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I apply commonly used regularization schemes to a multi-loop calculation to examine the proper-

ties of the schemes at higher orders. I find complete consistency between the conventional dimen-

sional regularization scheme and dimensional reduction, but I find that the four dimensional helicity

scheme produces incorrect results at next-to-next-to-leading order and singular results at next-to-

next-to-next-to-leading order. It is not, therefore, a unitary regularization scheme.

I. INTRODUCTION

Dimensional regularization [1] is an elegant and efficient means of handling the divergences that arise

in perturbation theory beyond the tree level. Among its manyfavorable qualities it respects gauge and

Lorentz invariance and allows one to handle both ultraviolet and infrared divergences in the same manner.

The application of dimensional regularization to different kinds of problems has led to the development of

a variety of regularization schemes, which share the dimensional regularization of momentum integrals, but

differ in their handling of external (or observed) states and of spin degrees of freedom.

The original formulation of dimensional regularization [1], known as the ’t Hooft-Veltman (HV) scheme,

specifies that observed states are to be treated as four dimensional, while internal states are to be treated as

Dm = 4−2ε dimensional. That is, both their momenta and spin degrees offreedom were to be continued

from four to Dm dimensions. It turns out that one has the freedom to choose the value of the trace of

the Dirac unit matrix to take its canonical value of four, so fermions continue to have two spin degrees of

freedom, even though their momenta are continued toDm dimensions. Internal gauge bosons, however,

haveDm −2 spin degrees of freedom (internal massive gauge bosons have Dm −1 degrees of freedom).

A slight variation on the HV scheme has come to be called Conventional Dimensional Regularization

(CDR) [2]. In this variation, all particles and momenta are taken to beDm dimensional. This often turns out

to be computationally more convenient, since one set of rules governs all interactions. This is particularly

so when computing higher order corrections to theories subject to infrared sensitivities, like QCD. In the

HV scheme, if two external states have infrared sensitive overlaps, they must be treated as internal, orDm

dimensional states. In the CDR scheme, all states are already treated asDm dimensional, so there is no

possibility of failing to properly account for infrared overlaps.
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A third variation, called Dimensional Reduction (DRED) [3], was devised for application to supersym-

metric theories. In supersymmetry, it is essential that thenumber of bosonic degrees of freedom is exactly

equal to the number of fermionic degrees of freedom. This requirement is violated in the HV and CDR

schemes. In the DRED scheme, the continuation toDm dimensions is taken as a compactification from

four dimensions. Thus, while space-time is taken to be four dimensional and particles have the standard

number of degrees of freedom, momenta span aDm dimensional vector space and momentum integrals are

regularized dimensionally.

A fourth variation, the Four Dimensional Helicity (FDH) scheme [4, 5], was developed primarily for

use in constructing one loop amplitudes from unitarity cuts. The most efficient building blocks for such

calculations are tree-level helicity amplitudes, which necessarily have two spin degrees of freedom for both

fermions and gauge bosons. The FDH scheme resembles the DREDscheme in that it regularizes momentum

integrals dimensionally while maintaining the spin degrees of freedom of a four dimensional theory (and

therefore appears to be a valid supersymmetric regularization scheme [5]), but there are crucial differences,

which I will discuss in detail.

The fact that the HV scheme respects the unitarity of theS-matrix was proven at its introduction [1]. The

arguments which establish the validity of the HV scheme carry over to the CDR scheme and establish that

it too is a valid regularization scheme. After some initial confusion over the proper renormalization proce-

dure [6–8] for the DRED scheme, it was established that it toois a proper, unitary regularization scheme [8]

and that it is indeed equivalent to the CDR scheme [9]. The FDHscheme has never been subjected to

such stringent examination. It has been used successfully in a number of landmark next-to-leading order

(NLO) calculations, but it has never been established whether it is a proper, unitary regularization scheme,

or merely a set of short-cuts that allow expert users to obtain correct results.

In this paper, I will perform a well-known multi-loop calculation in the various regularization schemes.

I will show that while the HV and CDR scheme calculations yield the correct result and the DRED scheme

calculation, while far more complicated is completely equivalent, the FDH scheme calculation yields incor-

rect results which inevitably violate unitarity at sufficiently high order. A detailed comparison of the various

calculations identifies the source of the unitarity violations in the FDH scheme.

The plan of this paper is as follows: in section two, I will describe the test calculation to be performed

and present the result to be obtained. In sections three, four and five, I will describe in detail the calcu-

lation to next-to-next-to-leading order (NNLO) as it is performed in the CDR, DRED and FDH schemes,

respectively. In section six, I present partial results at N3LO which solidify the conclusion that the CDR and

DRED schemes are equivalent and correct, but that the FDH scheme violates unitarity. In section seven, I

will discuss my results and draw my conclusions.
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II. THE TEST ENVIRONMENT

To test the regularization schemes, I will calculate two quantities: the massless non-singlet contributions

to

1. the hadronic decay width of a fictitious neutral vector bosonV , of massMV ;

2. the single photon approximation to the total hadronic annihilation cross section for an electron –

positron pair.

I will perform these calculations by means of the optical theorem, taking the imaginary part of the forward

scattering amplitudes. In both cases, this means taking theimaginary part of the vacuum polarization tensor

sandwiched between external states. Since the optical theorem is a direct consequence of the unitarity of

the S-matrix, any unitary regularization scheme must give the same result, once one expands in terms of

a standard coupling. To avoid complications involving prescriptions for handlingγ5 and the Levi-Civita

tensor, I will takeV to have only vector-like couplings. In this way, the vacuum polarization tensor for the

V boson will be identical to that of the off-shell photon, up tocoupling constants and so the QCD expansion

of the two results will differ only by constant numerical factors.

Each regularization scheme will start from the same four dimensional Lagrangian,

L =−
1
2

Aa
µ
(
∂ µ∂ ν(1−ξ−1)−gµν

�
)

Aa
ν −g f abc(∂ µ Aaν)Ab

µ Ac
ν −

g2

4
f abc f ade Ab µ Acν Ad

µ Ae
ν

+ i∑
f

ψ i
f

(
δi j /∂ − igta

i j /A
a
− igV Q f /V

)
ψ j

f − ca
�ca +g f abc (∂µ ca) Ab µ cc ,

(1)

whereAa µ is the QCD gauge field,V µ is the massive vector boson,ψ f is the quark field of flavorf , ca and

ca are the Faddeev-Popov ghost fields,g is the QCD coupling,gV is theV gauge coupling andQ f represents

the charge of the quark flavorf under theV symmetry. I will not be computing non-trivial corrections in

gV , so there is no need to specify theV -self interaction parts of the Lagrangian.

FIG. 1: Sample diagrams of one-, two- and three-loop contributions to the vacuum polarization ofV .
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The result to N3LO is well known [10–14],

ΓV
had =ΓV

0,hadF (αMS
s ,Q2 = M2

V ) ΓV
0,had=

αV MV

3
Nc ∑

f

Q2
f

σ e+ e−→ had(Q2) =σ e+ e−→ had
0 (Q2)F (αMS

s ,Q2) σ e+ e−→ had
0 (Q2) =

4π α2

3Q2 Nc ∑
f

Q2
f

(2)

and

F (αMS
s ,Q2) =



1+

(
αMS

s

π

)
CF

3
4


1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2 +

(
αMS

s

π

)2(
β MS

1 ln
µ2

Q2 +β MS
0

2
ln2 µ2

Q2

)


+

(
αMS

s

π

)2[(
−C2

F
3
32

+CF CA

(
123
32

−
11
4

ζ3

)
+CF N f

(
−

11
16

+
1
2

ζ3

))

×

(
1+2

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

)]

+

(
αMS

s

π

)3[
−C3

F
69
128

+C2
F CA

(
−

127
64

−
143
16

ζ3+
55
4

ζ5

)

+CF C2
A

(
90445
3456

−
2737
144

ζ3−
55
24

ζ5

)

+C2
F N f

(
−

29
128

+
19
8

ζ3−
5
2

ζ5

)
+CF CA N f

(
−

485
54

+
56
9

ζ3+
5
12

ζ5

)

+CF N2
f

(
151
216

−
19
36

ζ3

)
−

1
4

π2CF β MS
0

2
]
+O



(

αMS
s

π

)4





 .

