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I apply commonly used regularization schemes to a mulfploalculation to examine the proper-
ties of the schemes at higher orders. | find complete comsigteetween the conventional dimen-
sional regularization scheme and dimensional reductionl, tind that the four dimensional helicity
scheme produces incorrect results at next-to-next-tiigeorder and singular results at next-to-

next-to-next-to-leading order. It is not, therefore, ataryi regularization scheme.

[. INTRODUCTION

Dimensional regularization [1] is an elegant and efficiemtams of handling the divergences that arise
in perturbation theory beyond the tree level. Among its mtawprable qualities it respects gauge and
Lorentz invariance and allows one to handle both ultraviated infrared divergences in the same manner.
The application of dimensional regularization to diffar&imds of problems has led to the development of
a variety of regularization schemes, which share the diroeakregularization of momentum integrals, but
differ in their handling of external (or observed) stated ahspin degrees of freedom.

The original formulation of dimensional regularization,[known as the 't Hooft-Veltman (HV) scheme,
specifies that observed states are to be treated as fourgionah while internal states are to be treated as
Dm=4—2¢ dimensional. That is, both their momenta and spin degreégeflom were to be continued
from four to Dy, dimensions. It turns out that one has the freedom to choasedlue of the trace of
the Dirac unit matrix to take its canonical value of four, sonfiions continue to have two spin degrees of
freedom, even though their momenta are continueB®fodimensions. Internal gauge bosons, however,
haveDn, — 2 spin degrees of freedom (internal massive gauge bosoedhav 1 degrees of freedom).

A slight variation on the HV scheme has come to be called Quimeal Dimensional Regularization
(CDR) [2]. In this variation, all particles and momenta aken to beD,, dimensional. This often turns out
to be computationally more convenient, since one set orgteverns all interactions. This is particularly
so when computing higher order corrections to theoriesestittp infrared sensitivities, like QCD. In the
HV scheme, if two external states have infrared sensitiexlaps, they must be treated as internalDgr
dimensional states. In the CDR scheme, all states are gltesated ad,, dimensional, so there is no

possibility of failing to properly account for infrared alaps.



A third variation, called Dimensional Reduction (DRED),[8]as devised for application to supersym-
metric theories. In supersymmetry, it is essential thatnilmaber of bosonic degrees of freedom is exactly
equal to the number of fermionic degrees of freedom. Thisirement is violated in the HV and CDR
schemes. In the DRED scheme, the continuatioDtpdimensions is taken as a compactification from
four dimensions. Thus, while space-time is taken to be famedsional and particles have the standard
number of degrees of freedom, momenta sp&np,aimensional vector space and momentum integrals are
regularized dimensionally.

A fourth variation, the Four Dimensional Helicity (FDH) sahe [4, 5], was developed primarily for
use in constructing one loop amplitudes from unitarity cuftee most efficient building blocks for such
calculations are tree-level helicity amplitudes, whickessarily have two spin degrees of freedom for both
fermions and gauge bosons. The FDH scheme resembles the BéRiEDre in that it regularizes momentum
integrals dimensionally while maintaining the spin degreéfreedom of a four dimensional theory (and
therefore appears to be a valid supersymmetric regulamizatheme [5]), but there are crucial differences,
which I will discuss in detail.

The fact that the HV scheme respects the unitarity ofheatrix was proven at its introduction [1]. The
arguments which establish the validity of the HV schemeycaver to the CDR scheme and establish that
it too is a valid regularization scheme. After some initiahtusion over the proper renormalization proce-
dure [6-8] for the DRED scheme, it was established that itg@oproper, unitary regularization scheme [8]
and that it is indeed equivalent to the CDR scheme [9]. The Ebhkeme has never been subjected to
such stringent examination. It has been used successfulynumber of landmark next-to-leading order
(NLO) calculations, but it has never been established venétlis a proper, unitary regularization scheme,
or merely a set of short-cuts that allow expert users to pluairect results.

In this paper, | will perform a well-known multi-loop cal@tlon in the various regularization schemes.
I will show that while the HV and CDR scheme calculations gitfle correct result and the DRED scheme
calculation, while far more complicated is completely eglént, the FDH scheme calculation yields incor-
rect results which inevitably violate unitarity at suffictey high order. A detailed comparison of the various
calculations identifies the source of the unitarity viaas in the FDH scheme.

The plan of this paper is as follows: in section two, | will débe the test calculation to be performed
and present the result to be obtained. In sections three afmli five, | will describe in detail the calcu-
lation to next-to-next-to-leading order (NNLO) as it is fwemed in the CDR, DRED and FDH schemes,
respectively. In section six, | present partial results #t®which solidify the conclusion that the CDR and
DRED schemes are equivalent and correct, but that the FDéhselviolates unitarity. In section seven, |

will discuss my results and draw my conclusions.



II. THE TEST ENVIRONMENT

To test the regularization schemes, | will calculate twortiti@s: the massless non-singlet contributions

to
1. the hadronic decay width of a fictitious neutral vectordrog, of massMiy;

2. the single photon approximation to the total hadronicitalation cross section for an electron —

positron pair.

| will perform these calculations by means of the opticabtieen, taking the imaginary part of the forward
scattering amplitudes. In both cases, this means takinignéginary part of the vacuum polarization tensor
sandwiched between external states. Since the opticaletimeis a direct consequence of the unitarity of
the S'matrix, any unitary regularization scheme must give theesaesult, once one expands in terms of
a standard coupling. To avoid complications involving praggions for handlingys and the Levi-Civita
tensor, | will takeV to have only vector-like couplings. In this way, the vacuuatapization tensor for the

V boson will be identical to that of the off-shell photon, ugctaupling constants and so the QCD expansion
of the two results will differ only by constant numerical faxs.

Each regularization scheme will start from the same fouredisional Lagrangian,
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whereA?H is the QCD gauge field/* is the massive vector bosoti; is the quark field of flavorf, ¢ and
c? are the Faddeev-Popov ghost fieldss the QCD couplinggy is theV gauge coupling an®@; represents
the charge of the quark flavdrunder thev symmetry. | will not be computing non-trivial corrections i

Ov, So there is no need to specify tfieself interaction parts of the Lagrangian.
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FIG. 1. Sample diagrams of one-, two- and three-loop comtidibs to the vacuum polarization gt



The result to NLO is well known [10-14],
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To obtain the hadronic decay width at LO, NLO and NNLO, | nemddmpute the QCDcorrections to the

vacuum polarization of th¥ (photon) at 1, 2 and 3 loops respectively. Sample diagramslaown in

Fig. (1).

