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Abstract

Motivated by the persistence of a large measured top quark forward-backward asymmetry at

the Tevatron, we examine a model of non-Abelian flavor gauge symmetry. The exchange of the

gauge bosons in the t-channel can give a large At
FB due to the forward Rutherford scattering peak.

We address generic constraints on non-Abelian t-channel physics models including flavor diagonal

resonances and potentially dangerous contributions to inclusive top pair cross sections. We caution

on the general difficulty of comparing theoretical predictions for top quark signals to the existing

experimental results due to potentially important acceptance effects. The first signature at the

Large Hadron Collider can be a large inclusive top pair cross section, or like-sign dilepton events,

although the latter signal is much smaller than in Abelian models. Deviations of the invariant

mass distributions at the LHC will also be promising signatures. A more direct consistency check

of the Tevatron asymmetry through the LHC asymmetry is more likely to be relevant at a later

stage.
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I. INTRODUCTION

Recently the CDF collaboration published an update of its observation of a forward-

backward asymmetry in top quark production [1, 2]. Focusing on the high-energy region

where new physics effects might be expected to be most obvious, CDF measured A+
FB =

0.475±0.114, where A+
FB is the asymmetry of top production in the tt̄ rest frame restricted to

mtt̄ > 450 GeV. For comparison, the SM predicts A+
FB = 0.088±0.013 [3]. This measurement

builds on previous intriguing inclusive measurements of the forward-backward asymmetry [3–

5], that consistently yielded large values. The Standard Model (SM) inclusive prediction [6–

9] is dominated by O(α3
S) QCD interference effects. In the tt̄ rest frame, CDF measured an

inclusive asymmetry (corrected for acceptance) of At
FB = 0.158± 0.074 [4] to be compared

with the SM prediction At
FB = 0.058± 0.009. (The inclusive measurement in the lab frame

is At
FB = 0.15 ± 0.055 to be compared with a theory prediction At

FB = 0.038 ± 0.006

[8].) Interestingly, two recent separate measurements of asymmetry in dileptonic top decays

were made. The first made no attempt to reconstruct the top quark system – it simply

measured the asymmetry in the lepton directions and gave a background subtracted result

of A∆ηℓ
sub = 0.21±0.07. The second measurement completely reconstructs the top system and

gave a Aℓℓ
tt̄ = 0.21±0.07. This results that corresponds to an acceptance-corrected asymmetry

of Aℓℓ
FB = 0.42±0.16 to be compared with the SM prediction Aℓℓ

FB = 0.06±0.01. In summary,

a number of measurements (some completely independent) display an (positive) asymmetry

in excess of the Standard Model. While the results vary in significance, the consistent excess

motivates further study. In this work, we construct a model with a large inclusive rest-frame

asymmetry At
FB ∼ 15% and comment on the mtt̄ dependence of the asymmetry [67].

Previously, we explored the possibility that the exchange of a flavor changing Z ′ in the

t-channel might give rise to a large asymmetry [10]. The model was defined by a non-zero

coupling between right-handed up quarks and right-handed top quarks. That model predicts

the production of like-sign top quarks. Indeed, the non-observation of like-sign tops at the

Tevatron already placed strong constraints on the model. Owing to the large uu parton

luminosity at the LHC, one would expect a strong signal there soon in such models, if they

are not already excluded. This signal was recently studied by [11–13], and although the

scenario of [10] may not be ruled out by direct analyses, its parameter space appears to be

severely constrained (if not ruled out) by reinterpretations of other LHC results.
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Here we build a model based on SU(2)X flavor symmetry, first discussed in [10], that

places the (u t)R together in a doublet [68]. This model explains At
FB measurement domi-

nantly by the exchange of the “W ′” bosons of the theory that raise and lower the quarks in

this doublet. The non-Abelian nature of the flavor symmetry ensures that the gauge bosons

carry “top number,” just as gluons carry color. The conservation of top number prevents

the production of like-sign tops via uu → tt or ug → tW ′ → ttu, which are present in the

Abelian model [10]. However, we will argue that a small breaking of top number is both

allowed and has the benefit of opening new parameter space for this model. The result is a

small, but potentially observable like-sign top signal.

By analyzing this example model, we also hope to address various general features of (non-

Abelian) t-channel physics (see also [14–33]). It is by now well recognized that, despite the

ease at which it generates a large asymmetry, t-channel physics is constrained by large like-

sign top pair production and an enhancement of top pairs in the high mtt̄ region. We revisit

these issues both at the Tevatron and LHC7, including both flavor changing and conserving

couplings of the W ′, and consider potentially important contributions to inclusive top pair

sample from the production of the new gauge bosons associated with the top quark. In

addition, we study important constraints coming from the Z ′, the mostly flavor conserving

resonance particle accompanied by the W ′ in any non-Abelian model of this general class.

