

1 + cos(2φh) p1(y)A
cos(2φh)
UU

+ST sin(φh − φS)A
sin(φh−φS)
UT + . . .

}

(1)

where p1(y) = (1−y)/(1−y+ 1
2 y

2) up to (systematically
neglected) power-suppressed terms, and the dots indicate
terms due to T-even TMDs or subleading-twist [60].

A
cos(2φh)
UU = F

cos(2φh)
UU /FUU and similarly A

sin(φh−φS)
UT

are the azimuthal asymmetries defined in terms of struc-
ture functions. FUU is the unpolarized structure func-
tion which gives rise to σ0. Here the first index U de-
notes the unpolarized electron beam. The second index
U/T refers to the target polarization which can be un-
polarized/transverse with respect to the virtual photon
(in experiment the transverse target polarization is with
respect to the beam, of course, but this is up to power-
corrections the same). The superscript reminds us of the
kind of angular distribution of the produced hadrons with
no index describing an isotropic φh-distribution. In the
Bjorken-limit the relevant structure functions are given
at tree-level by [60]

FUU = C
[

f1D1

]

, (2)

F
sin(φh−φS)
UT = −C

[

ĥ · pT

M
f⊥

1TD1

]

, (3)

F
cos(2φh)
UU = C

[

2
(

ĥ ·KT

) (

ĥ · pT

)

−KT · pT

z mhM
h⊥

1 H
⊥

1

]

,(4)

where ĥ = P h⊥/Ph⊥ and M (mh) is the mass of nucleon
(produced hadron). The convolutions are defined as

C
[

w j J

]

=

∫

d2pT

∫

d2KT δ(2)(z pT +KT − P h⊥)

×w(pT , KT )
∑

a

e2a x ja(x, pT ) J
a(z,KT ), (5)

with a generic TMD ja and transverse momentum de-
pendent fragmentation function Ja, and pT = |pT | and
KT = |KT |. In Eqs. (2–4) Da

1 is the unpolarized and
H⊥a

1 the Collins [61, 62] fragmentation function. Notice
that in this tree-level treatment one neglects soft factors
[8–10].

In order to solve the convolution integrals we will make
use of the Gaussian Ansatz. This step could, in principle,
be avoided by considering adequately weighted asymme-
tries [4]. It is given by

ja(x, pT ) = ja(x)
exp(−p 2

T /〈p2T (j)〉)
π〈p2T (j)〉

,

Ja(z,KT ) = Ja(z)
exp(−K2

T /〈K2
T (J)〉)

π 〈K2
T (J)〉

. (6)

Independently of the model for transverse momenta
FUU (x, z) =

∑

a e
2
a x f

a
1 (x)D

a
1 (z), while with the Ansatz

(6) we obtain for the structure functions [59]

F
sin(φh−φS)
UT (x, z) = −B0

∑

a

e2a x f
⊥(1)a
1T (x)Da

1 (z), (7)

F
cos(2φh)
UU (x, z) = B2

∑

a

e2a xh
⊥(1)a
1 (x)H

⊥(1/2)a
1 (z), (8)

B0 =
z
√
πM

{z2 〈p2T (f⊥
1T )〉+ 〈K2

T (D1)〉}1/2
, (9)

B2 =
8 zM [π〈K2

T (H
⊥
1 )〉]−1/2

1 + z2〈p2T (h⊥
1 )〉 / 〈K2

T (H1)〉
, (10)

with the transverse moments defined as

j⊥(1)a(x) =

∫

d2pT

p2T
2M2

j⊥a(x, pT ) ,

J⊥(1/2)a(z) =

∫

d2KT

KT

2zmh
J⊥a(z,KT ) . (11)

The Gaussian Ansatz (6) is for fa
1 and Da

1 phenomeno-
logically well supported for 〈Ph⊥〉 ≪ Q [63, 64]. For
polarized TMDs it is supported approximately by some
models [58, 59, 65, 66]. A rigorous description of pT -
effects would require methods along the QCD-based for-
malism of [67], as implemented in [68, 69], but for our
purposes the Ansatz (6) will be sufficient.
It is important to stress that the description of the

