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The N-jettiness event shape divides phase space into N + 2 regions, each containing one jet or
beam. Using a geometric measure these regions correspond to jets with circular boundaries. We give
a factorization theorem for the cross section fully differential in the mass of each jet, and compute
the corresponding soft function at next-to-leading order (NLO). The ultraviolet divergences are
analytically extracted by exploiting hemispheres for interactions between each pair of hard partons,
leaving only convergent integrals that are sensitive to the precise boundaries. This hemisphere
decomposition can also be applied to other N-jet soft functions, including other observables. For
N-jettiness, the final result for the soft function involves stable one-dimensional numerical integrals,
and all ingredients are now available to extend NLO cross sections to resummed predictions at
next-to-next-to-leading logarithmic order.

I. INTRODUCTION

The measurement of exclusive jet cross sections, where
one identifies a certain number of signal jets but ve-
toes additional jets, is an important aspect of Higgs and
new-physics searches at the LHC and Tevatron. In such
searches, the experiments often analyze the data sepa-
rated into bins of different numbers of jets. This is done
because the relative contributions of various signal and
background channels often vary with the number of hard
jets in the event. Hence, it is important to optimize the
analyses for each jet bin. An important example is the
Higgs search at the Tevatron [1], which analyzes the data
separately for H + 0 jets, H + 1 jet, and H + 2 or more
jets.
Reliable theoretical calculations of exclusive jet cross

sections are of course essential. The complication com-
pared to the calculation of an inclusive N -jet cross sec-
tion, where one sums over any additional jets, comes from
the fact that the veto on additional jets imposes a restric-
tion on the energetic initial- and final-state radiation off
the primary hard partons, as well as the overall soft ra-
diation in the event. This restriction on additional emis-
sions leads to the appearance of large Sudakov double
logarithms in the perturbation theory. This is a well-
known phenomenon and is due to an incomplete cancel-
lation of infrared contributions between virtual correc-
tions and restricted real radiation. For this reason, the
calculation of exclusive jet cross sections is traditionally
carried out with parton-shower Monte Carlo programs,
where the parton shower allows one to resum the most
singular leading double logarithms.
An alternative analytic approach to calculate exclusive

jet cross sections is possible using factorization and the
methods of soft-collinear effective theory (SCET) [2–5].
SCET is designed to study processes with a specific num-
ber of hard jets. It allows one to factorize the N -jet cross
section into individually calculable pieces and resum the
large logarithmic contributions to obtain a convergent
perturbative series. The advantage of this approach is

that the resummation can be carried out to much higher
orders than is possible with parton showers. In addition,
it is much easier than in a parton-shower program to in-
clude higher-order virtual corrections, and to correctly
reproduce the inclusive cross section in the limit when
the jet-veto cut is eliminated.
Schematically, the cross section for pp → N jets (plus

some nonhadronic final state which we suppress for now)
can be factorized as [6–8]

σN = HN ×
[
BaBb

N∏

i=1

Ji

]
⊗ SN . (1)

This formula directly applies to observables that im-
plement a veto on additional jets which restricts the
phase space to the exclusive N -jet region (assuming that
Glauber effects cancel as they do in Drell-Yan [9]). The
hard function HN encodes hard virtual corrections to
the underlying partonic 2 → N process, the beam func-
tions Ba,b contain the parton distributions and pertur-
bative collinear initial-state radiation from the colliding
hard partons, and the jet functions Ji describe energetic
collinear final-state radiation from the primary N hard
partons produced in the collision. The soft function SN

describes the soft radiation in the event that couples to
the in- and outgoing hard partons. Since the collinear
and soft radiation are not separately observable, the soft
function is convolved with the beam and jet functions.
The veto on additional jets restricts the collinear ISR,
the FSR, and the soft radiation, which means the precise
definition of the required beam, jet, and soft functions
depends on the veto variable.
For the case of an exclusive 0-jet cross section, inclu-

sive beam and jet functions can be obtained by using a
simple event-shape variable called beam thrust [8] to veto
central jets. This 0-jet cross section has been studied for
Drell-Yan production in Ref. [10] and for Higgs produc-
tion in Ref. [11]. The latter is for example relevant for the
H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
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of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.

The generalization of beam thrust to processes with
N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].

Factorization for N -jettiness can be contrasted with
factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms in
e+e− → jets have been calculated at next-to-leading or-
der (NLO) in Refs. [24, 25]. In Ref. [24] the soft function
for e+e− → jets was calculated at NLO, where a cut on
the total energy outside the jets was used as the jet veto.
Using N -jettiness avoids these issues that complicate the
structure of perturbation theory.

The N -jettiness event shape assigns all particles to one
ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass or invariant mass of this jet. This correspondence
will be made precise in the next section. We will also
briefly explore the shape of the jet regions obtained using
N -jettiness with different measures. A geometric mea-
sure gives jets with circular boundaries, putting them in
the class that are typically preferred experimentally.

For an N -jettiness cross section calculation using
Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order cal-
culation, many of which are now known to NLO.) Gen-
eral features of N -jettiness and its jet regions are ex-
plored in Sec. II. Results are given for the fully differ-
ential T i

N factorization theorem, and for renormalization
group consistency equations for the N -jettiness soft func-

tion. Section III contains details of the NLO calculation
of SN , including developing a simple method that uses
hemispheres for each pair of hard partons to extract UV
divergences and the corresponding induced logarithmic
terms. The remaining O(αs) terms are then given by fi-
nite integrals that do not involve the UV regulator, and
we will refer to these as the non-hemisphere contribu-
tions. This hemisphere decomposition is not specific to
the N -jettiness observable, and we show how it can be
applied in general. For the N -jettiness soft function we
reduce the non-hemisphere contributions to well-behaved
one-dimensional numerical integrals (some details are rel-
egated to appendices). Section IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the mass spectrum of subjets with T i

N ,
following a similar procedure that we advocate here for
jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N for
the final-state jets.1 For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1, ~ni) , (3)

where ωi is the jet energy, and ~ni is the jet direction.
The ωi and ~ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

1 Here we use a dimension-one TN as in Ref. [11] as opposed to
the dimensionless τN of Ref. [12].
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FIG. 1: Jet and beam reference momenta for 1-jettiness (left), 2-jettiness (middle) and e+e− 3-jettiness (right). In the middle
plot the jets and beams do not necessarily lie in a plane.
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FIG. 2: The jet and beam regions for the same two jets using 2-jettiness. On the left we use the invariant-mass measure
Qi = Q. On the right we use the geometric measure with Qi = |~qiT | for the jets and Qa,b = xa,bEcm for the beams.

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum
fractions of the colliding hard partons. The latter are
defined as

xaEcm = QeY , xbEcm = Qe−Y , (5)

where Q2 and Y are the total invariant mass-squared and
rapidity of the hard interaction. They are determined
from the observed final state by

Q2 = xaxbE
2
cm = (q1 + · · ·+ qN + q)2 ,

2Y = ln
xa

xb
= ln

(1,−ẑ) · (q1 + · · ·+ qN + q)

(1, ẑ) · (q1 + · · ·+ qN + q)
. (6)

Here qµ denotes the total momentum of the non-hadronic
final state if one is present.
The choice of the qµi is illustrated in Fig. 1 for 1-

jettiness (left panel), 2-jettiness (middle panel), and
e+e− 3-jettiness (right panel). For the first two cases
qµ is given by the momentum of the W/Z. In SCET
the qµi ’s become the large label momenta on the collinear
fields, which can be thought of as the momenta of the
partons in the hard interaction. The minimum in Eq. (2)
divides the total phase space into N + 2 regions, one for
each beam and jet, as indicated by the dashed lines in
Fig. 1. Their union exactly covers all of phase space, and
the boundary between any two regions is a (part of a)
cone.