(3)

To obtain the hadronic decay width at LO, NLO and NNLO, I need to compute the QCDcorrections to the

vacuum polarization of theV (photon) at 1, 2 and 3 loops respectively. Sample diagrams are shown in

Fig. (1).

A. Methods

In each scheme, I will need to compute the vacuum polarization of V and the necessary coupling renor-

malization constants. As a cross-check on the reliability of my calculational framework, I reproduce known

results on the QCDβ -functions and mass anomalous dimensions to three-loop order, as well as the three-

loop QCD contributions to theβ -function ofV (where needed).

In all calculations, I generate the contributing diagrams using QGRAF [15]. The symbolic algebra

program FORM [16] is used to implement the Feynman rules and perform algebraic manipulations to reduce
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the result to a set of Feynman integrals to be performed and their coefficients. The set of Feynman integrals

are then reduced to Master Integrals using the program REDUZE [17]. Using the method of Ref. [18], the

vertex corrections can be expressed in terms of the same propagator integrals used to compute the vacuum

polarization and wave-function renormalizations. The complete set of Master Integrals at one, two and three

loops are shown in Fig. (2). Most of the Master Integrals are trivial iterated-bubble diagrams and the others

a) b)

c)

FIG. 2: Master integrals for the evaluation of vacuum polarization at a) one loop, b) two loops and c) three loops.

were evaluated long ago [19, 20]. As an additional cross check, the integral reduction and evaluation is also

performed using the program MINCER[21, 22].

B. Notation

The various schemes that I will consider span a variety of vector spaces, each with their own metric

tensor. To establish some level of consistency, I will denote the metric tensor of classical four-dimensional

space-time asη µν ; the metric tensor of theDm dimensional vector space in which momentum integrals

are regularized will be denoted as ˆgµν ; and the metric tensor of the largest vector space will be denoted

gµν . Where it does not vanish, the complement of ˆgµν will be denoted asδ µν = gµν − ĝµν . Similarly, the

Dirac matricesγµ , will be denotedγµ
(4) when they are strictly four-dimensional,γ̂µ when they span theDm

dimensional space and̄γµ in the space spanned byδ µν .

I will now present the details of the calculation in the CDR, DRED and FDH schemes.
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III. CONVENTIONAL DIMENSIONAL REGULARIZATION

In the CDR scheme, the calculation is quite straightforward. The Lagrangian and Feynman rules are just

the same as for a four-dimensional calculation, except thatthe Dirac matricesγµ and the metric tensorgµν

have been extended to span aDm dimensional vector space. That is,

{γµ ,γν}= 2gµν , gµν gµν = Dm , γµ γµ = Dm , gµν ≡ ĝµν . (4)

The Dirac trace, Tr[1] = 4, retains its standard normalization.

Although Dm is given the representationDm = 4−2ε , the sign ofε is not determined. If it is taken to

be positive, so thatDm < 4, then the Feynman integrals that one encounters are convergent under the rules

of ultraviolet power counting. On the other hand, infrared power counting would preferε < 0⇒ Dm > 4.

In practice, the sign ofε does not matter and it can be used to regularize both infraredand ultraviolet

divergences. Regardless of the sign ofε , it is important that the vector space in which momenta take values

is larger than the standard 3+1 dimensional space-time. This means that the standard fourdimensional

metric tensorη µν spans a smaller space than theDm dimensional metric tensor, and the four dimensional

Dirac matricesγ0,1,2,3 form a subset of the fullγµ ,

gµν gρ
µ = gνρ , gµν ηρ

µ = ηνρ , η µν ηρ
µ = ηνρ . (5)

These considerations are of particular importance when considering chiral objects involvingγ5 and the

Levi-Civita tensor, but will play a role in our discussion below.

Because the Dirac trace is unchanged, fermions still have exactly two degrees of freedom in the CDR

scheme. Gauge bosons, however, acquire extra spin degrees of freedom in theDm dimensional vector space.

The spin sum over polarization vectors in a physical (axial)gauge takes the form

−gµν ∑
λ

ε∗µ(k,λ )εν(k,λ ) = gµν

(
gµν −

kµ nν +nµ kν

k ·n

)
= Dm −2= 2−2ε , (6)

wheren is the axial gauge reference vector. For massive vector bosons, the spin sum becomes

−gµν ∑
λ

ε∗µ(k,λ )εν(k,λ ) = gµν

(
gµν −

kµ kν

M2

)
= Dm −1= 3−2ε , (7)

A. Renormalization

The renormalization constants in the CDR scheme are defined as

Γ(B)
AAA = Z1ΓAAA , ψ(B) i

f = Z
1
2
2 ψ i

f , A(B)a
µ = Z

1
2
3 Aa

µ

Γ(B)
ccA = Z̃1ΓqqA , c(B)a = Z̃

1
2
3 ca , c(B)a = Z̃

1
2
3 ca ,

Γ(B)
qqA = Z1FΓqqA , ξ (B) = ξ Z3 ,

(8)
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whereΓabc represents the vertex function involving fieldsa, b andc.

Although we treat the quark fields as massless, we can computethe mass anomalous dimension by

introducing a fictitious scalar particleφ and computing theβ -function of its Yukawa coupling to the quarks.

The equivalence is clear from the Standard Model, where the Higgs Yukawa coupling and the fermion mass

are proportional at leading electroweak order and must behave the same under QCD renormalization. For

this purpose, I introduce one more renormalization constant, Γ(B)
qqφ = Z1φ Γqqφ . One can introduce a wave-

function renormalization forφ , Z3φ , but it will not contribute becauseZ3φ = 1+O(αφ ). Note also that I do

not need to compute the QCD corrections to theβ -function forαV , which will start at orderα2
V because of

the Ward Identity.

In theMS scheme, the couplings renormalize as

αB
s =

(
µ2 eγE

4π

)ε

ZαMS
s

αMS
s , ZαMS

s
=

Z2
1

Z3
3

=
Z2

1F

Z2
2 Z3

=
Z̃2

1

Z̃2
3 Z3

αB
φ =

(
µ2 eγE

4π

)ε

ZαMS
φ

αMS
φ , ZαMS

φ
=

Z2
1φ

Z2
2 Z3φ

(9)

The structure of the renormalization constantsZαMS
s

andZαMS
φ

is determined entirely by their lowest order

(1/ε) poles, which in turn define theβ -functions.

