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Abstract

Positivity constraints, derived initially assuming parity conservation, for the inclusive reaction of
the type A(spin 1/2) + B(spin 1/2) → C + X , where the spins of both initial spin-1/2 particles
can be in any possible directions and no polarization is observed in the final state, are generalized
to the case of parity violation. By means of a systematic method, we obtain non-trivial bounds
involving all the spin observables of the reaction and we discuss some relevant physics processes.
Particularly we discover a non-trivial positivity constraint for the processes, pp → W±/Z0 +X or
pp → ℓ± +X where ℓ± decayed from W±/Z0, which could be checked at the ongoing longitudinal
spin program at RHIC.

PACS numbers: 13.85.Ni, 13.88.+e
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1 Introduction

Positivity constraints have been widely studied in spin physics to pin down the smallest allowed domain
for spin observables. This powerful tool has a broad range of applications for exclusive reactions as
well as for inclusive reactions. It can be used to test the consistency of a given set of available
measurements and also the validity of specific dynamical assumptions in theoretical models. Different
methods can be used to establish these constraints and many interesting cases have been presented in
a recent review article [1].

In the present paper, we will focus on the single particle inclusive production in polarized hadronic
collisions, A(spin 1/2)+B(spin 1/2) → C+X, where only initial spins are observed and no polarization
for the final state particle C is measured. If parity is conserved, this reaction is fully described in
terms of eight independent spin observables. The positivity constraints for these parity-conserving

observables have been derived in Ref. [2]. However, if parity is not conserved, there are twice as
many spin observables and the positivity constraints become much more involved. Nevertheless, such
a case has been partially studied in Ref. [3]. The derived positivity constraint has been further used
to put non-trivial bounds on several Sivers functions [3], entering the theoretical description of single
transverse spin asymmetry for various processes [4–9]. However, the increasing complexity for parity-
violation case requires a systematic method to obtain all the positivity constraints. This will be the
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aim of this paper, i.e., deriving all the positivity constraints for the most general cases - including
both parity-conserving and parity-violating spin observables.

The longitudinal W± program at Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory is currently under successful running, aiming to pin down the polarized antiquark dis-
tribution in the proton [10, 11]. The reason that W± boson production could provide unique and
clean access to the individual antiquark polarizations is due to the maximal violation of parity in the
elementary Wqq̄′ vertex [12,13]. Because of the parity-violation nature of this process, pp → W±+X
or pp → ℓ± + X where ℓ± decayed from W±, our newly derived positivity constraints could have
interesting and nontrivial implications for the spin asymmetries measured in these processes. Spin
asymmetries for the process pp → Z0+X can be also measured, although the production rate is lower
than for W± production.

The remainder of this paper is organized as follows: in the next section we review the derivation
of positivity constraints for the parity-conservation case, to introduce the notation and also to update
the method which could be easily used for the parity-violation case. In section 3, we will derive
all the general positivity constraints, which involve both parity-conserving and parity-violating spin
observables, and are classified according to different degrees, linear, quadratic, cubic and quartic.
We then give one phenomenological example of our derived positivity bound, when applying to the
inclusive W±/Z0 production in longitudinal pp scatterings. We summarize our results in section 5.

2 Positivity constraints for parity-conserving processes

For single particle inclusive production: A(spin 1/2) + B(spin 1/2) → C + X with spin vectors Pa

and Pb for initial particles A and B, respectively, the spin-dependent cross section σ(Pa, Pb) can be
defined through the cross section matrix M and the spin density matrix ρ

σ (Pa, Pb) = Tr (Mρ) , (1)

where ρ = ρa ⊗ ρb is the spin density matrix with ρi = (I2 + Pi · ~σ)/2, i = a, b. Here ~σ = (σx, σy, σz)
stands for the three 2×2 Pauli matrices and I2 is the 2×2 unit matrix, thus ρ being the direct product
of ρa and ρb will be 4 × 4 matrix. We will now study the parametrization of the 4 × 4 cross section
matrix M . We first review the existing study for the parity-conserving case. The purpose is twofold:
first to set up notation; and second, to update the method for deriving the positivity constraints,
which could also be used in the parity-violation case.

