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We study polarized and unpolarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes,
`(S`) + p(S) → `′ h X, within a QCD parton model motivated by a generalized QCD factorization
scheme. We take into account all transverse motions, of partons inside the initial proton and of
hadrons inside the fragmenting partons and use the helicity formalism. The elementary interactions
are computed at LO with non collinear exact kinematics, which introduces phases in the expressions
of their helicity amplitudes. Several Transverse Momentum Dependent (TMD) distribution and
fragmentation functions appear and contribute to the cross sections and to spin asymmetries. Our
results agree with those obtained with different formalisms, showing the consistency of our approach.
The full expression for single and double spin asymmetries AS`S is derived. Simplified, explicit
analytical expressions, convenient for phenomenological studies, are obtained assuming a factorized
Gaussian dependence on intrinsic momenta for the TMDs.

PACS numbers: 13.88.+e, 13.60.-r, 13.85.Ni

I. INTRODUCTION

Experiments with inclusive Deep Inelastic Scattering (DIS) processes, `N → `′X, have been performed for decades
and have been interpreted as the most common way to investigate the internal structure of protons and neutrons. At
large energy and momentum transfer the leptons interact with the nucleon constituents; by detecting the angle and
the energy of the scattered lepton one obtains information on the partonic content of the nucleons. This information
is encoded in the Parton Distribution Functions (PDFs) which give the number density of partons moving collinearly
with the nucleon and carrying a fraction x of its momentum at a certain value of the squared momentum transfer Q2.
The prediction of the Q2 dependence of the PDFs has been one of the great successes of pQCD. Although successful,
such an approach only offers information on the longitudinal degrees of freedom of quarks and gluons, giving no
information on the transverse motion, which is integrated over. This transverse motion – transverse with respect to
the parent nucleon direction – is related to intrinsic properties of the partons, like orbital motion, and reveals new
aspects of the nucleon structure.

In the last years, driven by unexpected spin effects and azimuthal dependences, the study of the intrinsic motion of
partons has made enormous progress; indeed, a new phase in the exploration of the proton and neutron composition
has begun. The leading role in such an effort is played by Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes,
`N → `′ hX, in which, in addition to the scattered lepton, also a final hadron is detected; this hadron is generated in
the fragmentation of the scattered quark (or gluon) – the so-called current fragmentation region – and, as such, yields
some new information on the parton primordial motion. This new information is encoded in the so-called Transverse
Momentum Dependent partonic distribution and fragmentation functions (TMD-PDFs and TMD-FFs, or, shortly,
TMDs), f̂a/p(x,k⊥) and D̂h/a(z,p⊥). The TMD-PDFs give the number density of quarks (a = q), antiquarks (a = q̄)
or gluons (a = g) with light-cone momentum fraction x and transverse momentum k⊥ inside a fast moving proton;
the TMD-FFs give the number density of hadrons h resulting in the fragmentation of parton a, with a light-cone
momentum fraction z and a transverse momentum p⊥, relative to the original parton motion. At leading-twist, taking
into account the parton and the nucleon spins, there are eight independent TMD-PDFs [1, 2]; if the final hadron is
unpolarized or spinless, say a pion, there are two TMD-FFs. All these quantities combine into physical observables
and by gathering information about them one accesses the momentum distribution of partons inside the nucleons.

The theoretical framework used to analyze the experimental data is the QCD factorization scheme, according to
which the SIDIS cross section is written as a convolution of TMDs and elementary interactions:

dσ`p→`
′hX =

∑
q

f̂q/p(x,k⊥;Q2)⊗ dσ̂`q→`q ⊗ D̂h/q(z,p⊥;Q2) . (1)
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FIG. 1: Kinematical configuration and conventions for SIDIS processes. The initial and final lepton momenta define the
(X − Z)cm plane.

In the γ∗− p c.m. frame, see Fig. 1, the measured transverse momentum, P T , of the final hadron is generated by the
transverse momentum of the quark in the target proton, k⊥, and of the final hadron with respect to the fragmenting
quark, p⊥. At order k⊥/Q it is simply given by

P T = z k⊥ + p⊥ . (2)

There is a general consensus [3–7] that such a scheme holds in the kinematical region defined by

PT ' ΛQCD � Q . (3)

The presence of the two scales, small PT and large Q, allows to identify the contribution from the unintegrated
partonic distribution (PT ' k⊥), while remaining in the region of validity of the QCD parton model. At larger values
of PT other mechanisms, like quark-gluon correlations and higher order pQCD contributions become important [7–9].
Corrections at subleading order in 1/Q might spoil the factorization scheme [10]. A similar situation [4, 6, 11–17]
holds for Drell-Yan processes, AB → `+`−X, where the two scales are the small transverse momentum, qT , and the
large invariant mass, M , of the dilepton pair.

Let us elaborate now on Eq. (1). We consider the SIDIS cross section at the leading αem order – i.e. one-photon
exchange – and in the “standard” [18] kinematical configuration of Fig. 1, which defines the azimuthal angles φh and
φS in the γ∗ − p c.m. frame. The most general dependence on these angles has been discussed in several seminal
papers [1, 19–21], both in a model independent scheme and in the parton model. According to the usual derivation,
the polarization states of the virtual photon, as emitted by the lepton in a certain direction, contains azimuthal
dependences [19, 20]; within the parton model, the virtual photon scatters off a quark – which subsequently fragments
into the final hadron – and each term of the azimuthal dependences can be written as a convolution of distribution
and fragmentation functions [1, 20–23].

We re-derive here the same general expression of the cross section, and its parton model content, by assuming from
the beginning the validity of the TMD factorization (1); we use the helicity basis to compute the elementary interaction
and to introduce transverse momentum dependent distribution and fragmentation functions. In such an approach
the full azimuthal dependence is simply generated by the properties of the helicity spinors and amplitudes. Our final
results coincide with the existing ones, showing the full equivalence of the two procedures. Our formalism is based
on a physical and intuitive picture, which somehow factorizes the physical process in different steps: the “emission”
of a parton by the interacting hadron (p → q + X), the interaction of the parton with the lepton (` q → ` q), and
the “emission” of the final hadron by the scattered quark (q → h + X); each step is described by the corresponding
helicity amplitudes. For SIDIS processes this factorization has been formally proven and expressed in terms of TMDs,
Eq. (1). Such a procedure can naturally be extended to other processes, and indeed this has been done for the
large PT production of a single particle in inclusive hadronic interactions, AB → C X [2]. The point, however, is
that, despite the natural simplicity of the approach, the TMD factorization has not been proven for processes with a
single large scale, like AB → C X. Due to this, the study of dijet production at large PT in hadronic processes was
proposed [24–27], where the second small scale is the total qT of the two jets, which is of the order of the intrinsic
partonic momentum k⊥. This procedure leads to a modified TMD factorization approach, with the inclusion in the
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elementary processes of gauge link color factors [28–31]. However, some doubts on the validity of such a factorization
scheme have been recently cast [32–34]. A possible experimental test of the TMD factorization for processes with
only one large scale has been proposed in Ref. [35]. We limit our discussion in this paper to SIDIS processes, in the
kinematical region (3) for which TMD factorization holds, and obtain the most general expression for the polarized
cross section, with our helicity formalism. A similar study can be done, with the same validity, for Drell-Yan processes
[13, 17, 36]. We introduce only leading-twist TMDs and take into account exact kinematics, often simplifying results
by only keeping terms up to O (k⊥/Q).

The paper is organized as follows. In Section II we present our formalism and compute the polarized SIDIS cross
section. In Section III we give the explicit general expressions of all independent single and double spin asymmetries,
in terms of the TMDs. In Section IV we give explicit analytical formulae for the spin and azimuthal asymmetries,
assuming a factorized Gaussian dependence of the TMDs on k⊥ and p⊥. In Section V we draw our conclusions. Useful
results are derived and collected in Appendices A–E.

II. CROSS SECTIONS IN POLARIZED SIDIS

According to Refs. [37] and [2] the full differential cross section for the polarized SIDIS process, `(S`) + p(S) →
`′ hX, can be written, within TMD factorization, as

dσ`(S`)+p(S)→`′hX

dx
B
dQ2 dzh d2P T dφS

=
1

2π

∑
q

∑
{λ}

1
16π (x

B
s)2

∫
d2k⊥

z

zh
J

× ρ`,S`

λ
`
λ′

`
ρ
qi/p,S
λqi

λ′qi

f̂qi/p,S(x,k⊥) M̂λ
`′
λqf

;λ
`
λqi

M̂∗λ
`′
λ′qf

;λ′
`
λ′qi

D̂
λh,λh

λqf
,λ′qf

(z,p⊥) , (4)

where we adopt the kinematical configuration of Fig. 1, and, as usual:

s = (`+ p)2 Q2 = −q2 = −(`− `′)2 x
B

=
Q2

2p · q zh =
p · Ph
p · q · (5)

The variables x, z and p⊥ which appear under integration in Eq. (4) are related to the final observed variables x
B

,
zh and P T and to the integration variable k⊥. The exact relations can be found in Ref. [37]; at O(k⊥/Q) one simply
has

x = x
B

z = zh p⊥ = P T − zhk⊥ . (6)

J includes some non-planar kinematical factors [37]:

J =
x

B

x

(
1 +

x2
B

x2

k2
⊥
Q2

)−1

' 1 , (7)

where the last relation holds at O(k⊥/Q). At this order Eq. (4) can be written as:

dσ`(S`)+p(S)→`′hX

dx
B
dQ2 dzh d2P T dφS

' 1
2π

∑
q

∑
{λ}

1
16π (x

B
s)2

∫
d2k⊥ d

2p⊥ δ
(2)(P T − zhk⊥ − p⊥)

× ρ`,S`

λ
`
λ′

`
ρ
q/p,S
λqi

λ′qi

f̂qi/p,S(x,k⊥) M̂λ
`′
λqf

;λ
`
λqi

M̂∗λ
`′
λ′qf

;λ′
`
λ′qi

D̂
λh,λh

λqf
,λ′qf

(z,p⊥) , (8)

where we have explicitly shown the integration over p⊥ for clarity and further use. In Eqs. (4) and (8) the sums
are performed over all quark flavors (q = u, ū, d, d̄, s, s̄) and all quark, lepton and hadron helicity indices; ρ`,S`

λ
`
λ′

`
is the

initial lepton helicity density matrix, which describes the spin state of the lepton beam; for unpolarized leptons one
simply has ρ`λ

`
λ′

`
= 1

2 δλ`
λ′

`
. It might be helpful, and useful for physical interpretations, to recall that, in general, for

a spin 1/2 Dirac particle one has:

ρλ λ′ =
1
2

(
1 + Pz Px − iPy
Px + iPy 1− Pz

)
, (9)

where Pj = Px, Py, Pz are the components of the particle polarization vector in its helicity frame (throughout the
paper we follow the definitions and conventions for helicity states of Ref. [38]).
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Let us discuss in detail the different “factors” in Eq. (4): they represent the distribution of polarized partons
(only quarks at LO) inside the proton, their interaction with the lepton and the fragmentation of the (polarized) final
quark into the observed unpolarized hadron h. We follow, and adapt to the case of SIDIS, the discussion of Ref. [2].
We describe the three stages of the process – quark emission, interaction and fragmentation – within the helicity
formalism, which allows us to introduce in a natural way, at each step, several phases; these, when combined into
the expression for the physical cross section (4) give its full azimuthal dependence, in agreement with results in the
literature derived in a more formal and somewhat less intuitive way [23].

A. TMD partonic distribution functions

ρ
qi/p,S
λqi

λ′qi

f̂qi/p,S(x,k⊥) counts the number of polarized quarks inside a polarized proton; it is the polarized distribution
function of the initial quark qi with light-cone momentum fraction x and intrinsic transverse momentum k⊥, inside
the target proton p in a pure spin state S. Using Eq. (9) and parity invariance one can see that there are eight
independent distribution functions, which can be defined as:

P qj f̂q/p,ST
(x,k⊥) = f̂qsj/ST

(x,k⊥)− f̂q−sj/ST
(x,k⊥) ≡ ∆f̂qsj/ST

(x,k⊥) (10)

P qj f̂q/p,SL
(x,k⊥) = f̂qsj/SL

(x,k⊥)− f̂q−sj/SL
(x,k⊥) ≡ ∆f̂qsj/SL

(x,k⊥) (11)

f̂q/p,ST
(x,k⊥) ≡ fq/p(x, k⊥) +

1
2

∆f̂q/ST
(x,k⊥) , (12)

with

∆f̂q/ST
(x,k⊥) ≡ f̂q/ST

(x,k⊥)− f̂q/−ST
(x,k⊥) . (13)

We define, for further use,

1
2

[f̂sy/ST
(x,k⊥)− f̂sy/−ST

(x,k⊥)] ≡ ∆−f̂sy/ST
(x,k⊥). (14)

In Eqs. (10) and (11), j = x, y, z are the coordinate-axes in the quark helicity frame and SL,T are respectively the
longitudinal and transverse components of the proton polarization vector, with respect to its direction of motion.