A. Methods

In each scheme, | will need to compute the vacuum polarizaif®¥ and the necessary coupling renor-

malization constants. As a cross-check on the reliabifityy calculational framework, | reproduce known
results on the QCIB-functions and mass anomalous dimensions to three-loagr,aad well as the three-

loop QCD contributions to thg-function ofV (where needed)
In all calculations, | generate the contributing diagramss\gt QGRAF [15]. The symbolic algebra

program FORM [16] is used to implement the Feynman rules anfdpn algebraic manipulations to reduce



the result to a set of Feynman integrals to be performed anddbefficients. The set of Feynman integrals
are then reduced to Master Integrals using the program REDWZ]. Using the method of Ref. [18], the

vertex corrections can be expressed in terms of the samagmty integrals used to compute the vacuum
polarization and wave-function renormalizations. The ptate set of Master Integrals at one, two and three

loops are shown in Fig. (2). Most of the Master Integrals avéat iterated-bubble diagrams and the others
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FIG. 2: Master integrals for the evaluation of vacuum palation at a) one loop, b) two loops and c) three loops.

were evaluated long ago [19, 20]. As an additional crosslghie integral reduction and evaluation is also

performed using the program MINCER[21, 22].

B. Notation

The various schemes that | will consider span a variety oforespaces, each with their own metric
tensor. To establish some level of consistency, | will dertbe metric tensor of classical four-dimensional
space-time ag"; the metric tensor of th®,, dimensional vector space in which momentum integrals
are regularized will be denoted g8"% and the metric tensor of the largest vector space will beotdeh
gh. Where it does not vanish, the complemeng®f Will be denoted a9+’ = gV — gHV. Similarly, the
Dirac matrices/#, will be denotedy(‘jr) when they are strictly four-dimensiona# when they span thB,
dimensional space and' in the space spanned By".

I will now present the details of the calculation in the CDRRIED and FDH schemes.



[II. CONVENTIONAL DIMENSIONAL REGULARIZATION

In the CDR scheme, the calculation is quite straightforwditte Lagrangian and Feynman rules are just
the same as for a four-dimensional calculation, excepttileabDirac matriceg* and the metric tensa*V

have been extended to spabg dimensional vector space. That is,
{¥.y'}=2¢"",  ¢"gw=Dm,  Vyu=Dm,  g"=¢". (4)

The Dirac trace, T] = 4, retains its standard normalization.

Although D, is given the representatidd, = 4 — 2¢, the sign ofe is not determined. If it is taken to
be positive, so thady, < 4, then the Feynman integrals that one encounters are gamtasnder the rules
of ultraviolet power counting. On the other hand, infraredvpr counting would prefeg < 0= Dy, > 4.

In practice, the sign of does not matter and it can be used to regularize both infranedultraviolet
divergences. Regardless of the sigrepit is important that the vector space in which momenta taleas
is larger than the standard+31 dimensional space-time. This means that the standarddfmensional
metric tensom*Y spans a smaller space than fg dimensional metric tensor, and the four dimensional

Dirac matriceg/®122 form a subset of the fulj*,
g"agn =9", g*'ni=n"?, n*nfi=n"r. (5)
These considerations are of particular importance whesidering chiral objects involvings and the
Levi-Civita tensor, but will play a role in our discussionlds.
Because the Dirac trace is unchanged, fermions still hasetlgxtwo degrees of freedom in the CDR

scheme. Gauge bosons, however, acquire extra spin dedfeesdom in theDy, dimensional vector space.

The spin sum over polarization vectors in a physical (axgal)ge takes the form

U AV UV
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4 .
wheren is the axial gauge reference vector. For massive vectomsosioe spin sum becomes
* U Y uv kH kY
—g“VZS (k,A)e"(kA)=0gu (9 avr =Dm—1=3-2¢, @)

A. Renormalization

The renormalization constants in the CDR scheme are defmed a
i 1. 1
=20, @' =Z5gp, AP =Z2A]
~ ~1 ~1
ro) =Zifgs, c®2=Zzc*,  c®a_Zzc, (®)

FeN=Z1Tn, E®=¢27s,



wherel gy represents the vertex function involving fielgs andc.

Although we treat the quark fields as massless, we can contipeiteiass anomalous dimension by
introducing a fictitious scalar particleand computing thg-function of its Yukawa coupling to the quarks.
The equivalence is clear from the Standard Model, where thgHvukawa coupling and the fermion mass
are proportional at leading electroweak order and mustJgetiee same under QCD renormalization. For
this purpose, | introduce one more renormalization com,st'efﬁzp = Z1 ¢l qgp- One can introduce a wave-
function renormalization fo, Z3,, but it will not contribute becausés, = 1+ ¢(a,). Note also that | do
not need to compute the QCD corrections to fatunction for ay, which will start at orde? because of
the Ward Identity.

In the MS scheme, the couplings renormalize as
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The structure of the renormalization constafyjgs andzam is determined entirely by their lowest order
S [

(1/¢) poles, which in turn define th@-functions.
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is defined in terms of, rather tham®, with the result thay)'S = 3BMS. The results foBY'S and y)'S

through three loops are given in Appendix A.



B. Vacuum polarization in the CDR scheme

The imaginary part of the unrenormalized vacuum polaratensor in the CDR scheme is
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Upon renormalizing the QCD coupling according to Eq. (9tisg af — av (“z‘f) , and dropping terms

(5 ) aeng
orSM_S2 23 e (123 11 oon (11 . aSM_S3
+ T [ F32+ F A<§——53>+ F f<——6+253>]+ T .

(13)

(12)

of order(¢), | obtain

_ MS
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In this way of performing the calculation, all of the QCD stthat appear are internal states, so the HV

scheme gives exactly the same result.

C. Total Decay rate and annihilation cross section in the CDR scheme

The decay rate and the annihilation cross section are digiedrby computing the imaginary part of the
forward scattering amplitude. For the decay rate, this mettaching the polarization vectef (Q,A) and

its conjugatee’ (Q,A)* (Q? = M?) and averaging over the spins,

1 1 v %
r\(;thadrons: M_V Nspins; Eu(Qa)\) U [nuv(Q)|CDR] € (Qa/\) ) (14)
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Notice that because the imaginary part of the vacuum paloiz tensor is finite, it does not matter
whether the spin sum is taken iy, = 4 — 2¢ dimensions as in the CDR scheme or in four dimensions as

in the HV scheme as the difference is of ordeihe result is

ay M aMs 3 aMvs 2
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in agreement with Egs. (2-3).