β MS(αMS
s ) = µ2 d

d µ2

αMS
s

π
=−ε

αMS
s

π

(
1+

αMS
s

ZαMS
s

∂ZαMS
s

∂αMS
s

)−1

=−ε
αMS

s

π
−

∞

∑
n=0

β MS
n

(
αMS

s

π

)n+2

β MS
φ (αMS

s ) = µ2 d
d µ2

αMS
φ

π
=−


ε

αMS
φ

π
+

αMS
φ

ZαMS
φ

∂ZαMS
φ

∂αMS
s

β MS(αMS
s )




1+

αMS
φ

ZαMS
φ

∂ZαMS
φ

∂αMS
φ




−1

=−
αMS

φ

π


ε +

∞

∑
n=0

β MS
φ ,n

(
αMS

s

π

)n+1



(10)

The mass anomalous dimension,

γMS(αMS
s ) =

µ2

mMS

d
dµ2mMS =

∞

∑
n=0

−γMS
n

(
αMS

s

π

)n+1

(11)

is defined in terms ofm, rather thanm2, with the result thatγMS
n = 1

2β MS
φ ,n . The results forβ MS

n andγMS
n

through three loops are given in Appendix A.
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B. Vacuum polarization in the CDR scheme

The imaginary part of the unrenormalized vacuum polarization tensor in the CDR scheme is

ℑ
[

Π(B)
µν (Q)

∣∣∣
CDR

]
=

−Q2gµν +QµQν

3
αB

V Nc ∑
f

Q2
f

(
4π

Q2eγE

)ε{

1+

(
αB

s

π

) (
4π

Q2eγE

)ε
CF

[
3
4
+ ε
(

55
8

−6ζ3

)
+ ε2

(
1711
48

−
15
4

ζ2−19ζ3−9ζ4

)
+O(ε3)

]

+

(
αB

s

π

)2(
4π

Q2eγE

)2ε [1
ε

(
11
16

CF CA −
1
8

CF N f

)

−
3
32

C2
F +CF CA

(
487
48

−
33
4

ζ3

)
+CF N f

(
−

11
6

+
3
2

ζ3

)

+ ε
(

C2
F

(
−

143
32

−
111
8

ζ3+
45
2

ζ5

)
+CF CA

(
50339
576

−
231
32

ζ2−
109
2

ζ3−
99
8

ζ4−
15
4

ζ5

)

+CF N f

(
−

4417
288

+
21
16

ζ2+
19
2

ζ3+
9
4

ζ4

))
+O(ε2)

]
+O

((
αB

s

π

)3
)}

.

(12)

Upon renormalizing the QCD coupling according to Eq. (9), setting αB
V → αV

(
µ2 eγE

4π

)ε
, and dropping terms

of order(ε), I obtain

ℑ
[

Πµν(Q)
∣∣
CDR

]
=

−Q2gµν +QµQν

3
αV Nc ∑

f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
3
32

+CF CA

(
123
32

−
11
4

ζ3

)
+CF N f

(
−

11
16

+
1
2

ζ3

)]
+O



(

αMS
s

π

)3





 .

(13)

In this way of performing the calculation, all of the QCD states that appear are internal states, so the HV

scheme gives exactly the same result.

C. Total Decay rate and annihilation cross section in the CDR scheme

The decay rate and the annihilation cross section are determined by computing the imaginary part of the

forward scattering amplitude. For the decay rate, this means attaching the polarization vectorε µ(Q,λ ) and

its conjugateεν(Q,λ )∗ (Q2 = M2
V ) and averaging over the spins,

ΓCDR
V→ hadrons=

1
MV

1
Nspins

∑
λ

ε µ(Q,λ )ℑ
[

Πµν(Q)
∣∣
CDR

]
εν(Q,λ )∗ , (14)

where

1
Nspins

∑
λ

ε µ(Q,λ )εν(Q,λ )∗ =
1

Nspins

(
−gµν +

Qµ Qν

M2
V

)
. (15)
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Notice that because the imaginary part of the vacuum polarization tensor is finite, it does not matter

whether the spin sum is taken inDm = 4−2ε dimensions as in the CDR scheme or in four dimensions as

in the HV scheme as the difference is of orderε . The result is

ΓCDR
V→ hadrons=

αV MV

3
Nc ∑

f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
3
32

+CF CA

(
123
32

−
11
4

ζ3

)
+CF N f

(
−

11
16

+
1
2

ζ3

)]
+O



(

αMS
s

π

)3





 ,

(16)

in agreement with Eqs. (2-3).

For the annihilation cross sectionσe+ e−→ hadrons, one attaches fermion bilinears to each end of the vac-

uum polarization tensor and averages over the spins.

σCDR
e+ e−→ hadrons=

2
Q2

e2

4 ∑
λ λ ′

〈
v(pe+ ,λ ) |γµ |u(pe− ,λ

′
)
〉

Q2 ℑ
[

Πµν(Q)
∣∣
CDR,αV→α

]
〈

u(pe− ,λ
′
) |γν |v(pe+ ,λ )

〉

Q2 .

(17)

Because this is a forward scattering amplitude, the spinor bilinears can be combined into a trace,

1
2 ∑

λ λ ′

〈
v(pe+ ,λ ) |γµ |u(pe− ,λ

′
)
〉〈

u(pe− ,λ
′
) |γν |v(pe+ ,λ )

〉
=

1
2

Tr
[
/pe+

γµ
/pe−

γν
]
=
(
−Q2gµ ν +Qµ Qν) ,

(18)

where the last identification results from the fact thatQµ = pµ
e− + pµ

e+ , pe− · Q = pe+ · Q = Q2/2. The

result is

σCDR
e+ e−→ hadrons=

4π α2

3Q2 Nc ∑
f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
3
32

+CF CA

(
123
32

−
11
4

ζ3

)
+CF N f

(
−

11
16

+
1
2

ζ3

)]
+O



(

αMS
s

π

)3





 ,

(19)

again in agreement with Eqs. (2-3).

Thus, I have established that I can reproduce the known results in the CDR scheme through three loop

order, which is a strong check on my computational framework.

IV. DIMENSIONAL REDUCTION

In Dimensional Reduction, one starts from standard four-dimensional space-time and compactifies to a

smaller vector space of dimensionDm = 4− 2ε < 4 in which momenta take values. The particles in the

spectrum, however, retain the spin degrees of freedom of four dimensions. That is, both fermions and gauge
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bosons still have two degrees of freedom. This is by design, of course, since it is required by supersymmetry.

All Dirac algebra can be treated as four dimensional. However, now the four dimensional metric tensorη µν

spans a larger space than theDm dimensional metric ˆgµν that might arise from tensor momentum integrals,

ĝµν ηρ
µ = ĝνρ . (20)

There is also a very serious consequence of the fact that theDm dimensional vector space is smaller than

four dimensional space-time. The Ward Identity only applies to theDm dimensional vector space! This

means that the 2ε spin degrees of freedom that are not protected by the Ward Identity must renormalize

differently than the 2− 2ε degrees of freedom that are protected. In supersymmetric theories, the super-

symmetry provides the missing Ward Identity which demands that the 2ε spin degrees of freedom be treated

as gauge bosons. In non-supersymmetric theories, however,they must be considered to be distinct parti-

cles, with distinct couplings and renormalization properties. It is common to refer to these extra degrees of

freedom as “ε-scalars” or as “evanescent” degrees of freedom.

Once the evanescent degrees of freedom (which I will labelAa µ̃
e , to distinguish them from the gluons,

Aa µ ) are recognized as independent particles, it is apparent that their couplings are also independent, not

only of the QCD coupling, but of one another. That is, the coupling ge of the evanescent gluons to the

quarks is not only distinct fromg, the coupling of QCD, but is also distinct fromλi, the quartic couplings

of the evanescent gluons to themselves. (The quartic gauge coupling of QCD splits into three independent

quartic couplings of the evanescent gluons.) Note that the massive vector bosonV µ also has evanescent

degrees of freedom,V µ̃
e , which couple to quarks with strengthgVe.