The Qi in Eq. (2) are dimension-one variables that
characterize the hardness of the jets. Different choices
for the Qi correspond to choosing different distance mea-
sures in the minimization in TN . For example, for fixed
Qi = Q, the distance measure is just the invariant mass,
2qi · pk. The resulting jet and beam regions in this case
are illustrated for 2-jettiness in the left panel of Fig. 2.
Choosing the jet transverse momentum Qi = |~qiT | for the
jets, the measure becomes a geometric measure, which is
boost-invariant along the beam axis,

2qi · pk
|~qiT |

= |~pkT | (2 cosh∆ηik − 2 cos∆φik)

≈ |~pkT |
[
(∆ηik)

2 + (∆φik)
2
]
. (7)

Here, ∆ηik = ηi − ηk, ∆φik = φi − φk are the differences
in (pseudo)rapidity and azimuthal angle between the di-
rection of jet i and particle k. The second line is valid
in the limit of small ∆η and ∆φ. Equation (7) results
in circular boundaries for the jet regions, as illustrated
in the right panel of Fig. 2. In this case only the ~ni

part of qµi enters, and the ~ni could be obtained by the
choice which minimizes TN , thus making N -jettiness a
true event shape that does not depend on any auxiliary
input from a jet algorithm. The jet energy is then simply
given by summing over the particles in each jet region as
determined by TN .
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For the beams we have

2qa · pk
Qa

=
Q

Qa
|~pkT | eY−ηk , (8)

with Y − ηk → −Y + ηk for a → b. Here two potential
choices for Qa,b are Qa,b = Q, giving the invariant-mass
distance measure, or Qa,b = Qe±Y = xa,bEcm, which
gives

2qa,b · pk
Qa,b

= |~pkT |e∓ηk . (9)

We will carry out our analysis and one-loop calcula-
tions keeping Qi arbitrary, enabling various choices to be
explored using our results. From an experimental point
of view certain choices will be more advantageous than
others. For example, the second choice above for Qa,b is
useful if the total rapidity cannot be measured because
there are missing-energy particles in the final state.
For convenience we define the dimensionless reference

momenta and their invariant products

q̂µi =
qµi
Qi

, ŝij = 2q̂i · q̂j . (10)

We can then rewrite Eq. (2) as follows,

TN =
∑

i

T i
N ≡

∑

i

2q̂i · Pi

Pµ
i =

∑

k

pµk
∏

j 6=i

θ
(
q̂j · pk − q̂i · pk

)
, (11)

where Pµ
i is the total four-momentum in region i. The

T i
N are thus given by the small light-cone component of

the Pi measured along their respective collinear direc-
tions q̂i. In the next section we explore the factorization
theorem that is fully differential in the T i

N . The result-
ing fully differential soft function will be the focus of our
calculations.

B. N -Jettiness Differential in Jet Regions

The factorization theorem for dσ/dTN was given in
Ref. [12], and is derived in a straightforward manner from
SCET, see Refs. [6–8] (with an assumption so far implicit
in all N -jet factorization formulae about the cancellation
of Glauber gluons). Instead of measuring TN , the manip-
ulations leading to the factorization theorem are no more
difficult when we consider the fully differential cross sec-
tion, where we measure each individual T i

N . The value
of T i

N determines the transverse mass of region i relative
to the direction ~ni since

M2
iT = P 2

i + ~P 2
i⊥ = (n̄i · Pi)(ni · Pi)

= 2qi · Pi [1 +O(λ2)]

= QiT i
N [1 +O(λ2)] , (12)

where nµ
i = (1, ~ni), n̄

µ
i = (1,−~ni). In the last line we

used n̄i · qi = n̄i · Pi +O(λ2), where λ2 ∼ T i
N/Q and the

power corrections depend on how the magnitude of qi is
fixed.

If the label vector ~ni is chosen to be aligned with

the direction of the jet three-momentum ~Pi such that

~ni · ~Pi/|~Pi| ∼ 1 + O(λ4) then ~P 2
i⊥ = 0 + O(λ4) and the

transverse mass is the same as the invariant mass.

M2
i = P 2

i = QiT i
N [1 +O(λ2)] . (13)

Thus the differential T i
N spectrum corresponds to the

spectrum in the invariant mass for jet i, where M2
i → 0

for a pencil like jet of massless partons.

The factorized form for the cross section in the limit
where all the T i

N are assumed to be parametrically com-
parable but small compared to Qi ∼ Q is

dσ

dT a
N dT b

N · · · dT N
N

=

∫
dxadxb

∫
d4q dΦL(q)

∫
dΦN ({qJ})MN (ΦN ,ΦL) (2π)

4δ4
(
qa + qb − q1 − · · · − qN − q

)

×
∑

κ

∫
dta Bκa

(ta, xa, µ)

∫
dtb Bκb

(tb, xb, µ)

N∏

J=1

∫
dsJ JκJ

(sJ , µ) (14)

× ~Cκ†
N (ΦN ,ΦL, µ) Ŝ

κ
N

(
T a
N − ta

Qa
, T b

N − tb
Qb

, T 1
N − s1

Q1
, . . . , T N

N − sN
QN

, {q̂i}, µ
)

~Cκ
N (ΦN ,ΦL, µ) .

Here, ΦN ({qJ}) denotes the N -body massless phase
space for the N reference jet momenta {qJ}, while ΦL(q)
is the “leptonic” phase space for any additional non-
hadronic particles in the final state, whose total momen-
tum is q. The measurement function MN (ΦN ,ΦL) en-

forces all N jets to be energetic and well enough sepa-
rated so that ŝij ≫ TN/Q. The index κ runs over all
relevant partonic channels, with κa, κb, . . . , κN denoting
the individual parton types.



5

The hard Wilson coefficient ~Cκ
N is a vector in the ap-

propriate color space of the external hard partons in each
partonic channel. It only depends on the hard phase-

space variables ΦN and ΦL. The soft function Ŝκ
N is a

matrix in the same color space. We can rewrite the color
contraction as

~C†
N ŜN

~CN = tr(~CN
~C†
N ŜN ) = tr(ĤN ŜN ) , (15)

so the hard function ĤN = ~CN
~C†
N is also a color-space

matrix.
We want to compute the N -jettiness soft function

Ŝκ
N

(
ka, kb, k1, . . . , kN , {q̂i}, µ

)
. (16)

The ki are the soft contributions to the T i
N , so from

Eq. (11) we have

ki = 2q̂i ·
[ ∑

k∈soft

pk
∏

j 6=i

θ
(
q̂j · pk − q̂i · pk

)]
, (17)

where the sum now only runs over soft momenta. As indi-
cated by the second to last argument in Eq. (16), the soft
function still depends on all the reference momenta {q̂i},
because they enter in the definition of the measured soft
momentum components in Eq. (17). The soft function is
defined by the vacuum matrix element

Ŝκ
N

(
ka, kb, k1, . . . , kN , {q̂i}

)
(18)

=
〈
0
∣∣∣Ŷ κ†({q̂i})

∏

i

δ(ki − 2q̂i · P̂i) Ŷ
κ({q̂i})

∣∣∣0
〉
,

where the P̂i denotes the momentum operator that picks

out the total momentum in region i. Here, Ŷ κ({q̂i}) de-
notes a product of eikonal Wilson lines in the q̂i directions
in the appropriate path-ordering and color representation
of the external partons in the partonic channel κ. The

Ŷ κ† and Ŷ κ are matrices multiplied in color space. We
take their overall normalization to be such that the tree
level result for Ŝκ

N is 1
∏

i δ(ki), where 1 is the color iden-
tity operator (see Eq. (25) below).
In the following, we will often use the short-hand no-

tation

Ŝκ
N ({ki}, µ) ≡ Ŝκ

N (ka, kb, k1, . . . , kN , {q̂i}, µ) , (19)

and similarly for other functions that depend on all ki,
such as the anomalous dimension and counterterm for
the soft function.