For the parity-conserving process, M could be parametrized in the following way

M = σ0 [I4 +AaNσay ⊗ I2 +AbNI2 ⊗ σby +ANNσay ⊗ σby +ALLσaz ⊗ σbz

+ASSσax ⊗ σbx +ALSσaz ⊗ σbx +ASLσax ⊗ σbz] . (2)

Here I4 is the 4 × 4 unit matrix and σ0 stands for the spin-averaged cross section. In other words,
for a parity-conserving process, there are eight independent spin-dependent observables [1, 2, 14]: the
unpolarized cross section σ0, two single transverse spin asymmetries AaN and AbN , and five double
spin asymmetries ANN , ALL, ASS , ALS , and ASL. Here the subscript L, N , S represents the unit
vectors along the spin directions of initial particles A and B. Specifically in the center-of-mass system
of A and B, L, N , S are along the incident momentum, along the normal to the scattering plane
which contains A, B and C, and along N ×L, respectively. The expression in Eq. (2) is fully justified,
since we have explicitly

σ (Pa, Pb) = σ0[1 +AaNPay +AbNPby +ANNPayPby +ALLPazPbz

+ASSPaxPbx +ALSPazPbx +ASLPaxPbz]. (3)
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The positivity constraints for the parity-conserving process have been derived in [2]. The crucial
point is that the cross section matrix M is a Hermitian and positive matrix. The necessary and
sufficient condition for a Hermitian matrix to be positive is that all its eigenvalues are positive. It
is important to emphasize here that the eigenvalues of a matrix are independent of the basis where
it is written. In other words, no matter what basis one chooses to express the cross section matrix
M , one should obtain the same set of eigenvalues, from which one obtains the same set of positivity
bounds. Since this is the necessary and sufficient condition, the bounds derived from this should be
the strongest constraints for the spin observables. Using this fact about the eigenvalues, we thus could
choose any convenient basis such that the matrix has a simple form and thus the eigenvalues could
be easily derived from there. For example, the original positivity bounds are derived by choosing the
transverse basis where σy is diagonal, in which the matrix elements Mij of the cross section matrix M
are given by

M11 = (1 +ANN ) + (AaN +AbN ) ,
M22 = (1−ANN ) + (AaN −AbN ) ,
M33 = (1−ANN )− (AaN −AbN ) ,
M44 = (1 +ANN )− (AaN +AbN ) ,
M14 = M∗

41 = ALL −ASS − i (ASL +ALS) ,
M23 = M∗

32 = ALL +ASS − i (ASL −ALS) ,
M12 = M21 = M13 = M31 = M24 = M42 = M34 = M43 = 0,

(4)

i.e., half of the matrix elements vanish in this basis. The eigenvalues λi can be easily obtained and
are given by

λ1,2 = 1 +ANN ±
√

(AaN +AbN )2 + (ALL −ASS)2 + (ALS +ASL)2 (5)

λ3,4 = 1−ANN ±
√

(AaN −AbN )2 + (ALL +ASS)2 + (ALS −ASL)2 (6)

Then from all the eigenvalues λi ≥ 0, we have the following strongest positivity constraints

(1±ANN )2 ≥ (AaN ±AbN )2 + (ALL ∓ASS)
2 + (ALS ±ASL)

2, (7)

which are exactly the same as those derived in [2].
It is nice to be able to derive the eigenvalues of the cross section matrix and thus to obtain the

strongest positivity bounds directly. However, sometimes the eigenvalues turn out to be very difficult
to find, which is exactly the situation we face for the parity-violation case in the next section. In
such situations, one could derive a complete set of necessary constraints which as a whole forms the
sufficient condition for positivity. This is the strategy of J.J. Sylvester, so-called Sylvester’s criterion,
which states that the necessary and sufficient condition for a Hermitian matrix to be semi-positive is
that all its principal minors have to be non-negative. This is equivalent to say for the 4× 4 matrix M
that:

• All the diagonal matrix elements Mii ≥ 0;

• The elements satisfy: MiiMjj ≥ |Mij |2;

• The determinant of any 3× 3 matrix formed by removing from M its ith row and ith column are
non-negative, where i = 1, 2, 3, or 4;

• The determinant of the matrix M itself is non-negative.
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These conditions will enable us to derive all the general positivity constraints, which are of different
degree, linear, quadratic, cubic and quartic, respectively, and as a whole they form the necessary and
sufficient condition for the positivity of M .