For the annihilation cross secti@p+ - _, hadrons ON€ attaches fermion bilinears to each end of the vac-

uum polarization tensor and averages over the spins.
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Because this is a forward scattering amplitude, the spiiioelrs can be combined into a trace,
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result is

again in agreement with Egs. (2-3).
Thus, | have established that | can reproduce the knowntsesuthe CDR scheme through three loop

order, which is a strong check on my computational framework

IV. DIMENSIONAL REDUCTION

In Dimensional Reduction, one starts from standard foaretisional space-time and compactifies to a
smaller vector space of dimensidb, = 4— 2¢ < 4 in which momenta take values. The particles in the

spectrum, however, retain the spin degrees of freedom offiowensions. That is, both fermions and gauge



10

bosons still have two degrees of freedom. This is by desigggurse, since itis required by supersymmetry.
All Dirac algebra can be treated as four dimensional. Howe@v the four dimensional metric tensgpt”

spans a larger space than fhg dimensional metrig#¥ that might arise from tensor momentum integrals,
¢"'nfl=9". (20)

There is also a very serious consequence of the fact th&gltemensional vector space is smaller than
four dimensional space-time. The Ward Identity only applie@ theD,, dimensional vector space! This
means that the 2 spin degrees of freedom that are not protected by the Wartitgenust renormalize
differently than the 2- 2¢ degrees of freedom that are protected. In supersymmegarigs, the super-
symmetry provides the missing Ward Identity which demahdsthe Z spin degrees of freedom be treated
as gauge bosons. In non-supersymmetric theories, howtbegrmust be considered to be distinct parti-
cles, with distinct couplings and renormalization progstt It is common to refer to these extra degrees of
freedom as &-scalars” or as “evanescent” degrees of freedom.

Once the evanescent degrees of freedom (which | will mé@l to distinguish them from the gluons,
A2H) are recognized as independent particles, it is apparanthbir couplings are also independent, not
only of the QCD coupling, but of one another. That is, the timgpge of the evanescent gluons to the
guarks is not only distinct from, the coupling of QCD, but is also distinct froi, the quartic couplings
of the evanescent gluons to themselves. (The quartic gang#ing of QCD splits into three independent
quartic couplings of the evanescent gluons.) Note that tassive vector bosov* also has evanescent
degrees of freedonv,eﬂ, which couple to quarks with strengtkye.

Thus, the Lagrangian in the DRED scheme becomes:
1 2
L= EA‘;‘, (0M0Y(1— &) —g"v0) A2 — g (g ARV )AD AS — gz fabe fade AbK ACY A A
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(21)

As mentioned above, the quartic coupling of the evanesdaang splits into three terms, which mix under
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renormalization. One can choose the tentq‘?%’e to be [23]

1
H:tL)cde :E (fabc fade_|_ fabefadc)

chde :5bc5de+ 5bd5ce+ 5be5cd (22)
Hbede :% (5bc5de_|_ 5be5cd) _ sdaee

Although the quartic couplings enter tfiefunctions and anomalous dimension at three loops and are es
sential to the renormalization program, they do not exbficontribute to the calculation at hand.

Now that the correct spectrum has been identified, one muefully consider the renormalization
program. The naive application of the principle of minireabtraction leads to the violation of unitarity [6].
Because the contributions of evanescent states and cgsiitinscattering amplitudes are weighted by a
factor g, the leading one-loop contribution is finite and therefaoésubtracted. As one proceeds to higher
orders, there is a mismatch among the counterterms sucththednormalization program fails to remove
all of the ultraviolet singularities.

A successful renormalization program for the DRED schemé]&pplies the principle of minimal
subtraction to the evanescent Green functions (that iserGhenctions with external evanescent states)
themselves. At each order, the renormalization schemersiide evanescent Green functions finite. Since
evanescent Green functions enter into the scattering ardp$ of physical particles at ordeand they are
rendered finite by renormalization, they never contribatphysical scattering amplitudes.

The evanescent coupling still contributes to Green funstiith only physical external states, but the
contribution is rendered finite by the prescribed renormadilbn program [8, 9, 23, 24]. Because the evanes-
cent coupling g renormalizes differently than the gauge couplingthe two cannot be identified, even at
the end of the calculation. One can choose a renormalizptiort where the two coincide, but they evolve
differently under renormalization group transformatiamsl their values will diverge as one moves away
from the renormalization point.

Still, the evanescent coupling is essentially a fictitiousugity and one finds that if one computes a
physical quantity in the DRED scheme and then converts theimg couplings of the DRED scheme to

those of a scheme such as CDR that has no evanescent coufiimégctors ofre drop out [23, 24].



A. Renormalization

The renormalization constants in the DRED scheme are dedismed

i i 1
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why | need to compute thg-function of aye.

12

(23)

In addition, | again introduce the fictitious scalar thabai me to compute the mass anomalous dimension
for massless quarks. Note that while the Ward Identity ptetey from leading QCD corrections, it does

not protectaye. That is why | need to introduce renormalization constamtsértex and wave-function and

In the DR scheme (modified minimal subtraction in the DRED schenhe)couplings renormalize as
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and theB-functions are given by
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Through three-loop order, they do not contribute to the QCIB-function, Bﬁ, nor to the vacuum
polarization oV (orVg). To three-loop order, | find agreement with known resul 4] and derive new
results for the3-function of ave. The coefficients of th@-functions and anomalous dimensions are given
in Appendix B.

By comparing and yPR in Egs. (B4-B5), we see that the terra-$calar” is a misnomer. If the
evanescent part & were a true scalar, itf8-function would coincide (but for a factor of 2) with the mass
anomalous dimension. The meéTR terms do coincide, because there is no non-vanishing ahiainaof
the Lorentz indices of the evanesc®hand those of the gluons. Because there are contractiongebetive

Lorentz indices of the evanescantand those of the evanescent gluons, however, terms inv‘zpbr/(?rﬁj do
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not agree.
Calculations in the DRED scheme naturally produce resnlterims oforsD_R while the standard result
has been expressed in termsaé@. One can always convert one renormalized coupling to anoffiee

rule for convertinga®R — aMS, derived in Refs. [24, 25], is

— 2 — _
I aMs\ ¢, avs\ “11 a¥S\ [ abR\ Cr Ny
abR = gMs {1_1_( ;)1_2+< jT 7_2c;£_ ; ‘;T 16 +... (26)

When the result is expressed in termadfS, all alR terms drop out.