Different notations can be found in the literature for these functions, in particular those introduced by the Ams-
terdam group [1, 39, 40], which are largely adopted. The relationships between the two sets can be found in Ref. [2],
and will be repeated for convenience in Eqs. (22)–(25).

According to the physical interpretation of the factorization scheme, as outlined above, these quantities can be
introduced by making use of the helicity amplitudes F̂λq,λX

;λp
, which describe the soft process p→ q +X. Since the

partonic distribution is usually regarded, at LO, as the inclusive cross section for this process, the helicity density
matrix of a quark q inside the proton p with spin S can be written as

ρ
q/p,S
λqλ
′
q
f̂q/p,S(x,k⊥) =

∑
λp,λ

′
p

ρp,Sλpλ
′
p

∑∫
X,λX

F̂λq,λX
;λp
F̂∗λ′q,λX

;λ′p

≡
∑
λp,λ

′
p

ρp,Sλpλ
′
p
F̂
λq,λ

′
q

λp,λ
′
p
, (15)

having defined

F̂
λq,λ

′
q

λp,λ
′
p
≡∑∫

X,λX

F̂λq,λX
;λp
F̂∗λ′q,λX

;λ′p
, (16)

where the
∑∫
X,λX

stands for a spin sum and phase-space integration over all the undetected remnants of the proton,

considered as a system X, and the F̂ ’s are the helicity distribution amplitudes for the p → q + X process. Eq. (15)
relates, via the unknown distribution amplitudes, the helicity density matrix of the parton q,

ρ
q/p,S
λqλ
′
q

=
1
2

(
1 + P qz P qx − iP qy
P qx + iP qy 1− P qz

)
=

1
2

(
1 + P qz P qT e

−iϕsq

P qT e
iϕsq 1− P qz

)
, (17)
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to the helicity density matrix of the polarized parent proton,

ρp,Sλpλ
′
p

=
1
2

(
1 + SZ SX − iSY
SX + iSY 1− SZ

)
=

1
2

(
1 + SL ST e

−iϕS

ST e
iϕS 1− SL

)
. (18)

In the above equations S = (SX , SY , SZ) = (ST cosϕS , ST sinϕS , SL) is the proton polarization vector and ϕS
its azimuthal angle, defined in the helicity reference frame of the proton p. Similarly, P q = (P qx , P

q
y , P

q
z ) =

(P qT cosϕsq
, P qT sinϕsq

, P qz ) is the quark polarization vector defined in the quark helicity frame and ϕsq
its azimuthal

angle. For the kinematical configuration of Fig. 1, one has ϕS = 2π − φS (see Appendix B), so that:

ρp,Sλpλ
′
p

=
1
2

(
1 + SL ST e

iφS

ST e
−iφS 1− SL

)
. (19)

Notice that, in general, we denote by ϕ angles defined in the proton or quark helicity frames, while the symbol φ is
used for the corresponding angles measured in the γ∗ − p c.m. frame.

The distribution amplitudes F̂ depend on the parton light-cone momentum fraction x and on its intrinsic transverse
momentum k⊥, with modulus k⊥ and azimuthal angle φ⊥, in a precise way [2, 38], which, again referred to the
kinematical configuration of Fig. 1, reads:

F̂λq,λX
;λp

(x,k⊥) = Fλq,λX
;λp

(x, k⊥) exp[−iλpφ⊥] , (20)

so that

F̂
λq,λ

′
q

λp,λ
′
p

(x,k⊥) = F
λq,λ

′
q

λp,λ
′
p

(x, k⊥) exp[i(λ′p − λp)φ⊥] . (21)

F
λq,λ

′
q

λp,λ
′
p

(x, k⊥) has the same definition as F̂
λq,λ

′
q

λp,λ
′
p

(x,k⊥), Eq. (16), with F̂ replaced by F , and does not depend on
phases anymore. Notice that we have chosen, throughout the paper, to denote with a hat all soft quantities which
depend on both the modulus and the phase of the k⊥ and p⊥ intrinsic momentum vectors, while we drop the hat for
quantities which only depend on the modulus of these vectors and not on their phases.

Eqs. (15), (17), (19) and (21), together with parity properties and the arguments collected in Appendix B, allow to
extract the explicit phase dependence of the eight independent distribution functions which appear in Eqs. (10)–(12),
with the result (more details can be found in Ref. [2]):

f̂q/p,S(x,k⊥) = F++
++ (x, k⊥) + F++

−− (x, k⊥)− 2ST ImF++
+− (x, k⊥) sin(φS − φ⊥) (22)

= fq/p(x, k⊥)− 1
2
ST ∆fq/ST

(x, k⊥) sin(φS − φ⊥)

= f1(x, k⊥) + ST
k⊥
M

f⊥1T (x, k⊥) sin(φS − φ⊥)

P qz f̂q/p,S(x,k⊥) = SL
[
F++

++ (x, k⊥)− F++
−− (x, k⊥)

]
+ 2ST ReF++

+− (x, k⊥) cos(φS − φ⊥) (23)
= SL ∆fqsz/SL

(x, k⊥) + ST ∆fqsz/ST
(x, k⊥) cos(φS − φ⊥)

= SL g1L(x, k⊥) + ST
k⊥
M

g⊥1T (x, k⊥) cos(φS − φ⊥)

P qx f̂q/p,S(x,k⊥) = −2SL ReF+−
++ (x, k⊥)− ST

[
F+−

+− (x, k⊥) + F−+
+− (x, k⊥)

]
cos(φS − φ⊥) (24)

= −SL ∆fqsx/SL
(x, k⊥)− ST ∆fqsx/ST

(x, k⊥) cos(φS − φ⊥)

= −SL k⊥
M

h⊥1L(x, k⊥)− ST
[
h1(x, k⊥) +

k2
⊥

2M2
h⊥1T (x, k⊥)

]
cos(φS − φ⊥)

P qy f̂q/p,S(x,k⊥) = 2 ImF+−
++ (x, k⊥) + ST

[
F+−

+− (x, k⊥)− F−+
+− (x, k⊥)

]
sin(φS − φ⊥) (25)

= −∆fqsy/p
(x, k⊥) + ST ∆−fqsy/ST

(x, k⊥) sin(φS − φ⊥)

=
k⊥
M

h⊥1 (x, k⊥) + ST

[
h1(x, k⊥)− k2

⊥
2M2

h⊥1T (x, k⊥)
]

sin(φS − φ⊥) .

As already stated, φS and φ⊥ are respectively the azimuthal angle of the proton polarization vector S and of the
quark intrinsic momentum k⊥ measured in the γ∗ − p c.m. frame of Fig. 1. Also the quark polarization vector
components P qi (i = x, y, z) refer to the helicity frame of the quark, as reached from the γ∗ − p frame: this explains
the sign differences between Eqs. (22, 24–25) and Eqs. (B12, B14–B15) of Ref. [2] (in the latter case the polarized
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proton was moving along Zcm rather than −Zcm. Further comments are given in Appendix B). Notice that, while
P qy fq/p 6= 0, one has P qx fq/p = P qz fq/p = 0.

The above equations, which will be soon used, deserve some further explanation. In each equation the first line
expresses the partonic distributions in terms of the F

λq,λ
′
q

λp,λ
′
p

(x, k⊥)’s and shows their exact phase dependence. The
second line gives the same quantities using our notations for the TMD-PDFs. According to our “hat convention”,
quantities like ∆fqsj/S

(x, k⊥) do not depend on phases anymore, as such dependence has been explicitly extracted out;
comparing with Eqs. (10)–(12) one has (always referred to the variables and kinematical configuration of Fig. 1):

∆f̂q/ST
(x,k⊥) = −∆fq/ST

(x, k⊥) sin(φS − φ⊥) (26)

∆f̂qsx/SL
(x,k⊥) = −∆fqsx/SL

(x, k⊥) (27)

∆f̂qsx/ST
(x,k⊥) = −∆fqsx/ST

(x, k⊥) cos(φS − φ⊥) (28)

∆f̂qsy/SL
(x,k⊥) = −∆fqsy/SL

(x, k⊥) = −∆fqsy/p
(x, k⊥) (29)

∆f̂qsy/ST
(x,k⊥) = −∆fqsy/p

(x, k⊥) + ∆−fqsy/ST
(x, k⊥) sin(φS − φ⊥) (30)

≡ −∆fqsy/p
(x, k⊥) + ∆−f̂qsy/ST

(x,k⊥)

∆f̂qsz/SL
(x,k⊥) = ∆fqsz/SL

(x, k⊥) (31)

∆f̂qsz/ST
(x,k⊥) = ∆fqsz/ST

(x, k⊥) cos(φS − φ⊥) . (32)

According to our choice the ∆fqsj/ST ,SL
(x, k⊥) introduced here are the same as in Ref. [2].

The last line of Eqs. (22)–(25) gives the connection with the Amsterdam group notations; M is taken as the
proton mass. These last relationships hold at leading twist; notice also that, when comparing with the results of the
Amsterdam group, one should take into account other differences in conventions and notations. In particular:

(pT )Amsterdam = k⊥ (33)
(−z kT )Amsterdam = p⊥ = (P T − zh k⊥) (34)

(ĥ)Amsterdam =
P T

PT
= P̂ T . (35)

Finally, we recall some other notations widely used in the literature:

∆Nfq/p↑(x, k⊥) ≡ ∆fq/ST
(x, k⊥) = 4 ImF++

+− (x, k⊥) = −2k⊥
M

f⊥1T (x, k⊥) (36)

∆Nfq↑/p(x, k⊥) ≡ ∆fqsy/p
(x, k⊥) = −2 ImF+−

++ (x, k⊥) = −k⊥
M

h⊥1 (x, k⊥) (37)

1
2

[
∆fqsx/ST

(x, k⊥) + ∆−fqsy/ST
(x, k⊥)

]
= F+−

+− (x, k⊥) = h1T (x, k⊥) +
k2
⊥

2M2
h⊥1T (x, k⊥) ≡ h1(x, k⊥) (38)

1
2

[
∆fqsx/ST

(x, k⊥)−∆−fqsy/ST
(x, k⊥)

]
= F−+

+− (x, k⊥) =
k2
⊥

2M2
h⊥1T (x, k⊥) (39)

∆T q(x) = h1(x) =
∫
d2k⊥ h1(x, k⊥) =

∫
d2k⊥

[
h1T (x, k⊥) +

k2
⊥

2M2
h⊥1T (x, k⊥)

]
. (40)

Eqs. (36), (37) and (40) refer, respectively, to the Sivers, the Boer-Mulders and the transversity distributions.

B. TMD fragmentation functions

The quantity D̂λh,λ
′
h

λqf
,λ′qf

(z,p⊥) describes the hadronization of the quark qf into the observed final hadron h, which

carries, with respect to the fragmenting quark, the light-cone momentum fraction z and the intrinsic transverse mo-
mentum p⊥. Similarly to the distribution functions, also D̂λh,λ

′
h

λq,λ
′
q

(z,p⊥) can be written as the product of fragmentation
amplitudes for the q → h+X process:

D̂
λh,λ

′
h

λq,λ
′
q

=
∑∫
X,λX

D̂λ
h
, λ

X
;λq
D̂∗λ′

h
, λ

X
;λ′q

, (41)
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where the
∑∫
X,λX

stands for a spin sum and phase space integration over all undetected particles, considered as a

system X. The usual unpolarized fragmentation function Dh/q(z), i.e. the number density of hadrons h resulting
from the fragmentation of an unpolarized parton q and carrying a light-cone momentum fraction z, is given by

Dh/q(z) =
1
2

∑
λq,λh

∫
d2p⊥ D̂

λh,λh

λq,λq
(z,p⊥) . (42)

We consider only the cases in which the final particle is either spinless (λh = 0) or its polarization is not observed,

D
h/q
λq,λ

′
q
(z,p⊥) =

∑
λ

h

D̂
λh,λh

λq,λ
′
q

(z,p⊥) . (43)

In such a case, parity invariance reduces to two the number of independent D̂h/q
λq,λ

′
q
(z,p⊥). These, in general, may

depend on the azimuthal angle of the final hadron momentum P h around the direction of the fragmenting quark q,
as defined in the quark q helicity frame, which we denote by ϕhq (it was actually denoted as φhq in Ref. [2]):

D̂
h/q
++ (z,p⊥) = D̂

h/q
−−(z,p⊥) = Dh/q(z, p⊥) (44)

D̂
h/q
+−(z,p⊥) = D

h/q
+−(z, p⊥) eiϕ

h
q (45)

D̂
h/q
−+(z,p⊥) = [Dh/q

+−(z,p⊥)]∗ = −Dh/q
+−(z, p⊥) e−iϕ

h
q . (46)

In Appendix C it is shown how to express ϕhq in terms of integration and external variables (defined in the γ∗ − p
c.m. frame), with the result, at leading order in the (k⊥/Q) expansion:

cosϕhq =
PT
p⊥

[
cos(φh − φ⊥)− zh k⊥

PT

]
(47)

sinϕhq =
PT
p⊥

sin(φh − φ⊥) . (48)

In Eq. (44) Dh/q(z, p⊥) is the unintegrated unpolarized fragmentation function. Other common notations used in the
literature are:

∆NDh/q↑(z, p⊥) ≡ −2iDh/q
+−(z, p⊥) = 2 ImDh/q

+−(z, p⊥) =
2p⊥
zMh

H⊥1 (z, p⊥) , (49)

referred to the Collins fragmentation function. Mh is the mass of the produced hadron.