Let’s use Sylvester’s criterion to revisit the positivity bounds for parity-conserving case. First let’s
work again in the transverse basis. With the expression of M in Eq. (4) in hand, from Mii ≥ 0 we
immediately derive

1±ANN > |AaN ±AbN | . (8)

On the other hand, from MiiMjj ≥ |Mij |2, we further derive

(1±ANN )2 ≥ (AaN ±AbN )2 + (ALL ∓ASS)
2 + (ASL ±ALS)

2, (9)

It is also easy to find that going to the even higher order principal minors does not give any further
constraints. Thus we have derived the equivalent results from a slightly different method.

We would also like to make some comments on the positivity bound in Eq. (8). Although this
is a weaker bound and could be deduced from Eq. (7), its derivation is much simpler in the sense
that one only deals with the diagonal matrix elements without looking for the eigenvalues which need
extra (and difficult) mathematical work. On the other hand, these kinds of linear bounds are also
very useful in the phenomenological studies because of the limited accessibility and accuracy of the
spin asymmetries in the experimental measurements.

It is also important to realize that Sylvester’s criterion holds true in any basis one chooses to
express the cross section matrix M . Thus choosing a different basis, one could derive a different
set of positivity bounds. Even though these different sets are equivalent to each other according to
Sylvester’s criterion, one might obtain some interesting positivity bounds by choosing a convenient
basis, which could be difficult to find directly in another basis.

For example, if we choose the helicity basis where σz is diagonal, the cross section matrix M
becomes

M11 = M44 = 1 +ALL

M22 = M33 = 1−ALL

M14 = M41 = ASS −ANN

M23 = M32 = ASS +ANN

M12 = M∗
21 = ALS − iAbN

M13 = M∗
31 = ASL + iAaN

M24 = M∗
42 = −ASL − iAaN

M34 = M∗
43 = −ALS − iAbN

(10)

Now Mii ≥ 0 leads to the trivial bounds 1±ALL ≥ 0. However, using MiiMjj ≥ |Mij |2 leads to some
new positivity bounds:

1−A2
LL ≥ A2

LS +A2
bN , (11)

1−A2
LL ≥ A2

SL +A2
aN , (12)

(1±ALL)
2 ≥ (ASS ∓ANN )2, (13)

which are not very easy to derive in the transverse basis. These are actually weaker bounds compared
with the strongest bounds in Eq. (7). It requires some extra work to derive them in the transverse
basis: if one uses the following formula in Eq. (7)

√

a21 + a22 + · · ·+ a2n ≥ |a1 + a2 + · · · + an| , (14)
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one could derive all the inequalities (11) - (13). One could continue to study the higher order principal
minors and thus to obtain the cubic and quartic constraints. Then together with the linear and
quadratic ones, they form the complete set of positivity bounds which should be equivalent to the
bounds in Eq. (7) according to Sylvester’s criterion.

3 All general positivity constraints

We now study the general positivity constraints, which involve also the parity-violating asymmetries
where one will have sixteen independent spin-dependent observables [3]. Besides those in the parity-
conserving processes, one has four additional single spin asymmetries AaL, AbL, AaS and AbS , and
four additional double spin asymmetries ALN , ANL, ANS and ASN . In this case, the more general
cross section matrix M can be parametrized as

M = σ0 [I4 +AaNσay ⊗ I2 +AbNI2 ⊗ σby +ANNσay ⊗ σby +ALLσaz ⊗ σbz

+ASSσax ⊗ σbx +ALSσaz ⊗ σbx +ASLσax ⊗ σbz]

+σ0 [AaLσaz ⊗ I2 +AbLI2 ⊗ σbz +AaSσax ⊗ I2 +AbSI2 ⊗ σbx

+ALNσaz ⊗ σby +ANLσay ⊗ σbz +ANSσay ⊗ σbx +ASNσax ⊗ σby] , (15)

which is fully justified since one has

σ (Pa, Pb) = σ0[1 +AaNPay +AbNPby +ANNPayPby +ALLPazPbz

+ASSPaxPax +ALSPazPbx +ASLPaxPbz ]

+σ0[AaLPaz +AbLPbz +AaSPax +AbSPbx

+ALNPazPby +ANLPayPbz +ANSPayPbx +ASNPaxPby]. (16)

Again to study the positivity constraints, we need to express the cross section matrix M in a basis and
then study the necessary and sufficient conditions for M to be positive. Because of the complexity of
the matrix M , it becomes difficult to obtain the eigenvalues. Instead we will use Sylvester’s criterion.