B. Vacuum polarization in the DRED scheme

In the DRED scheme, there are two independent transverseiwvapolarization tensors,
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2 2¢€
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— — -C CeC Ce Ns — C2 CeC CeN %
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aB\ [aB\ [ 4m \*[ 9 141 , 21 af aB\?
(2)(%) (4 {<>}<< 1.
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4 & 3
O [HI(BB)(Q)‘DRED] = ageNe Z o (QZ—;TVE> {s+2£2+ (4— EZZ> 34+ 0(eh

() (o) e oo (5 mse) o]
() () 22 (F )
!

e

T

aB 2%r1/9 , 11 279, 199 17
?> <Q2eyE> [ <CF —“CrCa— C|:Nf> £ 002 4 —CrCa— —-Ce N;

1
e\8 16 8 32 32 16
3139 189 45 2473 231 75
+¢ | CE ——Zz +CrCa — a5 ——53
64
207 21
+Cr Ns <—§—|——Zz+ 53>> —i—ﬁ(sz)]

2¢
a_SB a_g 4t 19 129 , 3
+(n>( )(QZGVE 2% 12 Secn

671 189 53
e <<? -5 %) CE+2.Cr CA> + ﬁ(sz)]

2 2¢
aB 47 1 1 1 13 3 15
+< e> <QZGVE> [E <CE—ZCFCA+§CFNf>+ ZCF—ECFCA‘FlGCFNf

((31— A zs> cz- (5;3 A @) CrCat (13527 ié@) Cr Nf> " ﬁ(sz)]

()

(29)

aB aB\? al
where& <FS’ —ﬁ) denotes terms for which the sum of the powers(&) and( n> is at least

three.

Upon renormalization according to Eq. (24) and expandirtgrims ofa_l}"iS according to Eqg. (26), | find
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that

4OF\ 3 aDR u?
mnA<Q>rDREDJ=O’vNcZQ%{”( ;>ZCF H( >B2Rm@]
+<0’§R>2[_c§3%+CFCA (1?%1_1_1(3> +Cr Ny (—%J&Zsﬂ +ﬁ<<anB 0,5)3)}
_aVNCZQf{H(aMS)CFg (aMS>B‘§ASm5§]

() T e (2 20) en (B0 oo ((£))]

O[Me(Q)lprep] = O(¢)-

C. Total Decay rate and annihilation cross section in the DRED scheme

As in the CDR scheme, the decay rate and annihilation crat®seare determined from the imaginary

part of the forward scattering amplitude.

DRED %
rV—> hadrons™ MV Nspmsz SH Q7 HHV(Q)|DRED] EV(Q7)\) ) (31)
where
1/ QHQY )
e"(Q,A)e A== -g"V+=F -0 ). 32
Nspmz (QA)(Q.) 3( 6+ e (32)

The evanescent part of the spin average contracts only eéthg(Q) term, which has been renormalized

aV MV aMS 3 aMS 2
r\?iEI'?adrons Nc Z Qf {:H' < ) Cr Z ( B In &

oS\ 2 3 123 11 11 1 A (33)
—|—< ; ) |:_C|%3_2+CFCA <§——53> +Cr Ns <16—|-253>]+ﬁ<< ; ) )}7

just like in the CDR calculation.

to be of order(¢), so that the result is:

For the annihilation cross secti@n: ¢ _, hadrons ON€ attaches fermion bilinears to each end of the vac-
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uum polarization tensor and averages over the spins.

2 & <v<pe+,A>|w|u<pe,A'>>D (0(pe . A) 17| V(per 1))

O-(—:IAD*Fg;Ii hadrons— Q2 Qz [HHV(Q)‘DREQ a\/—m} Q2
2 ege <v<pe+,A>|v71|u<pef,A'>> (O(pe A1V V(P 1))
+ @_ / Q? O [HHV(Q)‘DRED,G\/—W} Q? )
AA

(34)
whereegye represents the coupling of the evanescent photon to thia@iecCombining the spinor bilinears

into traces,

z< (Per M) [§#u(Pe-:A") ) (T(Pe A") 17 V(Per,2) )

NIk NI

Tr[p, VR, V] = (-QP¢" +Q'QY)

Tr [pe+ V“pe* VV}
The final result is

a2 s 3 s 12
Ue%Ez hadrons™ 3Q2 Nc Z Q2 {1"" ( ) Cr 4 1+ ( B |n&

— —=\ 3
) [ 2 gy, (121 n
+< T ) |: Ct 32+C|:CA 32 {3 | +Cg Ny 16+ZZ3 +0 - ,

(36)

(o)

l\)lH r\>|

AN
Z <\7 (Pe+,A) [V |u(pe-,A )><U(pef7}\')h7"’v(pe+7)\)> _
AN

(35)

again in agreement with Egs. (2-3). As promised, under th&DRcheme renormalization program,
evanescent Green functions are rendered finite by renaatialn and contribute to scattering amplitudes

at order(¢). Also as promised, the results are completely equivaletitdse of the CDR scheme.

V. THE FOUR DIMENSIONAL HELICITY SCHEME

In the Four Dimensional Helicity scheme, one defines an gathvector space of dimensionally, =
4—2¢, in which loop momenta take values, as in the CDR scheme. ditiad, one defines a still larger
vector space, of dimensionaliys = 4, in which internal spin degrees of freedom take values. prheise

rules for the FDH scheme are given in Ref. [5]. They are:

1. As in ordinary dimensional regularization, all momentintegrals are integrated ovexr, dimen-

sional momenta. Metric tensors resulting from tensor irtisgareD,, dimensional.

2. All“observed” external states are taken to be four dirfmra, as are their momenta and polarization

vectors. This facilitates the use of helicity states forestasd particles.
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3. All “unobserved” or internal states are treatedDasdimensional, and th®g dimensional vector
space is taken to be larger than g dimensional vector space. Unobserved states includealirtu
states inside of loops, virtual states inside of trees akag@lxternal states that have infrared sensitive

overlaps with other external states.

4. Both theDg andDy, dimensional vector spaces are larger than the standardliim@nsional space-
time, so that contraction of four dimensional objects vidth or D dimensional objects yields only

four dimensional components.

To keep track of the many vector spaces and their overlapngains, | give the result of the contrac-

tions of the various metric tensors with one another,
guvguv = Ds, gquw = D, n“vr]uv =4, 5“v5uv = Dy=Ds—Dn,
gver =6",  g"'nl=n*",  §'nl=nk",

¢V =5",  gvsf =0,  n"ef=o0.

(37)

Like the HV scheme, the FDH scheme treats observed statesiiadimensional. In inclusive calcula-
tions, however, where there are infrared overlaps amoreyrmeadt states, the external states are taken to be
Ds dimensional in the infrared regions.