C. Soft Function RGE

To derive the structure of the RGE and anomalous di-
mension of the soft function Ŝκ

N (ka, ..., µ), we can use the
fact that the factorized cross section in Eq. (14) is inde-
pendent of the renormalization scale µ. For this purpose
we can ignore the phase-space integrals and only consider

the last two lines in Eq. (14). To simplify the notation,
we suppress the index κ and the momentum dependence
on the label momenta from here on.
As already mentioned, the hard Wilson coefficient ~CN

is a vector in the color space of the external hard partons,
so its anomalous dimension γ̂N is a matrix in color space.
For 1-jettiness (or e+e− 3-jettiness), the external partons
are qαq̄βga, so the only possible color structure is T a

αβ and

the color space becomes one-dimensional. For qαq̄βgagb

there are already three different color structures ~T ab
αβ =

{(T aT b)αβ , (T
bT a)αβ , δ

abδαβ}, and so on.

The hard Wilson coefficient ~CN from matching QCD
onto SCET satisfies the RGE

µ
d

dµ
~CN (µ) = γ̂C(µ) ~CN (µ) . (20)

Its anomalous dimension has the general form [28, 29]

γ̂†
C(µ) = −Γcusp[αs(µ)]

∑

i<j

Ti ·Tj

× ln
[
(−1)∆ij

2qi · qj
µ2

− i0
]
+ γ̂†

C [αs(µ)] , (21)

where we define ∆ij = 1 if i and j are both incoming
or both outgoing partons and ∆ij = 0 if one of them
is incoming and the other one outgoing, and with our
conventions qi · qj is always positive. Here, Γcusp(αs) is
the universal cusp anomalous dimension [30],

Γcusp(αs) =
αs

4π
4 +O(α2

s) . (22)

The T
a
i denotes the color charge of the ith external

particle when coupling to a gluon with color a. It acts
on the external color space as

(Ta
i
~T )···αi··· = T a

αiβi

~T···βi··· ,

(Ta
i
~T )···αi··· = −T a

βiαi

~T···βi··· ,

(Ta
i
~T )···ai··· = ifaiabi ~T ···bi··· , (23)

where the first line is for the ith particle being an outgo-
ing quark or incoming antiquark, the second line for an
incoming quark or outgoing antiquark, and the third line
for a gluon. The product

Ti ·Tj =
∑

a

T
a
iT

a
j , (24)

appearing in the first term in Eq. (21), thus represents a

particular color-space matrix T̂ij for each choice of i and
j. We also define the identity operator 1, which acts as

(1 ~T )···ai···
···αj ···

= ~T ···ai···
···αj ···

. (25)

In particular

T
2
i = 1Ci where Cq = Cq̄ = CF , Cg = CA . (26)
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With only three partons, qαq̄βga, the only possible color
structure is T a

αβ, so in this case the color matrices are
just numbers,

1 = 1 , T
2
q = T

2
q̄ = CF , T

2
g = CA ,

Tq ·Tq̄ =
CA

2
− CF ,

Tq ·Tg = Tq̄ ·Tg = −CA

2
. (27)

Up to two loops [31] (and maybe more [29, 32–34]),
the non-cusp term, γ̂C(αs), in Eq. (21) is diagonal in
color and given by a sum over individual quark and gluon
contributions,

γ̂C(αs) = 1

∑

i

γi
C(αs) +O(α3

s) ,

γq
C(αs) = γ q̄

C(αs) = −αs

4π
3CF +O(α2

s) ,

γg
C(αs) = −αs

4π
β0 +O(α2

s) . (28)

The RGEs for the beam and jet functions are

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γi

B(t− t′, µ)Bi(t
′, x, µ) ,

µ
d

dµ
Ji(s, µ) =

∫
ds′ γi

J(s− s′, µ)Ji(s
′, µ) . (29)

The beam and jet anomalous dimension are identical to

all orders [35], and are given by

γi
B(s, µ) = γi

J(s, µ) = −2Ci Γcusp[αs(µ)]
1

µ2
L0

( s

µ2

)

+ γi
J [αs(µ)] δ(s) , (30)

with

γq
J(αs) = γ q̄

J(αs) =
αs

4π
6CF +O(α2

s) ,

γg
J(αs) =

αs

4π
2β0 +O(α2

s) , (31)

and Ln(x) denotes the standard plus distribution,

Ln(x) =

[
θ(x) lnnx

x

]

+

. (32)

Taking the derivative of Eq. (14) with respect to µ, we
now require

0 = µ
d

dµ

∫ [∏

i

dsi Ji(si, µ)
]

× ~C†
N (µ) ŜN

({
T i
N − si

Qi

}
, µ

)
~CN (µ) , (33)

where we use Ji(si, µ) to denote either beam or jet func-
tions (with sa,b ≡ ta,b), since their RGEs are identical,
and as before i = a, b, 1, . . . , N . Using Eqs. (20) and (29)
together with Eq. (33), we get

0 =

∫ [∏

i

dsi ds
′
i Ji(QiT i

N − s′i, µ)
]{[∑

i

γi
J(s

′
i − si, µ)

∏

j 6=i

δ(s′j − sj)
]
ŜN

({ si
Qi

}
, µ

)

+
[∏

i

δ(s′i − si)
][
γ̂†
C(µ) ŜN

({ si
Qi

}
, µ

)
+ ŜN

({ si
Qi

}
, µ

)
γ̂C(µ) + µ

d

dµ
ŜN

({ si
Qi

}
, µ

)]}
, (34)

where we divided out the Wilson coefficients and shifted the integration variables si → QiT i
N −si and s′i → QiT i

N −s′i.