First, we will still work in the transverse basis where σy is diagonal, in which the matrix elements
of M are given by

M11 = (1 +ANN ) + (AaN +AbN )
M22 = (1−ANN ) + (AaN −AbN )
M33 = (1−ANN )− (AaN −AbN )
M44 = (1 +ANN )− (AaN +AbN )
M14 = M∗

41 = ALL −ASS − i (ASL +ALS)
M23 = M∗

32 = ALL +ASS − i (ASL −ALS)
M12 = M∗

21 = AbL +ANL − i (AbS +ANS)
M13 = M∗

31 = AaL +ALN − i (AaS +ASN )
M24 = M∗

42 = AaL −ALN − i (AaS −ASN )
M34 = M∗

43 = AbL −ANL − i (AbS −ANS)

(17)

Start with the linear positivity bounds. From Mii > 0, we immediately obtain

1±ANN > |AaN ±AbN | . (18)

The quadratic bounds are derived from MiiMjj ≥ |Mij |2. Especially for {i, j} = {1, 4}, and {2, 3},
one obtains

(1±ANN )2 ≥ (AaN ±AbN )2 + (ALL ∓ASS)
2 + (ASL ±ALS)

2. (19)
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Both Eqs. (18) and (19) are exactly the same as those in Eqs. (8) and (9), which are derived for the
parity-conserving case. Since all the asymmetries involved in these inequalities are parity-conserving
ones, it is not surprising that these positivity bounds are preserved. For the case when {i, j} =
{1, 2}, {1, 3}, {2, 4}, and {3, 4}, we obtain four extra positivity bounds

(1±AaN )2 ≥ (AbN ±ANN )2 + (AbL ±ANL)
2 + (AbS ±ANS)

2, (20)

(1±AbN )2 ≥ (AaN ±ANN )2 + (AaL ±ALN )2 + (AaS ±ASN )2, (21)

which involve both parity-conserving and parity-violating asymmetries.
The cubic bounds are derived from the determinants of all the 3 × 3 matrix formed by removing

from M its ith row and column, which has to be non-negative. If we remove the 4th row and column,
i.e., keep the row 1, 2, 3 and column 1, 2, 3, this newly formed matrix denoted as M123 is given by

M123 =





AaN +AbN +ANN + 1 AbL +ANL − i(AbS +ANS) AaL +ALN − i(AaS +ASN )
AbL +ANL + i(AbS +ANS) AaN −AbN −ANN + 1 ALL +ASS − i(ASL −ALS)
AaL +ALN + i(AaS +ASN ) ALL +ASS + i(ASL −ALS) −AaN +AbN −ANN + 1



 (22)

Then the determinant |M123| ≥ 0 leads to the following inequality

|M123| = (1 +ANN +AaN +AbN )[(1 −ANN )2 − (AaN −AbN )2 − (ALL +ASS)
2 − (ASL −ALS)

2]

−(AaN −AbN −ANN + 1)[(AbL +ANL)
2 + (AbS +ANS)

2]

−(−AaN +AbN −ANN + 1)[(AaL +ALN )2 + (AaS +ASN )2]

+2(ALL +ASS)[(AbL +ANL)(AaL +ALN ) + (AbS +ANS)(AaS +ASN )]

+2(ALS −ASL)[(AbS +ANS)(AaL +ALN )− (AbL +ANL)(AaS +ASN )] ≥ 0 (23)

Likewise, from |M124|, |M134|, |M234| ≥ 0, we have

|M124| = (1−ANN +AaN −AbN )[(1 +ANN )2 − (AaN +AbN )2 − (ALL −ASS)
2 − (ASL +ALS)

2]

−(1 +ANN −AaN −AbN )[(AbL +ANL)
2 + (AbS +ANS)

2]

−(1 +ANN +AaN +AbN )[(AaL −ALN )2 + (AaS −ASN )2]

+2(AaL −ALN )[(AbL +ANL)(ALL −ASS) + (AbS +ANS)(ASL +ALS)]

+2(AaS −ASN )[(AbL +ANL)(ASL +ALS)− (AbS +ANS)(ALL −ASS)] ≥ 0 (24)

|M134| = (1−ANN −AaN +AbN )[(1 +ANN )2 − (AaN +AbN )2 − (ALL −ASS)
2 − (ASL +ALS)