Another important aspect of t-channel physics that we discuss in detail is acceptance

effects. The very forward top quarks abundantly produced by the Rutherford scattering

peak are not identified as easily as more central top quarks. As a result, care is needed to

interpret the data and determine what theories are viable.

II. A MODEL

To the SM, we add a SU(2)X gauge symmetry. The (u t)R is the only SM field charged un-

der this symmetry. This matter content is anomalous (including the global Witten anomaly

[34]). A UV complete theory would involve the introduction of new states charged under

both SU(2)X and SU(3)C × U(1)Y . It is plausible that these states would be near the TeV

scale, and could thus be produced at the LHC. We will not concern ourselves with the details

of the UV completion, but concentrate on the consequences of the gauge boson interactions

with SM fermions. Also, we do not discuss flavor constraints (the most dangerous are from
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D-D mixing), but merely state here that they can be tamed to acceptable levels by tuning

the Yukawa couplings appropriately.

The gauge bosons masses in the SU(2)X sector depend on the choice of Higgs boson

representations. A single Higgs doublet leaves a custodial symmetry intact, leading to a

degenerate W ′ and Z ′. (We emphasize that the W ′ bosons do not carry an electric charge –

the notation merely indicates that they are responsible for raising and lowering within the

SU(2)X multiplet.) For a Higgs multiplet with X-isospin T , we have

M2
W ′ = g2Xv

2
T

T (T + 1)− T 2
3

2
, M2

Z′ = g2Xv
2
TT

2
3 , (1)

where we have assumed it is the T3 component that gets a vacuum expectation value. For

phenomenological reasons described below, it is advantageous to consider the possibility of

gauge bosons that are not precisely degenerate. In our studies, we consider both MW ′ and

MZ′ as free parameters. In many cases, this can be accomplished by including two Higgs

bosons in different representations that contribute to the masses. However, the maximum

size of the hierarchy between the two masses, MZ′/MW ′, is limited by the size of the Higgs

representation (see also [26]). It is for this reason that we do not allow a too heavy Z ′ gauge

boson. Consequently, its resonant production will be important and discussed in the next

section.

The presence of non-degenerate gauge boson masses allows the possibility of a physical

rotation corresponding to a mismatch between the (u t)R gauge eigenstates and the mass

eigenstates. We parameterize this mismatch by an angle θ. With this definition, we have

the fermion interaction Lagrangian

L =
gX√
2
W ′−

µ

{

t̄Rγ
µtR(−cs) + ūRγ

µuR(cs) + t̄Rγ
µuR(c

2) + ūRγ
µtR(−s2)

}

+
gX√
2
W ′+

µ

{

t̄Rγ
µtR(−cs) + ūRγ

µuR(cs) + t̄Rγ
µuR(−s2) + ūRγ

µtR(c
2)
}

+
gX
2
Z ′

µ

{

t̄Rγ
µtR(c

2 − s2) + ūRγ
µuR(s

2 − c2) + t̄Rγ
µuR(2cs) + ūRγ

µtR(2cs)
}

. (2)

where c = cos θ and s = sin θ. Top number is broken by nonzero θ. If the θ becomes

too large, dangerously large like-sign top quark production will re-emerge. Also, additional

bounds from diagonal uū resonant production of the W ′ appear for θ 6= 0. For small θ,

one-loop penguin induced top quark flavor-changing neutral currents are negligible. For all

of these reasons, we expect cos θ should be close to 1. However, cos θ 6= 1 does play an

important role as will be more quantitatively discussed in Sec. III and IV.
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Presumably, the presence of this new SU(2) symmetry would be linked with the flavor

puzzle of the SM. We will not attempt to build a full theory of flavor. We content ourselves

to note that if one of the Higgs bosons that breaks the SU(2)X is a doublet, then effective

SM Yukawa couplings can arise from d = 5 operators.

∆L ∋ (λ′
u)i
M

(Q̄i · hSM) (φD · q). (3)

Here, i = 1, 2, 3 is a generation index, and the contractions of SU(2)L,X indices are denoted

by dots. Q is SM left-handed doublet while q = (tR, uR) is SU(2)X doublet. M can be

thought of as a mass scale a flavor sector. Because the top quark Yukawa arises from this

higher dimension operator, the vD/M ratio cannot be too small. Thus, the new colored states

associated with the scale M are likely accessible at the LHC. Furthermore, this fact argues

that there should be a large doublet vev; other vevs would not allow low dimension Yukawa

couplings. This places a restriction on the hierarchy between the gauge boson masses. All

benchmarks that we present can achieve the necessary top quark mass with λ′
u perturbative

and with only a doublet and triplet Higgs boson of the SU(2)X .