As in the DRED scheme, spin degrees of freedom take valueséntar space that is larger than that in
which momenta take values. It would seem, therefore, tleat#ime remarks regarding the Ward Identity
and the conclusion that thg, = Ds— Dy, dimensional components of the gauge fields and their cagglin
must be considered as distinct from thg dimensional gauge fields and couplings would apply. That is
not, however, how the FDH scheme is used. All field componientise Ds dimensional space are treated
as gauge fields and no distinction is made between the cgsplitt is common, however, to define an
interpolating scheme, thedy” scheme, in whiclDg = 4 — 2¢ dr. The parametedr interpolates between
the HV schemedr = 1) and the FDH scheme = 0). Using this scheme gives one a handle on the impact
of the evanescent degrees of freedom on the result, but ritbeampact of a distinct evanescent coupling.

Itis claimed [5] that the essential difference between thélland DRED schemes is that in the former
Dm > 4, while in the latterD, < 4. It must be this difference, then, that allows for the veiffedent
handling of the evanescent couplings and degrees of freeidarshall see what impact this choice has in

the calculation and discussion below.
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A. Renormalization

| will not give detailed results for the renormalization aareters of the FDH scheme. There is
no point in doing so because, as | will show, the rules of theHFi@heme enumerated in the previ-
ous section are not consistent with a successful renoratiaiiz program. The first sign that there is
a problem with the renormalization program comes in the adatn of the one-loop renormalization
constants. In particular, the gluon vacuum polarizatiamsdée splits into two independent components,
NL" = NaA(Q?) ((—Q%G*Y +QHQY) andMNg” = Mg(Q?) 54, both of which are singular. This is a clear
warning that what the FDH scheme calls the gluon is in fact distinct sets of degrees of freedom. If |

ignorellg and just renormaliz€l, | find the usual result that

o 11 1
B~ = T5Ca—gNr- (38)

Note that | also get this result if | take the spin averagecéyaof the full vacuum polarization tensor.
Becausdlg is weighted by a factor of & its contribution to the spin average is not singular. Beeahe
leading order term in the quantities being calculated isrdepone, and the NLO term of ordes, this
result for the one-loogB-function is all that is needed to compute the renormalizedssection at NNLO.
Furthermore, the many NLO results that have been obtained ttse FDH scheme have all renormalized
using the above result fg@FPF.

When I try to proceed to the two-loop beta function, | find thath M, andllg contribute singular terms
to the spin-averaged vacuum polarization, while if | aggmoirel1g and renormaliz€l, | obtain the usual

value forf,,

s 17, 5 1
FDH _ —'~2 ¥ =
[P = 57CA— 52CAN: — 5Ce Ny (39)

This seems to be the choice made in Ref. [5] as they quote balyesult for terms proportional ©Q*QV,
which would be part of myla. Since the standard lore has been &P and a2R coincide, at least
through second order corrections, this seems to be the masbmable choice. Furthermore, it means that

the conversion tarMS will be [5, 25]

- _ am C
ab H:aSMS[1+< ;)1—34-] (40)

As it turns out, it does not matter what choice one makes astéecone-loop result fq(BOFW, which seems

safe if only because it is familiar, leads to the violatioruaftarity.
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B. Vacuum polarization in the FDH scheme

Leaving aside the question of renormalization beyond ooe;! | will proceed with the calculation of
theV-boson vacuum polarization. In performing calculationthia FDH scheme, it becomes apparent that
the results are identical, term-by-term. to the calcutatrothe DRED scheme, except that the evanescent

gluons are identified as gluons and the coupligs set toas. Therefore | find that

e I e G RSl

FDH} ’ (41)

where

D[”P(Q)‘ ] BNCZQf<QzeyE>{
1+<“SB> <Q§ZVE>£CF EH(%—%) <41—?—£352—1563—9Z4> (sﬂ

T
al 11 15 37 33 25 3
_s - _ = _=_=
< = > <Q2eVE> [ <16CF Ca— 8CF Nf> 32C + ( 53> Ca <l6 253) Cr N¢

235 111 14521 231 193
+e<cF( e —55>+CFCA< e it ® —554—755)

B\ 3
+C|:Nf< %27 2—152 _(34_%(4))4_@(52)}4_@((“_;))}7

(42)
and
el ety o (gm) {
o+ (%) (rar) o [3e% v (35 0as) - @]
(=) () [ des) To oo ton

245 21 1837 147
+E<C|:< " ZZ—3ZS>+CFCA< 6a ——Zz 9Z3>

bCeNg [~ 243 &) +0E)| +0 as i
PR\ 716 2% m '
Upon renormalizing such that

ab afbH am \ ¢ FDH [ oFDH am \ ¢
(D)-(F) ) (7)) wonlem) .
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| find that
. 2
BEPHIn &
_|_

9 aﬁ 3 a@ U
O[Na(Q)lrpn] = av Ne Z Qfq1+ Sn ZCF 1+ sr[ oz
ag™" 215 131 11 5 1 qFoH
224 CrCa [ 22 =2 CeNg -2+ ol [%
+<n>[F32+FA32 G ) +CeNe{—g 3% )|+ -
aMS 3 aMS 2
—aVNCZQf{1+< )CFZ ( )B(')\Asln&]
MS —e\ 3
ad’s 2 15 133 11 5.1 alvs
+< T ) |: CF 32+CFCA <§ —Z3 +CFNf §+§Z3 +ﬁ —T[ ,
aFPH Y\ 1 aFDH 2
O[Me(Q)lrpn] = av Ne Z Q% { < sT[ )ECF 1+ ( )BFDHIH %]
==\ 2
afPH) 1 1 1 12
—|—< - ) |:£< C 8—C|:C/_\4—8—|—C|:Nf1—2> <1+3£InQ2
SN
29 131 o FOH
_C2 _ s
Gzt CFCA96 CFNf12]+ﬁ ( n) }
aMs\ 1 aMS p2
gl ()i (F)iong

a¥S\" 11 1 2
+< ;) L( ~CE<—CeCa 8+CFNf12> <1+3£Ingz>

—\ 3
29 45 5 aMs
—c53—2+chA3—2—cFNf1—2]+ﬁ ( ;)

(45)

C. Total Decay rate and annihilation cross section in the FDH scheme

The results of the vacuum polarization calculation look ¢odisastrous aBg is singular at orden?.
However, the rules of the FDH scheme, enumerated abovefisfieat external states are taken to be four

dimensional. This means that the spin average of the veotaripations is

1 v, QQY
Nsplnszsu Q)\ (Q> ) - < n“ M\% >7 (46)

which annihilates1s” For the annihilation rate, the rules are a bit ambiguoushes could be read

‘FDH'
to mean that the lepton spinors are four dimensional but énex §/#) connecting them to the loop part

of the amplitude iDs dimensional. This would brin@lg" into the calculation and lead to a singular

‘FDH
result at ordemrsz. However, Rule 4 could also be read to mean that the vertedwsaned between four

dimensional states is also reduced to being four dimenksiona
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Assuming this interpretation, | find that

C{V MV GMS 3
I_\Inghadrons — Nc Z Qf {1"" ( ) Cr -

1o (%5 grs i 2
T Q?