2]

−(1 +ANN −AaN −AbN )[(AaL +ALN )2 + (AaS +ASN )2]

−(1 +ANN +AaN +AbN )[(AbL −ANL)
2 + (AbS −ANS)

2]

+2(AbL −ANL)[(AaL +ALN )(ALL −ASS) + (AaS +ASN )(ASL +ALS)]

+2(AbS −ANS)[(AaL +ALN )(ASL +ALS)− (AaS +ASN )(ALL −ASS)] ≥ 0 (25)

|M234| = (1 +ANN −AaN −AbN )[(1 −ANN )2 − (AaN −AbN )2 − (ALL +ASS)
2 − (ASL −ALS)

2]

−(1−ANN −AaN +AbN )[(AaL −ALN )2 + (AaS −ASN )2]

−(1−ANN +AaN −AbN )[(AbL +ANL)
2 + (AbS +ANS)

2]

+2(AbL −ANL)[(ALL +ASS)(AaL −ALN ) + (ASL −ALS)(AaS −ASN )]

+2(AbS −ANS)[(ALL +ASS)(AaS −ASN )− (ASL −ALS)(AaL −ALN )] ≥ 0 (26)

Finally the quartic bounds are given by the determinant of M itself |M | ≥ 0. With the matrix
elements given in Eq. (17), it is easy to write down the determinant of M , which we do not write out
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explicitly here. The linear, quadratic, cubic and quartic bounds form the complete set of positivity
bounds according to Sylvester’s criterion. We have found that all the bounds derived from the parity-
conserving case are preserved in this more general case.

As we have emphasized in the previous section, we could also derive a different set of positivity
bounds by choosing a different basis. These new bounds might also be useful and interesting for the
phenomenological studies. Let us study the positivity bounds by choosing the helicity basis, in which
the explicit form of M is given by

M11 = (1 +ALL) + (AaL +AbL)
M22 = (1−ALL) + (AaL −AbL)
M33 = (1−ALL)− (AaL −AbL)
M44 = (1 +ALL)− (AaL +AbL)
M14 = M∗

41 = ASS −ANN − i (ANS +ASN )
M23 = M∗

32 = ASS +ANN − i (ANS −ASN )
M12 = M∗

21 = AbS +ALS − i (AbN +ALN )
M13 = M∗

31 = AaS +ASL − i (AaN +ANL)
M24 = M∗

42 = AaS −ASL − i (AaN −ANL)
M34 = M∗

43 = AbS −ALS − i (AbN −ALN )

(27)

Now from Mii ≥ 0, we have

1±ALL > |AaL ±AbL|. (28)

This is a very interesting positivity bound. Particularly it involves both parity-conserving (ALL) and
parity-violating (AL) asymmetries. Since this bound involves only the longitudinal asymmetries, it
might be very useful and relevant to the ongoing longitudinal W±/Z0 program at RHIC.

Then from MiiMjj ≥ |Mij |2, one could derive the following quadratic bounds

(1±ALL)
2 ≥ (AaL ±AbL)

2 + (ASS ∓ANN )2 + (ANS ±ASN )2, (29)

(1±AaL)
2 ≥ (AbL ±ALL)

2 + (AbS ±ALS)
2 + (AbN ±ALN )2, (30)

(1±AbL)
2 ≥ (AaL ±ALL)

2 + (AaS ±ASL)
2 + (AaN ±ANL)

2. (31)

These bounds are stronger than the linear ones. For example, specifically from the bounds in Eq. (29),
one could deduce those in Eq. (28). One could continue to study the bounds in even higher order, and
the procedure is straightforward. We decide to stop here, and turn to discuss some phenomenological
applications.

4 Phenomenological example: W±/Z0 production at RHIC

In the last two sections, we have derived quite a few positivity constraints which involve both parity-
conserving and parity-violating spin asymmetries. They could have broad applications in testing the
consistency of the experimental measurements, or studying the validity of the theoretical models.
However, due to the experimental limited accessibility and accuracy, only a few could be reachable in
the near future. In this section, we study one such example: the positivity bound (28) in the W±/Z0

or ℓ± production in pp collisions, pp → W±/Z0 +X or pp → ℓ± +X where ℓ± decayed from W±/Z0.
It is important to realize that for identical initial particles scattering, one has

AaL(y) = AbL(−y), (32)
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where y is the rapidity of the final-state particle. Thus Eq. (28) becomes

1±ALL(y) > |AL(y)±AL(−y)|. (33)

These bounds have a very simple form, and should be very interesting to test them in RHIC experi-
ments.