SIDIS process in the Bjorken-limit within TMD factor-
ization is generically valid only up to power corrections
suppressed by the large scale Q [9, 10]. Typically such
corrections do not factorize (TMD factorization beyond
leading twist is presently unclear [70] in SIDIS) and must
be excluded experimentally by studying the Q-behavior

of the observables. In the case of F cos 2φh

UU the parton
model provides a way to estimate one of the possible
power corrections which is due to the Cahn-effect [71].
This effect gives rise to cosφh [27, 64] and cos(2φh) mod-
ulations in the unpolarized SIDIS cross section which are
suppressed by respectively 〈pT (f1)〉/Q and 〈p2T (f1)〉/Q2.
In particular, the latter contributes a power-correction to
the Boer-Mulders asymmetry, which is not negligible in
the kinematics of present SIDIS experiments [18, 19].

The Cahn-effect and its power correction to A
cos(2φh)
UU ,

however, are to a good approximation flavor independent
[31, 64]. Below in Sec. V we will therefore consider the
difference of the asymmetries for π− and π+. Further
details are discussed in the Appendix.
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III. T-ODD TMDS IN THE LCCQM

In this section we briefly review the calculation of the
T-odd TMDs in the light-cone constituent quark model
[53]. Within this model, the gauge-link operator entering
the quark correlation function which defines the TMDs is
approximated by taking into account one-gluon exchange
between the struck quark and the spectator quarks in
the nucleon described by (real) light-cone wave functions
(LCWFs). Working in the light-cone gauge A+ = 0, the
T-odd quark TMDs are written in terms of overlap of
LCWFs, convoluted with the gluon propagator obtained
from the expansion of the gauge link. The final result
is of order αs, which enters as an overall multiplicative
factor and is understood at the initial scale µ0 of the
model.
The value of αs(µ0) was fixed by determining the ini-

tial model scale µ0 following [72] as follows. Since the
model has only valence quark degrees of freedom, one
requires µ0 to be such that evolving the (total in the
model) momentum fraction carried by valence quarks,
〈x(µ0)〉V =

∑

q

∫

dxx(f q
1 − f q̄

1 )(x, µ0) = 1, from µ0 to
experimentally relevant scales one matches the NLO phe-
nomenological value 〈x(Q)〉V = 0.36 at Q2 = 10GeV2

[73]. In previous works µ0 was tuned to reproduce exactly
the phenomenological value of 〈x(Q)〉V . Here we content
ourselves with reproducing it within 10%, which is ac-
ceptable in view of the generic model accuracy of (10–
30)% [59]. Allowing for a 10%-overestimate of 〈x(Q)〉V
yields a higher µ0 and smaller αs(µ0), and better con-
vergence. The evolution was performed in the variable
flavor-number scheme with heavy-quark mass thresholds
mc = 1.4 GeV, mb = 4.75 GeV, mt = 175 GeV with
αNLO
s (M2

Z) = 0.12018 at next-to-leading order (NLO, MS

scheme) from [73]. We obtain for the initial model scale

µNLO
0 = 508MeV,

αNLO
s (µ2

0)

4π
= 0.128 (12)

(notice that Λ
(3,4,5)
NLO = 402, 341, 239 MeV in [73]). The

strategy of fixing the model scale is basically the same as
in previous works. Here we introduced the variable flavor
number scheme, and updated the value of αs(M

2
Z). As

a result, we find a higher value for the hadronic scale of
the model, corresponding to a somewhat smaller coupling
compared to [53]. For the calculations of T-odd TMDs,
we will adopt the value of αs in Eq. (12).
The LCWF of the nucleon is modeled as described in

[53, 58]. In particular, to disentangle the spin-spin and
spin-orbit quark correlations encoded in the TMDs, we
expand the three-quark LCWF in a basis of eigenstates
of orbital angular momentum, which yields 6 indepen-
dent amplitudes corresponding to different combinations
of quark helicity and orbital angular momentum [75].
Assuming SU(6) symmetry, these light-cone ampli-

tudes have a particularly simple structure, with spin
and isospin dependence factorized from a momentum-
dependent function with spherical symmetry. Under this
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FIG. 2: Transverse moments f
⊥(1)q
1T (x) and h