In Table I, we present benchmark points whose phenomenology we will analyze in some

detail. The points are chosen to give substantial forward-backward asymmetries (∼ 15%),

while giving rough agreement with the total top production cross section. They are all

consistent with the important dijet constraints outlined below. Upon detailed examination,

point A appears consistent with all known data, and represents a “best point” for this model.

Points B and C are discussed in part to illustrate what happens when one deviates from

this “best region.” Point B has tension with the observed measurements of the top quark

production rate. Point C appears to be excluded by measurements of the invariant mass

distribution in top quark production.

III. CONSTRAINTS FROM DIJET MEASUREMENTS

Before turning to a detailed discussion of the prediction of the forward-backward asym-

metry, we consider the bounds on this class of models arising from dijet events. While

t-channel exchange of the W ′ is responsible for the bulk of the At
FB in these models, very

important phenomenological constraints arise from the (approximately flavor conserving)

Z ′. As noted above, it is theoretically possible to decouple the Z ′ through an appropriate
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MW ′ ( GeV) MZ′ ( GeV) αX cos θ

A: 200 280 0.060 0.95

B: 200 80 0.044 0.95

C: 850 1200 0.75 1

TABLE I: Benchmark points to be explored below. Point A represents a best point consistent with

all data. Points B and C are in tension with measurements on top production from the Tevatron

as outlined in Sec. IV. Points are selected to give appreciable At
FB while avoiding constraints from

dijet searches (see Sec. III), and maintaining a rough agreement with the total top production

cross section. αX ≡ g2X/4π.

choice of the representations of the Higgs boson. However, a large hierarchy would be needed

to completely decouple the effects of the Z ′, requiring uncomfortably large Higgs represen-

tations. Therefore, we take some care to treat the constraints arising from a Z ′ boson that

is relatively light and not completely decoupled. Note, the Z ′ is narrow, as discussed in the

appendix A. Thus resonance searches are meaningful.

The constraints are summarized in Fig. 1. At low masses, the constraint arising from the

one-loop correction to the hadronic width of the Z boson [35, 36] is important. As masses

increase, limits from dijet searches at UA2 [37, 38], CDF [39] become important, and finally,

LHC7 [40] results at higher invariant mass energies become important. We have also shown

the region excluded by resonant searches in the tt̄ production channel [41, 42]. We refer only

to the most recent published results analyzing up to 1 fb−1 of data. Consideration of data

on the differential tt̄ cross section may somewhat extend the excluded regions shown. We

have shown constraints for cos θ = 1 (top panel) and cos θ = 0.95 (lower panel). We note

that the inclusion of non-zero θ opens up additional regions of parameter space, allowing

point A to be consistent with all data. This is due to reduced flavor diagonal couplings of

the Z ′. For all our benchmark points we have MW ′ 6= MZ′. In this case, we emphasize there

is no a priori expectation that cos θ = 1. In fact, θ → 0 might even be viewed as a tuning.

In Fig. 1, only the constraints from the Z ′ are included. In principle, if the devation of

cos θ from 1 is too large, the resulting flavor conserving couplings of the W ′ can allow it to

be resonantly produced at a dangerous rate. We find cos θ >∼ 0.92 is safe for a light W ′ (i.e.

with mass below the tt̄ threshold). This includes Points A and B. For heavier W ′ masses,
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FIG. 1: Bounds in the {MZ′ , αX} plane. Exclusion limits are obtained by considering constraints

arising from one-loop corrections to the hadronic width of the Z boson [35, 36], searches for dijet

resonances at UA2 and CDF [37–39] (UA2 results from the first and second stage running are

shown in separate colors), angular distribution of dijet events at the 7 TeV LHC [40] and the

combined tt̄ resonance searches at CDF and D0 using up to 1 fb−1 of data [41, 42]. Also shown are

locations of benchmark points A,B,C that will be studied in more detail later. Plots are shown

for cos θ = 1 (top panel) and cos θ = 0.95 (bottom panel).

the search for a resonance in tt̄ represents a stronger constraint. The W ′ constraint from uū

and tt̄ resonance production and decay is satisfied for point C for cos θ >∼ 0.97.
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IV. CONSISTENCY WITH EXISTING TOP CROSS SECTION MEASURE-

MENTS

We now address the question of whether our benchmarks are consistent with the detailed

cross section measurements of the top quark at the Tevatron.