C. Elementary interaction

The M̂λ`′λqf
;λ`λqi

are the helicity amplitudes for the elementary process ` qi → `′qf , computed at LO in the
γ∗ − p c.m. frame, taking into account the quark intrinsic motion; the amplitudes are normalized so that the
unpolarized cross section, for a collinear collision, is given by

dσ̂`qi→`′qf

dt̂
=

1
16πŝ2

1
4

∑
{λ}

|M̂λ`′λqf
;λ`λqi

|2 , (50)

where t̂ = −Q2 and ŝ = x
B
s.

Helicity conservation for massless particles requires λ` = λ`′ , λqi
= λqf

= λq, which implies that there are only two
independent non-vanishing amplitudes, explicitly computed in Appendix A, with the result:

M̂1 ≡ M̂++;++ = M̂∗−−;−− = eq e
2

[
1
y
A+ e

+iφ⊥ − 1− y
y

A− e
−iφ⊥ − 4

√
1− y
y

k⊥
Q

]
(51)

M̂2 ≡ M̂+−;+− = M̂∗−+;−+ = eq e
2

[
1− y
y

A+ e
−iφ⊥ − 1

y
A− e

+iφ⊥ − 4
√

1− y
y

k⊥
Q

]
, (52)
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where y = Q2

x
B
s and

A± =

1±
√

1 + 4
k2
⊥
Q2

 . (53)

These are exact LO results, holding at all orders in the k⊥/Q expansion. By truncating this expansion at first order
in k⊥/Q, one obtains much simpler expressions, which will be useful later,

M̂1 = M̂++;++ ' 2 eqe2
[

1
y
e+iφ⊥ − 2

√
1− y
y

k⊥
Q

]
(54)

M̂2 = M̂+−;+− ' 2 eqe2
[

(1− y)
y

e−iφ⊥ − 2
√

1− y
y

k⊥
Q

]
· (55)

We can now assemble the expression of the different factors - each corresponding to a physical step - into Eqs. (4)
or (8) to obtain the SIDIS cross section in terms of the TMDs. This can be done in several ways. The most direct
one is that of performing the helicity sums in Eq. (4) taking into account Eqs. (17), (44)–(46), (49), (51) and (52). It
yields:

dσ`(S`)+p(S)→`′hX

dx
B
dQ2dzh d2P T dφS

=
1

2π

∑
q

1
16π (x

B
s)2

∫
d2k⊥

z

zh
J

× 1
2

{
f̂q/p,S(x,k⊥)

(
|M̂1|2 + |M̂2|2

)
Dh/q(z, p⊥)

+P `z P
q
z f̂q/p,S(x,k⊥)

(
|M̂1|2 − |M̂2|2

)
Dh/q(z, p⊥) (56)

+
[
P qy f̂q/p,S(x,k⊥)

(
Re(M̂1M̂

∗
2 ) cosϕhq − Im(M̂1M̂

∗
2 ) sinϕhq

)
−P qx f̂q/p,S(x,k⊥)

(
Im(M̂1M̂

∗
2 ) cosϕhq + Re(M̂1M̂

∗
2 ) sinϕhq

)]
∆NDh/q↑(z, p⊥)

}
,

which expresses the cross section in terms of the lepton and the quark polarization vectors, the helicity amplitudes of
the elementary interaction and either the unpolarized or the Collins fragmentation functions. The intrinsic transverse
momentum of the produced hadron, p⊥, is related to k⊥ and the other kinematical variables as shown in Eq. (28) of
Ref. [37]. The exact expressions of cosϕhq and sinϕhq can be obtained from Eqs. (C3) and (C4).

We now continue our computation, in this Section, at O (k⊥/Q). From Eqs. (54), (55), (47) and (48), we have:

|M̂1|2 + |M̂2|2 =
4e2qe

4

y2

[
1 + (1− y)2 − 4(2− y)

√
1− y k⊥

Q
cosφ⊥

]
(57)

|M̂1|2 − |M̂2|2 =
4e2qe

4

y2

[
1− (1− y)2 − 4y

√
1− y k⊥

Q
cosφ⊥

]
(58)

Im(M̂1M̂
∗
2 ) cosϕhq + Re(M̂1M̂

∗
2 ) sinϕhq =

PT
p⊥

4e2qe
4

y2

{
(1− y)

[
sin(φh + φ⊥)− zh k⊥

PT
sin 2φ⊥

]
− 2

√
1− y(2− y)

k⊥
Q

[
sinφh − zh k⊥

PT
sinφ⊥

]}
(59)

Re(M̂1M̂
∗
2 ) cosϕhq − Im(M̂1M̂

∗
2 ) sinϕhq =

PT
p⊥

4e2qe
4

y2

{
(1− y)

[
cos(φh + φ⊥)− zh k⊥

PT
cos 2φ⊥

]
− 2

√
1− y(2− y)

k⊥
Q

[
cosφh − zh k⊥

PT
cosφ⊥

]}
· (60)



9

Inserting these results, together with Eqs. (22)–(25), into Eq. (56), gives, at order k⊥/Q, the following expression
for the SIDIS cross section in the TMD factorization scheme:

dσ`(S`)+p(S)→`′hX

dx
B
dQ2 dzh d2P T dφS

=
1

2π

∑
q

1
16π (x

B
s)2

∫
d2k⊥ d

2p⊥ δ
(2)(P T − zhk⊥ − p⊥)

4e2qe
4

y2{
1
2
fq/p

[
1 + (1− y)2

]
Dh/q − 1

2
∆fqsy/p

PT
p⊥

(1− y)
[
cos(φh + φ⊥)− zh k⊥

PT
cos 2φ⊥

]
∆NDh/q↑

−2(2− y)
√

1− y k⊥
Q

[
fq/p cosφ⊥Dh/q − 1

2
∆fqsy/p

PT
p⊥

(
cosφh − zh k⊥

PT
cosφ⊥

)
∆NDh/q↑

]
+

1
2
SL

[
PT
p⊥

(1− y) ∆fqsx/SL

(
sin(φh + φ⊥)− zh k⊥

PT
sin 2φ⊥

)
∆NDh/q↑

−2(2− y)
√

1− y k⊥
Q

PT
p⊥

∆fqsx/SL

(
sinφh − zh k⊥

PT
sinφ⊥

)
∆NDh/q↑

+P `z

([
1− (1− y)2

]
∆fqsz/SL

Dh/q − 4y
√

1− y k⊥
Q

∆fqsz/SL
cosφ⊥Dh/q

)]
+

1
2
ST

[
1
2
[
1 + (1− y)2

]
∆fq/ST

sin(φ⊥ − φS)Dh/q

+P `z
[
1− (1− y)2

]
∆fqsz/ST

cos(φ⊥ − φS)Dh/q

−P `z 2y
√

1− y k⊥
Q

∆fqsz/ST

(
cosφS + cos(2φ⊥ − φS)

)
Dh/q

+
PT
2p⊥

(1− y) (∆fqsx/ST
+ ∆−fqsy/ST

)
(

sin(φh + φS)− zh k⊥
PT

sin(φ⊥ + φS)
)

∆NDh/q↑

+
PT
2p⊥

(1− y) (∆fqsx/ST
−∆−fqsy/ST

)
(

sin(φh + 2φ⊥ − φS)− zh k⊥
PT

sin(3φ⊥ − φS)
)

∆NDh/q↑

−PT
p⊥

(2− y)
√

1− y k⊥
Q

(∆fqsx/ST
+ ∆−fqsy/ST

)
(

sin(φh − φ⊥ + φS)− zh k⊥
PT

sinφS
)

∆NDh/q↑

−PT
p⊥

(2− y)
√

1− y k⊥
Q

(∆fqsx/ST
−∆−fqsy/ST

)
(

sin(φh + φ⊥ − φS)− zh k⊥
PT

sin(2φ⊥ − φS)
)

∆NDh/q↑

+(2− y)
√

1− y k⊥
Q

∆fq/ST

(
sinφS − sin(2φ⊥ − φS)

)
Dh/q

]}
. (61)

The first three terms of Eq. (61) correspond to the contribution of the unpolarized proton to the SIDIS cross section;
they contain either the unpolarized or the Boer-Mulders distribution functions. The following three terms correspond
to the longitudinally-polarized proton contributions; they depend either on the helicity distribution ∆fqsz/SL

[= ∆q =
g1] or on the ∆fqsx/SL

[= (k⊥/M)h⊥1L] transverse momentum dependent distribution. Finally, the last eight terms
correspond to the transversely-polarized proton contributions; they may originate from the Sivers function, from
∆fqsz/ST

[= (k⊥/M) g⊥1T ], and from the transversity distribution functions, related to the combinations (∆fqsx/ST
±

∆−fqsy/ST
) as shown in Eqs. (38) and (39). The partonic distributions couple either to the unpolarized or to the

Collins fragmentation functions, depending on whether they are, respectively, chiral even or odd.
Notice that we have intentionally grouped all terms according to their phases, so that this expression can be easily

compared with the analogous formulae of Ref. [23], which have the same structure. To make the comparison fully
explicit, apart from converting our notation to the Amsterdam group notation, we need to extract from the integration
over the intrinsic transverse momentum k⊥ the dependence on the azimuthal angles φh and φS . On the basis of a
simple tensorial analysis, which is described in detail in Appendices D and E, we can recover Eqs. (4.2)-(4.19) of
Ref. [23], without formulating any particular assumption on the x (z) and k⊥ (p⊥) dependence of the distribution
(fragmentation) functions.

In analogy with the Amsterdam notation, Ref. [23], we define the convolution on transverse momenta in the following
way

C[w f D] =
∑
q

e2q

∫
d2k⊥ d

2p⊥ δ
(2)(P T − zhk⊥ − p⊥)w(k⊥,P T ) f(x

B
, k⊥)D (zh, p⊥) . (62)

Notice that this definition differs from Eq. (41) of Ref. [23] by a factor x
B

and for the definition of the parton momenta,
see Eqs. (33)–(35).
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The convolutions on intrinsic transverse momenta in the single terms of Eq. (61) can in fact be written as:

FUU =
∑
q

e2q

∫
d2k⊥ fq/pDh/q = C[f1D1] (63)

cos 2φh F
cos 2φh

UU = −
∑
q

e2q

∫
d2k⊥∆fqsy/p

PT
2 p⊥

[
cos(φh + φ⊥)− zh k⊥

PT
cos 2φ⊥

]
∆NDh/q↑

= cos 2φh C
[

(P T · k⊥)− 2zh(P̂ T · k⊥)2 + zhk
2
⊥

zhMhM
h⊥1 H

⊥
1

]
(64)

cosφh F
cosφh

UU = −2
∑
q

e2q

∫
d2k⊥

k⊥
Q

{
cosφ⊥fq/pDh/q

− PT
2 p⊥

[
cosφh − zh k⊥

PT
cosφ⊥

]
∆fqsy/p

∆NDh/q↑

}
= cosφh

(
− 2
Q

)
C
(P̂ T · k⊥)f1D1 +

k2
⊥

(
PT − zh P̂ T · k⊥

)
zhMhM

h⊥1 H
⊥
1

 (65)

sin 2φh F
sin 2φh

UL =
∑
q

e2q

∫
d2k⊥

PT
2p⊥

∆fqsx/SL

(
sin(φh + φ⊥)− zh k⊥

PT
sin 2φ⊥

)
∆NDh/q↑

= sin 2φh C
[

(P T · k⊥)− 2zh(P̂ T · k⊥)2 + zhk
2
⊥

zhMhM
h⊥1LH

⊥
1

]
(66)

sinφh F
sinφh

UL = −2
∑
q

e2q

∫
d2k⊥

k⊥
Q

PT
2p⊥

∆fqsx/SL

(
sinφh − zh k⊥

PT
sinφ⊥

)
∆NDh/q↑

= sinφh

(
− 2
Q

)
C
k2
⊥

(
PT − zh(P̂ T · k⊥)