⊥(1)q
1 (x) in a

proton for up (left) and down (right) quark, as function of x.
The dashed curves show the results at the hadronic scale µ0

of the model . The solid curves correspond to the results after
LO evolution to Q2 = 2.5 GeV2, using the evolution patterns
of the unpolarized parton distribution (transversity) for the
Sivers (Boer-Mulders) function.

assumption the orbital angular momentum content of the
wave function is fully generated by the Melosh rotations
which boost the rest-frame (canonical) spin of the quarks
into light-cone helicities. For the momentum-dependent
part of the LCWF we adopt the phenomenological de-
scription with parameters fitted to hadronic structure
constants from [76] which gave satisfactory results in pre-
vious works [56–59].

The results for the (1)-moments of the Sivers and Boer-
Mulders functions as defined in (11) are shown in Fig. 2.
The dashed curves show the results at the hadronic scale
of the model, while the solid curves are obtained by ap-
plying LO evolution1 to Q2 = 2.5 GeV2. Since the exact
evolution equations for the T-odd TMDs are still under
study [77–81], we use those evolution equations which
seem most promising to “simulate” the correct evolution.

The chiral-even Sivers function is evolved according to
the LO non-singlet evolution pattern of fa

1 (x), which has
the advantage of preserving the Burkardt sum rule [42].
This non-trivial constraint for model calculations is sat-
isfied in the LCCQM at the initial model scale [53]. For
the chiral-odd Boer-Mulders function we use the evolu-
tion pattern of ha

1(x). The so evolved model results are

1 Following [72] we worked at NLO to determine the initial scale
(12), which offers better numerical stability important at low
scales. But in Secs. IV, V we will use the TMDs in a LO
treatment. For that we consistently will use the analog to (12)
initial scale µLO

0 = 420MeV with αLO
s (µ2

0)/(4π) = 0.35, and

αLO
s (M2

Z
) = 0.13939 with Λ

(3,4,5)
LO = 359, 322, 255 MeV [73].

Withe these values the LO-value of 〈x(Q)〉val = 0.35 at 10 GeV2

is reproduced within numerical accuracy.
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consistent with the first extractions [26–31] concerning
signs and magnitudes of the various flavors, and the po-
sitions of their maxima in x.
s can be seen in Fig. 2, evolution effects are impor-

tant, and this raises the question how reliably we esti-
mated them here. The exact answer to this question will
be given after the TMD-evolution formalism discussed
in [69] for fa

1 (x, pT ) has been generalized to include the
Sivers and Boer-Mulders effects. Until then, we can try
to gain some intuition by investigating how much the re-
sults would change if we used different ways of simulating
the evolution effects for T-odd TMDs. For that we ex-
plored also alternative evolution patterns, and found that
the corresponding results vary within (10–20)%. This in-
dicates that the theoretical uncertainty associated with
evolution effects is not larger than the model accuracy.2

An interesting result is that the model supports ap-
proximately the Gaussian Ansatz, both for T-odd [53]
and T-even [59] TMDs.
A point deserving particular attention are inequalities

among twist-2 TMDs [40], which can be written as

Pq
Siv(x, pT ) ≡ f q

1 (x, pT )
2 − gq1(x, pT )

2

− p2T
M2

N

g⊥q
1T (x, pT )

2 − p2T
M2

N

f⊥q
1T (x, pT )

2 ≥ 0 , (13)

Pq
BM(x, pT ) ≡ f q

1 (x, pT )
2 − gq1(x, pT )

2

− p2T
M2

N

h⊥q
1L(x, pT )

2 − p2T
M2

N

h⊥q
1 (x, pT )

2 ≥ 0 . (14)

In a consistent model framework the inequalities (13)-
(14) should hold. However, as observed in [50], for cer-
tain values of x and pT numerous models violate already

2 Besides evolving f
⊥(1)a
1T (x) according to the non-singlet fa

1 (x)-
evolution (case (A): solid line in Fig. 2a), we explored also the fol-
lowing LO evolution patterns. (B) non-singlet ga1 (x)-evolution,
which is a ’polarized’ evolution pattern (as in the Sivers effect),
and gives exactly the same result as (A) because the evolution
kernels coincide. (C) full (including singlet) fa

1 (x)-evolution as
used in [53]. In the range of applicability of the model for x > 0.1,
this pattern agrees within 5% with (A) but it spoils the Burkardt
sum rule. The radiatively generated Sivers gluons are moreover
not suppressed with respect to Sivers q or q̄ distributions, in
conflict with the prediction from the limit of a large number of

colors Nc, i.e. f⊥g
1T /f⊥q

1T ∼ 1/Nc [26]. (D) transversity evo-
lution, the most drastic evolution variation we explored. The
chiral-odd evolution pattern decouples from gluons, and avoids
conflict with the Burkardt sum rule or the large-Nc limit. For
x > 0.1 it gives results which are about 20% smaller than (A).