We can now multiply by
∏

i J−1
i (Qiki−QiT i

N , µ) and integrate over T i
N , which replaces Ji(QiT i

N − s′i, µ) → δ(Qiki−
s′i)/Qi. Renaming k′i = si/Qi, we obtain

µ
d

dµ
ŜN ({ki}, µ) =

∫ [∏

i

dk′i

]1
2

[
γ̂S({ki − k′i}, µ) ŜN({k′i}, µ) + ŜN ({k′i}, µ) γ̂†

S({ki − k′i}, µ)
]
, (35)

where the soft anomalous dimension is given by

γ̂S({ki}, µ) = −1

∑

i

Qiγ
i
J(Qiki, µ)

∏

j 6=i

δ(kj)− 2γ̂†
C(µ)

∏

i

δ(ki)

= 2Γcusp[αs(µ)]

{∑

i

T
2
i

Qi

µ2
L0

(Qiki
µ2

)∏

j 6=i

δ(kj) +
∑

i<j

Ti ·Tj ln
[
(−1)∆ij

2qi · qj
µ2

− i0
]∏

i

δ(ki)

}

−
{
1

∑

i

γi
J [αs(µ)] + 2γ̂†

C [αs(µ)]
}∏

i

δ(ki)

= −2Γcusp[αs(µ)]
∑

i6=j

Ti ·Tj

[
1√
ŝij µ

L0

( ki√
ŝij µ

)
+

iπ

2
∆ij δ(ki)

] ∏

m 6=i

δ(km) + γ̂S [αs(µ)]
∏

i

δ(ki) , (36)
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with the non-cusp part

γ̂S(αs) = −1

∑

i

γi
J(αs)− 2γ̂†

C(αs)

= −1

∑

i

[
γi
J (αs) + 2γi

C(αs)
]
+O(α3

s)

= 0 +O(α2
s) . (37)

In the last step above we rescaled the plus distribution
λL0(λx) = L0(x) + lnλ δ(x), and applied color identities
like

∑

i

xiT
2
i = −

∑

i6=j

xiTi ·Tj = −
∑

i<j

(xi+xj)Ti ·Tj , (38)

which follows from color conservation,
∑

i Ti = 0.
This derivation shows that factorization implies that

the kinematic dependence of γ̂S({ki}, µ) on ki is sepa-
rable into individual contributions to all orders. This
generalizes the same result obtained for the special case
of the hemisphere (i.e. e+e− 2-jettiness) soft function
in Ref. [36], which is reproduced by Eq. (36) using
Ti ·Tj = −CF and 2q̂i · q̂j = 1.
Since in Eq. (36) Γcusp(αs), γJ(αs), and γ̂C(αs) are

all known to two loops, so is γ̂S({ki}, µ). The general

evolution formula in Eq. (35) leaves ŜN hermitian, which
from Eq. (14) is the only requirement to obtain a real
cross section.

D. Renormalization and One-Loop Divergences

The result for the soft anomalous dimension allows us
to infer the one-loop counterterm for the soft function in
MS, which we will need in our calculation to renormal-
ize the bare soft function. This will provide us with a
nontrivial cross check on our calculation.
The structure of the anomalous dimension implies that

the bare and MS renormalized soft functions are related
by

Ŝbare
N ({ki}) =

∫ [∏

i

dk′i dk
′′
i

]
ẐS({k′i}, µ) (39)

× ŜN ({ki − k′i − k′′i }, µ) Ẑ†
S({k′′i }, µ) .

The bare soft function is independent of µ, so differen-
tiating both sides with respect to µ determines the soft
anomalous dimension in terms of the counterterm,

γ̂S({ki}, µ) = −2

∫ [∏

i

dk′i

]

× (ẐS)
−1({ki − k′i}, µ)µ

d

dµ
ẐS({k′i}, µ)

= −2µ
d

dµ
ẐS({k′i}, µ) +O(α2

s) . (40)

Using Eqs. (36) and (37), the NLO counterterm is thus
given by

ẐS({ki}, µ)

= 1

∏

i

δ(ki)−
αs(µ)

2π

1

ǫ

∑

i6=j

Ti ·Tj

[
− 1

2ǫ
δ(ki)

+
1√
ŝij µ

L0

(
ki√
ŝij µ

)
+

iπ

2
∆ij δ(ki)

] ∏

m 6=i

δ(km)

+O(α2
s) . (41)

Note that since ŜN is color diagonal at tree level, the

imaginary part of ẐS does not contribute in Eq. (39) at

NLO, because it cancels between ẐS and Ẑ†
S . Hence,

from Eq. (41) we expect the UV-divergent parts of the

one-loop bare soft function, Ŝ
bare(1)
N , to have the form

Ŝ
bare(1)
N ({ki}) = −αs(µ)

π

1

ǫ

∑

i6=j

Ti ·Tj
(ŝij µ

2)ǫ

k1+2ǫ
i

∏

m 6=i

δ(km)

+O(ǫ0) . (42)

This implies that the UV divergences are given for any
N by a simple sum over individual hemisphere contribu-
tions. We will see how this happens explicitly in the next
section.

III. NLO CALCULATION

A. General Setup

Our calculation in the following applies to both
hadronic and e+e− collisions, i.e. it is independent of
whether the Wilson lines are in- or outgoing. For sim-
plicity we use the term “jet” to refer to both beam jets
and final-state jets.
The one-loop diagrams for the soft function are shown

in Fig. 3, where i and j label any two Wilson lines, and
we work in Feynman gauge. The virtual diagrams in
Fig. 3(a) are scaleless and thus vanish in pure dimensional
regularization. The real emission diagrams in Fig. 3(b)
with the gluon attaching to the same Wilson line vanish,
as it is proportional to q̂2i = 0. Hence, at one loop we can
write the bare soft function as a sum over contributions
where the intermediate gluon attaches to the ith and jth
Wilson line as shown in Figs. 3(c) and 3(d),

Ŝ
bare(1)
N ({ki})

= −2
∑

i<j

Ti ·Tj

(eγEµ2

4π

)ǫ

g2
∫

ddp

(2π)d
q̂i · q̂j

(q̂i · p)(q̂j · p)

× 2πδ(p2) θ(p0)F ({ki}, {2q̂i · p}) . (43)

The key idea in the hemisphere decomposition method
is to first fix i and j and then analyze the remaining inte-
gral. The measurement function resulting from Eq. (17),
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FIG. 3: One-loop diagrams for ŜN . The vertical line denotes
the final-state cut. Diagrams (a) and (b) vanish. Diagrams
(c) and (d) yield Eq. (43).

which measures the contribution of the gluon in the final
state to ki, is given by

F ({ki}, {pi}) =
∑

m

δ(km − pm)
∏

l 6=m

δ(kl) θ(p
l − pm) ,

(44)
where we denote the component of the gluon momentum
pµ along the jet direction q̂µi as

pi = 2q̂i · p . (45)

For example, for 1-jettiness (or e+e− 3-jettiness) we
have three independent labels i 6= j 6= m, so

F ({ki}, {pi}) (46)

= δ(ki − pi) δ(kj) δ(km) θ(pj − pi) θ(pm − pi)

+ δ(ki) δ(kj − pj) δ(km) θ(pi − pj) θ(pm − pj)

+ δ(ki) δ(kj) δ(km − pm) θ(pi − pm) θ(pj − pm) .

The first two terms correspond to the case where the
gluon emitted from the ith and jth Wilson line ends up
in the region of jet i or jet j, respectively. In this case, p
can become collinear with either q̂i or q̂j , resulting in a
double UV-IR divergence. In the last term, the gluon is
in the remaining jet m. In this case, both pi > pm and
pj > pm are bounded from below, so there is only a single
soft IR divergence. The virtual diagrams, which vanish in
pure dimensional regularization, turn all IR divergences
into UV divergences.
To combine the divergences from the different jet re-

gions, we split the region of jet m into the two hemi-
spheres pi < pj and pi > pj defined by the directions of

jets i and j,

F ({ki}, {pi})

= θ(pj − pi)
[
δ(ki − pi) δ(km) θ(pm − pi)

+ δ(ki) δ(km − pm) θ(pi − pm)
]
δ(kj) + (i ↔ j)

= δ(ki − pi) δ(kj) θ(p
j − pi) δ(km)

+
[
δ(ki) δ(km − pm)− δ(ki − pi) δ(km)

]

× δ(kj) θ(p
j − pi) θ(pi − pm) + (i ↔ j)

≡ Fij,hemi({ki}, {pi}) + Fji,hemi({ki}, {pi})
+ Fij,m({ki}, {pi}) + Fji,m({ki}, {pi}) . (47)

In the second step we replaced θ(pm − pi) = 1 − θ(pi −
pm) in the first term to extend the region for jet i to
the full pi < pj hemisphere, which gives the hemisphere
measurement function

Fij,hemi({ki}, {pi}) = δ(ki − pi) δ(kj) θ(p
j − pi) δ(km) .