An important constraint on these models comes from the tt̄ invariant mass distribution

[43]. With respect to the SM, these models overproduce top quarks at large invariant mass

due to the Rutherford enhancement. In Fig. 2, we show the invariant mass distribution of

the tt̄ for the benchmark points shown in Table I. We have applied the ŝ dependent NLO

K-factor of the SM [44] to all distributions (including those with new physics). Absent a

proper NLO calculation in these models, this approach represents an optimistic attempt to

capture some of the leading QCD corrections. We have used CTEQ6L [45] and CTEQ6.6M

[46] parton distribution sets for the LO and NLO cross sections, respectively. mt = 172.5

GeV and µ = mt are assumed. A naive examination of the highest ŝ bins of distributions

shown there would indicate that the new physics models are excluded.

However, this model produces very forward top quarks. The acceptance for these top

quarks is far from assured, and indeed, can be substantially lower than the SM. The angular

behavior deviates most substantially from the SM at the highest partonic center of mass
√
ŝ where the forward scattering peak is most pronounced. We now investigate whether the

large enhancement at high
√
ŝ persists after acceptance effects are addressed.

We model losses of very forward top quarks by modeling the unfolding procedure of the

experiments in an approximate but well-defined way. We first generate a parton-level Monte

Carlo event sample of the SM in MadGraph/MadEvent v.4.4.492 [47], and weight it by

an ŝ-dependent SM NLO K-factor. We take this sample, apply the selection cuts of the

CDF mtt̄ analysis [43] and calculate mtt̄ using only the leading four jets, a charged lepton

and the missing energy as done by CDF. The resulting dσ/dmtt̄ distribution is compared

to the original theoretical distribution prior to the selection cuts. This comparison allows

us to derive a “smearing matrix” in the binned mtt̄ space that estimates how the cuts and

reconstruction take a theoretical distribution to a measured one. We then use this same

matrix for all model samples. This includes our benchmark points and generalized color-

octet models having At
FB = 0.1, 0.2 (which are sometimes used to test the experimental

unfolding procedure). Application of the cuts, K-factor and, subsequently, the smearing
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matrix (as derived from the SM distribution) leave the mtt̄ distributions of the color-octet

models nearly unchanged – an indication that their acceptance is similar to the Standard

Model. This is not the case for our benchmark points. Many of the events in the highest mtt̄

bins are lost due to the selection cuts. The result of the above procedure (cuts, K-factor,

smearing) is shown in the lower panels in Fig. 2. As a result, for points A and B, the

agreement with the data is now quite good. This illustrates care is needed to account for

acceptances when analyzing the viability of these models. Even with the corrections, point

C is excluded, and we do not consider it further. It indicates that a model with large mass

W ′ and Z ′ will have difficulty reproducing this distribution.

A measurement of the total top pair production cross section is, on the other hand, most

sensitive to the low
√
ŝ region where the bulk of the parton luminosity lies. In this region,

the interference of t-channel W ′ exchange and the SM (which comes with negative sign)

dominates over new physics squared contributions. The result is a prediction for a total

cross section smaller than the SM value for model points having asymmetries of the size

observed at CDF. Measurements of the total top cross section constrain Model B more than

Model A. This is clear from examining the more pronounced suppression for Model B in the

lowest mtt̄ bin in Fig. 2. This makes Model B less appealing than A. The cross section of

B could be increased by increasing the αX , but this would result in an asymmetry that is,

at present, too large. Depending on the evolution of the asymmetry measurements, it may

be useful to revisit this region of parameter space. For now, however, we focus on point A.

There is another potential (fake) contribution to inclusive top cross sections coming from

final states where the gauge bosons W ′, Z ′ are either pair produced, or produced in asso-

ciation with the top quark, e.g. uū → W ′+W ′− and gu → W ′−t. These events eventually

pollute the inclusive top quark sample after subsequent decays of theW ′± bosons. In general,

this pollution will increase the size of the inferred cross sections for each decay channel of top

pairs, resulting in a somewhat improved agreement with experiment than the original cal-

culation reported above. We discuss these effects and their importance more quantitatively

in next few paragraphs.

In this t-channel model, as in [10], the apparent top production cross section will differ in

different decay modes. That is, the cross section inferred from the dilepton channel will differ

from the semi-leptonic mode. This is largely because the associated productions of W ′, Z ′

mentioned above contribute preferentially to the semi-leptonic mode over the dilepton mode.
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FIG. 2: The mtt̄ distribution is shown for the SM, as well as the three benchmark points A,B,C

displayed in Table A. In the top panel, we show theoretical distributions, after applying a ŝ de-

pendent SM NLO K-factors [44] to all models. No acceptance cuts are applied. We note a large

discrepancy from the measured CDF data [43]. However, this parton level calculation ignores po-

tentially very important acceptance effects as discussed in the text. A rough correction for these

effects yields the plots in the lower panels for the highest two bins. Points A and B now seem

plausibly consistent with the data, whereas point C is still clearly excluded. Faking contributions

in the lower panels are about 5% of the true tt̄ process for A and B.
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σ(tt̄)thy At
FB σ(tt̄)lj σ(tt̄)ll