)
zhMhM

h⊥1LH
⊥
1

 (67)

sinφh F
sinφh

LU = 0 (no contribution from twist-2 TMDs) (68)

FLL =
∑
q

e2q

∫
d2k⊥∆fqsz/SL

Dh/q = C[g1LD1] (69)

cosφh F
cosφh

LL = −2
∑
q

e2q

∫
d2k⊥

k⊥
Q

∆fqsz/SL
cosφ⊥Dh/q

= cosφh

(
− 2
Q

)
C
[
(P̂ T · k⊥)g1LD1

]
(70)

sin(φh − φS)F sin(φh−φS)
UT =

1
2

∑
q

e2q

∫
d2k⊥∆fq/ST

sin(φ⊥ − φS)Dh/q

= sin(φh − φS) C
[
−(P̂ T · k⊥)

M
f⊥1T D1

]
(71)

cos(φh − φS)F cos(φh−φS)
LT =

∑
q

e2q

∫
d2k⊥∆fqsz/ST

cos(φ⊥ − φS)Dh/q

= cos(φh − φS) C
[

(P̂ T · k⊥)
M

g⊥1T D1

]
(72)

cosφS F
cosφS

LT = −
∑
q

e2q

∫
d2k⊥

k⊥
Q

∆fqsz/ST
cosφS Dh/q

= cosφS

(
− 1
Q

)
C
[
k2
⊥
M

g⊥1T D1

]
(73)
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cos(2φh − φS)F cos(2φh−φS)
LT = −

∑
q

e2q

∫
d2k⊥

k⊥
Q

∆fqsz/ST
cos(2φ⊥ − φS)Dh/q

= cos(2φh − φS)
1
Q
C

(
k2
⊥ − 2(P̂ T · k⊥)2

)
M

g⊥1T D1

 (74)

sin(φh + φS)F sin(φh+φS)
UT =

∑
q

e2q

∫
d2k⊥

PT
2p⊥

× (∆fqsx/ST
+ ∆−fqsy/ST

)
(

sin(φh + φS)− zh k⊥
PT

sin(φ⊥ + φS)
)

∆NDh/q↑

= sin(φh + φS) C

(
PT − zhk⊥(P̂ T · k̂⊥)

)
zhMh

h1H
⊥
1

 (75)

sin(3φh − φS)F sin(3φh−φS)
UT =

=
∑
q

e2q

∫
d2k⊥

PT
2p⊥

(∆fqsx/ST
−∆−fqsy/ST

)
(

sin(φh + 2φ⊥ − φS)− zh k⊥
PT

sin(3φ⊥ − φS)
)

∆NDh/q↑

= sin(3φh − φS) C
k2
⊥

{
− PT + 2PT (P̂ T · k̂⊥)2 − zhk⊥

[
4(P̂ T · k̂⊥)3 + 3(P̂ T · k̂⊥)

]}
2zhMhM2

h⊥1T H
⊥
1

 (76)

sinφSF
sinφS

UT = −
∑
q

e2q

∫
d2k⊥

PT
p⊥

k⊥
Q

×(∆fqsx/ST
+ ∆−fqsy/ST

)
(

sin(φh − φ⊥ + φS)− zh k⊥
PT

sinφS
)

∆NDh/q↑

+
1
2

∑
q

e2q

∫
d2k⊥

k⊥
Q

∆fq/ST
sinφS Dh/q

= sinφS

(
− 2
Q

)
C
[(

P T · k⊥ − zhk2
⊥
)

zhMh
h1H

⊥
1 +

k2
⊥

2M
f⊥1T D1

]
(77)

sin(2φh − φS)F sin(2φh−φS)
UT = −

∑
q

e2q

∫
d2k⊥

PT
p⊥

k⊥
Q

×(∆fqsx/ST
−∆−fqsy/ST

)
(

sin(φh + φ⊥ − φS)− zh k⊥
PT

sin(2φ⊥ − φS)
)

∆NDh/q↑

− 1
2

∑
q

e2q

∫
d2k⊥

k⊥
Q

∆fq/ST
sin(2φ⊥ − φS)Dh/q

= sin(2φh − φS)
(
− 1
Q

)
C
[k2
⊥

(
(P T · k⊥) + zhk

2
⊥

(
1− 2(P̂ T · k̂⊥)2

))
zhMhM2

h⊥1T H
⊥
1

−
(

2(P̂ T · k⊥)2 − k2
⊥

)
M

f⊥1T D1

]
. (78)

These “FS`S structure functions” are the same as those defined in Ref. [23], apart from an overall factor x
B

which
appears in the latter. In the comparison one should consider only leading twist TMDs and remember the different
notations of Ref. [23], Eqs. (33)–(35). Using the above F ’s in Eq. (61) one obtains the full expression of the SIDIS
polarized cross section, valid with leading twist TMDs and at kinematical order k⊥/Q:

dσ`(S`)+p(S)→`′hX

dx
B
dQ2 dzh d2P T dφS

=
2α2

Q4

×
{

1 + (1− y)2

2
FUU + (2− y)

√
1− y cosφh F

cosφh

UU + (1− y) cos 2φh F
cos 2φh

UU

+SL

[
(1− y) sin 2φh F

sin 2φh

UL + (2− y)
√

1− y sinφh F
sinφh

UL

]
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+SL P
`
z

[1− (1− y)2

2
FLL + y

√
1− y cosφh F

cosφh

LL

]
+ST

[1 + (1− y)2

2
sin(φh − φS)F sin(φh−φS)

UT

+ (1− y)
(

sin(φh + φS)F sin(φh+φS)
UT + sin(3φh − φS)F sin(3φh−φS)

UT

)
+ (2− y)

√
1− y

(
sinφS F

sinφS

UT + sin(2φh − φS)F sin(2φh−φS)
UT

)]
+ST P

`
z

[1− (1− y)2

2
cos(φh − φS)F cos(φh−φS)

LT

+ y
√

1− y
(

cosφS F
cosφS

LT + cos(2φh − φS)F cos(2φh−φS)
LT

)]}
. (79)

This expression agrees with Eq. (2.7) of Ref. [23], bearing in mind Eqs. (2.8–2.13) and that, at leading twist, FUU,L =
F sinφh

LU = 0. In general, our results agree with the leading order results of Refs. [1, 23, 39] and reproduce part of
the subleading order results of Refs. [1, 23], in particular those obtained in the so-called Wandzura-Wilczek type
approximation [41].

In obtaining the general cross section structure of Eq. (79) we started from the TMD factorization, Eq. (4); then we
have simply exploited the properties of the helicity amplitudes, which essentially originate from the phase dependence
of the Dirac spinors and their non collinear kinematics. Each step of the factorization scheme contributes some phases,
including the elementary interactions.

Some of the final azimuthal dependences have a clear and direct physical interpretation. For example, the phase of
F

sin(φh−φS)
UT , Eq. (71), originates from the phase dependence of the ∆f̂q/ST

(x,k⊥) distribution, Eq. (26). This is the
Sivers effect [42, 43], which relates the number of unpolarized quarks with intrinsic momentum k⊥ to the spin of the
proton; such an effect, due to parity invariance, can only be of the form S · (p̂ × k̂⊥) = ST sin(φ⊥ − φS). Similarly,
the phase in the first term of F cosφh

UU , Eq. (65), being associated with unpolarized distribution and fragmentation
functions, can only come from the k⊥ dependence of the elementary interaction, the so-called Cahn effect [37].

III. SINGLE AND DOUBLE SPIN ASYMMETRIES IN SIDIS

From the expression of the SIDIS polarized cross section we can now compute all spin asymmetries which have
been, or can be, measured. We can restart from Eq. (56), inserting into it the expressions of the polarized quark
distributions, as given in Eqs. (22)–(32):

dσ`(S`)+p(S)→`′hX

dx
B
dQ2 dzh d2P T dφS

=
1

2π

∑
q

1
16π (x

B
s)2

∫
d2k⊥

z

zh
J

× 1
2

{(
fq/p(x, k⊥) +

1
2
ST ∆f̂q/ST

(x,k⊥)
)(
|M̂1|2 + |M̂2|2

)
Dh/q(z, p⊥)

+ P `z

(
SL ∆f̂qsz/SL

(x,k⊥) + ST ∆f̂qsz/ST
(x,k⊥)

)(
|M̂1|2 − |M̂2|2

)
Dh/q(z, p⊥) (80)

−
[(

∆fqsy/p
(x, k⊥)− ST ∆−f̂qsy/ST

(x,k⊥)
)(

Re(M̂1M̂
∗
2 ) cosϕhq − Im(M̂1M̂

∗
2 ) sinϕhq

)
+
(
SL ∆fqsx/SL

(x, k⊥) + ST ∆f̂qsx/ST
(x,k⊥)

)(
Im(M̂1M̂

∗
2 ) cosϕhq + Re(M̂1M̂

∗
2 ) sinϕhq

)]
∆NDh/q↑(z, p⊥)

}
·

Notice that this expression, at leading twist, is exact at all orders in k⊥/Q. We list here some properties of the
polarized distribution functions which are useful in computing the asymmetries [2]:

f̂q/ST
(x,k⊥) + f̂q/−ST

(x,k⊥) = 2fq/p(x, k⊥)

f̂q/ST
(x,k⊥)− f̂q/−ST

(x,k⊥) = ∆f̂q/ST
(x,k⊥)

∆f̂sx/ST
(x,k⊥) = −∆f̂sx/−ST

(x,k⊥)

∆f̂sy/ST
(x,k⊥)−∆f̂sy/−ST

(x,k⊥) = 2 ∆−f̂qsy/ST
(x,k⊥) (81)



13

∆f̂sy/ST
(x,k⊥) + ∆f̂sy/−ST

(x,k⊥) = −2 ∆fqsy/p
(x, k⊥)

∆f̂sz/ST
(x,k⊥) = −∆f̂sz/−ST

(x,k⊥)

∆f̂si/SL
(x,k⊥) = ∆f̂si/−SL

(x,k⊥) (i = x, y, z) .

Let us now consider Eq. (80) in several particular cases. In the sequel, transverse and longitudinal always refer,
both for the protons and the leptons, to their (different) directions of motion in the γ∗ − p c.m. frame. Longitudinal
states coincide with helicity states.

A. Nucleon transverse single spin asymmetry, AUT

Let us start with one of the most common SIDIS single spin asymmetries, AS`S , with unpolarized leptons (U) and
transversely polarized protons (T):

AUT ≡ d6σ`p
↑→`′hX − d6σ`p

↓→`′hX

d6σ`p↑→`′hX + d6σ`p↓→`′hX
=
d6σ`+p(ST )→`′hX − d6σ`+p(−ST )→`′hX

d6σ`+p(ST )→`′hX + d6σ`+p(−ST )→`′hX · (82)

For the numerator of AUT we have:

dσ`p
↑→`′hX − dσ`p↓→`′hX

dx
B
dQ2 dzh d2P T dφS

=
1

2π

∑
q

1
16π (x

B
s)2

∫
d2k⊥

z

zh
J (83)

×
{

1
2

∆f̂q/ST
(x,k⊥) (|M̂1|2 + |M̂2|2)Dh/q(z, p⊥)

+
[
∆−f̂qsy/ST

(x,k⊥)
(

Re(M̂1M̂
∗
2 ) cosφhq − Im(M̂1M̂

∗
2 ) sinφhq )

)
− ∆f̂qsx/ST

(x,k⊥)
(

Re(M̂1M̂
∗
2 ) sinφhq + Im(M̂1M̂

∗
2 ) cosφhq )

)]
∆NDh/q↑(z, p⊥)

}
·

The first term in Eq. (83) corresponds to the Sivers effect, whereas the second and the third terms correspond to the
Collins effect, coupled to the transversity distributions.

Similarly, for the denominator we find:

dσ`p
↑→`′hX + dσ`p

↓→`′hX

dx
B
dQ2 dzh d2P T dφS

=
1

2π

∑
q

1
16π (x

B
s)2

∫
d2k⊥

z

zh
J

×
{
fq/p(x, k⊥) (|M̂1|2 + |M̂2|2)Dh/q(z, p⊥)

−∆fqsy/p
(x, k⊥)

(
Re(M̂1M̂

∗
2 ) cosφhq − Im(M̂1M̂

∗
2 ) sinφhq

)
∆NDh/q↑

}
· (84)

Here, the first term corresponds to the usual unpolarized cross section (which survives in the collinear limit) whereas
the second term is an effect obtained combining the Boer-Mulders distribution function, ∆fqsy/p

(x, k⊥), with the
Collins fragmentation function, ∆NDh/q↑(z, p⊥).