For h
⊥(1)a
1 (x) we explored the following variations. (E) transver-

sity evolution, solid line in Fig. 2b, which is the evolution pattern
of the (pT -integrated) chiral-odd quark correlator giving rise (if
unintegrated) also to h⊥

1 . (F) non-singlet ga1 (x)-evolution de-
scribing polarized quarks (as h⊥

1 ) but in a polarized target (in
contrast to h⊥

1 ). (G) non-singlet fa
1 (x)-evolution describing un-

polarized quarks (in contrast to h⊥

1 ) though in a unpolarized
target (as h⊥

1 ). The patterns (F) and (G) give identical results,
and agree with (E) within 20%. We are grateful to the referee
for stimulating this study.

0

100
200

300

400
500

0 0.05   

Pu
Siv

pT
2 (GeV2)

0

50

100

150

200

0 0.05   

Pd
Siv

pT
2 (GeV2)

0

100
200

300
400

500

0 0.05   

Pu
BM

pT
2 (GeV2)

0

50

100

150

200

0 0.05   

Pd
BM

pT
2 (GeV2)

FIG. 3: The positivity relations involving the Sivers (up-
per panels) and Boer-Mulders functions (lower panels) from
Eqs. (13) and (14), respectively, as function of p2T at different
values of x: x = 0.3 (short-dashed curves), x = 0.4 (long-
dashed curves), and x = 0.5 (solid curves). The left (right)
panels show the results for up (down) quark.

the weaker inequalities pT

MN
|f⊥q

1T (x, pT )| ≤ f q
1 (x, pT ), and

pT

MN
|h⊥q

1 (x, pT )| ≤ f q
1 (x, pT ) following from (13), (14).

The reason is apparent. The calculations of T-odd
TMDs are within the given models correct. But while
T-odd TMDs are evaluated to O(αs), the “expansion” of
T-even TMDs is truncated in the quark models atO(α0

s).
In order to preserve unitarity, and hence the inequalities,
one should evaluate also T-even TMDs consistently to
order O(αs). To best of our knowledge, this has so far
not been done in any model, and would also go beyond
the scope of the present work.

Having established that one cannot expect the inequal-
ities (13, 14) to be satisfied in our approach either, let us
see for which values of x and pT they are violated. For
that, in Fig. 3 we plot Pq

Siv,BM(x, pT ), Eqs. (13, 14), vs.

p2T for selected values of x = 0.2, 0.3, 0.4 at the low model
scale. Pq

Siv,BM(x, pT ) should be always positive, and we
see that this condition is violated only at small x and for
p2T significantly larger than the respective 〈p2T 〉. Now it is
important to recall several facts. First, quark models do
not describe reliably small x. Notice that the region of
x . 0.2 at the low model scale corresponds after (correct
or approximate) evolution to x . O(10−2). Thus, prac-
tical consequences (if any) of the violation of inequalities
are beyond the region of x where quark models can be ap-
plied. Second, in the following we will restrict ourselves
to the use of pT -integrated results for the (1)-moments,
and those are dominated by the regions of pT of the order
of magnitude of 〈p2T 〉 and smaller, i.e. where the inequal-
ities are satisfied.

To conclude, though we have to admit that the model
predictions do not satisfy the inequalities for all x and pT ,
we can be assured that — in the way we will use them
for phenomenological calculations — this will not yield
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any artifacts. In this sense we will consider our results
as compliant with positivity constraints.