CDF 7.50 ± 0.48 pb [48] 0.158 ± 0.074 [4] 7.22 ± 0.79 pb [49] 7.25 ± 0.92 pb [50, 51]

SM 7.34 pb 0.058 ± 0.009 7.34 pb (normalized) 7.34 pb (normalized)

Model A 6.69 pb 0.14 7.0 pb 6.6 pb

TABLE II: Cross sections for point A at the Tevatron. The theoretical value of exclusive top pair

cross section is shown in the column denoted σ(tt̄)thy, where we apply a K-factor found by nor-

malizing the LO SM to the approximated NNLO results 7.34 pb, averaged over three independent

results [52–54]. The rest-frame asymmetry At
FB is also shown. Inclusive top pair cross sections

in the semi-leptonic (σ(tt̄)lj) and dileptonic (σ(tt̄)ll) are obtained by applying CDF selection cuts

[49–51] and by including other faking contributions, see text for detail.

As shown in table II, for point A, our parton level results imply that a theoretical σ(tt̄) = 6.7

pb will be interpreted as 7.0 pb and 6.6 pb in the semi-leptonic and dileptonic channels,

respectively, once the “fake” contributions are taken into account. These contributions are

about 13% and 8% of the true tt̄ process, making a small but potentially noticeable difference

between the two channels. For these faking contributions, we have not applied a K-factor

(which presumably would be very different from the one relevant for tt̄. If one were to apply

a K-factor of similar size, the results would become 7.2 pb and 6.7 pb for the semi-leptonic

and dileptonic modes, respectively.

The fake top cross sections for point A are somewhat suppressed by the choice of cos θ =

0.95. This is because for cos θ < 1 a new decay mode W ′ → uū opens up which does not

involve any top quarks. If instead, cos θ = 1, the top cross sections would be measured as

σ(tt̄)lj,ll = 8.0, 7.5 pb with a (somewhat smaller) asymmetry, At
FB = 0.12. The decrease

in the asymmetry is largely a result of contributions from the process gu → W ′−t. In this

t-channel process, the top quark is preferentially produced along the initial gluon direction

which is likely from anti-proton, hence backward. This somewhat large inferred cross section,

coupled with earlier dijet constraints argues for cos θ < 1. Furthermore, it is likely that for

cos θ = 1 faking contributions might have already been observed at the LHC (see Sec. VI).

For values of cos θ near, but not equal to one, these events can provide a good LHC signature.

Since points B and C had difficulty reproducing the top quark measurements at the

Tevatron, we will confine our detailed analysis of the asymmetry to point A. However, the
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signatures we point out in the final section are qualitatively applicable to all SU(2)X models.

V. PHENOMENOLOGY OF THE FORWARD-BACKWARD ASYMMETRY

The same acceptance effect discussed in the previous section can also impact the AFB

asymmetry. Events that would have otherwise contributed to AFB go undetected. While

CDF attempts to correct for this effect (see for example refs.[1, 4]), the correction is model-

dependent. We have checked that the acceptance for our model can differ significantly

from the acceptance of the SM [69]. This results in a dilution of the AFB relative to the

theoretical prediction. This effect can be substantial, again, particularly at the highest mtt̄.

At the parton level, we predict At
FB = 0.15, and A+

FB = 0.30 in the rest frame for point A.

However, applying acceptance cuts, and the correction matrix of the size applied at CDF,

we estimate a A+
FB = 0.22 would be observed. Moreover, the growth at the very largest mtt̄

(present at the parton level before acceptance effects) would be partially suppressed. This

is of interest as the final bin of the CDF measured At
FB in mtt̄ actually shows a decrease [1],

although with large error bars. So, while this model does not predict a decrease as observed,

due to acceptance effects, a rapid rise is not observed either.

The procedure used to estimate the above results is similar to the method presented in

Sec. IV. In this case, the correction matrix for the asymmetry is in the four-binned −Ql ·η(t)
space as used by the CDF collaboration [4].

Although it is a proton–proton collider, the LHC can also measure the forward-backward

asymmetry of the top quark. A reference direction can be provided by the boost direction

of the top pair [10, 55]. In a qq̄ → tt̄ subprocess, the initial valence quark q is likely to be

more energetic than the initial sea quark q̄. A forward top quark inherits this boost. Thus

we define an asymmetry with respect to the boost direction as

Aboost =
N(a > 0)−N(a < 0)