If we insert the exact relations for M̂1 and M̂2 – given in Eqs. (51) and (52) – and for cosϕhq , sinϕhq – given in
Eq. (C3) – into Eqs. (83) and (84), we obtain an exact expression for the AUT asymmetry. As already mentioned,
the numerator is given by two different contributions, the Sivers and the Collins effect. Similarly, the denominator,
which is simply twice the unpolarized cross section for the ` p → `′hX process, receive most contribution from the
first term, proportional to the unpolarized distribution and fragmentation functions, with a further contribution from
a combination of the Boer-Mulders and Collins effects.

Much simpler, and often quite accurate, expressions can be obtained at O(k⊥/Q), neglecting higher order correc-
tions. Using Eqs. (57)–(60) and (26)–(32) in Eqs. (83) and (84), one has:

dσ`p
↑→`′hX − dσ`p↓→`′hX

dx
B
dQ2 dzh d2P T dφS

=

2α2

Q4

∑
q

e2q

∫
d2k⊥

{
1
2

∆fq/ST
sin(φ⊥ − φS)[1 + (1− y)2]Dh/q
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+
PT
2p⊥

(1− y) (∆fqsx/ST
+ ∆−fqsy/ST

)
(

sin(φh + φS)− zh k⊥
PT

sin(φ⊥ + φS)
)

∆NDh/q↑

+
PT
2p⊥

(1− y) (∆fqsx/ST
−∆−fqsy/ST

)
(

sin(φh + 2φ⊥ − φS)− zh k⊥
PT

sin(3φ⊥ − φS)
)

∆NDh/q↑

−PT
p⊥

(2− y)
√

1− y k⊥
Q

(∆fqsx/ST
+ ∆−fqsy/ST

)
(

sin(φh − φ⊥ + φS)− zh k⊥
PT

sinφS
)

∆NDh/q↑

−PT
p⊥

(2− y)
√

1− y k⊥
Q

(∆fqsx/ST
−∆−fqsy/ST

)
(

sin(φh + φ⊥ − φS)− zh k⊥
PT

sin(2φ⊥ − φS)
)

∆NDh/q↑

+(2− y)
√

1− y k⊥
Q

∆fq/ST

(
sinφS − sin(2φ⊥ − φS)

)
Dh/q

}
.

=
2α2

Q4

{[
1 + (1− y)2

]
sin(φh − φS)F sin(φh−φS)

UT (85)

+ 2(1− y)
[
sin(φh + φS)F sin(φh+φS)

UT + sin(3φh − φS)F sin(3φh−φS)
UT

]
+ 2(2− y)

√
1− y

[
sinφS F

sinφS

UT + sin(2φh − φS)F sin(2φh−φS)
UT

]}
and

dσ`p
↑→`′hX + dσ`p

↓→`′hX

dx
B
dQ2 dzh d2P T dφS

=

2α2

Q4

∑
q

e2q

∫
d2k⊥

{
fq/p

[
1 + (1− y)2 − 4(2− y)

√
1− y k⊥

Q
cosφ⊥

]
Dh/q

−∆fqsy/p

[
(1− y)

(
cos(φh + φ⊥)− zh k⊥

PT
cos(2φ⊥)

)
−2(2− y)

√
1− y k⊥

Q

(
cosφh − zh k⊥

PT
cosφ⊥

)]
PT
p⊥

∆NDh/q↑

}
=

2α2

Q4

{[
1 + (1− y)2

]
FUU + 2(1− y) cos 2φh F

cos 2φh

UU + 2(2− y)
√

1− y cosφh F
cosφh

UU

}
, (86)

where we have also exploited the definitions of the F structure functions, Eqs. (63)–(78). These last expressions, Eqs.
(85) and (86), can also be obtained directly from Eq. (79). We recall that, at O(k⊥/Q), one has x = x

B
, z = zh,

p⊥ = P T − zhk⊥ and J = 1.
The first term in Eq. (85) corresponds to the SIDIS Sivers asymmetry, which we analyzed in Refs. [37, 44–46] for

the extraction of the Sivers function, while the second term corresponds to the SIDIS Collins asymmetry, studied in
Refs. [47, 48] and used for the simultaneous extraction of the Collins and transversity functions.

B. Nucleon longitudinal single spin asymmetry, AUL

This asymmetry is defined for unpolarized leptons and a longitudinally polarized proton target:

AUL ≡ d6σ`p
→→`′hX − d6σ`p

←→`′hX

d6σ`p→→`′hX + d6σ`p←→`′hX
=
d6σ`+p(SL)→`′hX − d6σ`+p(−SL)→`′hX

d6σ`+p(SL)→`′hX + d6σ`+p(−SL)→`′hX . (87)

We give explicit results, for this and the next asymmetries, only valid at O(k⊥/Q). The denominator, as in the
previous asymmetry, is twice the unpolarized cross section and is given in Eq. (86). For the numerator we have:

dσ`+p(SL)→`′hX − dσ`+p(−SL)→`′hX

dx
B
dQ2 dzh d2P T dφS

=
4α2

Q4

{
(1− y) sin 2φhF

sin 2φh

UL +
√

1− y(2− y) sinφhF
sinφh

UL

}
, (88)

as can be easily checked from Eq. (79).
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C. Nucleon longitudinal double spin asymmetry, ALL

This asymmetry is defined by keeping fixed the longitudinal polarization of the lepton, while flipping the direction
of the proton target longitudinal polarization:

ALL =
d6σ`

→p→→`′hX − d6σ`
→p←→`′hX

d6σ`→p→→`′hX + d6σ`→p←→`′hX
=
d6σ`(S`)+p(SL)→`′hX − d6σ`(S`)+p(−SL)→`′hX

d6σ`(S`)+p(SL)→`′hX + d6σ`(S`)+p(−SL)→`′hX . (89)

The denominator is the same as given in Eq. (86), while for the numerator we have

dσ`(S`)+p(SL)→`′hX − dσ`(S`)+p(−SL)→`′hX

dx
B
dQ2 dzh d2P T dφS

=

2α2

Q4

{
[1− (1− y)2]FLL + 2y

√
1− y cosφhF

cosφh

LL + 2(1− y) sin 2φhF
sin 2φh

UL + 2(2− y)
√

1− y sinφhF
sinφh

UL

}
.

(90)

D. Lepton longitudinal double spin asymmetry, ÃLL

This asymmetry is defined by keeping fixed the longitudinal polarization of the proton target, while flipping the
lepton longitudinal polarization:

ÃLL =
d6σ`

→p→→`′hX − d6σ`
←p→→`′hX

d6σ`→p→→`′hX + d6σ`←p→→`′hX
=
d6σ`(S`)+p(SL)→`′hX − d6σ`(−S`)+p(SL)→`′hX

d6σ`(S`)+p(SL)→`′hX + d6σ`(−S`)+p(SL)→`′hX . (91)

For the numerator we have

dσ`(S`)+p(SL)→`′hX − dσ`(−S`)+p(SL)→`′hX

dx
B
dQ2 dzh d2P T dφS

=
2α2

Q4

{
[1− (1− y)2]FLL + 2y

√
1− y cosφhF

cosφh

LL

}
.

(92)

Notice that, in this case, the denominator differs from that given in Eqs. (86), as it acquires additional terms (generated
by ∆fqsx/SL

):

dσ`(S`)+p(SL)→`′hX + dσ`(−S`)+p(SL)→`′hX

dx
B
dQ2 dzh d2P T dφS

=

2α2

Q4

{[
1 + (1− y)2

]
FUU + 2(1− y)[cos 2φh F

cos 2φh

UU + sin 2φh F
sin 2φh

UL ]

+ 2(2− y)
√

1− y [cosφh F
cosφh

UU + sinφh F
sinφh

UL ]
}
. (93)

E. Nucleon longitudinal-transverse double spin asymmetry, ALT

This asymmetry is defined by keeping fixed the longitudinal polarization of the lepton, while flipping the proton
target transverse polarization:

ALT =
d6σ`

→p↑→`′hX − d6σ`
→p↓→`′hX

d6σ`→p↑→`′hX + d6σ`→p↓→`′hX
=
d6σ`(S`)+p(ST )→`′hX − d6σ`(S`)+p(−ST )→`′hX

d6σ`(S`)+p(ST )→`′hX + d6σ`(S`)+p(−ST )→`′hX · (94)

The denominator is given in Eq. (86), while for the numerator we have

dσ`(S`)+p(ST )→`′hX − dσ`(S`)+p(−ST )→`′hX

dx
B
dQ2 dzh d2P T dφS

=

2α2

Q4

{[
1 + (1− y)2

]
sin(φh − φS)F sin(φh−φS)

UT
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+
[
1− (1− y)2

]
cos(φh − φS)F cos(φh−φS)

LT

+2y
√

1− y
[

cosφSF
cosφS

LT + cos(2φh − φS)F cos(2φh−φS)
LT

]
+2(1− y)

[
sin(φh + φS)F sin(φh+φS)

UT + sin(3φh − φS)F sin(3φh−φS)
UT

]
+2(2− y)

√
1− y

[
cosφSF

cosφS

LT + cos(φh − φS)F cos(φh−φS)
LT

+ sinφSF
sinφS

UT + sin(2φh − φS)F sin(2φh−φS)
UT

]}
. (95)

F. Lepton longitudinal-transverse double spin asymmetry ÃLT

This asymmetry is defined by flipping the direction of the longitudinal polarization of the lepton, while keeping
fixed the proton target transverse polarization:

ÃLT =
d6σ`

→p↑→`′hX − d6σ`
←p↑→`′hX

d6σ`→p↑→`′hX + d6σ`←p↑→`′hX
=
d6σ`(S`)+p(ST )→`′hX − d6σ`(−S`)+p(ST )→`′hX

d6σ`(S`)+p(ST )→`′hX + d6σ`(−S`)+p(ST )→`′hX · (96)

For the numerator we have

dσ`(S`)+p(ST )→`′hX − dσ`(−S`)+p(ST )→`′hX

dx
B
dQ2 dzh d2P T dφS

=

2α2

Q4

{
[1− (1− y)2] cos(φh − φS)F cos(φh−φS)

LT + 2y
√

1− y
[

cosφSF
cosφS

LT + cos(2φh − φS)F cos(2φh−φS)
LT

]}
.

(97)

The denominator differs from that given in Eq. (86), as it acquires several additional terms, which also appear in the
numerator of AUT :

dσ`(S`)+p(ST )→`′hX + dσ`(−S`)+p(ST )→`′hX

dx
B
dQ2 dzh d2P T dφS

=

=
2α2

Q4

{[
1 + (1− y)2

]
[FUU + sin(φh − φS)F sin(φh−φS)

UT ]

+ 2(1− y)[cos 2φh F
cos 2φh

UU + sin(φh + φS)F sin(φh+φS)
UT + sin(3φh − φS)F sin(3φh−φS)

UT ]

+ 2(2− y)
√

1− y [cosφh F
cosφh

UU + sinφS F
sinφS

UT + sin(2φh − φS)F sin(2φh−φS)
UT ]

}
. (98)

G. Other asymmetries

All the other single and double spin asymmetries are either zero or related to those already shown above. In
particular, all the single spin asymmetries generated by the lepton polarization vanish: ALU = 0 as FLU = 0 to
leading order in k⊥/Q and ATU = 0 as we have no access to the transverse polarization of the lepton and therefore
there are no terms proportional to either P `x or P `y in Eqs. (4) or (79). For the same reason we have ATT = AUT and
ATL = AUL. Despite its possible presence, the transverse polarization of the lepton plays no role in SIDIS; P `x and
P `y appear in the off-diagonal terms of ρ`,S`

λ
`
λ′

`
in Eq. (4), but, due to helicity conservation and the fact that the final

lepton polarization cannot be observed, one is forced to have λ`′ = λ` = λ′`.