(48)
The contribution for pm < pi < pj , which overlaps with
the region for jet m, is subtracted in the second term,
which gives the non-hemisphere measurement function
for region m,

Fij,m({ki}, {pi})
=

[
δ(ki) δ(km − pm)− δ(ki − pi) δ(km)

]

× δ(kj) θ(p
j − pi) θ(pi − pm) . (49)

This splitting up of the measurement function is illus-
trated in Fig. 4. The integrations over the i and j hemi-
spheres resulting from Fij,hemi and Fji,hemi will now con-
tain all divergences, while the integration over region m
resulting from Fij,m and Fji,m will be UV and IR finite,
as we will see explicitly below. Essentially, the restriction
of the emitted and measured gluon to stay away from the
i and j directions, pi,j > pm, cuts off the UV divergence,
while the subtraction of the overlapping hemisphere con-
tribution removes the soft divergence: In the soft limit,
both pi → 0 and pm → 0, and the two terms in square
brackets in Eq. (49) cancel each other.
We will see in Sec. III E (see Eq. (65) below) that this

split up of the measurement function generalizes to any
N . Hence, we write the renormalized soft function as

ŜN ({ki}, µ) = 1

∏

i

δ(ki) +
∑

i6=j

Ti ·Tj S
(1)
ij ({ki}, µ)

+O(α2
s) , (50)

where we split the NLO contribution into a hemisphere
and a non-hemisphere contribution, with the latter given
by a sum over the different jet regions m 6= i, j,

S
(1)
ij ({ki}, µ) = S

(1)
ij,hemi({ki}, µ) +

∑

m 6=i,j

S
(1)
ij,m({ki}, µ) .

(51)
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+ -= + -+=

FIG. 4: Separation of the measurement function into hemisphere and non-hemisphere measurement functions for 1-jettiness or
e+e− 3-jettiness for a gluon emitted from the ith and jth Wilson line. The phase space is divided into i and j hemispheres
into which the third jet region m is split.

Here, Sij,hemi and Sij,m are the contributions correspond-
ing to Fij,hemi and Fij,m in Eq. (47).
It is instructive to compare our hemisphere decompo-

sition with the method used in Ref. [24] to calculate the
soft function for cone jets. There the authors first spec-
ify a jet region and then sum over all contributions from
different gluon attachments for that fixed jet region. In
the end they sum over the different jet regions. In this
case there are nontrivial cancellations between the di-
vergences (and finite terms) arising from the same gluon
attachment contributing to different jets. In contrast, as
seen from Eqs. (50) and (51), in the hemisphere decom-
position we first specify a gluon attachment i, j and then

sum over the contributions to the different jet regions m
from this specific attachment. This allows us to make the
cancellations explicit and to isolate the UV divergences
into the hemisphere contributions. In the end we sum
over all possible attachments.

B. Hemisphere Contributions

Using Eq. (43) and restricting the measurement func-
tion to the hemisphere contribution, Fij,hemi in Eq. (47),
we obtain

S
bare(1)
ij,hemi({ki}) = −2

(eγEµ2

4π

)ǫ

g2
∫

ddp

(2π)d
2ŝij
pi pj

2πδ(p2) θ(p0) δ(ki − pi) δ(kj) θ(p
j − pi) δ(km)

= −αs(µ)

π

(eγE )ǫ

Γ(1− ǫ)

(
ŝij µ

2
)ǫ
∫
dpi dpj

θ(pi) θ(pj)

(pipj)1+ǫ
δ(ki − pi) δ(kj) θ(p

j − pi) δ(km)

= −αs(µ)

π

1

ǫ

(eγE )ǫ

Γ(1− ǫ)

(
ŝij µ

2
)ǫ θ(ki)
k1+2ǫ
i

δ(kj) δ(km) . (52)

In the second step we used the coordinate decomposition

pµ = pj
q̂µi
ŝij

+ pi
q̂µj
ŝij

+ pµij⊥ (53)

to rewrite the phase-space integral as

∫
ddp

(2π)d
2πδ(p2) θ(p0) =

(4π)ǫ

(2π)2Γ(1− ǫ)

1

4ŝij

∫
dpi dpj

( ŝij
pi pj

)ǫ
θ(pi) θ(pj) , (54)

and in the last step we integrated over pi and pj . The result in Eq. (52) has the expected form in Eq. (42) and repro-
duces the correct counterterm and anomalous dimension. Expanding Eq. (52) and subtracting the 1/ǫ divergences,
we obtain the renormalized NLO hemisphere contribution

S
(1)
ij,hemi({ki}, µ) =

αs(µ)

4π

[
8√
ŝij µ

L1

(
ki√
ŝij µ

)
− π2

6
δ(ki)

]
δ(kj) δ(km) . (55)

This generalizes the one-loop result for the hemisphere soft function for two back-to-back jets with equal energies
from Refs. [36, 37] to general hemispheres defined by two jet directions q̂i and q̂j . Note that, as expected from RPI
invariance, the dependence on the jet directions only appears through the invariant ŝij .
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C. Non-Hemisphere Contributions

We now turn to the non-hemisphere contributions that account for the precise definition of the 1-jettiness observable
and the fact that the boundaries between the different jet regions are more complicated than simple hemispheres.
Inserting the second part Fij,m in Eq. (47) into Eq. (43), we get

S
bare(1)
ij,m ({ki}) = −αs(µ)

π

(
eγE2q̂i · q̂jµ2

)ǫ
∫

dΩd−2

2π1−ǫ
dpi dpj

θ(pi) θ(pj)

(pipj)1+ǫ

×
[
δ(ki) δ(km − pm)− δ(ki − pi) δ(km)

]
δ(kj) θ(p

j − pi) θ(pi − pm) . (56)

To perform the integration over pi we use the rescaled variable x = pj/pi, and rewrite pm in terms of pi, x, and the
angle φ between ~qm⊥ and ~p⊥ in the transverse plane,

x =
pj

pi
,

pm

pi
=

ŝjm
ŝij

+
ŝim
ŝij

x− 2
( ŝjmŝim

ŝ2ij
x
)1/2

cosφ ≡ z(x, φ) . (57)

The limit pm < pi thus implies an upper limit on x, which eliminates the UV divergence for x → ∞. In addition,
since pm scales like pi, there is also no IR divergence in Eq. (56), because the term in square brackets vanishes in the
limit pi → 0. The integral over pi can then be performed without encountering any divergences,

µ2ǫ

∫
dpi

θ(pi)

(pi)1+2ǫ

[
δ(ki) δ(km − pm)− δ(ki − pi)δ(km)

]
= δ(ki)

1

µ
L0

(km
µ

)
− 1

µ
L0

(ki
µ

)
δ(km)− ln[z(x, φ)] δ(ki) δ(km) .