IV. SIVERS ASYMMETRY

In this Section we discuss the asymmetry A
sin(φh−φS)
UT

due to the Sivers effect. With the model results referring
to a low scale, it is not only necessary to evolve the Sivers
function in x, but also to account for pT -broadening [67]
(all this applies equally to the Boer-Mulders function).
In principle, one could feed the Collins-Soper-Sterman
(CSS) equation [67] with the model results as initial con-
ditions. We refrain from this step, because the CSS for-
malism is not yet developed for cases including polariza-
tion effects, while in the unpolarized case the result is
known: one would expect to reproduce, within model ac-
curacy, the phenomenological value 〈p2T (f1)〉 ∼ 0.4GeV2

at HERMES energies. Therefore we proceed as follows.
We assume that the Gaussian shape is approximately

preserved through the CSS evolution but the Gaussian
widths increase with energy [64, 69], and we assume that
to lowest order approximation this pT -broadening is po-
larization independent. We use the model predictions

for f
⊥(1)q
1T (x) (approximately evolved in x as discussed

in Sec. III) which are presumably less affected by Su-

dakov effects [82] than f⊥q
1T (x) with which one also could

work within the Gauss model. In the expression (7) for
the Sivers asymmetry we use 〈K2

T (D1)〉 = 0.16GeV2 [64]
and the Gaussian width of the Sivers function, which
is 〈p2T (f⊥

1T )〉 ≈ 0.9 〈p2T (f1)〉 in the model [53]. Accord-
ing to our assumption one may expect this prediction to
be roughly valid also at experimentally relevant scales,
because to lowest order approximation pT -broadening ef-
fects are polarization-independent. In [59] positive expe-
rience was made with such estimates of pT -broadening
effects. Further studies are required for more precision.
In the numerator of the Sivers asymmetry we use

model predictions for fa
1 (x) LO-evolved to a scale of

2.5GeV2. For Da
1(z) we use the LO parameterization

from [83] at the same scale.
In this way we obtain in the kinematics of the HER-

MES experiment, 〈Q2〉 ≈ 2.5GeV2 and 0.2 < z < 0.7,
the results for the x-dependence of the Sivers asymmetry
for pion production off a proton target shown in Fig. 4.
Keeping in mind that the quark model approach is not
expected to be reliable in the small-x region, we observe
a good description of the data within the accuracy of our
approach. (Due to the absence of sea quarks in our ap-
proach the Sivers asymmetries for kaons would be very
similar to the pion asymmetries. The explanation of a
possible difference in π+ and K+ Sivers asymmetries [15]
is beyond the scope of our approach.)
Next we discuss the COMPASS data which have 〈Q2〉

similar to HERMES and 0.2 < z < 1, but were mea-
sured at a significantly higher s = (P + l)2 ≈ 2MNEbeam

with Ebeam = 160GeV (vs. Ebeam = 27GeV at HER-
MES). From Drell-Yan it is known that at higher en-
ergies the TMDs tend to be broader [64] as follows
from the CSS formalism [67, 69]. There are indications
that this is also the case in SIDIS [64], namely one has
〈P 2

h⊥〉 = 0.27GeV2 at HERMES [86] to be compared

with 〈P 2
h⊥〉 = 0.41GeV2 at COMPASS [87]. Both re-

sults refer to a common z ∼ 0.55 but different 〈x〉. If we
assume an x-independent Gaussian width of fa

1 (the data
are compatible with this assumption [64]), the observed
broadening of 〈P 2

h⊥〉 = 〈K2
T (D1)〉+ z2〈p2T (f1)〉 has to be

attributed to broadenings of the Gaussian widths of fa
1

and Da
1 . In order to crudely estimate these effects we

assume that at COMPASS the widths of fa
1 and Da

1 are
equally broadened compared to HERMES as follows

〈p2T (f1)〉COMPASS = 〈p2T (f1)〉HERMES + δ〈κ2
T 〉 ,

〈K2
T (D1)〉COMPASS = 〈K2

T (f1)〉HERMES + δ〈κ2
T 〉 , (15)

with δ〈κ2
T 〉 ≈ 0.11GeV2 needed to explain the larger

〈P 2
h⊥〉 at COMPASS. This change in parameters also af-

fects (broadens) the Gaussian width of the Sivers func-
tion (estimated here as 〈p2T (f⊥