To have an idea, let us check whether these bounds are satisfied for W± or Z0 production in
longitudinal pp collisions, ~p~p → W±/Z0 +X. In perturbative QCD formalism, at leading-order and
restricting to only up and down quarks, one has the following simple expressions for the single spin
asymmetries [12,13,15–17]

AW+

L (y) =
−∆u(xa)d̄(xb) + ∆d̄(xa)u(xb)

u(xa)d̄(xb) + d̄(xa)u(xb)
, (34)

AW−

L (y) =
−∆d(xa)ū(xb) + ∆ū(xa)d(xb)

d(xa)ū(xb) + ū(xa)d(xb)
, (35)

AZ0

L (y) =

∑

q(2vqaq) [−∆q(xa)q̄(xb) + ∆q̄(xa)q(xb)]
∑

q(v
2
q + a2q) [q(xa)q̄(xb) + q̄(xa)q(xb)]

, (36)

and for the double spin asymmetries

AW+

LL (y) = −∆u(xa)∆d̄(xb) + ∆d̄(xa)∆u(xb)

u(xa)d̄(xb) + d̄(xa)u(xb)
, (37)

AW−

LL (y) = −∆d(xa)∆ū(xb) + ∆ū(xa)∆d(xb)

d(xa)ū(xb) + ū(xa)d(xb)
, (38)

AZ0

LL(y) = −
∑

q(v
2
q + a2q) [∆q(xa)∆q̄(xb) + ∆q̄(xa)∆q(xb)]

∑

q(v
2
q + a2q) [q(xa)q̄(xb) + q̄(xa)q(xb)]

, (39)

where ∆q(x) and q(x) are the helicity distribution and unpolarized parton distribution function,
respectively. vq and aq are the vector and axial couplings of the Z0 boson to the quark. xa,b are the
parton momentum fractions given by

xa = mQ/
√
s ey, xb = mQ/

√
s e−y, (40)

with mQ, y the mass and rapidity of the W (or Z) boson and
√
s the center-of-mass energy.

To estimate these asymmetries numerically, we choose BBS2001 polarized and unpolarized parton
distribution functions based on a statistical approach [18]. At

√
s = 500 GeV, our calculations plotted

as a function of rapidity y are shown in Fig. 1 for W+ (left) and W− (right), and in Fig. 2 for Z0 boson,
respectively. The solid curves are the single longitudinal spin asymmetry AL, the dashed curves are
the double longitudinal spin asymmetry ALL, while the dotted curves are the following combination

1 +ALL(y)− |AL(y) +AL(−y)|, (41)

which must be positive according to the positivity bounds in Eq. (33). As we can see from both plots
that even though |AL(y) + AL(−y)| could become quite sizable, it is still smaller than 1 + ALL(y),
thus the bound is satisfied in this leading order calculation for both W± and Z0. The other bound
1−ALL(y)− |AL(y)−AL(−y)| could become even more sizable and is also satisfied within BBS2001
parameterization.

We have also checked other popular parametrizations of polarized parton distribution functions,
to see whether they satisfy our bounds. Particularly we have checked GRSV2000 [19], AAC2008 [20],
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Figure 1: Longitudinal asymmetries are plotted as a function of rapidity y of the W boson in ~p~p collisions:
W+ (left) and W− (right). The solid curves are the single longitudinal spin asymmetry AL, the dashed curves
are the double longitudinal spin asymmetry ALL, and the dotted curves are the combination of 1 + ALL(y) −
|AL(y) +AL(−y)|.
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Figure 2: Same as Fig. 1, but for Z0 boson.