Thus, the Lagrangian in the DRED scheme becomes:

L =−
1
2

Aa
µ
(
∂ µ∂ ν(1−ξ−1)− ĝµν

�
)

Aa
ν −g f abc(∂ µ Aaν)Ab

µ Ac
ν −

g2

4
f abc f ade Ab µ Acν Ad

µ Ae
ν

+ i∑
f

ψ i
f

(
δi j /∂ − igta

i j /A
a
− igV Q f /V

)
ψ j

f − ca
�ca +g f abc (∂µ ca) Ab µ cc

+
1
2

Aa
e µ̃� Aa µ̃

e −g f abc(∂ µ Aa ν̃
e )Ab

µ Ac
e ν̃ +

g2

2
f abc f ad f Ab µ Ac ν̃

e Ad
µ A f

e ν̃ −
1
4∑

i

λi Hbcd f
i Ab µ̃

e Ac ν̃
e Ad

e µ̃ A f
e ν̃

+∑
f

ψ i
f

(
ge ta

i j /A
a
e +gVe Q f /V e

)
ψ j

f .

(21)

As mentioned above, the quartic coupling of the evanescent gluons splits into three terms, which mix under



11

renormalization. One can choose the tensorsHbcde
i to be [23]

Hbcde
1 =

1
2

(
f abc f ade + f abe f adc

)

Hbcde
2 =δ bcδ de +δ bdδ ce +δ beδ cd

Hbcde
3 =

1
2

(
δ bcδ de +δ beδ cd

)
−δ bdδ ce ,

(22)

Although the quartic couplings enter theβ -functions and anomalous dimension at three loops and are es-

sential to the renormalization program, they do not explicitly contribute to the calculation at hand.

Now that the correct spectrum has been identified, one must carefully consider the renormalization

program. The naı̈ve application of the principle of minimalsubtraction leads to the violation of unitarity [6].

Because the contributions of evanescent states and couplings to scattering amplitudes are weighted by a

factorε , the leading one-loop contribution is finite and therefore not subtracted. As one proceeds to higher

orders, there is a mismatch among the counterterms such thatthe renormalization program fails to remove

all of the ultraviolet singularities.

A successful renormalization program for the DRED scheme [8, 9] applies the principle of minimal

subtraction to the evanescent Green functions (that is, Green functions with external evanescent states)

themselves. At each order, the renormalization scheme renders the evanescent Green functions finite. Since

evanescent Green functions enter into the scattering amplitudes of physical particles at orderε and they are

rendered finite by renormalization, they never contribute to physical scattering amplitudes.

The evanescent coupling still contributes to Green functions with only physical external states, but the

contribution is rendered finite by the prescribed renormalization program [8, 9, 23, 24]. Because the evanes-

cent coupling,αe renormalizes differently than the gauge couplingαs, the two cannot be identified, even at

the end of the calculation. One can choose a renormalizationpoint where the two coincide, but they evolve

differently under renormalization group transformationsand their values will diverge as one moves away

from the renormalization point.

Still, the evanescent coupling is essentially a fictitious quantity and one finds that if one computes a

physical quantity in the DRED scheme and then converts the running couplings of the DRED scheme to

those of a scheme such as CDR that has no evanescent couplings, the factors ofαe drop out [23, 24].
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A. Renormalization

The renormalization constants in the DRED scheme are definedas

Γ(B)
AAA = Z1ΓAAA , ψ(B) i

f = Z
1
2
2 ψ i

f , A(B)a
µ = Z

1
2
3 Aa

µ

Γ(B)
ccA = Z̃1ΓqqA , c(B)a = Z̃

1
2
3 ca , c(B)a = Z̃

1
2
3 ca ,

Γ(B)
qqA = Z1F ΓqqA , ξ (B) = ξ Z3 ,

Γ(B)
qqe = Z1eΓqqe , A(B)a

e µ = Z
1
2
3e Aa

e µ , Γ(B) i
eeee = Zi

1eeee Γi
eeee ,

Γ(B)
qqVe

= Z1VeΓqqVe , V (B)
e µ = Z

1
2
3VeVe µ .

(23)

In addition, I again introduce the fictitious scalar that allows me to compute the mass anomalous dimension

for massless quarks. Note that while the Ward Identity protects αV from leading QCD corrections, it does

not protectαVe. That is why I need to introduce renormalization constants for vertex and wave-function and

why I need to compute theβ -function ofαVe.

In theDR scheme (modified minimal subtraction in the DRED scheme),the couplings renormalize as

αB
s =

(
µ2eγE

4π

)ε

ZαDR
s

αDR
s , ZαDR

s
=

Z2
1

Z3
3

=
Z2

1F

Z2
2 Z3

=
Z̃2

1

Z̃2
3 Z3

,

αB
e =

(
µ2eγE

4π

)ε

ZαDR
e

αDR
e , ZαDR

e
=

Z2
1e

Z2
2 Z3e

,

αB
Ve =

(
µ2eγE

4π

)ε

ZαDR
Ve

αDR
Ve , ZαDR

Ve
=

Z2
1Ve

Z2
2 Z3Ve

,

αB
φ =

(
µ2eγE

4π

)ε

ZαDR
φ

αDR
φ , ZαDR

φ
=

Z2
1φ

Z2
2 Z3φ

.

(24)
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and theβ -functions are given by

β DR = µ2 d
d µ2

αDR
s

π
=−

(
ε

αDR
s

π
+

αDR
s

ZαDR
s

∂ZαDR
s

∂αDR
e

β DR
e +

αDR
s

ZαDR
s

∂ZαDR
s

∂ηDR
i

β DR
ηi

)(
1+

αDR
s

ZαDR
s

∂ZαDR
s

∂αDR
s

)−1

=−ε
αDR

s

π
− ∑

i, j,k,l,m

β DR
i jklm

(
αDR

s

π

)i(
αDR

e

π

) j(
ηDR

1

π

)k(
ηDR

2

π

)l(
ηDR

3

π

)m

β DR
e = µ2 d

d µ2

αDR
e

π
=−

(
ε

αDR
e

π
+

αDR
e

ZαDR
e

∂ZαDR
e

∂αDR
s

β DR+
αDR

e

ZαDR
e

∂ZαDR
e

∂ηDR
i

β DR
ηi

)(
1+

αDR
e

ZαDR
e

∂ZαDR
e

∂αDR
e

)−1

=−ε
αDR

e

π
− ∑

i, j,k,l,m

β DR
e, i jklm

(
αDR

s

π

)i(
αDR

e

π

) j(
ηDR

1

π

)k(
ηDR

2

π

)l(
ηDR

3

π

)m

β DR
Ve = µ2 d

d µ2

αDR
Ve

π
=−

(
ε

αDR
Ve

π
+

αDR
Ve

ZαDR
Ve

∂ZαDR
Ve

∂αDR
s

β DR+
αDR

Ve

ZαDR
Ve

∂ZαDR
Ve

∂αDR
e

β DR
e +

αDR
Ve

ZαDR
Ve

∂ZαDR
Ve

∂ηDR
i

β DR
ηi

)

×

(
1+

αDR
Ve

ZαDR
Ve

∂ZαDR
Ve

∂αDR
Ve

)−1

=−
αDR

Ve

π


ε + ∑

i, j,k,l,m

β DR
Ve, i jklm

(
αDR

s

π

)i(
αDR

e

π

) j(
ηDR

1

π

)k(
ηDR

2

π

)l(
ηDR

3

π

)m



β DR
φ = µ2 d

d µ2

αDR
φ

π
=−


ε

αDR
φ

π
+

αDR
φ

ZαDR
φ

∂ZαDR
φ

∂αDR
s

β DR+
αDR

φ

ZαDR
φ

∂ZαDR
φ

∂αDR
e

β DR
e +

αDR
φ

ZαDR
φ

∂ZαDR
φ

∂ηDR
i

β DR
ηi




×


1+

αDR
φ

ZαDR
φ

∂ZαDR
φ

∂αDR
φ




−1

=−
αDR

φ

π


ε + ∑

i, j,k,l,m

β DR
φ , i jklm

(
αDR

s

π

)i(
αDR

e

π

) j(
ηDR

1

π

)k(
ηDR

2

π

)l(
ηDR

3

π

)m



(25)

Through three-loop order, theηi do not contribute to the QCDβ -function, β DR, nor to the vacuum

polarization ofV (or Ve). To three-loop order, I find agreement with known results [23, 24] and derive new

results for theβ -function ofαVe. The coefficients of theβ -functions and anomalous dimensions are given

in Appendix B.