1T )〉 ≈ 0.9 〈p2T (f1)〉, see
above). In this way we obtain the results shown in Fig. 5.
We observe a good agreement of the model results

with the COMPASS data on the Sivers effect in π± pro-
duction from a deuteron target [13] in Figs. 5a, b, and
charged hadron production from a proton target [14] in
Figs. 5c, d. (For simplicity we approximated the results
for charged hadrons by charged pions, which account for
about 90% of charged hadrons at COMPASS energies.)
Notice that, had we neglected the pT -broadening at

COMPASS as compared to HERMES, the model would
have clearly overestimated π+ data from proton at COM-
PASS, see Fig. 5c. Indeed, Fig. 5c seems to indicate that
the pT -broadening could even be somewhat stronger than
estimated on the basis of (15). In Figs. 5a, b, d the ne-
glect of broadening effects would be less significant, or
completely within error bars.
Finally, we present predictions for a forthcoming Hall-

A experiment at Jefferson Lab [21] with a 5.9GeV beam.
Here s is sufficiently close to HERMES, such that it is
not necessary to account for pT -broadening effects, in
contrast to COMPASS, Eq. (15) [64]. In this experiment
〈Q2〉 ∼ 2GeV2 and 0.42 < z < 0.66. The results for this
kinematics are shown in Fig. 6. At Hall-A the asymmetry
is larger because roughly B0(z) ∝ z in (7) and Hall-A
probes larger z compared to HERMES and COMPASS.
To summarize, we find that our model framework pro-

vides a satisfactory description of the SIDIS data on the
Sivers effect from HERMES and COMPASS [13–15]. Fu-
ture data from Jefferson Lab will allow further tests.

V. BOER-MULDERS ASYMMETRY

In this section we focus on the asymmetry A
cos(2φh)
UU

due to the Boer-Mulders effect. The asymmetry (8) is
calculated similarly to the Sivers asymmetry in Sec. IV.
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FIG. 4: The single-spin asymmetry A
sin(φh−φS)
UT for pion production off proton in SIDIS, as function of x. The HERMES data

are from [15]. The theoretical curves are obtained on the basis of the LCCQM predictions for f
⊥(1)q
1T (x) [53].
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FIG. 5: A
sin(φh−φS)
UT for charged pion (hadron) production off deuteron (proton) in SIDIS, as function of x. The COMPASS

data are from [13, 14]. The theoretical curves are obtained on the basis of the LCCQM predictions for f
⊥(1)q
1T (x) [53]. The

dotted curve in panel (c) shows the results without the effects of pT -broadening (see text).
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FIG. 6: A
sin(φh−φS)
UT for pion production off neutron in SIDIS, as function of x. The theoretical predictions are obtained on the

basis of results for f
⊥(1)q
1T (x) from LCCQM [53] for the kinematics of the Hall-A experiment at Jefferson Lab [22].

We use the model predictions for h
⊥(1)q
1 (x) from [53].

For the Collins function and its Gaussian width we use
the information from [84, 85], and for the width of the
Boer-Mulders function we use the LCCQM model pre-
diction 〈p2T (h⊥

1 )〉 ≈ 0.95 〈p2T (f1)〉 [53], which we again
assume to be approximately valid at experimentally rele-
vant scales. For fa

1 (x) in the numerator of the asymmetry
we use the model predictions3 LO-evolved to 2.5GeV2,

3 In [59] for asymmetries due to chiral-odd TMDs phenomenolog-

and for Da
1 (z) the LO parameterization from [83] at the

same scale. The pT -broadening effects at the higher en-
ergies in the COMPASS as compared to HERMES, are

ical parameterizations were used for fa
1 (x), arguing this would

tend to reduce model dependence in that case. Whether one uses
parameterizations or model results for fa

1 (x) is strictly speaking a
higher order effect and in principle within model accuracy. Here
we adopt for both asymmetries fa

1 (x) from the model, which
yields a somewhat better description of the data in the case of
the Boer-Mulders effect.
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FIG. 7: The difference of azimuthal asymmetries A
cos(2φh)
UU for negative and positive pions or hadrons, as function of x. The

experimental points were obtained taking the differences of preliminary π− and π+ HERMES data [18], and preliminary h−

and h+ COMPASS data [19]. The error bars show the propagation of statistical errors, and do not include systematic errors.