IV. PHENOMENOLOGY OF SPIN ASYMMETRIES

To leading order in (k⊥/Q), all terms contributing to the polarized SIDIS cross section and to the spin asymmetries
can be integrated analytically, provided we adopt a simple k⊥ and p⊥ dependence for the distribution and fragmen-
tation functions. As usual, we assume the x and k⊥ dependences to be factorized and we assign the k⊥ dependence a
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Gaussian distribution with one free parameter to fix the Gaussian width. For the unpolarized and helicity distribution
functions and for the fragmentation function we simply use

fq/p(x, k⊥) = fq/p(x)
e−k

2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

(99)

∆fqsz/SL
(x, k⊥) = ∆fqsz/SL

(x)
e−k

2
⊥/〈k

2
⊥〉L

π〈k2
⊥〉L

(100)

Dh/q(z, p⊥) = Dh/q(z)
e−p

2
⊥/〈p

2
⊥〉

π〈p2
⊥〉

, (101)

where fq/p(x), ∆fqsz/SL
(x) and Dh/q(z) can be taken from the available fits of the world data. In general, we allow for

different widths of the Gaussians for the different distributions, but take them to be constant and flavor independent.
For the Sivers and Boer-Mulders functions, we assume a similar parametrization, with an extra multiplicative factor
k⊥ to give them the appropriate behavior in the small k⊥ region [44]:

∆fq/ST
(x, k⊥) = ∆fq/ST

(x)
√

2e
k⊥
M

S

e−k
2
⊥/M

2
S
e−k

2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

= ∆fq/ST
(x)
√

2e
k⊥
M

S

e−k
2
⊥/〈k

2
⊥〉S

π〈k2
⊥〉

(102)

∆fqsy/p
(x, k⊥) = ∆fqsy/p

(x)
√

2e
k⊥
M

BM

e−k
2
⊥/M

2
BM

e−k
2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

= ∆fqsy/p
(x)
√

2e
k⊥
M

BM

e−k
2
⊥/〈k

2
⊥〉BM

π〈k2
⊥〉

, (103)

where the x-dependent functions ∆fq/ST
(x) and ∆fqsy/p

(x) are not known, and should be determined phenomenolog-
ically by fitting the available data on azimuthal asymmetries and moments; the k⊥ dependent Gaussians have been
assigned a reduced width to make sure they fulfill the appropriate positivity bounds [49]:

〈k2
⊥〉S =

〈k2
⊥〉M2

S

〈k2
⊥〉+M2

S

(104)

〈k2
⊥〉BM

=
〈k2
⊥〉M2

BM

〈k2
⊥〉+M2

BM

· (105)

Similarly, for the distribution of longitudinally polarized quarks inside a transversely polarized proton, ∆fqsz/ST
, and

of transversely polarized quarks inside a longitudinally polarized proton, ∆fqsx/SL
, we set:

∆fqsz/ST
(x, k⊥) = ∆fqsz/ST

(x)
√

2e
k⊥
M

LT

e−k
2
⊥/M

2
LT

e−k
2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

= ∆fqsz/ST
(x)
√

2e
k⊥
M

LT

e−k
2
⊥/〈k

2
⊥〉LT

π〈k2
⊥〉

(106)

∆fqsx/SL
(x, k⊥) = ∆fqsx/SL

(x)
√

2e
k⊥
M

T L

e−k
2
⊥/M

2
T L

e−k
2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

= ∆fqsx/SL
(x)
√

2e
k⊥
M

T L

e−k
2
⊥/〈k

2
⊥〉T L

π〈k2
⊥〉

, (107)

with

〈k2
⊥〉LT

=
〈k2
⊥〉M2

LT

〈k2
⊥〉+M2

LT

(108)

〈k2
⊥〉T L

=
〈k2
⊥〉M2

T L

〈k2
⊥〉+M2

T L

· (109)
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For the transversity distribution function, it is most convenient to parametrize the following combinations

1
2

(
∆fqsx/ST

(x, k⊥) + ∆−fqsy/ST
(x, k⊥)

)
= h1(x, k⊥) = h1(x)

e−k
2
⊥/〈k

2
⊥〉T

π〈k2
⊥〉T

(110)

1
2

(
∆fqsx/ST

(x, k⊥)−∆−fqsy/ST
(x, k⊥)

)
=

k2
⊥

2M2
T T

h⊥1T (x, k⊥) = h⊥1T (x)
e k2
⊥

M2
T T

e−k
2
⊥/M

2
T T

e−k
2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

= h⊥1T (x)
e k2
⊥

M2
T T

e−k
2
⊥/〈k

2
⊥〉T T

π〈k2
⊥〉

, (111)

as these are the quantities which appear in the polarized cross section and in the spin asymmetries. Notice that for
h1(x, k⊥) and h⊥1T (x, k⊥), as for each of the other TMDs, we introduce their own reduced Gaussian widths

〈k2
⊥〉T 〈k2

⊥〉T T
=
〈k2
⊥〉M2

T T

〈k2
⊥〉+M2

T T

· (112)

Finally, for the Collins fragmentation function we choose

∆NDh/q↑(z, p⊥) = ∆NDh/q↑(z)
√

2e
p⊥
Mh

e−p
2
⊥/M

2
h
e−p

2
⊥/〈p

2
⊥〉

π〈p2
⊥〉

= ∆NDh/q↑(z)
√

2e
p⊥
Mh

e−p
2
⊥/〈p

2
⊥〉C

π〈p2
⊥〉

, (113)

having defined

〈p2
⊥〉C =

〈p2
⊥〉M2

h

〈p2
⊥〉+M2

h

· (114)

Using the parametrizations in Eqs. (99-114) we can perform the k⊥ integrations analytically in Eqs. (63-78), and
re-express all the F structure functions in terms of the Gaussian parameters (some of these results were already given
in Refs. [1, 50]):

FUU =
∑
q

e2q fq/p(xB
)Dh/q(zh)

e−P
2
T /〈P

2
T 〉

π〈P 2
T 〉

(115)

F cos 2φh

UU = −P 2
T

∑
q

e2q
∆fqsy/p

(x
B

)

M
BM

∆NDh/q↑(zh)
Mh

e1−P
2
T /〈P

2
T 〉BM

π〈P 2
T 〉3BM

zh 〈k2
⊥〉2BM

〈p2
⊥〉2C

〈k2
⊥〉〈p2

⊥〉
(116)

F cosφh

UU = −2
PT
Q

∑
q

e2q fq/p(xB
)Dh/q(zh)

e−P
2
T /〈P

2
T 〉

π〈P 2
T 〉2

zh〈k2
⊥〉

+2
PT
Q

∑
q

e2q
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(x
B

)

M
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∆NDh/q↑(zh)
Mh

e1−P
2
T /〈P

2
T 〉BM

π〈P 2
T 〉4BM

(117)

×〈k
2
⊥〉2BM

〈p2
⊥〉2C

〈k2
⊥〉〈p2
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[
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h〈k2
⊥〉BM

(
P 2
T − 〈P 2

T 〉BM

)
+ 〈p2

⊥〉C 〈P 2
T 〉BM

]
F sin 2φh

UL = P 2
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e2q
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(x
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e1−P
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(118)

F sinφh
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(
P 2
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)
+ 〈p2

⊥〉C 〈P 2
T 〉T L

]
(119)

F sinφh

LU = 0 at leading twist (120)

FLL =
∑
q

e2q∆f
q
sz/SL

(x
B

)Dh/q(zh)
e−P

2
T /〈P

2
T 〉L

π〈P 2
T 〉L

(121)
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F cosφh

LL = −2
PT
Q

∑
q

e2q∆f
q
sz/SL

(x
B

)Dh/q(zh)
e−P

2
T /〈P

2
T 〉L

π〈P 2
T 〉2L
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⊥〉L (122)

F
sin(φh−φS)
UT =
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2
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F
cos(φh−φS)
LT = PT

∑
q

e2q
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(124)

F cosφS

LT = − 1
Q

∑
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)

M
LT

Dh/q(zh)
e−P

2
T /〈P

2
T 〉LT

π〈P 2
T 〉3LT

〈k2
⊥〉2LT

[〈p2
⊥〉〈P 2

T 〉LT
+ z2

hP
2
T 〈k2
⊥〉LT

]
〈k2
⊥〉

(125)
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cos(2φh−φS)
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)
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(126)

F
sin(φh+φS)
UT =
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sin(3φh−φS)
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F sinφS
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(130)

where

〈P 2
T 〉 = 〈p2

⊥〉+ z2
h 〈k2
⊥〉

〈P 2
T 〉I = 〈p2

⊥〉+ z2
h 〈k2
⊥〉I (I = S,L, LT ) (131)

〈P 2
T 〉J = 〈p2

⊥〉C + z2
h 〈k2
⊥〉J (J = T,BM,TL, TT ) .

The unpolarized SIDIS cross section and all the asymmetries presented in Section III can now be rewritten in terms
of the Gaussian-integrated F ’s, which depend on the TMDs. In order to single out information on a particular TMD
from the measurements of the asymmetries, one has to disentangle the different azimuthal dependences. For example,
the unpolarized cross section, see Eq. (86), includes the usual unpolarized collinear SIDIS cross section, the Cahn
effect proportional to cosφh (studied in Ref. [37]), and a contribution generated by a combined Boer-Mulders and
Collins effect, which appears in terms proportional to cos 2φh and cosφh. Similarly, in the numerator of the AUT
single spin asymmetry, Eq. (85), the Sivers and Collins effects are both simultaneously at work, together with other
azimuthal modulations. To extract single effects, one introduces appropriate azimuthal moments of the asymmetries,
defined as

A
W (φh,φS)
S`S

≡ 2

∫
dφh dφS [dσ`(S`)+p(S)→`′hX − dσ`(S`)+p(−S)→`′hX ]W (φh, φS)∫

dφh dφS [dσ`(S`)+p(S)→`′hX + dσ`(S`)+p(−S)→`′hX ]
, (132)

where the function W (φh, φS) is an appropriate “weighting phase” which, upon integration, singles out one individual
term of the asymmetry. For instance, to isolate the Sivers effect one can consider the sin(φh−φS) azimuthal moment
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of the AUT asymmetry:

A
sin(φh−φS)
UT = 2

∫
dφh dφS [dσ` p

↑→`′hX − dσ` p↓→`′hX ] sin(φh − φS)∫
dφh dφS [dσ` p

↑→`′hX + dσ` p
↓→`′hX ]

· (133)

The W weight selects the Sivers term of the asymmetry in the numerator, while the integration over the azimuthal
angles φS and φh leaves only the first term of the unpolarized cross section, Eq. (86), in the denominator: thus, this
azimuthal moment is simply proportional to the ratio

∫
F

sin(φh−φS)
UT /

∫
FUU .

Furthermore, experimental data deliver these azimuthal moments as a function of one variable at a time, either x
B

,
zh or PT . Therefore, one has to integrate the numerator and denominator separately over all variables but one, in
order to obtain the appropriate expression to be compared with the data. Clearly, no simplification of common terms
in the numerator and denominator can be made before the integrations have been performed (notice also that y is a
function of both x

B
and Q2).

Let us consider, as an explicit example, the Sivers azimuthal moment Asin(φh−φS)
UT (zh), as function of zh alone. Using

the Gaussian-integrated expression of F sin(φh−φS)
UT of Eq. (123) and integrating analytically over P T we obtain

A
sin(φh−φS)
UT (zh) = A

S

∫
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B
dQ2 1 + (1− y)2
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∑
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)Dh/q(zh)∫
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dQ2 1 + (1− y)2

Q4

∑
q

e2q fq/p(xB
)Dh/q(zh)

, (134)

where A
S

is a factor which only depends on zh and on the free parameters which give the Gaussian widths for the
distribution and fragmentation functions

A
S

=
zh

4M
S

√
2 e π
〈P 2
T 〉S
〈k2
⊥〉2S
〈k2
⊥〉
· (135)

Notice the further dependence on zh hidden in 〈P 2
T 〉S , Eq. (131).

Repeating similar procedures one can extract information on the other TMDs. The azimuthal moment Asin(φh+φS)
UT ,

obtained using the weighting phase W (φh, φS) = sin(φh+φS) in Eq. (132) with unpolarized leptons, selects the Collins
effect, coupled to the transversity distribution F+−

+− (x) = ∆T q(x) = h1(x). In this case, the azimuthal moment is
sensitive to the ratio F sin(φh+φS)

UT /FUU , and precisely:

A
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UT (zh) = A
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∫
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) ∆NDh/q↑(zh)∫
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B
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Q4

∑
q
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)Dh/q(zh)

, (136)

with

A
C

=
1

4Mh

√
2 e π
〈P 2
T 〉C

〈p2
⊥〉2C
〈p2
⊥〉
· (137)

One can further exploit the AUT asymmetry, to isolate and measure the transverse distribution function F−+
+− (x) =

h⊥1T (x), by weighting the single spin asymmetry numerator with the phase W (φh, φS) = sin(3φh − φS), obtaining:

A
sin(3φh−φS)
UT (zh) = A

T T

∫
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B
dQ2 2(1− y)

Q4

∑
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e2q h
⊥
1T (x

B
) ∆NDh/q↑(zh)∫
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dQ2 1 + (1− y)2

Q4

∑
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e2q fq/p(xB
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, (138)

where

A
T T

=
3 e z2

h

8M2
T T
Mh 〈P 2

T 〉T T

√
2 e π
〈P 2
T 〉T T

〈k2
⊥〉3T T
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〈p2
⊥〉2C
〈p2
⊥〉
· (139)
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One can write similar expressions for all other asymmetries, which we do not report here. From Asinφh

UL and Asin 2φh

UL

one can obtain information on ∆fsx/SL
, while AcosφS

LT , Acos(φh−φS)
LT and Acos(2φh−φS)

LT depend on ∆fsz/ST
. AsinφS

UT and
A

sin(2φh−φS)
UT are more complicated to analyze as they receive contributions from the Sivers distribution function (both

of them) and, in addition, from the transversity distribution h1(x) (AsinφS

UT ) and from h⊥1T (Asin(2φh−φS)
UT ).