By comparingβ DR
Ve, and γDR in Eqs. (B4-B5), we see that the term “ε-scalar” is a misnomer. If the

evanescent part ofV were a true scalar, itsβ -function would coincide (but for a factor of 2) with the mass

anomalous dimension. The pureαDR
s terms do coincide, because there is no non-vanishing contraction of

the Lorentz indices of the evanescentV and those of the gluons. Because there are contractions between the

Lorentz indices of the evanescentV and those of the evanescent gluons, however, terms involving αDR
e do
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not agree.

Calculations in the DRED scheme naturally produce results in terms ofαDR
s while the standard result

has been expressed in terms ofαMS
s . One can always convert one renormalized coupling to another. The

rule for convertingαDR
s → αMS

s , derived in Refs. [24, 25], is

αDR
s = αMS

s


1+

(
αMS

s

π

)
CA

12
+

(
αMS

s

π

)2
11
72

C2
A −

(
αMS

s

π

)(
αDR

e

π

)
CF N f

16
+ . . .


 (26)

When the result is expressed in terms ofαMS
s , all αDR

e terms drop out.

B. Vacuum polarization in the DRED scheme

In the DRED scheme, there are two independent transverse vacuum polarization tensors,

ℑ
[

Π(B)
µν (Q)

∣∣∣
DRED

]
=

−Q2 ĝµν +QµQν

3
ℑ
[

Π(B)
A (Q)

∣∣∣
DRED

]
−Q2 δµν

2ε
ℑ
[

Π(B)
B (Q)

∣∣∣
DRED

]
, (27)

where

ℑ
[

Π(B)
A (Q)

∣∣∣
DRED

]
= αB

V Nc ∑
f

Q2
f

(
4π

Q2eγE

)ε{

1+

(
αB

s

π

)(
4π

Q2 eγE

)ε
CF

[
3
4
+ ε
(

51
8

−6ζ3

)
+ ε2

(
497
16

−
15
4

ζ2−15ζ3−9ζ4

)
+O(ε3)

]

+

(
αB

e

π

)(
4π

Q2 eγE

)ε
CF

[
−ε

3
4
− ε2 29

8
+O(ε3)

]

+

(
αB

s

π

)2 ( 4π
Q2eγE

)2ε [1
ε

(
11
16

CF CA −
1
8

CF N f

)
−

3
32

C2
F +

(
77
8
−

33
4

ζ3

)
CF CA −

(
7
4
−

3
2

ζ3

)
CF N f

+ ε
(

C2
F

(
−

141
32

−
111
8

ζ3+
45
2

ζ5

)
+CF CA

(
15301
192

−
231
32

ζ2−
193
4

ζ3−
99
8

ζ4−
15
4

ζ5

)

+CF N f

(
−

1355
96

+
21
16

ζ2+
17
2

ζ3+
9
4

ζ4

))
+O(ε2)

]

+

(
αB

e

π

)2 ( 4π
Q2eγE

)2ε [3
4

C2
F −

3
8

CF CA +
3
16

CF N f − ε
(

47
8

C2
F −

11
4

CF CA +
7
4

CF N f

)
+O(ε2)

]

+

(
αB

s

π

)(
αB

e

π

) (
4π

Q2eγE

)2ε [
−

9
8

C2
F − ε

(
141
16

C2
F +

21
16

CF CA

)
+O(ε2)

]
+O

((
αB

s

π
,
αB

e

π

)3
)}

,

(28)
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and

ℑ
[

Π(B)
B (Q)

∣∣∣
DRED

]
= αB

Ve Nc ∑
f

Q2
f

(
4π

Q2 eγE

)ε{
ε +2ε2+

(
4−

3
2

ζ2

)
ε3+O(ε4)

(
αB

s

π

)(
4π

Q2eγE

)ε
CF

[
3
2
+ ε

29
4

+ ε2
(

227
8

−
15
2

ζ2−6ζ3

)
+O(ε3)

]

+

(
αB

e

π

)(
4π

Q2eγE

)ε
CF

[
−1−4ε − ε2

(
27
2
−5ζ2

)
+O(ε3)

]

+

(
αB

s

π

)2 (
4π

Q2 eγE

)2ε [1
ε

(
9
8

C2
F +

11
16

CF CA −
1
8

CF N f

)
+

279
32

C2
F +

199
32

CF CA −
17
16

CF N f

+ ε
(

C2
F

(
3139
64

−
189
16

ζ2−
45
4

ζ3

)
+CF CA

(
2473
64

−
231
32

ζ2−
75
8

ζ3

)

+CF N f

(
−

207
32

+
21
16

ζ2+
3
2

ζ3

))
+O(ε2)

]

+

(
αB

s

π

)(
αB

e

π

) (
4π

Q2 eγE

)2ε [
−

1
ε

9
4

C2
F −

129
8

C2
F −

3
8

CF CA

−ε
((

671
8

−
189
8

ζ2−9ζ3

)
C2

F +
53
16

CF CA

)
+O(ε2)

]

+

(
αB

e

π

)2 (
4π

Q2 eγE

)2ε [1
ε

(
C2

F −
1
4

CF CA +
1
8

CF N f

)
+

13
2

C2
F −

3
2

CF CA +
15
16

CF N f

+ε
((

31−
21
2

ζ2−
3
4

ζ3

)
C2

F −

(
53
8

−
21
8

ζ2−
3
8

ζ3

)
CF CA +

(
157
32

−
21
16

ζ2

)
CF N f

)
+O(ε2)

]

+O

((
αB

s

π
,
αB

e

π

)3
)}

,

(29)

whereO

((
αB

s

π
,
αB

e

π

)3
)

denotes terms for which the sum of the powers of

(
αB

s

π

)
and

(
αB

e

π

)
is at least

three.

Upon renormalization according to Eq. (24) and expanding interms ofαMS
s according to Eq. (26), I find
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that

ℑ [ΠA(Q)|DRED] = αV Nc ∑
f

Q2
f

{
1+

(
αDR

s

π

)
3
4

CF

[
1+

(
αDR

s

π

)
β DR

20 ln
µ2

Q2

]

+

(
αDR

s

π

)2[
−C2

F
3
32

+CF CA

(
121
32

−
11
4

ζ3

)
+CF N f

(
−

11
16

+
1
2

ζ3

)]
+O

((
αB

s

π
,
αB

e

π

)3
)


= αV Nc ∑
f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
3
32

+CF CA

(
123
32

−
11
4

ζ3

)
+CF N f

(
−

11
16

+
1
2

ζ3

)]
+O



(

αMS
s

π

)3





 ,

ℑ [ΠB(Q)|DRED] = O(ε) .

(30)

C. Total Decay rate and annihilation cross section in the DRED scheme

As in the CDR scheme, the decay rate and annihilation cross section are determined from the imaginary

part of the forward scattering amplitude.

ΓDRED
V→ hadrons=

1
MV

1
Nspins

∑
λ

ε µ(Q,λ )ℑ
[

Πµν(Q)
∣∣
DRED

]
εν(Q,λ )∗ , (31)

where

1
Nspins

∑
λ

ε µ(Q,λ )εν(Q,λ )∗ =
1
3

(
−ĝµν +

Qµ Qν

M2
V

−δ µν
)
. (32)

The evanescent part of the spin average contracts only with theΠB(Q) term, which has been renormalized

to be of order(ε), so that the result is:

ΓDRED
V→ hadrons=

αV MV

3
Nc ∑

f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
3
32

+CF CA

(
123
32

−
11
4

ζ3

)
+CF N f

(
−

11
16

+
1
2

ζ3

)]
+O



(

αMS
s

π

)3





 ,

(33)

just like in the CDR calculation.