4
MS 15 133 11 5 1 ms > “n
Qs 210 133 11 5 al
+< - ) { CF32+CFCA<32 Z3>+CFNf< 8+253>}+ﬁ <—rr ) ,
and
ana? aMs 3 alis 12
O-el;Delj—> hadrons™— 3Q2 Ne Z Qf {1+ ( )C -1+ ( )B |n&
MS o\ 3
ad’s 215 133 11 5 1 als
2224 ¢eC CeNg (=2 Vi
+<n> [ Faot FA<32 453 +Cr Ns 8+ZZ3 + -
(48)

The results agree with one another, are correct through Nidoage finite through NNLO. Unfortunately,
the NNLO terms are not correct! Because the discrepancyiig,fitnere remains the possibility that the
conversion fromor§W to ag"_s given in Eg. (40) is incorrect, although this would contcidirevious re-
sults [5, 25]. If this were the case, then one would expedt ttie N°LO result would also be finite but
incorrect. If, instead, the finite discrepancy at NNLO is thsult of a failure of the renormalization pro-

gram, the NLO result should be singular.

VI. PARTIAL RESULTSAT N3LO

Although first computed some time ago, the vacuum poladmatt four loops [13, 14] remains a
formidable calculation. It is only necessary, however,aokl at a small part of the calculation: the terms
proportional to the square of the number of fermion fIavN%,This is fortunate for a couple of reasons: 1)
there are only three four-loop diagrams to be computed, gg€3, (plus three more in the DRED scheme,
where the gluons are replaced by evanescent gluons); ahe 2phtributions from renormalization in the
CDR and FDH schemes come only from the leading term in the @&Dnction By andB@). Thus, my

result will not depend on how the higher order terms ofhfeinction are chosen in the FDH scheme.

A. TheCDR scheme

In the CDR scheme, there are only three four-loop diagramsrteed to be calculated. The first two

are simply iterated bubble diagrams and are essentialialtriThe third is slightly non-trivial, so | again
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SO

FIG. 3: Four loop diagrams that contribute to tigterm at NLO.

use my QGRAF-FORM-REDUZE suite of programs to address thblem. All of the four-loop master

integrals can be found in Ref. [26]. | find the result of therfmop calculation to be

4¢
BNCZQf <Q2eyE>

3
aB o[ 1 121 1 2777 3, 19 1
x(n) CeNi [48£2+ <288 3%) 57 g2 5 2%

—Q guv +QuQy

. [H@(Q) ‘CDR} as3N2

(49)

Renormalizing, | find

3
~Q®guv + QuQ ag’s
0[Ny (Qlcorl gene = g“V3 =" ay NCZQf< ) Ce N7

151 1 11 1 u? u?
o2 %0 (36 (&) + 2 (&)

Using this term to compute thﬂngf2 contribution to the decay rate and annihilation cross secdis in

(50)

Egs. (14,17), | find the result expected from Egs. (2-3).
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B. The DRED scheme

In the DRED scheme, there are three extra four-loop diagtaraempute, obtained by replacing gluon

propagators with evanescent gluon propagators. | find
4¢
(B) ‘ _ B > ( Al 2
O |:I_IA (Q) DRED] GS’NfZ — aV NC Z Qf <Q26VE> CF Nf {
3
a8 1 13 1 7847 3, 53 1
(?) [48£2+ <___Z3> 728 8% 189 3%
aB\°®[ 13 83
_|_ = -
I €64 128
®) 47T 4e
_ B 2 ( 4l 2
H [HB (Q)‘DRED] adN? OveNe Z Q <Q2eVE> Cr Ni {
aB\°r 1 L1738 8595 1, 1,
m) |7262 " €432 2502 4°% 3°3
L(8)T[o_L 111 155 2
T 4862 €48 96 2

Upon renormalizing according to Eq. (24) and convertingdibapling toag\"_s, | obtain

(51)

O[NA(Q)lbreplagnz

——\ 3
_ 2 r2f 05 151 1 1 p2\ 1, [
_GVN°ZQfCFNf< n) {%_ﬂé Z3*(48_?3@ <Q>+4_8|n (@ﬂ’

0[Ne(Q)lbrenlagnz = (&) -

(52)

As for the CDR scheme, this leads to the expected result @odditay rate and annihilation cross section.

C. TheFDH scheme

In the FDH scheme, however, | find that

4¢

D[H(AB)(Q)‘FDH] = BNCZQf<Q2eyE> Cr N?

f
a8 1 1/23 1 13453 3, 53, 1
x(?) [@+E<&_§Z3>+%_§ZZ_EZ3_§Z“]’
(B) B o[ Am \* 2
D[HB (Q)‘FDH]GSNfZ:aVNCZQf <Q2eyE> Cr Nf

. aB\?® 1 118 295 1, 1,
144¢2  £216 1296 8°2 3%

(53)

T
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| renormalize according to

8 YN TSl 2
o L2 ek JEOR |4 oFOF BFDH . agDH BEOH 1 BFDH 50
S 41T S T € T €2 2 ¢ ’

. . O3 I )
keeping only terms proportional @®"" N2. Such terms can only come from t§PH and BFPH" terms,

SO any uncertainty abog&ffim has no effect here. The renormalized result is

D[|_|A(Q)||:DH]O(§Nf2
3
B , { afPH 1 1843 1 3 1 2\ 1,2
GVNCZQfCFNf< ) [—@4-?56—21( Z3—|—<16 6(3)“’1(@)—1—%"1 <@>},
D[“B(QNFDH]O{SN%

CaN chmzasﬁs 1L 5 869 1, TN T,
_VCZ PR T 144s% 4326 2592 182 Q2) 36 \Q?/|°

(55)

The demand that external states be four dimensional rentbed$g term, but there is also a pole Ifa
and no finite renormalization to put the result in termsi can remove it. | must therefore conclude that

the FDH scheme is not consistent with unitarity.

VIl. DISCUSSION

In this paper, | have performed a high-order calculationanheof three regularization schemes: the
conventional dimensional regularization (CDR) scheme;dimensional reduction (DRED) scheme; and
the four dimensional helicity (FDH) scheme. Of these, theRC&2heme is by far the most widely used,
and was, in fact, used to compute the original results thaelas my test basis. The FDH scheme has
primarily been used to produce one-loop helicity ampligjdidthough it has been used in a few cases in
two-loop calculations and also as a supersymmetric reguldthe primary purpose of this paper was to
put the FDH scheme to a stringent test and determine itdilityain a high order calculation. The DRED
scheme is primarily used as a supersymmetric regulatorsaquiie cumbersome for non-supersymmetric
calculations. It is, however, closely related to the FDHesnk and has been demonstrated [8, 9, 23, 24] to
be equivalent to the CDR scheme through four loops. A closgpemison of the details of the calculations
in the FDH and DRED schemes helps to identify where and whegdlgo wrong with the former.