N(a > 0) +N(a < 0)
, a ≡ (yt + yt̄)(yt − yt̄). (4)

where top rapidity is denoted by yt. Note the (yt + yt̄) factor in a measures the direction of

the boost of the tt̄ system, while the (yt − yt̄) gives the direction of the asymmetry. Again,

by restricting to the high energy region, one can measure a higher asymmetry. This also

tends to suppress the symmetric gg → tt̄ subprocess. We estimate Aboost
∼= 0.06 at LHC7 for

point A with mtt̄ ≥ 450 GeV. It is smaller than the Tevatron values because the qq̄-initiated
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process is less important, and there is ∼ 25% chance of a mismatch between the boost and q

directions. Another strategy is to focus on the central region where the gg-initiated process

is relatively small [56]. While the observable, Aboost, is unlikely to be the optimal LHC

discovery mode of the model – a large amount of data would be required to reconstruct the

observable – it might provide a more direct consistency check of the Tevatron asymmetry

measurement (see also [57]). New physics indications will come more quickly at the LHC by

other observables, as we discuss in the next section.

VI. LHC AND DISCUSSION

At the LHC, one big difference from the Tevatron is that the gluon luminosity is much

larger. Consequently, our new physics effects on exclusive top pair production pp → tt̄ (that

rely on a qq̄ initial state) is relatively small. As shown in table III, the total cross section

σ(tt̄)thy for Point A differs from the SM only by a small quantity, unlike at the Tevatron.

However, the inclusive cross section can be significantly affected by gluon-initiated asso-

ciated production of gauge bosons. gu → W ′t is the most important, as its cross section

becomes similar to honest top pair production [15, 17, 23, 26]. Since LHC7 has already

performed rough measurements of the cross sections (see Table III), the large inclusive

cross section predicted by t-channel models are potentially already constrained. By apply-

ing selection cuts from ATLAS analysis [58] and by including all processes contributing,

tt̄, tt, t̄t̄, tV, t̄V and V V (where V = W ′, Z ′), we estimate inclusive cross sections in both

semi-leptonic and dileptonic channels σ(tt̄)lj, ll. We apply a K-factor K = 1.89 (appropriate

for normalizing LO SM to the approximated NNLO) to every diagram with tt̄ exclusive final

states. Associated production of gauge bosons are calculated at LO. Faking contributions

are dominantly from the process σ(gu → W ′t) = 47 pb (LO) for point A that contributes

14% and 12% of true tt̄ events in two channels, respectively [70]. See table III.

The additional faking contributions of W ′t to the semi-leptonic and dilepton channels is

not in conflict with the established data at LHC7. However, recently there are preliminary

results from LHC7 that may put stress on the semi-leptonic mode. Both collaborations

report new measurements of the σ(tt̄)lj production cross-section with one b-tag, which is

relevant for our analysis:

σ(tt̄)lj = 186± 10 (stat)+21
−20 (syst) ± 6 (lumi) pb (ATLAS) (5)
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σ(tt̄)ℓj σ(tt̄)ℓℓ σ(tt̄)thy Aboost

ATLAS [58] 142+61
−46 pb 151+86

−66 pb 145+52
−41 pb —

CMS [59] — 194±79 pb — —

Model A 193 pb 177 pb 166 pb 6%

TABLE III: Detailed LHC7 cross section predictions for Point A. Exclusive pp → tt̄ cross section is

shown in the column denoted by σ(tt̄)thy, with a K = 1.89 normalizing LO SM to the approximate

NNLO SM calculation σ(tt̄) = 164.6+11.4
−15.7 pb [58, 60, 61]. The other two columns σ(tt̄)ℓj and

σ(tt̄)ℓℓ represent predictions for observed inclusive cross-sections in the semi-leptonic and dileptonic

channels. Here we have included possible “fake” contributions dominantly from the process σ(gu →

W ′t) = 47 pb at the leading order and applied the cuts from the ATLAS analysis [58]. See text

for more discussions. Aboost observable is defined in Eq. 4.

σ(tt̄)lj = 150± 9 (stat) ± 17 (syst) ± 6 (lumi) pb (CMS) (6)

The ATLAS measurement [62] is made upon analyzing 35 pb−1 of data, and the CMS mea-

surement [63] is made upon analyzing 36 pb−1 of data. The ATLAS measurement is well

consistent with the 193 pb rate that our model point A predicts with cos θ = 0.95. The

CMS result is lower and on the surface looks to be a ∼ 2σ deviation from out prediction.

However, this result is very preliminary and its error is completely systematics dominated.

Furthermore, as we have discussed earlier, the details of cuts and acceptances make a sig-

nificant difference in how much faking contribution there is to the signal, so we are hesitant

to make too strong a statement about the applicability of this bound. Nevertheless, if this

issue turns out to not mitigate the discrepancy when the details are revealed, and more

importantly, if the ATLAS result begins to push more toward the CMS result rather than

vice versa, our model will need to predict a lower rate for σ(tt̄)lj. This can be achieved

straightforwardly by reducing the value of cos θ, as can be seen by the results of table IV.