For the annihilation cross sectionσe+ e−→ hadrons, one attaches fermion bilinears to each end of the vac-
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uum polarization tensor and averages over the spins.

σ DRED
e+ e−→ hadrons=

2
Q2

e2

4 ∑
λ λ ′

〈
v(pe+ ,λ ) |γ̂µ |u(pe− ,λ

′
)
〉

Q2 ℑ
[

Πµν(Q)
∣∣
DRED,αV →α

]
〈

u(pe− ,λ
′
) |γ̂ν |v(pe+ ,λ )

〉

Q2

+
2

Q2

e2
ℓe

4 ∑
λ λ ′

〈
v(pe+ ,λ ) |γ̄µ |u(pe− ,λ

′
)
〉

Q2 ℑ
[

Πµν(Q)
∣∣
DRED,αV→α

]
〈

u(pe− ,λ
′
) |γ̄ν |v(pe+ ,λ )

〉

Q2 ,

(34)

whereeℓe represents the coupling of the evanescent photon to the electron. Combining the spinor bilinears

into traces,

1
2 ∑

λ λ ′

〈
v(pe+ ,λ ) |γ̂µ |u(pe− ,λ

′
)
〉〈

u(pe− ,λ
′
) |γ̂ν |v(pe+ ,λ )

〉
=

1
2

Tr
[
/pe+

γµ
/pe−

γν
]
=
(
−Q2 ĝµ ν +Qµ Qν)

1
2 ∑

λ λ ′

〈
v(pe+ ,λ ) |γ̄µ |u(pe− ,λ

′
)
〉〈

u(pe− ,λ
′
) |γ̄ν |v(pe+ ,λ )

〉
=

1
2

Tr
[
/pe+

γ̄µ
/pe−

γ̄ν
]
=
(
−Q2δ µ ν)

(35)

The final result is

σ DRED
e+ e−→ hadrons=

4π α2

3Q2 Nc ∑
f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
3
32

+CF CA

(
123
32

−
11
4

ζ3

)
+CF N f

(
−

11
16

+
1
2

ζ3

)]
+O



(

αMS
s

π

)3





 ,

(36)

again in agreement with Eqs. (2-3). As promised, under the DRED scheme renormalization program,

evanescent Green functions are rendered finite by renormalization and contribute to scattering amplitudes

at order(ε). Also as promised, the results are completely equivalent tothose of the CDR scheme.

V. THE FOUR DIMENSIONAL HELICITY SCHEME

In the Four Dimensional Helicity scheme, one defines an enlarged vector space of dimensionalityDm =

4−2ε , in which loop momenta take values, as in the CDR scheme. In addition, one defines a still larger

vector space, of dimensionalityDs = 4, in which internal spin degrees of freedom take values. Theprecise

rules for the FDH scheme are given in Ref. [5]. They are:

1. As in ordinary dimensional regularization, all momentumintegrals are integrated overDm dimen-

sional momenta. Metric tensors resulting from tensor integrals areDm dimensional.

2. All “observed” external states are taken to be four dimensional, as are their momenta and polarization

vectors. This facilitates the use of helicity states for observed particles.
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3. All “unobserved” or internal states are treated asDs dimensional, and theDs dimensional vector

space is taken to be larger than theDm dimensional vector space. Unobserved states include virtual

states inside of loops, virtual states inside of trees as well as external states that have infrared sensitive

overlaps with other external states.

4. Both theDs andDm dimensional vector spaces are larger than the standard fourdimensional space-

time, so that contraction of four dimensional objects withDm or Ds dimensional objects yields only

four dimensional components.

To keep track of the many vector spaces and their overlappingdomains, I give the result of the contrac-

tions of the various metric tensors with one another,

gµν gµν = Ds , ĝµν ĝµν = Dm , η µν ηµν = 4, δ µν δµν = Dx = Ds −Dm

gµν ĝρ
ν = ĝµρ , gµνηρ

ν = η µρ , ĝµνηρ
ν = η µρ ,

gµνδ ρ
ν = δ µρ , ĝµνδ ρ

ν = 0, η µνδ ρ
ν = 0.

(37)

Like the HV scheme, the FDH scheme treats observed states as four dimensional. In inclusive calcula-

tions, however, where there are infrared overlaps among external states, the external states are taken to be

Ds dimensional in the infrared regions.

As in the DRED scheme, spin degrees of freedom take values in avector space that is larger than that in

which momenta take values. It would seem, therefore, that the same remarks regarding the Ward Identity

and the conclusion that theDx = Ds −Dm dimensional components of the gauge fields and their couplings

must be considered as distinct from theDm dimensional gauge fields and couplings would apply. That is

not, however, how the FDH scheme is used. All field componentsin theDs dimensional space are treated

as gauge fields and no distinction is made between the couplings. It is common, however, to define an

interpolating scheme, the “δR” scheme, in whichDs = 4−2ε δR. The parameterδR interpolates between

the HV scheme (δR = 1) and the FDH scheme (δR = 0). Using this scheme gives one a handle on the impact

of the evanescent degrees of freedom on the result, but not onthe impact of a distinct evanescent coupling.

It is claimed [5] that the essential difference between the FDH and DRED schemes is that in the former

Dm > 4, while in the latterDm < 4. It must be this difference, then, that allows for the very different

handling of the evanescent couplings and degrees of freedom. We shall see what impact this choice has in

the calculation and discussion below.
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A. Renormalization

I will not give detailed results for the renormalization parameters of the FDH scheme. There is

no point in doing so because, as I will show, the rules of the FDH scheme enumerated in the previ-

ous section are not consistent with a successful renormalization program. The first sign that there is

a problem with the renormalization program comes in the computation of the one-loop renormalization

constants. In particular, the gluon vacuum polarization tensor splits into two independent components,

Πµν
A = ΠA(Q2)

(
(−Q2ĝµν +Qµ Qν) andΠµν

B = ΠB(Q2)δ µν , both of which are singular. This is a clear

warning that what the FDH scheme calls the gluon is in fact twodistinct sets of degrees of freedom. If I

ignoreΠB and just renormalizeΠA, I find the usual result that

β FDH
0 =

11
12

CA −
1
6

N f . (38)

Note that I also get this result if I take the spin average (trace) of the full vacuum polarization tensor.

BecauseΠB is weighted by a factor of 2ε , its contribution to the spin average is not singular. Because the

leading order term in the quantities being calculated is of order one, and the NLO term of orderαs, this

result for the one-loopβ -function is all that is needed to compute the renormalized cross section at NNLO.

Furthermore, the many NLO results that have been obtained using the FDH scheme have all renormalized

using the above result forβ FDH
0 .

When I try to proceed to the two-loop beta function, I find thatbothΠA andΠB contribute singular terms

to the spin-averaged vacuum polarization, while if I again ignoreΠB and renormalizeΠA, I obtain the usual

value forβ1,

β FDH
1 =

17
24

C2
A −

5
24

CA N f −
1
8

CF N f . (39)

This seems to be the choice made in Ref. [5] as they quote only the result for terms proportional toQµQν ,

which would be part of myΠA. Since the standard lore has been thatαFDH
s and αDR

s coincide, at least

through second order corrections, this seems to be the most reasonable choice. Furthermore, it means that

the conversion toαMS
s will be [5, 25]

αFDH
s = αMS

s

[
1+

(
αMS

s

π

)
CA

12
+ . . .