Let us consider in more details the unpolarized cross section, to which, remarkably, a similar “weighting” procedure
can be applied. In fact, one can introduce the average value of W (φh) with an expression similar to Eq. (132) in
which the unpolarized cross section appears in the numerator as well as in the denominator

〈W (φh)〉 =

∫
dφh dφS [dσ`p

↑→`′hX + dσ`p
↓→`′hX ]W (φh)∫

dφh dφS [dσ`p
↑→`′hX + dσ`p

↓→`′hX ]
· (140)

For instance, weighting the unpolarized cross section with W (φh) = cos 2φh one can gain direct access to the Boer-
Mulders function, coupled to the Collins function (on which independent information can be obtained):

〈cos 2φh〉 = A
BM

∫
dx

B
dQ2 (1− y)

Q4

∑
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e2q ∆fqsy/p
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B
) ∆NDh/q↑(zh)∫

dx
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dQ2 1 + (1− y)2

Q4

∑
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e2q fq/p(xB
)Dh/q(zh)

, (141)

with
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BM

= − e zh
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⊥〉2BM
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〈p2
⊥〉2C
〈p2
⊥〉
· (142)

Analogously, using W (φh) = cosφh, one has

〈cosφh〉 =

∫
dx

B
dQ2 (2− y)

√
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(143)

with

Aunp = − zh 〈k
2
⊥〉
Q

√
π

〈P 2
T 〉
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√
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2QM
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Mh
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⊥〉2BM
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⊥〉
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〈p2
⊥〉
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]

〈P 2
T 〉3/2BM

· (144)
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V. CONCLUSIONS AND FURTHER REMARKS

The study of the 3-dimensional structure of protons and neutrons is one of the central issues in hadron physics,
with many dedicated experiments, either running (COMPASS at CERN, CLASS at JLab, STAR and PHENIX at
RHIC), approved (JLab upgrade) or being planned (ENC/EIC Colliders). The transverse momentum dependent
partonic distribution and fragmentation functions, together with the generalized parton distributions, play a crucial
role in gathering and interpreting information towards a true 3-dimensional imaging of the nucleons. TMDs can
be accessed in several experiments, but the main source of information is semi-inclusive deep inelastic scattering of
leptons off polarized nucleons. The theoretical framework in which the experimental information is analyzed is the
QCD factorization scheme.

We have used here an intuitive approach to TMD factorization in SIDIS and shown that one can re-derive, at
leading order, the most general expression of the polarized cross section, obtained within the QCD factorization
scheme by other authors [1, 20, 23]. All azimuthal dependences are precisely generated by the properties of the
helicity amplitudes, which we use to describe the factorized steps of the process: the partonic distributions, the
elementary interaction and the quark fragmentation.

We have obtained explicit expressions for all the SIDIS spin asymmetries and the cross section azimuthal depen-
dences which allow to extract information on the TMDs. Indeed, some of them have already been used to study the
Sivers [42, 43], the Cahn [51, 52] and the Collins [3] effects. Simplified expressions, based on a Gaussian k⊥ and p⊥
dependence of the distribution and fragmentation functions, recently supported by data [53], have been given; they
might be useful for fast and simple analyses of the experimental data.

We wonder, at this stage, whether the same approach can be used for other processes. It works, with the same
validity as for SIDIS, for Drell-Yan processes (D-Y) [36], where our helicity amplitudes for the different factorized
steps reproduce the most general azimuthal structure of the cross section as obtained in the TMD factorization [16].
As commented in the Introduction, both in SIDIS and D-Y the presence of two different natural scales, a small and
a large one, is crucial for the validity of the QCD TMD factorization.

Our approach was actually first introduced for processes with a single large scale, like p p→ πX, with large PT pions
[2]. These are the processes for which the largest single spin asymmetries have been observed and might be generated
by TMDs [54–56]. However, TMD factorization has not been proven in these cases. Despite that, an extension of
the intuitive approach used for SIDIS – and shown to be perfectly equivalent to the QCD TMD factorization scheme
– is natural. That was the guiding idea in Ref. [2]; each proton “emits” a parton, the two partons interacts and
one of the final parton fragments into the observed hadron. All intrinsic motions are taken into account and phases
appear in the helicity amplitudes. The difference with SIDIS processes is that, in this case, the measured large PT of
the final hadron is generated by the hard elementary scattering, and all intrinsic motions are integrated over. As a
consequence, the phase integrations strongly suppress the relevance of most TMDs, with the exception of the Sivers
and Collins effects [57, 58], which combine into the observed asymmetry, and cannot be separated unless one could
resolve the internal structure of the final jet [59].

A global simultaneous phenomenological analysis of single spin asymmetries in SIDIS and pp interactions is, at the
moment, rather difficult. Apart from the validity of the factorization scheme in both cases, another important open
point is the universality of the Sivers functions; it is not clear whether or not they should be the same in the two
processes or should be corrected by some gauge color factors [30, 31]. In any case it is worth trying to explore the
possibility to have a unique description of SSAs in different processes, based on TMDs; work in this direction is in
progress and will be presented elsewhere.
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Appendix A: Helicity Amplitudes

We show the explicit computation of the helicity amplitudes M̂λ3λ4;λ1λ2 for the non-planar process `(k1, λ1) +
q(k2, λ2) → `′(k3, λ3) + q′(k4, λ4), in the γ∗ − p c.m. frame of Fig. 1. We exploit the spinor helicity technique,
adopting the conventions of Ref. [38]. At LO in QED, when neglecting all masses, there are two independent helicity
amplitudes:

M̂++;++ =
eq e

2

t̂
〈q′+|γµ|q+〉 〈`′+|γµ|`+〉 =

eq e
2

t̂
〈4+|γµ|2+〉 〈3+|γµ|1+〉 (A1)

M̂+−;+− =
eq e

2

t̂
〈q′−|γµ|q−〉 〈`′+|γµ|`+〉 =

eq e
2

t̂
〈4−|γµ|2−〉 〈3+|γµ|1+〉 , (A2)

which can be written as

M̂++;++ = 2
eq e

2

t̂
[43] 〈12〉 (A3)

M̂+−;+− = 2
eq e

2

t̂
[23] 〈14〉 , (A4)

where

ū−(ki)u+(kj) ≡ 〈ij〉 = −[ij]∗ =
√
k+
i k
−
j e
−i(φi−φj)/2 −

√
k−i k

+
j e

i(φi−φj)/2 (A5)

ū+(ki)u−(kj) ≡ [ij] = −〈ij〉∗ , (A6)

with k± = k0 ± k3.
In the γ∗ − p c.m. frame we have (see Ref. [37] for details):

k1 = E(1, sin θ, 0, cos θ)

q =
1
2

(
W − Q2

W
, 0, 0,W +

Q2

W

)
k2 =

(
xP0 +

k2
⊥

4xP0
,k⊥,−xP0 +

k2
⊥

4xP0

)
(A7)

k3 = k1 − q
k4 = k2 + q

φ1,3 = 0 , φ2,4 = φ⊥ ,

where, neglecting the proton mass:

x =
1
2
x

B

1 +

√
1 + 4

k2
⊥
Q2


E =

s−Q2

2W
=
√
s

2
1− x

B
y√

y(1− x
B

)

Q2 = x
B
y s W =

√
y(1− x

B
)s

P0 =
1
2

(
W +

Q2

W

)
=
√
s

2

√
y

1− x
B

(A8)

1
2

(
W − Q2

W

)
=
√
s

2

√
y

1− x
B

(1− 2x
B

)

cos θ =
1 + (y − 2)x

B

1− yx
B

sin θ =
2
√
x

B
(1− x

B
)(1− y)

1− yx
B

·

These relations allow us to express all the k±i components in terms of x
B

and y [37]:

k+
1 = E(1 + cos θ) =

√
s

√
1− x

B

y
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k−1 = E(1− cos θ) =
√
s
x

B
(1− y)√
y(1− x

B
)

k+
3 = E(1 + cos θ)−W =

√
s

√
1− x

B

y
(1− y)

k−3 = E(1− cos θ)− Q2

W
=
√
s

x
B√

y(1− x
B

)
(A9)

k+
2 =

k2
⊥

2xP0
=

k2
⊥

x
√
s

√
1− x

B

y

k−2 = 2xP0 = x
√
s

√
y

1− x
B

k+
4 =

k2
⊥

2xP0
+W =

√
s

√
1− x

B

y

[
k2
⊥
xs

+ y

]
k−4 = 2xP0 − Q2

W
=
√
s

√
y

1− x
B

[x− x
B

]

φ1 = φ3 = 0 , φ2 = φ4 = φ⊥ .

From Eqs. (A3)–(A6) we get:

M̂++;++ = 2
eqe

2

t̂

[√
k−1 k

+
2 −

√
k+
1 k
−
2 e

iφ⊥

]
×
[√

k−3 k
+
4 −

√
k+
3 k
−
4 e
−iφ⊥

]
(A10)

M̂+−;+− = 2
eqe

2

t̂

[√
k−2 k

+
3 −

√
k+
2 k
−
3 e

iφ⊥

]
×
[√

k+
1 k
−
4 −

√
k−1 k

+
4 e
−iφ⊥

]
. (A11)

Exploiting Eqs. (A9) we can finally compute the amplitudes as function of y, Q2 and k⊥:

M̂++;++ = eq e
2

1
y

1 +

√
1 + 4

k2
⊥
Q2

 e+iφ⊥ − 1− y
y

1−
√

1 + 4
k2
⊥
Q2

 e−iφ⊥ − 4
√

1− y
y

k⊥
Q

 (A12)

M̂+−;+− = eq e
2

1− y
y

1 +

√
1 + 4

k2
⊥
Q2

 e−iφ⊥ − 1
y

1−
√

1 + 4
k2
⊥
Q2

 e+iφ⊥ − 4
√

1− y
y

k⊥
Q

 · (A13)

Appendix B: Helicity formalism and helicity transformations

All our analytical and numerical computations of the SIDIS cross section, Eq. (4), are performed in the γ∗−p center
of mass frame (c.m.), with the kinematics represented in Fig. 1. However, in our helicity formalism all components
of the polarization vectors (like in Eqs. (17) and (18)) and of the transverse momenta which enter the definition
of the TMDs, refer to the appropriate helicity frame of the corresponding particle. Then, in order to perform our
calculations, we have to express the helicity frame variables in terms of the c.m. ones, which requires some care.

For the proton, which moves along −Ẑcm, the helicity frame (X̂p, Ŷ p, Ẑp), as reached from the γ∗− p c.m. frame,
is given by (as discussed in Appendix D of Ref. [2]):

X̂p = X̂cm Ŷ p = −Ŷ cm Ẑp = −Ẑcm , (B1)

so that

k̂⊥ = cosϕ⊥ X̂p + sinϕ⊥ Ŷ p = cosφ⊥ X̂cm + sinφ⊥ Ŷ cm = cosϕ⊥ X̂cm − sinϕ⊥ Ŷ cm

k2 = k⊥ −
(
x

B
P0 − k2

⊥
4x

B
P0

)
Ẑcm (B2)

ST = cosϕS X̂p + sinϕS Ŷ p = cosφS X̂cm + sinφS Ŷ cm = cosϕS X̂cm − sinϕS Ŷ cm ,
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which implies ϕ⊥,S = 2π − φ⊥,S . As long as there is no ambiguity we use ϕ for angles defined in the helicity frames
and φ for angles defined in the c.m. frame, following the notations of Fig. 1.

It is less straightforward to deal with the quark polarization vector, P q = (P qx , P
q
y , P

q
z ), which describes intrinsic

properties of the proton constituents, and is defined in the quark helicity frame. In order to keep the same definitions,
through the helicity formalism, of the polarized TMDs as in Ref. [2], we have to define P q in the quark helicity frame
as reached from the proton helicity frame. The axes x̂q, ŷq, ẑq of the quark helicity frame are then given by [2, 38]:

ẑq = k̂2 (B3)

ŷq = Ẑp × k̂⊥ = −Ẑcm × k̂⊥ (B4)

x̂q = ŷq × ẑq = (Ẑp × k̂⊥)× k̂2 = −(Ẑcm × k̂⊥)× k̂2 . (B5)

Notice that the quark helicity frame as reached from the c.m. frame (Ẑcm) is different from the quark helicity frame
as reached from its parent proton helicity frame (Ẑp); although the ẑq axes obviously coincide, x̂q and ŷq have
opposite signs, Eqs. (B5) and (B4). Therefore, when referring to the kinematical configuration of Fig. 1, which we
use throughout the paper, we have to take the x and y component of the quark polarization vector, P qx and P qy , with
opposite signs with respect to those obtained from Eq. (15); this has been done in Eqs. (24) and (25).