This does not create conflict with other observables as long as cos θ > 0.92, which is low

enough to presently give a prediction of σ(tt̄)lj ≃ 180 pb in line with the CMS result.

The observation of like-sign top pairs interestingly turns out to be an important signature

for this model even though the cross-section is suppressed by small sin θ. In the limit cos θ →
1, top-number is preserved and no like-sign top pairs are produced. As discussed earlier, the

constraints from the dijet events already enforce θ to be relatively small but nonzero. The
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cos θ (Point A) σ(tt̄)ℓj σ(tt̄)ℓℓ σ(tt, t̄t̄)

0.9 175 pb 166 pb 3.90 pb

0.95 193 pb 177 pb 1.34 pb

1.0 233 pb 216 pb 0 pb

TABLE IV: The cos θ dependence of two relevant LHC signals (7 TeV) for a mass spectrum

corresponding to Point A. Point A is defined with cos θ = 0.95 but other values in the range of

0.92 <∼ cos θ <∼ 0.98 are also allowed. The inferred inclusive tt̄ cross-sections are shown in σ(tt̄)ℓj, ℓℓ.

Refer to table III for more details and corresponding LHC7 data. The inclusive like-sign top pair

production (including tt, t̄t̄ and vector boson decays to like-sign tops) is calculated at LO. Current

deduced upper bound of σ(tt, t̄t̄) from heavy exotic quark searches at LHC7 is about 5 pb at 95%

CL.

benchmark point A predicts the total inclusive LO like-sign top pair productions to be 20.6 fb

at the Tevatron, and 1.34 pb at LHC7. These inclusive cross-sections include contributions

from qq → tt, qq̄ → V V , gq → tV and their charge conjugate processes (where V = W ′,

Z ′). Current bounds from the Tevatron are more than an order of magnitude weaker than

this [64].

The situation for like-sign tops at the LHC is more subtle at the moment, but more

promising. We can extract a relevant bound from LHC7 coming from a like-sign dilepton

search (combined with tri-lepton topology) used to search for heavy bottom-like quarks with

an integrated luminosity of 34 pb−1 [65]. Their 95% CL bound on the cross-section of these

exotic heavy quarks is about 2-3 pb. Accounting for differences in branching ratios, we

estimate a rough 95% CL limit of 5 pb on our like sign top production to be compared with

our prediction of 1.34 pb. So, while nothing has been seen up to the present, data from the

next year may prove relevant. This is an interesting conclusion: while our model completely

suppresses the like-sign top quarks in the cos θ → 1 limit, the like-sign dilepton signal again

becomes important once we deviate from this point. We stress that cos θ 6= 1 is necessary.

Without a non-zero θ, we violate the dijet constraints from UA2 and CDF (see Fig. 1),

and the faking contribution of the associated V ′ production can become more dangerous.

After considering various constraints on the model in previous sections, we found the allowed

range of 0.92 <∼ cos θ <∼ 0.98 for Point A which is largely set by dijet resonance bounds on
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FIG. 3: d(∆σ)/dMtt̄ and Rtt̄ are plotted at LHC7, as defined in Eq. 7. The full theoretical

distribution (solid line) is subject to acceptance issue as discussed in text. To see the effects of

selection cuts, we also calculate distribution by restricting to yt, yt̄ < 2 (dashed line).

W ′ (lower bound) and Z ′ (upper bound) as alluded to earlier, see discussion in Sec. III.

The values of the like-sign top pair are tabulated for different values of cos θ in Table IV.

Whichever cos θ is realized a signal in some channel is anticipated soon at LHC7.

A large enhancement at high mtt̄ is still expected to be present at the LHC as shown

in Fig. 3. See [32] for related work. Although the qq̄ → tt̄ subprocess is less important

than gg → tt̄ at the LHC, the gg-initiated subprocess is well suppressed in the high-energy

region. Two observables that are sensitive to an enhancement from qq̄ initiated top quark

production are defined as

d(∆σ)

dMtt̄

≡ dσ(A)

dMtt̄

− dσ(SM)

dMtt̄

, Rtt̄ ≡ dσ(A)/dMtt̄

dσ(SM)/dMtt̄

(7)

and are shown in Fig. 3. However, the differential cross section is subject to the unfolding

issue as discussed earlier. To see the important effects of event selection cuts, we also

calculate the above two observables by restricting to small top quark rapidities of yt, yt̄ < 2.

These simple cuts illustrate the acceptance issue well, as forward top quarks have large

rapidities. Under these cuts, theoretical distributions are distorted as shown in Fig. 3. It is

clear that understanding the acceptance issue at the LHC is very important. Moreover, the

high-energy region is expected to be also sensitive to heavy new physics [66].