]
(40)

As it turns out, it does not matter what choice one makes as even the one-loop result forβ FDH
0 , which seems

safe if only because it is familiar, leads to the violation ofunitarity.
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B. Vacuum polarization in the FDH scheme

Leaving aside the question of renormalization beyond one-loop, I will proceed with the calculation of

theV -boson vacuum polarization. In performing calculations inthe FDH scheme, it becomes apparent that

the results are identical, term-by-term. to the calculation in the DRED scheme, except that the evanescent

gluons are identified as gluons and the couplingαe is set toαs. Therefore I find that

ℑ
[

Π(B)
µν (Q)

∣∣∣
FDH

]
=

−Q2 ĝµν +QµQν

3
ℑ
[

Π(B)
A (Q)

∣∣∣
FDH

]
−Q2 δµν

2ε
ℑ
[

Π(B)
B (Q)

∣∣∣
FDH

]
, (41)

where

ℑ
[

Π(B)
A (Q)

∣∣∣
FDH

]
= αB

V Nc ∑
f

Q2
f

(
4π

Q2eγE

)ε{

1+

(
αB

s

π

)(
4π

Q2eγE

)ε
CF

[
3
4
+ ε
(

45
8

−6ζ3

)
+ ε2

(
439
16

−
15
4

ζ2−15ζ3−9ζ4

)
+O(ε3)

]

+

(
αB

s

π

)2 ( 4π
Q2eγE

)2ε [1
ε

(
11
16

CF CA −
1
8

CF N f

)
−

15
32

C2
F +

(
37
4

−
33
4

ζ3

)
CF CA −

(
25
16

−
3
2

ζ3

)
CF N f

+ ε
(

C2
F

(
−

235
32

−
111
8

ζ3+
45
2

ζ5

)
+CF CA

(
14521
192

−
231
32

ζ2−
193
4

ζ3−
99
8

ζ4−
15
4

ζ5

)

+CF N f

(
−

1187
96

+
21
16

ζ2+
17
2

ζ3+
9
4

ζ4

))
+O(ε2)

]
+O

((
αB

s

π

)3
)}

,

(42)

and

ℑ
[

Π(B)
B (Q)

∣∣∣
FDH

]
= αB

V Nc ∑
f

Q2
f

(
4π

Q2eγE

)ε{

ε +
(

αB
s

π

)(
4π

Q2eγE

)ε
CF

[
1
2
+ ε

13
4
+ ε2

(
119
8

−
5
2

ζ2−6ζ3

)
+O(ε3)

]

+

(
αB

s

π

)2 ( 4π
Q2 eγE

)2ε [1
ε

(
−

1
8

C2
F +

7
16

CF CA

)
−

29
32

C2
F +

139
32

CF CA −
1
8

CF N f

+ ε
(

C2
F

(
−

245
64

+
21
16

ζ2−3ζ3

)
+CF CA

(
1837
64

−
147
32

ζ2−9ζ3

)

+CF N f

(
−

25
16

+
3
2

ζ3

))
+O(ε2)

]
+O

((
αB

s

π

)3
)}

.

(43)

Upon renormalizing such that

(
αB

s

π

)
→

(
αFDH

s

π

)(
4π

Q2eγE

)−ε
(

1−
β FDH

0

ε

(
αFDH

s

π

))
, αB

V → αV

(
4π

Q2eγE

)−ε
, (44)



21

I find that

ℑ [ΠA(Q)|FDH ] = αV Nc ∑
f

Q2
f

{
1+

(
αFDH

s

π

)
3
4

CF

[
1+

(
αFDH

s

π

)
β FDH

0 ln
µ2

Q2

]

+

(
αFDH

s

π

)2[
−C2

F
15
32

+CF CA

(
131
32

−
11
4

ζ3

)
+CF N f

(
−

5
8
+

1
2

ζ3

)]
+O



(

αFDH
s

π

)3







= αV Nc ∑
f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
15
32

+CF CA

(
133
32

−
11
4

ζ3

)
+CF N f

(
−

5
8
+

1
2

ζ3

)]
+O



(

αMS
s

π

)3





 ,

ℑ [ΠB(Q)|FDH ] = αV Nc ∑
f

Q2
f

{(
αFDH

s

π

)
1
2

CF

[
1+

(
αFDH

s

π

)
β FDH

0 ln
µ2

Q2

]

+

(
αFDH

s

π

)2[
1
ε

(
−C2

F
1
8
−CF CA

1
48

+CF N f
1
12

)(
1+3ε ln

µ2

Q2

)

−C2
F

29
32

+CF CA
131
96

−CF N f
5
12

]
+O



(

αFDH
s

π

)3







= αV Nc ∑
f

Q2
f

{(
αMS

s

π

)
1
2

CF

[
1+

(
αMS

s

π

)
β FDH

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2[
1
ε

(
−C2

F
1
8
−CF CA

1
48

+CF N f
1
12

)(
1+3ε ln

µ2

Q2

)

−C2
F

29
32

+CF CA
45
32

−CF N f
5
12

]
+O



(

αMS
s

π

)3





 .

(45)

C. Total Decay rate and annihilation cross section in the FDH scheme

The results of the vacuum polarization calculation look to be disastrous asΠB is singular at orderα2
s .

However, the rules of the FDH scheme, enumerated above, specify that external states are taken to be four

dimensional. This means that the spin average of the vector polarizations is

1
Nspins

∑
λ

ε µ(Q,λ )εν(Q,λ )∗ =
1
3

(
−η µν +

Qµ Qν

M2
V

)
, (46)

which annihilatesΠµν
B

∣∣
FDH . For the annihilation rate, the rules are a bit ambiguous, asthey could be read

to mean that the lepton spinors are four dimensional but the vertex (γµ ) connecting them to the loop part

of the amplitude isDs dimensional. This would bringΠµν
B

∣∣
FDH into the calculation and lead to a singular

result at orderα2
s . However, Rule 4 could also be read to mean that the vertex sandwiched between four

dimensional states is also reduced to being four dimensional.
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Assuming this interpretation, I find that

ΓFDH
V→ hadrons=

αV MV

3
Nc ∑

f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
15
32

+CF CA

(
133
32

−
11
4

ζ3

)
+CF N f

(
−

5
8
+

1
2

ζ3

)]
+O



(

αMS
s

π

)3





 ,

(47)

and

σ FDH
e+ e−→ hadrons=

4π α2

3Q2 Nc ∑
f

Q2
f

{
1+

(
αMS

s

π

)
CF

3
4

[
1+

(
αMS

s

π

)
β MS

0 ln
µ2

Q2

]

+

(
αMS

s

π

)2 [
−C2

F
15
32

+CF CA

(
133
32

−
11
4

ζ3

)
+CF N f

(
−

5
8
+

1
2

ζ3

)]
+O



(

αMS
s

π

)3





 .

(48)

The results agree with one another, are correct through NLO and are finite through NNLO. Unfortunately,

the NNLO terms are not correct! Because the discrepancy is finite, there remains the possibility that the

conversion fromαFDH
s to αMS

s given in Eq. (40) is incorrect, although this would contradict previous re-

sults [5, 25]. If this were the case, then one would expect that the N3LO result would also be finite but

incorrect. If, instead, the finite discrepancy at NNLO is theresult of a failure of the renormalization pro-

gram, the N3LO result should be singular.

VI. PARTIAL RESULTS AT N3LO

Although first computed some time ago, the vacuum polarization at four loops [13, 14] remains a

formidable calculation. It is only necessary, however, to look at a small part of the calculation: the terms

proportional to the square of the number of fermion flavors,N2
f . This is fortunate for a couple of reasons: 1)

there are only three four-loop diagrams to be computed, see Fig. (3), (plus three more in the DRED scheme,

where the gluons are replaced by evanescent gluons); and 2) the contributions from renormalization in the

CDR and FDH schemes come only from the leading term in the QCDβ -function (β0 andβ 2
0 ). Thus, my

result will not depend on how the higher order terms of theβ -function are chosen in the FDH scheme.