(58)
Note that the µ-dependence cancels between the first two terms. Taking ǫ → 0 everywhere else, we obtain the NLO
non-hemisphere contribution

S
(1)
ij,m({ki}, µ) =

αs(µ)

π

{
I0

( ŝjm
ŝij

,
ŝim
ŝij

)[ 1
µ
L0

(ki
µ

)
δ(km)− δ(ki)

1

µ
L0

(km
µ

)
+ ln

ŝjm
ŝij

δ(ki) δ(km)

]
δ(kj)

+ I1

( ŝjm
ŝij

,
ŝim
ŝij

)
δ(ki) δ(kj) δ(km)

}
. (59)

The remaining finite phase-space integrals are defined as (rescaling x = y2(α/β) to simplify the integrands)

I0(α, β) =
1

π

∫ π

−π

dφ

∫
dy

y
θ
(
y −

√
β/α

)
θ
(
1/α− 1− y2 + 2y cosφ

)
,

I1(α, β) =
1

π

∫ π

−π

dφ

∫
dy

y
ln(1 + y2 − 2y cosφ

)
θ
(
y −

√
β/α

)
θ
(
1/α− 1− y2 + 2y cosφ

)
. (60)

In Eq. (59) they are evaluated at α = ŝjm/ŝij and
β = ŝim/ŝij . Their numerical evaluation for fixed α > 0
and β > 0 poses no problem. We were not able to find
complete analytic expressions. Their analytic simplifica-
tion to one-dimensional integrals is given in App. A, with
the final result in Eq. (A9).

D. Extension to Other Observables

As we have just seen, we can extract the divergences in
the soft function by dividing up phase space into hemi-
spheres corresponding to pairs of Wilson lines. We will
now generalize this decomposition to general IR-safe ob-
servables and to more than three regions (in which case
the q̂i are in general non-planar).

Consider a measurement that specifies a way to split
up the angular phase space into non-overlapping regions.
We use the notation Θi(p) = 1 when the momentum p is
inside region i and Θi(p) = 0 otherwise. We require that
the union of all regions covers all of phase space, and that
each region contains at most one of the directions q̂i, i.e.

∑

i

Θi(p) = 1 , Θi(q̂j) = δij . (61)

We explicitly allow the possibility that there are regions
that do not contain any of the q̂i, in which case there will
be more than N + 2 regions.
In general, we can measure a different observable in

each region. At NLO, we only need to know how the
observable for each region i acts on a one-particle state
with momentum p, which we denote by fi(p). We want fi
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to be IR safe, which implies that fi(p → 0) is equivalent
to measuring no gluon at all. Without loss of general-
ity we can assume that fi(0) = 0. We will continue to
denote the arguments of the soft function by ki, which
are now given by the soft contribution to fi. With this
notation, the generalization of the measurement function
in Eq. (44) acting on a soft gluon with momentum p is

F ({ki}, p) =
∑

m

δ[km − fm(p)] Θm(p)
∏

l 6=m

δ(kl) . (62)

We now want to generalize Eq. (47) by splitting up
Eq. (62) into hemisphere and non-hemisphere contribu-
tions according to which Wilson lines the gluon attaches
to. We continue to use the labels i and j for the di-
rections of these two Wilson lines. The hemispheres are
still determined via the gluon momentum components
pi,j = 2q̂i,j · p by pj > pi and pi > pj . Writing out
Eq. (62) we now have

F ({ki}, p) = θ(pj − pi)
[
δ[ki − fi(p)]

∏

l 6=i

δ(kl)Θi(p)

+
∑

m 6=i

δ[km − fm(p)]
∏

l 6=m

δ(kl)Θm(p)
]
+ (i ↔ j) .

(63)

Note that region j is allowed to overlap with hemisphere
i, and vice versa. Using Eq. (61), we have

Θi(p) = 1−
∑

m 6=i

Θm(p) , (64)

which allows us to replace the regions i and j by full hemi-
spheres analogous to Eq. (47), where the complement of
Θi(p) is now split up between the remaining Θm(p) with
m 6= i. Then Eq. (62) can be written as

F ({ki}, p) = Fij,hemi({ki}, p) + Fji,hemi({ki}, p) (65)

+
∑

m 6=i

Fij,m({ki}, p) +
∑

m 6=j

Fji,m({ki}, p) ,

where the hemisphere contributions are given by

Fij,hemi({ki}, p) = θ(pj − pi) δ[ki− fi(p)]
∏

l 6=i

δ(kl) , (66)

and the non-hemisphere contributions by

Fij,m({ki}, p)
= θ(pj − pi)Θm(p)

∏

l 6=i,m

δ(kl) (67)

×
{
δ(ki) δ[km − fm(p)]− δ[ki − fi(p)] δ(km)

}
.

As in Sec. III C, all the divergences are contained in
the hemisphere contributions, while the non-hemisphere
contributions are UV and IR finite. The measurement of
either fi or fm in Eq. (67) fixes the magnitude of p, while
the restriction of the emitted gluon to region m forces

it to stay away from the i and j directions. Taken to-
gether this eliminates the UV divergence. The IR-safety
of fi then ensures that in the limit p → 0 the terms
in curly brackets in Eq. (67) cancel each other, which
eliminates the IR divergence. As a result, for any set of
IR-safe observables fi all UV divergences, and hence the
anomalous dimension, are contained in the hemisphere
contributions determined by Eq. (66). Depending on the
observable, these contributions can be more complicated
than in Eq. (55). Note that this result depends on the
fact that an observable fi is measured in each region i.
If we have a region u where only an angular restriction is
imposed by Θu(p), the corresponding δ[ku − fu(p)] is ab-
sent (an “unmeasured jet” in the language of Ref. [23]).
In this case the hemisphere contributions Suj,hemi are
scaleless and vanish. The non-hemisphere contributions
Suj,m and Sij,u are still IR-finite, but now contain a UV
divergence in the term coming from region u, for which
the magnitude of p is not fixed anymore. In this case, the
factorization structure is different and the soft anoma-
lous dimension depends on the parameters determining
the boundary of region u, for example the cone radius as
in Ref. [23].
Although we have only applied the hemisphere decom-

position method at NLO, the N -jettiness factorization
theorem implies that the UV divergences and soft anoma-
lous dimensions factor into pairwise hemisphere contri-
butions to all orders, as shown by Eq. (36). Hence, we
believe the hemisphere decomposition will remain useful
also at higher orders.

E. NLO Calculation for N -Jettiness

We now use the general arguments in the previous sub-
section and apply them to the case of N -jettiness. In
this case the observables are simply the components of
the gluon momentum along the jet directions, while the
regions are determined by the smallest pi. Hence,

fi(p) = pi = 2q̂i · p , Θi(p) =
∏

m 6=i

θ(pm − pi) , (68)

which turns Eq. (62) into Eq. (44). From Eqs. (66) and
(67) we get

Fij,hemi({ki}, {pi}) = θ(pj − pi) δ(ki − pi)
∏

m 6=i

δ(km) ,

(69)
and

Fij,m({ki}, {pi}) (70)

=
[
δ(ki) δ(km − pm)− δ(ki − pi) δ(km)

]

× θ(pj − pi) θ(pi − pm)
∏

l 6=i,m

δ(kl) θ(p
l − pm) .