To conclusively discover t-channel physics and distinguish it from other candidates of new

physics, the reconstruction of the flavor violating gauge bosons should be attempted. One

possibility is to search for the resonance of W ′ through the process gu → W ′−t → (ut̄) t
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[15, 23, 27] or through gu → W ′−t → (uū) t if cos θ < 1 [10]. However, non-zero θ in

our model reduces the discovery reach a bit. To illustrate this, we calculate relevant cross-

sections. For cos θ = 1, 0.95, 0.9, the relevant cross-sections are σ(gu → W ′t) · Br(W ′ →
tu) = 58, 22, 11 pb at LO. The later stage of LHC7 may be sensitive to the existence of

a light W ′. And lastly, although a light Z ′ boson was important to determine plausible

benchmark points, it is unlikely to be discovered first since growing QCD backgrounds at

low energy wash out the dijet resonance signal.

In summary, the forward-backward asymmetry is a tantalizing signal of new physics at

the Tevatron. The non-Abelian symmetry that we have introduced here works well to match

the data. Confirming that it is a correct theory will require careful measurements of the top

quark production cross-section and the tt̄ invariant mass distributions at the LHC, as well

as like-sign top quark signatures that are made possible by exotic interactions with the new

gauge bosons.
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Appendix A: cross-sections and Decay widths

We list analytic cross-section formula relevant for top pair production. Our notation is

that a qq̄ → tt̄ diagram denoted by tX implies that a gauge boson X is exchanged in the

t-channel. Angular differential cross-sections are given by

dσ(sG−tV )

d cos θ
= 2 · πβ

18s
αSαXξtV ·

4(u2
t + sm2

t ) + 2
m2

t

m2

V

(t2t + sm2
t )

s · tV
(A1)

dσ(tV −tV )

d cos θ
=

πβ

8s
α2
Xξ

2
tV ·

4u2
t +

m4

t

m4

V

(t2t + 4sm2
V )

t2V
(A2)

dσ(tX−tY )

d cos θ
= 2 · πβ

8s
α2
XξtXξtY ·

4u2
t +

m4

t

m2

X
m2

Y

t2t + 2
m4

t

m4

X

sm2
X + 2

m4

t

m4

Y

sm2
Y

tX · tY
(A3)
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dσ(sX−tY )

d cos θ
= 2 · πβ

24s
α2
XξsXξtY ·

4u2
t + 2

m2

t

m2

Y

sm2
t

sX · tY
(A4)

dσ(sV−sV )

d cos θ
=

πβ

8s
α2
Xξ

2
sV · 4u

2
t

s2V
(A5)

dσ(sX−sY )

d cos θ
= 2 · πβ

8s
α2
XξsXξsY · 4u2

t

sX · sY
(A6)

where ti ≡ t−m2
i (and similarly for si and ui), β ≡

√

(1− 4m2
t/s), and ξtV is a vertex factor

of the tV diagram that can be read from the interaction Lagrangian in Eq. 2. For example,

ξtW ′ =
1

2
(c4 + s4), ξsW ′ =

1

2
(−2c2s2) (A7)

ξtZ′ =
1

4
(4c2s2), ξsZ′ =

1

4
(−(c2 − s2)2) (A8)

where c = cos θ parameterizes the mismatch between the gauge and mass eigenstates of the

(t, u)R doublet.

Decay widths of W ′ and Z ′ are given by

Γ(W ′+ → tū) =
NcαXc

4

24
MW ′(1− ξ2)(2− ξ2 − ξ4) (A9)

Γ(W ′+ → ut̄)breaking =
NcαXs

4

24
MW ′(1− ξ2)(2− ξ2 − ξ4) (A10)

Γ(Z ′ → ut̄, tū) =
NcαX (8c2s2)

48
MZ′(1− ξ2)(2− ξ2 − ξ4) (A11)

Γ(W ′+ → uū) =
NcαXc

2s2

12
MW ′ (A12)

Γ(Z ′ → uū) =
NcαX(s

2 − c2)2

24
MZ′ (A13)

Γ(W ′+ → tt̄) =
NcαXc

2s2

12
MW ′

√

1− 4ξ2(1− ξ2) (A14)

Γ(Z ′ → tt̄) =
NcαX(c

2 − s2)2

24
MZ′

√

1− 4ξ2(1− ξ2) (A15)

where ξ ≡ mt/mV . The subscript “breaking” is to distinguish the top–number breaking

decay mode W ′+ → ut̄ from the top–number preserving mode W ′+ → tū.

For model point A, the widths of W ′ and Z ′ are given by ΓW ′/MW ′ ≃ 0.0024 and

ΓZ′/MZ′ ≃ 0.0073. Thus resonance search should be sensitive, as discussed in Sec. III.
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