The theoretical curves are obtained using h
⊥(1)q
1 (x) from the LCCQM [53]. Panel (d) shows a prediction for Jefferson Lab.

estimated similarly to Sec. IV i.e. we use the HERMES
value 〈K2

T (H
⊥
1 )〉 ≈ 0.25〈K2

T (D1)〉 from [85], and consider
pT -broadening analog to Eq. (15).

As discussed in detail in Sec. II, the Cahn-effect [71]
generates an 1/Q2 power-correction to the cos(2φh) mod-
ulation in the unpolarized SIDIS cross section which can-
not be neglected in the kinematics of the HERMES or
COMPASS experiments [31, 64]. In principle, one can try
to model this power-correction [31]. For that one could
use the updated phenomenological results for 〈p2T (f1)〉
and 〈K2

T (D1)〉 [64] which are sufficient to determine the
Cahn-effect. Alternatively, one could explore data on
the cos(2φh)-asymmetry of neutral pions, where due to
the flavor-dependence of the Collins function [84, 85] the
leading-twist Boer-Mulders effect largely cancels, see Ap-
pendix. In any case, this step constitutes an additional
modeling step (of a non-factorizable twist-4 contribu-
tion), and we prefer to avoid it.

However, the Cahn effect contamination in A
cos(2φh)
UU is

flavor-independent to a good approximation, and largely
cancels out in differences of π− and π+ asymmetries.
Such differences can be determined from the preliminary
data [18, 19] and we shall confront our model results with
them instead. The results are shown in Figs. 7a-c. (We
again approximate at COMPASS h± results by π±.)

Again it is important to recall that the quark results
should not be expected to be reliable in the small-x re-
gion. In the region of x ∼ 0.1 the model describes well
the size of the asymmetry differences, but it seems not
to follow the trend of the data at larger x & 0.2. How-
ever, one has to keep in mind the preliminary status of
the data [18, 19]. Moreover, considering systematic er-
rors of the data which are not included in Figs. 7a-c, the
discrepancy could be well within model accuracy.

From the available Jefferson Lab data [16, 17] the dif-
ference of π− and π+ cos(2φh)-asymmetries cannot be
accessed, but forthcoming CLAS data will allow that [20].
In the CLAS experiment we have 〈Q2〉 ∼ 1.9GeV2 with
0.1 < x < 0.6 and 0.4 < z < 0.7. The predictions for
this kinematics are shown in Fig. 7d. Since the x values
of the CLAS experiment cover the region dominated by

the valence-quark contribution, these data will provide
an important test of the model.
To summarize, our approach is compatible with pre-

liminary data from COMPASS and HERMES. Further
insights can be expected from Jefferson Lab, before [20]
and after the 12 GeV beam energy upgrade [23], and on
long term from the future Electron-Ion Collider [24].

VI. CONCLUSIONS

In this work we have studied the leading-twist az-
imuthal asymmetries in SIDIS due to T-odd TMDs on
the basis of predictions from the light-cone constituent-
quark model [53]. Since the model results refer at a low
hadronic scale, we discussed how to take into account the
effects of the evolution for the description of data refer-
ring to high scales of typically several GeV2. We tackled
this issue in two steps. First, for the pT -dependence of
the distributions we employed the Gaussian Ansatz and
expressed the asymmetries in terms of (1)-transverse mo-
ments of TMDs. The Gaussian widths of the distribu-
tions were assumed x-independent, which is supported
by phenomenology, and pT -broadening effects were es-
timated. In the second step, we evolved the transverse
moments of TMDs to experimental scales by employing
those evolution equations which seem most promising to
simulate the correct evolution. For the Sivers distribu-
tion we used the non-singlet evolution pattern of fa