The calculation of the hemisphere contribution for gen-
eralN is identical to the 1-jettiness case in Sec. III B with
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the overall replacement δ(kj) δ(km) → ∏
m 6=i δ(km) aris-

ing from Eq. (69). In particular, we can see immediately
that this reproduces the correct NLO counterterm and
soft anomalous dimension in Eqs. (41) and (36). The fi-
nal result for the renormalized hemisphere contribution
is given by Eq. (55),

S
(1)
ij,hemi({ki}, µ) =

αs(µ)

4π

[
8√
ŝij µ

L1

(
ki√
ŝij µ

)

− π2

6
δ(ki)

] ∏

m 6=i

δ(km) . (71)

For the non-hemisphere contribution, there are now
several regions m contributing. The calculation for each
region proceeds as in Sec. III C, except that we now have

additional θ(pl−pm) functions in Eq. (70), which separate
region m from the remaining regions l 6= i,m. We can
write pm and pl in terms of pi and x = pj/pi,

pm

pi
=

ŝjm
ŝij

+
ŝim
ŝij

x− 2
( ŝjmŝim

ŝ2ij
x
)1/2

cosφ ,

pl

pi
=

ŝjl
ŝij

+
ŝil
ŝij

x− 2
( ŝjlŝil

ŝ2ij
x
)1/2

cos(φ + φlm) . (72)

Here φ is again defined as the angle between ~p⊥ and ~̂qm⊥,

while φlm are the angles between the remaining ~̂ql⊥ and
~̂qm⊥. The result for S

(1)
ij,m({ki}, µ) has the same form as

Eq. (59),

S
(1)
ij,m({ki}, µ) =

αs(µ)

π

{
I0

( ŝjm
ŝij

,
ŝim
ŝij

,
{ ŝjl
ŝjm

,
ŝil
ŝim

, φlm

}
l 6=i,j,m

)[ 1
µ
L0

(ki
µ

)
δ(km)− δ(ki)

1

µ
L0

(km
µ

)

+ ln
ŝjm
ŝij

δ(ki) δ(km)

]
+ I1

( ŝjm
ŝij

,
ŝim
ŝij

,
{ ŝjl
ŝjm

,
ŝil
ŝim

, φlm

}
l 6=i,j,m

)
δ(ki) δ(km)

} ∏

l 6=i,m

δ(kl) . (73)

The finite phase-space integrals are now given by

I0(α, β, {αl, βl, φl}) =
1

π

∫ π

−π

dφ

∫
dy

y
θ
(
y −

√
β/α

)
θ
(
1/α− 1− y2 + 2y cosφ

)

×
∏

l

θ
[
αl − 1 + (βl − 1)y2 − 2y

[√
αlβl cos(φ+ φl)− cosφ

]]
,

I1(α, β, {αl, βl, φl}) =
1

π

∫ π

−π

dφ

∫
dy

y
ln(1 + y2 − 2y cosφ

)
θ
(
y −

√
β/α

)
θ
(
1/α− 1− y2 + 2y cosφ

)

×
∏

l

θ
[
αl − 1 + (βl − 1)y2 − 2y

[√
αlβl cos(φ+ φl)− cosφ

]]
. (74)

An algorithm to systematically evaluate them numerically is given in App. A. The values for the parameters in
Eq. (73) are α = ŝjm/ŝij , β = ŝim/ŝij , αl = ŝjl/ŝjm, and βl = ŝil/ŝim.

IV. CONCLUSIONS

N -jettiness is a global event shape that can be used to
define an exclusive N -jet cross section. We have given a
factorization theorem for the cross section fully differen-
tial in the individual N -jettiness contributions for each
region, T i

N , which correspond to the mass of each jet re-
gion. We have computed the corresponding N -jettiness
soft function differential in all T i

N at one loop.

In our calculation we analytically extract the UV di-
vergences by splitting the phase space into hemispheres
depending on which Wilson lines the soft gluon attaches
to. The hemisphere contributions reproduce the anoma-
lous dimension of the soft function as expected from the
consistency of the factorization theorem. The remaining
non-hemisphere contributions, which encode the depen-

dence on the boundaries between the regions, are reduced
to one-dimensional numerical integrals. We show that
this hemisphere decomposition can be applied in general
to compute soft functions for other observables, such as
jet algorithms and jet shapes, at one loop. We also expect
that it can be generalized to two loops.

Our soft-function calculation provides the last missing
ingredient to obtain the exclusive N -jet cross section re-
summed to NNLL for any process where the correspond-
ing SCET hard function at NLO is known from the one-
loop QCD calculation. In many processes it has been ob-
tained explicitly [28, 38–45]. In general, the NLO hard
function is given in terms of the virtual one-loop QCD
diagrams, and there are large ongoing efforts to compute
these for many LHC processes [46–54].

The shape of the jet regions as determined by N -
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jettiness depend on the specific distance measure used,
and our results apply to any choice of distance measure.
As we saw in Fig. 2, using a geometric measure, the jet
regions yield jets with circular boundaries, which is a fea-
ture desired experimentally. Hence, it will be interesting
to explore the use of N -jettiness directly as an exclusive
N -jet algorithm in the future.
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Appendix A: Finite Integrals

1. 1-Jettiness

Here we further study the finite phase-space integrals
in Eq. (60) that are required for 1-jettiness or e+e− 3-
jettiness. The indefinite integrals over y can be carried
out explicitly. In particular, for I1 we have

G(y, φ) =

∫
dy

y
ln(1 + y2 − 2y cosφ) = −2Re

[
Li2(ye

iφ)
]
.

(A1)
The remaining integrals over φ must be be carried out
numerically.2

What remains is to determine the φ-dependent inte-
gration limits on y. We use −π ≤ φ ≤ π as the funda-
mental region for φ. Also recall that α = ŝjm/ŝij and
β = ŝim/ŝij, which are positive definite. The θ functions
in Eq. (60) impose the conditions

(y − cosφ)2 + sin2φ ≤ 1

α
, y ≥

√
β

α
≥ 0 , (A2)

which are illustrated in Fig. 5. Solving for y they imply

max

{√
β

α
, y−(φ, α)

}
≤ y ≤ y+(φ, α) , sin2φ ≤ 1

α
,

y−(φ, α) = cosφ−
√
1/α− sin2φ ,

y+(φ, α) = cosφ+

√
1/α− sin2φ . (A3)

We can now distinguish the two cases α ≤ 1 and α > 1.

2 One could also think about first integrating over φ, since the
original φ-integral can be done and the limits are linear in cosφ.
This does not lead to any simplification, however, because the
remaining numerical y-integral will then involve arccos[(1+ y2 −
1/α)/(2y)].

Case α ≤ 1 For α ≤ 1, we have ŝjm ≤ ŝij , which
means that q̂j is closer to q̂m than to q̂i. In this case,
which is illustrated in the left panel of Fig. 5, the roots
always exist and y−(φ) is strictly negative, so we have

√
β

α
≤ y ≤ y+(φ, α) ,

1 ≥ cosφ ≥ max
{α+ β − 1

2
√
αβ

, −1
}
,

√
β ≤

√
α+ 1 . (A4)

The lower limit on cosφ is necessary to guarantee that√
β/α ≤ y+(φ, α). The condition on α and β is then

necessary to guarantee that 1 ≥ (α+β−1)/(2
√
αβ), such

that the lower cosφ limit does not exceed the upper one,
otherwise the integral vanishes. The lower cosφ limit
itself is only nontrivial for

√
α +

√
β ≥ 1 which means√

ŝim +
√
ŝjm ≥

√
ŝij . For a purely geometric measure

this is always true, but it need not be the case for more
general measures.