DSSV [21, 22], and LSS2010 [23]. For the unpolarized parton distribution functions, we use exactly
the same set as the one when the global fitting was performed. That is, we use GRV98 [24] for both
GRSV2000 and AAC2008, while MRST2002 [25] for both DSSV and LSS2010. It turns out that both
GRSV2000 and AAC2008 satisfy our bounds, while both DSSV and LSS2010 could have violation at
large rapidity |y|. The violations are shown in Fig. 3, in which we plot 1+ALL(y)−|AL(y)+AL(−y)| as
a function of rapidity y forW+, W−, and Z0. Since for identical incoming hadronsALL(−y) = ALL(y),
the combination 1 + ALL(y) − |AL(y) + AL(−y)| is symmetric under y ↔ −y and we thus only plot
for positive y. We immediately find that when rapidity becomes large y & 1.5 where xa & 0.7 and
xb . 0.04 (or vice verse for y . −1.5), the combination 1 +ALL(y)− |AL(y) +AL(−y)| could become
negative for both DSSV and LSS2010, and for all W±/Z0 bosons. Since our bounds are very general,
coming from the positivity conditions of the cross section matrix, they should always be satisfied.
Thus our newly derived bounds, though very simple, immediately put nontrivial constraints on the
parametrizations of the polarized parton distributions, for both DSSV and LSS2010.

According to next-to-leading order calculations in [16, 17], the QCD radiative corrections for the
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Figure 3: Asymmetry 1 + ALL(y)− |AL(y) + AL(−y)| are plotted as a function of rapidity y for the
parametrization of DSSV [21, 22] (left) and LSS2010 [23] (right). The solid, dashed and dotted lines
are for W+, W−, and Z0, respectively.

asymmetries are small. We thus expect our findings and conclusions for the specific parametrizations
of polarized parton distribution functions will not alter in higher-order QCD calculations, for both
W±/Z0, and for the leptons decayed from them. It will be very interesting to check our bounds in
the forward or backward regions (when |y| becomes large) in the experiments.

We notice that there are already published data for single spin asymmetry AL at mid-rapidity
y = 0 from both STAR [26] and PHENIX [27], for the leptons decayed from W±/Z0 bosons.

STAR: Ae+

L = −0.27 ± 0.10, Ae−

L = 0.14 ± 0.19 (42)

PHENIX: Ae+

L = −0.86+0.30
−0.14, Ae−

L = 0.88+0.12
−0.71 (43)

On the other hand, at y = 0 our bounds becomes

1 +ALL(0) ≥ 2|AL(0)|. (44)

At the same time ALL(0) is very small (a few percents) for the current parametrization of polarized
parton distribution functions. If one takes ALL(0) ≈ 0 in Eq. (44), we obtain

|AL(0)| ≤
1

2
. (45)

Comparing with both STAR and PHENIX data, we immediately find that STAR data is consistent
with our bounds, while PHENIX data (central value) is certainly out of the bound. Of course, so far
the data has very large uncertainty at the moment. Nonetheless, it will be important to check all our
bounds in the future experiments. We look forward to the future experimental measurements to test
these bounds.

5 Summary

We derive all the general positivity constraints for the spin observables in the single particle inclusive
production, A(spin 1/2) + B(spin 1/2) → C + X, where the spins of both initial spin-1/2 particles
can be in any possible directions and no polarization is observed in the final state. By means of a
systematic method, we generalize the previous positivity constraints derived for the parity-conserving
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processes to the most general processes including also the parity-violating ones. We find that the
positivity constraints involving only the parity-conserving asymmetries are preserved in the parity-
violating case.

With the help of Sylvester’s criterion, we derive all the general positivity constraints, which are of
different degree, linear, quadratic, cubic and quartic, respectively. These constraints form a complete
set of necessary and sufficient condition for positivity. As a special example, we discover a very
interesting non-trivial bound for the parity-conserving and parity-violating longitudinal asymmetries
ALL and AL. This could be relevant to the processes, pp → W±/Z0 +X or pp → ℓ± +X where ℓ±

decayed from W±/Z0 in longitudinal pp scatterings, which are currently under active investigation at
RHIC.

The positivity constraints derived here could have broad applications in testing the consistency of
the experimental measurements, or studying the validity of the theoretical models. We look forward
to the future experimental data to test these positivity bounds.

Before closing, let us mention another possible application of our results in polarized deep inelastic
scattering at high energies where weak interactions contributions, both neutral and charged current
processes are taken into account, as well as the parity violating polarized nucleon structure functions.
The explicit expressions of the charged lepton asymmetry AeL(y) and the proton asymmetry ApL(y)
can be obtained from Ref. [28] and our bounds can be used to put new constraints on the helicity
distributions. These parity-violating asymmetries are also expected to be modified by effects beyond
the Standard Model, e.g. scalar and vector leptoquarks [29], and our bounds could be used to put
further constraints on existing models.
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