Appendix C: Analysis of the fragmentation process

Let us now focus on the azimuthal angle ϕhq involved in the fragmentation process. This is the azimuthal angle of
the momentum P h of the final hadron around the direction k4 of the fragmenting quark q, as defined in the quark q
helicity frame, see Fig. 2. Notice that the fragmenting quark, in the γ∗− p c.m. frame, has a longitudinal component
along the positive Zcm axis. Its helicity frame, as reached from the γ∗ − p c.m. frame, is given by Ref. [2]:

ẑ = k̂4

ŷ = Ẑcm × k̂⊥ (C1)
x̂ = ŷ × ẑ ,

where k̂⊥ is the unit transverse component – with respect to the Zcm direction – of the outgoing quark, k̂4.
In the quark helicity frame, ϕhq coincides with the azimuthal angle which identifies the hadron transverse momentum

p⊥, therefore

cosϕhq = p̂⊥ · x̂
sinϕhq = p̂⊥ · ŷ . (C2)

By using the SIDIS kinematics as reported in Ref. [37], one finds

cosϕhq =
1

p⊥ |k4| [PT k
Z
4 cos(φh − φ⊥)− PZh k⊥]

sinϕhq =
PT
p⊥

sin(φh − φ⊥) , (C3)

ϕ
q

h

Ph

x

4k

y
p

Z

Y

k
ϕ X

z

cm

cm

cm

FIG. 2: Kinematics of the fragmentation process.
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where the superscript Z refers to the γ∗ − p c.m. frame, where one measures P h = (PT cosφh, PT sinφh, PZh ), and

PZh =
z2
hW

2 − P 2
T

2 zhW

kZ4 =
W

2

(
1− x
1− x

B

+
x

B

x

k2
⊥
Q2

)
(C4)

|k4| =
√
W 2

4

(
1− x
1− x

B

+
x

B

x

k2
⊥
Q2

)2

+ k2
⊥ ,

as derived in Ref. [37].
At O(k⊥/Q) one simply has

cosϕhq =
PT
p⊥

[
cos(φh − φ⊥)− zh k⊥

PT

]
sinϕhq =

PT
p⊥

sin(φh − φ⊥) , (C5)

having neglected terms O(k2
⊥/W

2) and O(P 2
T /W

2).

Appendix D: Tensorial Analysis

Eqs. (63)-(78) are obtained using a simple euclidean tensorial analysis, as outlined in what follows. In general, the
tensorial structure of each of the F ’s functions defined in Eqs. (63)-(78) can be reduced to a linear combination of the
convolutions

T i =
∫
d2k⊥ ∆f(x, k⊥) ki⊥∆D(z, p⊥) (D1)

T ij =
∫
d2k⊥ ∆f(x, k⊥) ki⊥ k

j
⊥∆D(z, p⊥) (D2)

T ijl =
∫
d2k⊥ ∆f(x, k⊥) ki⊥ k

j
⊥ k

l
⊥∆D(z, p⊥) , (D3)

where we have denoted by ∆f (∆D) any distribution (fragmentation) function appearing in the definition of the
particular F function one is considering, while the ki⊥, i = X,Y (X and Y refer to the γ∗ − p c.m. frame, we
have dropped the cm subscript) are the components of the k⊥ transverse momentum vector, kX⊥ = k⊥ cosφ⊥, kY⊥ =
k⊥ sinφ⊥. One should bear in mind that p⊥ is not an independent quantity, as it can be expressed in terms of k⊥ and
PT . Notice that T i, T ij and T ijl are symmetric, rank 1, 2, 3 euclidean tensors respectively. Once the integration over
d2k⊥ is performed, the T i, T ij and T ijl can only depend on the observable quantities PT and φh, i.e. the measured
modulus and azimuthal phase of the final observed hadron transverse momentum P T . Therefore, in a completely
general way, it must be

T i = P iT S1(PT ) (D4)

T ij = P iT P
j
T S2(PT ) + δij S3(PT ) (D5)

T ijl = P iT P
j
T P

k
T S4(PT ) + (P iT δ

jl + P jT δ
il + P lT δ

ij)S5(PT ) , (D6)

where the P T components (PXT = PT cosφh, PYT = PT sinφh) give the proper tensorial structure, while S1–S5 are five
scalar functions which can only depend on PT (modulus), and can easily be determined by contracting Eqs. (D1)–(D3)
with some symmetric tensorial structures (P iT , δij , etc..., as appropriate) to obtain simple scalar relations. Finally,
one finds

S1(PT ) =
1
PT

∫
d2k⊥ (k⊥ · P̂ T ) ∆f(x, k⊥) ∆D(z, p⊥) (D7)

S2(PT ) =
1
P 2
T

∫
d2k⊥ [2(k⊥ · P̂ T )2 − k2

⊥] ∆f(x, k⊥) ∆D(z, p⊥) (D8)



27

S3(PT ) =
∫
d2k⊥ [k2

⊥ − (k⊥ · P̂ T )2] ∆f(x, k⊥) ∆D(z, p⊥) (D9)

S4(PT ) =
1
P 3
T

∫
d2k⊥ [4(k⊥ · P̂ T )3 − 3k2

⊥(k⊥ · P̂ T )] ∆f(x, k⊥) ∆D(z, p⊥) (D10)

S5(PT ) =
1
PT

∫
d2k⊥ [k2

⊥(k⊥ · P̂ T )− (k⊥ · P̂ T )3] ∆f(x, k⊥) ∆D(z, p⊥) . (D11)

As a consequence, we have∫
d2k⊥ cosφ⊥∆f ∆D = cosφh

∫
d2k⊥ (k̂⊥ · P̂ T ) ∆f ∆D (D12)∫

d2k⊥ sinφ⊥∆f ∆D = sinφh
∫
d2k⊥ (k̂⊥ · P̂ T ) ∆f ∆D (D13)∫

d2k⊥ cos2 φ⊥∆f ∆D =
1
2

∫
d2k⊥

{
1 + cos 2φh [2(k̂⊥ · P̂ T )2 − 1]

}
∆f ∆D (D14)∫

d2k⊥ sin2 φ⊥∆f ∆D =
1
2

∫
d2k⊥

{
1− cos 2φh [2(k̂⊥ · P̂ T )2 + 1]

}
∆f ∆D (D15)∫

d2k⊥ cosφ⊥ sinφ⊥∆f ∆D = cosφh sinφh
∫
d2k⊥ [2(k̂⊥ · P̂ T )2 − 1] ∆f ∆D (D16)∫

d2k⊥ cos3 φ⊥∆f ∆D = cos3 φh
∫
d2k⊥ [4(k̂⊥ · P̂ T )3 − 3(k̂⊥ · P̂ T )] ∆f ∆D

+ 3 cosφh
∫
d2k⊥ [(k̂⊥ · P̂ T )− (k̂⊥ · P̂ T )3] ∆f ∆D (D17)∫

d2k⊥ sin3 φ⊥∆f ∆D = sin3 φh

∫
d2k⊥ [4(k̂⊥ · P̂ T )3 − 3(k̂⊥ · P̂ T )] ∆f ∆D

+ 3 sinφh
∫
d2k⊥ [(k̂⊥ · P̂ T )− (k̂⊥ · P̂ T )3] ∆f ∆D (D18)∫

d2k⊥ cos2 φ⊥ sinφ⊥∆f ∆D = cos2 φh sinφh
∫
d2k⊥ [4(k̂⊥ · P̂ T )3 − 3(k̂⊥ · P̂ T )] ∆f ∆D

+ sinφh
∫
d2k⊥ [(k̂⊥ · P̂ T )− (k̂⊥ · P̂ T )3] ∆f ∆D (D19)∫

d2k⊥ cosφ⊥ sin2 φ⊥∆f ∆D = cosφh sin2 φh

∫
d2k⊥ [4(k̂⊥ · P̂ T )3 − 3(k̂⊥ · P̂ T )] ∆f ∆D

+ cosφh
∫
d2k⊥ [(k̂⊥ · P̂ T )− (k̂⊥ · P̂ T )3] ∆f ∆D . (D20)

From these equations one can easily reconstruct∫
d2k⊥ cos 2φ⊥∆f ∆D = cos 2φh

∫
d2k⊥ [2(k̂⊥ · P̂ T )2 − 1] ∆f ∆D (D21)∫

d2k⊥ sin 2φ⊥∆f ∆D = sin 2φh
∫
d2k⊥ [2(k̂⊥ · P̂ T )2 − 1] ∆f ∆D (D22)∫

d2k⊥ cos 3φ⊥∆f ∆D = cos 3φh
∫
d2k⊥ [4(k̂⊥ · P̂ T )3 − 3(k̂⊥ · P̂ T )] ∆f ∆D (D23)∫

d2k⊥ sin 3φ⊥∆f ∆D = sin 3φh
∫
d2k⊥ [4(k̂⊥ · P̂ T )3 − 3(k̂⊥ · P̂ T )] ∆f ∆D . (D24)

All of these terms are easily recognizable in Eqs. (63)-(78).
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Appendix E: Integration by rotation in the hadronic plane

Eqs. (63)-(78) can also be obtained in a simple way looking to a slightly different reference frame. Let us define the
production plane as the plane containing the virtual photon γ∗, the proton momentum and the produced hadron h.
We can define a new γ∗−p c.m. frame where the X ′−Z ′ plane is the production plane. This new frame is rotated by
an angle φh with respect to the c.m. frame (X,Y ,Z) depicted in Fig. 1 (we drop for simplicity the subscript cm):

X̂ = X̂
′
cosφh − Ŷ

′
sinφh (E1)

Ŷ = X̂
′
sinφh + Ŷ

′
cosφh . (E2)

Notice that X̂
′

= P̂ T = ĥ. Any integration in Eqs. (63)-(78), at fixed values of the external variables, can be recast
as the sum of one or more contributions of this kind:∫

d2k⊥ k⊥ cosφ⊥ f(k⊥, p⊥)
∫
d2k⊥ k⊥ sinφ⊥ f(k⊥, p⊥) (E3)∫

d2k⊥ k
2
⊥ cos 2φ⊥ f(k⊥, p⊥)

∫
d2k⊥ k

2
⊥ sin 2φ⊥ f(k⊥, p⊥) (E4)∫

d2k⊥ k
3
⊥ cos 3φ⊥ f(k⊥, p⊥)

∫
d2k⊥ k

3
⊥ sin 3φ⊥ f(k⊥, p⊥) , (E5)

where

p2
⊥ = P 2

T + z2
h k

2
⊥ − 2 zh(k⊥ · P T ) . (E6)

Let us consider, for instance, Eq. (E3); using Eq. (E1), we have∫
d2k⊥ k⊥ cosφ⊥ f(k⊥, p⊥) =

∫
d2k⊥ k

X
⊥ f(k⊥, p⊥) =

∫
d2k⊥ (k⊥ · X̂) f(k⊥, p⊥)

=
∫
d2k⊥

[
(k⊥ · X̂ ′) cosφh − (k⊥ · Ŷ ′) sinφh

]
f(k⊥,k⊥ · X̂ ′) (E7)

= cosφh
∫
d2k⊥ (k⊥ · P̂ T ) f(k⊥, p⊥) , (E8)

where in the step (E7) we have underlined that f is a function of (k⊥ · P̂ T ) ≡ (k⊥ · X̂ ′) by means of Eq. (E6). With
similar arguments we have, for all integrals of the kind (E3)–(E5):∫

d2k⊥ k⊥ cosφ⊥ ⇒ cosφh
∫
d2k⊥ (k⊥ · P̂ T ) (E9)∫

d2k⊥ k⊥ sinφ⊥ ⇒ sinφh
∫
d2k⊥ (k⊥ · P̂ T ) (E10)∫

d2k⊥ k
2
⊥ cos 2φ⊥ ⇒ cos 2φh

∫
d2k⊥ [2(k⊥ · P̂ T )2 − k2

⊥] (E11)∫
d2k⊥ k

2
⊥ sin 2φ⊥ ⇒ sin 2φh

∫
d2k⊥ [2(k⊥ · P̂ T )2 − k2

⊥] (E12)∫
d2k⊥ k

3
⊥ cos 3φ⊥ ⇒ cos 3φh

∫
d2k⊥ (k⊥ · P̂ T ) [4(k⊥ · P̂ T )2 − 3k2

⊥] (E13)∫
d2k⊥ k

3
⊥ sin 3φ⊥ ⇒ sin 3φh

∫
d2k⊥ (k⊥ · P̂ T ) [4(k⊥ · P̂ T )2 − 3k2

⊥] , (E14)

which coincide with Eqs. (D12), (D13) and (D21)–(D24).
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