In the cases of the CDR and DRED schemes, | have reproducé&dahen result for the hadronic decay
width of a massive vector boson (or equivalently, &éi@~ annihilation rate to hadrons) through NNLO,

and a few terms at 8LO. This represents computing the QCD corrections to theiwmacpolarization of
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the photonV boson) through three loops, with partial results at foupkdn addition, | have reproduced
the renormalization parameters of QCPB-function(s), mass anomalous dimension) through threp loo
order. This establishes that | have theoretical controt allef the needed calculations through three loop
order. In order to obtain the partial®NO result in the DRED scheme, | also needed the three-loop QCD
corrections to thg8-function of the evanescent photov hoson).

The calculation of th&/ boson decay rate provides another instance of the equosaldre CDR and
DRED schemes at the four-loop level [23]. The ability to @abthe correct result using the DRED scheme
required a delicate balance of the many extra couplingstagidrenormalization effects upon one another.
Indeed, given the complexity needed to make the DRED scheonle, W seems that there should be little
surprise that the FDH scheme, with its greater simplicligud fail.

Perhaps, it is worth considering how it is that the FDH schéiame been used successfully in so many
calculations. Its most common use has been in the constructi one-loop scattering amplitudes via
unitarity cuts, using four-dimensional helicity ampligglas the primary building blocks. Thus, it is natural
that it restricts observed (external) states to be fouredsional. Because the FDH scheme defines that
Ds > D, > 4, this restriction excludes evanescent fields from appgaats external states. This is very
important because, as one can see from comparing Egs. (@@5%) terms involving external evanescent
states are the most dangerous. Even though it does not raelimeravanescent states and couplings properly
the FDH is able to get the non-evanescent part of the vaculanizetion tensor correct at NLO, while the
evanescent part is ready to contribute a finite error at NL&ézaBise the DRED scheme defines By, the
evanescent states gparts of the classical four dimensional states. It would not seatanal to exclude
them from appearing as external states. Instead, they awdidiathrough the renormalization program
so that their effects are removed from physical scatteringliéudes. In the FDH scheme, the evanescent
states are insteaatlditions to the four dimensional states (as are the extra degreegeddm that come
from regularizing momentum integrals) and there is no batd excluding them as observed states.

In an FDH scheme calculation, a tree-level term is strialyrfdimensional and is free from evanescent
contributions. (Depending on interpretation, this may b&ranger condition than is given in the rules
of Ref [5], but it is the actual condition imposed if one defirtbe tree-level amplitude as being a four-
dimensional helicity amplitude.) Because evanescentdenma absent at tree-level, they cannot generate
ultraviolet poles at one loop. Even if one were to renorneattzem properly, as in the DRED scheme,
there would be nowhere to make the counter-term insertiofeidt, the one-loop contributions are not even
finite, as the counting over the number of states) fRakes the result of order. This is clearly illustrated
in EQ. (28). Neitherms, nor ae appear at LO. Therefore, the contributions at NLO are firoteof; and of

ordere (because of the counting over the number of statesyfotn more complicated QCD calculations,
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as will appear at LO and will therefore contribute an ultragibpole at one-loop, which will be removed
by renormalizationae, however, will still make its first appearance at NLO and trattribution will be of
ordere. Thus, one can expect that the FDH scheme, used as abové] beaeliable for computing NLO
corrections through finite ordee?). The error from improperly identifying evanescent quiesishould be
of ordere. At NNLO and beyond however, the failure to properly idgntihd renormalize the evanescent
parameters leads to incorrect results and the violatiomibéuxity.

So, as suggested [5], one of the FDH scheme’s most impolaatsis that it defind3s > Dy, > 4. This
feature is also the scheme’s undoing, though not of negeddécause the effects of external evanescent
states can be removed (or indeed never seen) by imposing-difoansionality restriction, and because the
effects of internal evanescent states therefore congribrdele at one loop, it appears that one can simply
ignore the distinction between gauge and evanescent tdmtantrast, because the DRED scheme must
deal with external evanescent terms from the beginningdt®cates were forced to develop a successful
renormalization program [8, 9]. Extensive testing [8, 9, 28] has shown that this program works to at
least the fourth order and that it handles the effects of bu#rnal and external evanescent contributions.
As | remarked earlier, calculations in the DRED and FDH sabe@re term-by-term identical, except for
the identification of the couplings and propagating stafésis, one could make the FDH scheme a unitary
regularization scheme for non-supersymmetric calcuiatioy recognizing the distinction between gauge
and evanescent terms and adopting the DRED scheme’s religatioa program. This would, of course,
do away with any notion of the FDH scheme being simple, bubitil at least be correct. The FDH scheme
would still be distinguished from the DRED scheme by the fhatDs > Dy, > 4, which facilitates helicity
amplitude calculations and, in chiral theories, improvsssituation with regard tgs and the Levi-Civita
tensor [27, 28]. Furthermore, with a valid renormalizatfmogram, the requirement of four-dimensional
observed states could be made optional. This would lead adibked, slightly different, schemes, just
like the HV and CDR schemes. This suggestion has alreadyrbade by Signer and Stockinger [29] who
in fact define their version of the DRED scheme to have prctbe Ds > D, > 4 hierarchy of the FDH
scheme.

Thus, in conclusion, the CDR and DRED schemes are correctquigtalent ways of performing QCD
calculations through RLO. The FDH scheme, however, has been shown to be incorrectoamiolate
unitarity beyond NLO when applied to non-supersymmetrieoties. It must therefore be viewed as a

shortcut for performing NLO calculations and should onlyused for such calculations with great caution.
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Appendix A: Renor malization parametersfor the CDR scheme