Case α > 1 For α > 1, illustrated in the right panel
of Fig. 5, the condition sin2 φ ≤ 1/α for the roots to exist
becomes nontrivial and forces an upper limit on |φ|,

|φ| ≤ arcsin
1√
α
. (A5)

(The second solution for the arcsin is not allowed for
y ≥ 0.) Now, both lower limits on y are possible. To
determine which y-limit applies at a given value of φ, we
can distinguish two cases. First,

√
β

α
≤ y ≤ y+(φ, α) ,

1 ≥ cosφ ≥ α+ β − 1

2
√
αβ

,

√
α− 1 ≤

√
β ≤

√
α+ 1 , (A6)

where the cosφ limits result from enforcing y− ≤√
β/α ≤ y+ and the conditions on α and β enforce the

lower limit on cosφ to be ≤ 1. Second,

y−(φ, α) ≤ y ≤ y+(φ, α) ,

min
{
1,

α+ β − 1

2
√
αβ

}
≥ cosφ ≥

√
1− 1

α
,

β ≤ α− 1 , (A7)

where the upper cosφ limit and the condition on α and β
arises from requiring

√
β/α ≤ y−(φ, α), while the lower

limit on cosφ is equivalent to Eq. (A5).

Combined Result To write the various conditions in a
compact form we define the following two angles

φmax(α) = arcsin
1√
α
,
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0

0 1 2
y

√

β/α

φ

π

−π

φcut

−φcut

α < 1

(y − cos φ)2+ sin2φ ≤ 1/α

0

0 1 2
y

√

β/α

φ

π

−π

φcut

−φcut

α > 1

(y − cos φ)2+ sin2φ ≤ 1/α

FIG. 5: Phase-space constraints from Eq. (A3) in the φ-y plane for α = 0.8 (left) and α = 1.2 (right). In both cases β/α = 0.5.

φcut(α, β) =





0 |√α−
√
β| ≥ 1 ,

π
√
α+

√
β ≤ 1 ,

arccos
α+ β − 1

2
√
αβ

otherwise .

(A8)

The conditions for α < 1 and the first case for α > 1
reduce to |φ| ≤ φcut. For the second case for α > 1, which
only applies for β ≤ α − 1, we have φcut ≤ |φ| ≤ φmax.
Using the fact that the integrand is symmetric in φ, the
final result for the integrals is given by

I0(α, β) = 2

∫ φcut(α,β)

0

dφ

π
ln
y+(φ, α)√

β/α
+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π
ln
y+(φ, α)

y−(φ, α)
,

I1(α, β) = 2

∫ φcut(α,β)

0

dφ

π

[
G
(
y+(φ, α), φ

)
−G

(√
β/α, φ

)]

+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π

[
G
(
y+(φ, α), φ

)
−G

(
y−(φ, α), φ

)]
. (A9)

2. N -Jettiness

We now turn to the integrals I0,1(α, β, {αl, βl, φl}), defined in Eq. (74), that are needed for general N . The y-
integral is the same as before and can be carried out explicitly. For a given value of φ, the θ functions split the y
integration region into a number of mutually exclusive y-intervals, which yields

I0(α, β, {αl, βl, φl}) =
∫ π

−π

dφ

π

∑

I

ln
yImax(φ)

yImin(φ)
θ[yImax(φ)− yImin(φ)] ,

I1(α, β, {αl, βl, φl}) =
∫ π

−π

dφ

π

∑

I

[
G(yImax(φ), φ) −G(yImin(φ), φ)

]
θ[yImax(φ)− yImin(φ)] . (A10)

Here, the sum runs over all intervals and yImin(φ) and yImax(φ) are the lower and upper limits of the Ith interval, and
can depend on all α, β, αl, βl, φl.
What remains is to determine the y-limits for a given φ. The conditions imposed by the primary θ functions

involving α and β are as in the previous subsection. The additional θ functions impose the condition for each l

1− αl + (1− βl) y
2 − 2y

[
cosφ−

√
αlβl cos(φ+ φl)

]
≤ 0 . (A11)
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Recall that αl = ŝjl/ŝjm ≥ 0 and βl = ŝil/ŝim ≥ 0. They essentially compare the distance between q̂l and q̂i,j with

the distance between q̂m and q̂i,j . The angle φl = φlm is the angle between ~̂ql⊥ and ~̂qm⊥. The limits on y coming
from Eq. (A11) are given in terms of the roots of the polynomial,

y±(φ, αl, βl, φl) =
1

1− βl

{
cosφ−

√
αlβl cos(φ+ φl)±

√[
cosφ−

√
αlβl cos(φ+ φl)

]2 − (1− αl)(1− βl)

}
. (A12)

To analyze the limits on y imposed by Eq. (A11) for
each l, there are three questions to ask:

1. Does the parabola open upwards or downwards?

2. Does it have real roots?

3. What are the signs of the roots?

The condition for the roots to exist is

[
cosφ−

√
αlβl cos(φ+ φl)

]2 ≥ (1− αl)(1− βl) . (A13)

The correct y limits at a given fixed value of φ are then
determined as follows:

1. βl < 1: The parabola opens upwards, so y must be
in between the two roots, y− ≤ y ≤ y+.

(a) αl ≥ 1: Equation (A13) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives an upper limit

y ≤ y+(φ, αl, βl, φl) . (A14)

(b) αl < 1: Equation (A13) is nontrivial, and the
roots have the same sign if they exist. Hence,

y−(φ, αl, βl, φl) ≤ y ≤ y+(φ, αl, βl, φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1 − αl)(1 − βl) . (A15)

The y-integral vanishes if the condition on φ
is not satisfied.

2. βl > 1: The parabola opens downwards, so y must
be outside the two roots, y ≤ y− or y ≥ y+.

(a) αl ≤ 1: Equation (A13) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives lower limit

y ≥ y+(φ, αl, βl, φl) . (A16)

(b) αl > 1: Equation (A13) is nontrivial, and the
roots have the same sign if they exist. Hence,

y ≤ y−(φ, αl, βl, φl) or y ≥ y+(φ, αl, βl, φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1 − αl)(1 − βl) . (A17)

There are no constraints on y if the condition
on φ is not satisfied.

3. βl = 1: There is no parabola.
(a) αl ≤ 1: The limits are

y ≥ 1− αl

2 cosφ− 2
√
αl cos(φ+ φl)

,

cosφ ≥ √
αl cos(φ+ φl) , (A18)

and the y-integral vanishes if the condition on
φ is not satisfied.

(b) αl > 1: The limits are

y ≤ αl − 1

2
√
αl cos(φ+ φl)− 2 cosφ

,

cosφ ≤ √
αl cos(φ+ φl) . (A19)

There are no constraints on y if the condition
on φ is not satisfied.

In principle one can now combine all limits and de-
termine all possible φ-intervals in which a particular
set of lower and upper y-limits applies, as we did in
Eq. (A9). However, although this is straightforward it
quickly becomes very cumbersome. Alternatively, it is
easy to devise an algorithm to obtain the correct y-limits
in Eq. (A10) for a given value of φ in the numerical inte-
gration over φ. One starts with the y-limits in Eq. (A3),
call them ymin and ymax. Next, one loops over all l and
determines the limits imposed by each l as above. If one
encounters a stronger lower or upper limit, ymin and/or
ymax are updated to the new stronger limit. If one en-
counters a necessary condition on φ that is violated, the
integrand vanishes and one can stop. Case 2(b) requires
special attention. If it is encountered, the y interval is
split in two if necessary and one continues by maintaining
two (or more) mutually exclusive y-intervals each hav-
ing its own lower and upper limit. Newly encountered
stronger limits are then applied to each interval. An in-
terval is eliminated whenever its lower limit exceeds its
upper limit. If the last existing interval is eliminated the
integrand vanishes.
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