1 (x).
This allows to preserve the Burkardt sum rule — valid at
the initial scale of the model [53] — also at higher scales.
For the chiral-odd Boer-Mulders function we used the
evolution pattern of transversity.
We obtained a good description of the Sivers asymme-

try, and satisfactory results for the Boer-Mulders asym-
metry in comparison with available experimental data
from HERMES and COMPASS. In the case of the Boer-
Mulders asymmetry we considered differences of asym-
metries for π− and π+ to avoid the modeling of twist-4
power corrections (’Cahn effect’). Furthermore, we pre-
sented model predictions for forthcoming experiments at
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Jefferson Lab, which will extend the available data far
into the valence-x region where the model is expected to
work best, and provide an important test of its dynamics.
Our results indicate that the use of the one-gluon-

exchange-mechanism to model T-odd TMDs (as imple-
mented in [53]) yields phenemenologically reasonable re-
sults, although a truncation of the expansion of the
gauge-link at O(αs) seems not a priori justifiable.
The present work completes the study in Ref. [59]

where leading-twist spin asymmetries due to T-even
TMDs were calculated. We observe that the light-cone
constituent-quark model, based on overlap representa-
tion of TMDs in terms of light-cone wave functions, pro-
vides a good description of intrinsic transverse parton
momentum effects in the range of applicability of the
model.

Acknowledgments. We thank M. Contalbrigo from
the HERMES collaboration, and E. Kabuss, A. Martin
and G. Sbrizzai from the COMPASS collaboration for
making available the (final and preliminary) data. We
also acknowledge helpful discussions with A. V. Efre-
mov, W. Gohn, J.-F. Rajotte, T. Rogers and F. Yuan.
B. P. is grateful for the hospitality to the Department
of Physics of the University of Connecticut where this
work was initiated. The work was supported in part
by DOE contract DE-AC05-06OR23177, under which
Jefferson Science Associates, LLC, operates the Jeffer-
son Lab, by the Research Infrastructure Integrating Ac-
tivity “Study of Strongly Interacting Matter” (acronym
HadronPhysics2, Grant Agreement n. 227431) under the
Seventh Framework Programme of the European Com-
munity, and by the Italian MIUR through the PRIN
2008EKLACK “Structure of the nucleon: transverse mo-
mentum, transverse spin and orbital angular momen-
tum”.

Appendix A: Remark on Cahn effect

Finally, a remark is in order on A
cos(2φh)
UU for definite pi-

ons, where the Cahn effect 1/Q2-correction cannot be ne-
glected [31, 64] though it could be small in largest x-bins

at COMPASS. In principle, one may model this contri-
bution [31] with due care to the energy dependence of the
Gauss parameters [64, 69]. However the problem remains
how to test independently such an additional modeling
of a presumably non-factorizing twist-4 term. We are not
aware of a ’rigorous procedure’, but the following obser-
vation may turn out helpful. The favored (u → π+) and
unfavored (u → π−) Collins fragmentation functions are
similar in magnitude but have opposite signs [84, 85].

In the A
sin(φh+φS)
UT asymmetry for π0 (which is due to

the Collins effect and potentially not or less affected by
power-corrections) this yields nearly exact flavor cancel-
lations, as seen in data [88]. Since this is a property of
the Collins function, one expects the Collins effect to also
cancel out in the π0 cos(2φh)-asymmetry, i.e.

A
cos(2φh)
UU (π0) ≈ A

cos(2φh)
UU,Cahn < 0 , (A1)

where A
cos(2φh)
UU,Cahn is the Cahn effect contribution, which

is negative [71] and largely flavor independent [31, 64].
This would then mean that

A
cos(2φh)
UU (π+) ≈ A

cos(2φh)
UU (π+)BM +A

cos(2φh)
UU,Cahn , (A2)

A
cos(2φh)
UU (π−) ≈ A

cos(2φh)
UU (π−)BM +A

cos(2φh)
UU,Cahn . (A3)

This is not to be confused with relations due to isospin
invariance, which allow one to express π0 cross sections in
terms of π± cross sections (i.e. which connect the numera-
tors or the denominators of the asymmetries). Eqs. (A1)-
(A3) indicate how to model the Cahn-effect in a given
experiment. This might be a more reliable procedure
than using other sources of information. The procedure
can be iteratively improved to take into account flavor-
dependencies in the Cahn-effect and non-exact cancella-
tions of the Collins effect in the neutral pion cos(2φh)-
asymmetry. In particular, Eqs. (A2) and (A3) show our
underlying assumption in Sec. V that in the difference
of charged pion cos(2φh)-asymmetries the Cahn effect
largely cancels out.
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