To three-loop order, | find the coefficients of tBefunction to be

ws 11, 1 ws_17., 5 1

= _—Ca— =N ~°C2 - ZCaNf — =CeN
BO 12 A 6 f, 1 24 A 24 AN — 8 F INf, (Al)
e 2857 1415 205 1 79 11
VS 3 2
=—Ci———CiN CaCeN CZN CaN? Cr N?
P2 = 3456°A ~ 3am6 AN ~ 1157 ACE Ni + g2 CF Ni + 37 56CANT + 570 Nf-
while the coefficients of the mass anomalous dimension are
e 3 Vs 3 97 5
s_°
" = 2CF W' = 35CF + ggCr Ca— 2gCr N
we 129 129 11413 23 3 139 3 35
5 3 2 2
= 77CE - ZETCECA+ T SCe R — - — CeCaNf ———CeN
12" = T28CF ~ 256CF Ot a1 CF CA - (64 863> N <864 8> FATT T 728 T
(A2)
in agreement with known results [30-33].
Appendix B: Renormalization parametersfor the DRED scheme
The coefficients of the QCIB-function, BPR(aPR) through three loops are:
1 1 17 5 1
BRR = 12 éNf ; BIR Ca— 24CA N¢ — 8CF Nf ,
3115 5 1439 193 1 79 11
= _—"C3—-=—CiN CaCeN CZN CaN? Cr N2
P 3456A 3456 AT T 1152 A f+64 PNt 35 AN T F N (BY)
55 3 1 1
DR __ _ — > DR __ - _ = - . _ -
31 = 16CF Nt <2CF> ; 22 16CF Nt <2CA Cr 4Nf> ;

where the notation is that

k ==\ | =5\ M
— aDR aDR aDR n nDR r’DR
- g () () () () ()

The last three indices fﬁumm are omitted when they are all equal to 0.
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The B-function of evanescent QCD coupling2R (a2R) is

1 1 or 3

l3 CF_4Nf7 BgﬁZECF,
DR — 2CA 7CACr +C2 - 1—36CANf + gcp Nt DR = gc 2c:AcF 141C,: - 1—56cF N,
=5 4CA+ 4SCACF+ 136CF+ eCaN; - 24(:F Ny
Be'?igzmo: —g Bg?zolo: Z Be'?igzom: 2
Bg_ngOOZ 53_171 Be'?_glozoz —%5 BOR 01002= :2,); 3(5?1101: _1_96
0%, = (Zﬁ Z@) i+ <187+ 1553> C2Ca- <2+ l6za> CrCi+ <ll6+ l6za>
n @—i— f—é@) CENy + <312+ 3253) CrCaNy — (%+ 3253) CEN; - (1—28& SeCh ) N?
P = (5 36 2 - (10~ CECat (5~ 4a) CeCh- (5~ 342 3
¥ <1—2— 253) CEN: — 2 (1-5) CrCaNs + <372 853) CANi + o Cal?
BOE, — (1;9 e ) 2o <Z§§+ 1853> C2Ca+ (122867 207@) Cr G- (;‘i; ig@

569 99\ _, 31 171 871 1 ,
- <ﬁ3— EZ3> Ce Nf + <16 Z3> CeCaNf — <1024 3253> CAN: + <16CF S56CA > N
or 129 . 457 , 11875, , 3073

eV et iy YV IR3
e31= 52 OF ~ 1285F CAT 3256 F “A ™ 2608

23 3 157 463 35 5 )
<3—2— 2153> Ni = (ﬁ* 453> Cr CaNf + 5aazCAN: — (@CF T 576 ) N

(B3)
o] 9 243 o] 5 45 el 3 81
Beb3100= a2’ @Nf Beba010= 3 —aNf BE6a001= 3 aNf
219 145 73
Be 12100= ~ g Be 12010= g Be 12001= g
R 1125 5= 105 s 615
621100~ ~ 7022 621010~ 755 621001~ £75
1413 729 115 135 161 567
Beozzoo =12 1004V BO000= — 35 T M Beozooz ~%5 oM
75 471 243 85
Beozno 5 Be02101 ~1o8 7 ﬁst Ao 02011= g
or 1701 nor 405 npr 1701
£.01300= ~ 7002 201210~ ~75g 201201~ =75
or 135 opr 135 pp 81
201120~ 35 2011117 ¢ 201102~ ~ 758

315 315 63
Be01021 ~ 37 Be01012 ~ 37 Beomos 178
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The mass anomalous dimension in the DRED scheme is

— 3
Vio' = ;Cr
VyOR = B2 A - 2o yﬁzjc2 VR :—c o e
20 7 327F T o6 48 1 g F 02 F 8 16
o 129 . 133, 10255 23 3 281 35
R 3 2
=T - G2t e G (22 CeNf — —> C=N
o' = 155 ~ e6r 6912 ( Z3> N = <1728 853> AV T 1728
— 27, 21 9
R < 2
=2 cd-Zcic ec CZN
1 B4 F 3 FAT 256 FOAT GaF N
— 9 21 3 3 3
R 3
= -cg-Zocic C-C2 CeCaN C2N
iz g F 32 F AT ggF AT TogF CANT T gbR N
— 3 3 3 1 5 1
R 2 2 2
—_Scd4ic2c,— —cC C:CaN CZN CeN
¥o3 gF T gF AT gy F AT 15 F LA — bR N — gogtr N
— 3 — 5 — 1
V(IJDZ?.OO: é V(IJDZ%lO: _1_2 VODZ%Ol: _Z
- 9 = 3 = 5 - 7
V(I)DlRZOO: _& 01?01: 1_6 01%20: Z VODZI.%OZZ _3_2
(B4)

The above results fg8°R, PR andyPR all agree with the results of Refs. [23, 24]

The QCD contributions to thg-function of the evanescent part of a non-QCD gauge coudiagnew

result. | find
__ 3 __
a0 = ECF e01=—Cr
3 91 5 11, 3 3
B\/ezo CF + 48CF CA 24CF Nf B\/ell 4 C 4C|: CA eoz - CF + 8C|: Nf
129 133 23 3 10255 281 3 35
DR 2 2 2 2
22— (222 N CrC2 — CrCaANf — —Ce N
250 = 54 CF ~ 150 A (32 4Z3> 3456 F A <864+4Z3> FAT T 86 T
139 27 331 81 11 195 27 5
= — = C2C C2N T 7)) CeCE CeCaN
e21 < Z3> <64+ Z3> = A+16 £ Nf — (256 Zs) F A+64 r CaNs
1 63 3 7
-3 ~ 273 ) CECa+ C2N Cr C2
e12 (2 Z3> (8 2(3) £ Ca+ <64 4Z3> F f+<16 2(3) FCa
3
<———Z3> Cr CaNs
7 9 1 27 27 1 9 3 3
DR 2 2
- czea2leene i (L -22) cec C:CaN Ce N?
203 <4+4Z3> <8+ Zs) FCa—35CF f+<16 8(3) FCa+ 5,CF CaNr + 27 Cr N
— 3 — 25 1
B\l/DeRozmo: 8 De?ozomz sy Bveozom 2
bR 63 bR _ 21 bR 65 bR 49
e,01200 — 64 e 01101 — 16 e, 01020 — 4 e 01002 — 32
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