A. The CDR scheme

In the CDR scheme, there are only three four-loop diagrams that need to be calculated. The first two

are simply iterated bubble diagrams and are essentially trivial. The third is slightly non-trivial, so I again
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FIG. 3: Four loop diagrams that contribute to theN2
f term at N3LO.

use my QGRAF-FORM-REDUZE suite of programs to address the problem. All of the four-loop master

integrals can be found in Ref. [26]. I find the result of the four-loop calculation to be

ℑ
[

Π(B)
µν (Q)

∣∣∣
CDR

]

α3
s N2

f

=
−Q2gµν +QµQν

3
αB

V Nc ∑
f

Q2
f

(
4π

Q2eγE

)4ε

×

(
αB

s

π

)3

CF N2
f

[
1

48ε2 +
1
ε

(
121
288

−
1
3

ζ3

)
+

2777
576

−
3
8

ζ2−
19
6

ζ3−
1
2

ζ4

]

(49)

Renormalizing, I find

ℑ
[

Πµν(Q)
∣∣
CDR

]
α3

s N2
f
=

−Q2gµν +QµQν

3
αV Nc ∑

f

Q2
f

(
αMS

s

π

)3

CF N2
f

×

[
151
216

−
1
24

ζ2−
19
36

ζ3+

(
11
48

−
1
6

ζ3

)
ln

(
µ2

Q2

)
+

1
48

ln2
(

µ2

Q2

)] (50)

Using this term to compute theα3
s N2

f contribution to the decay rate and annihilation cross section as in

Eqs. (14,17), I find the result expected from Eqs. (2-3).



24

B. The DRED scheme

In the DRED scheme, there are three extra four-loop diagramsto compute, obtained by replacing gluon

propagators with evanescent gluon propagators. I find

ℑ
[

Π(B)
A (Q)

∣∣∣
DRED

]

α3
s N2

f

= αB
V Nc ∑

f

Q2
f

(
4π

Q2eγE

)4ε
CF N2

f

{

(
αB

s

π

)3 [ 1
48ε2 +

1
ε

(
13
32

−
1
3

ζ3

)
+

7847
1728

−
3
8

ζ2−
53
18

ζ3−
1
2

ζ4

]

+

(
αB

e

π

)3 [
−

1
ε

3
64

−
83
128

]}

ℑ
[

Π(B)
B (Q)

∣∣∣
DRED

]

α3
s N2

f

= αB
Ve Nc ∑

f

Q2
f

(
4π

Q2eγE

)4ε
CF N2

f

{

(
αB

s

π

)3 [ 1
72ε2 +

1
ε

73
432

+
3595
2592

−
1
4

ζ2−
1
3

ζ3

]

+

(
αB

e

π

)3 [
−

1
48ε2 −

1
ε

11
48

−
155
96

+
3
8

ζ2

]}

(51)

Upon renormalizing according to Eq. (24) and converting thecoupling toαMS
s , I obtain

ℑ [ΠA(Q)|DRED]α3
s N2

f

= αV Nc ∑
f

Q2
f CF N2

f

(
αMS

s

π

)3 [
151
216

−
1
24

ζ2−
19
36

ζ3+

(
11
48

−
1
6

ζ3

)
ln

(
µ2

Q2

)
+

1
48

ln2
(

µ2

Q2

)]
,

ℑ [ΠB(Q)|DRED]α3
s N2

f
= O(ε) .

(52)

As for the CDR scheme, this leads to the expected result for the decay rate and annihilation cross section.

C. The FDH scheme

In the FDH scheme, however, I find that

ℑ
[

Π(B)
A (Q)

∣∣∣
FDH

]

α3
s N2

f

= αB
V Nc ∑

f

Q2
f

(
4π

Q2eγE

)4ε
CF N2

f

×

(
αB

s

π

)3 [ 1
48ε2 +

1
ε

(
23
64

−
1
3

ζ3

)
+

13453
3456

−
3
8

ζ2−
53
18

ζ3−
1
2

ζ4

]
,

ℑ
[

Π(B)
B (Q)

∣∣∣
FDH

]

α3
s N2

f

= αB
V Nc ∑

f

Q2
f

(
4π

Q2eγE

)4ε
CF N2

f

×

(
αB

s

π

)3 [
−

1
144ε2 −

1
ε

13
216

−
295
1296

+
1
8

ζ2−
1
3

ζ3

]
.

(53)
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I renormalize according to

αB
s =

(
µ2 eγE

4π

)ε

αFDH
s


1−

(
αFDH

s

π

)
β FDH

0

ε
+

(
αFDH

s

π

)2(
β FDH

0
2

ε2 −
1
2

β FDH
1

ε

)
 , (54)

keeping only terms proportional toαFDH
s

3
N2

f . Such terms can only come from theβ FDH
0 andβ FDH

0
2

terms,

so any uncertainty aboutβ FDH
1 has no effect here. The renormalized result is

ℑ [ΠA(Q)|FDH ]α3
s N2

f

= αV Nc ∑
f

Q2
f CF N2

f

(
αFDH

s

π

)3 [
−

1
192ε

+
1843
3456

−
1
24

ζ2−
19
36

ζ3+

(
3
16

−
1
6

ζ3

)
ln

(
µ2

Q2

)
+

1
48

ln2
(

µ2

Q2

)]
,

ℑ [ΠB(Q)|FDH ]α3
s N2

f

= αV Nc ∑
f

Q2
f CF N2

f

(
αFDH

s

π

)3 [
1

144ε2 −
5

432ε
−

869
2592

+
1
18

ζ2−
5
27

ln

(
µ2

Q2

)
−

1
36

ln2
(

µ2

Q2

)]
.

(55)

The demand that external states be four dimensional removesthe ΠB term, but there is also a pole inΠA

and no finite renormalization to put the result in terms ofαMS
s can remove it. I must therefore conclude that

the FDH scheme is not consistent with unitarity.

VII. DISCUSSION

In this paper, I have performed a high-order calculation in each of three regularization schemes: the

conventional dimensional regularization (CDR) scheme; the dimensional reduction (DRED) scheme; and

the four dimensional helicity (FDH) scheme. Of these, the CDR scheme is by far the most widely used,

and was, in fact, used to compute the original results that I use as my test basis. The FDH scheme has

primarily been used to produce one-loop helicity amplitudes, although it has been used in a few cases in

two-loop calculations and also as a supersymmetric regulator. The primary purpose of this paper was to

put the FDH scheme to a stringent test and determine its reliability in a high order calculation. The DRED

scheme is primarily used as a supersymmetric regulator and is quite cumbersome for non-supersymmetric

calculations. It is, however, closely related to the FDH scheme and has been demonstrated [8, 9, 23, 24] to

be equivalent to the CDR scheme through four loops. A close comparison of the details of the calculations

in the FDH and DRED schemes helps to identify where and when things go wrong with the former.

In the cases of the CDR and DRED schemes, I have reproduced theknown result for the hadronic decay

width of a massive vector boson (or equivalently, thee+e− annihilation rate to hadrons) through NNLO,

and a few terms at N3LO. This represents computing the QCD corrections to the vacuum polarization of
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the photon (V boson) through three loops, with partial results at four loops. In addition, I have reproduced

the renormalization parameters of QCD (β -function(s), mass anomalous dimension) through three loop

order. This establishes that I have theoretical control over all of the needed calculations through three loop

order. In order to obtain the partial N3LO result in the DRED scheme, I also needed the three-loop QCD

corrections to theβ -function of the evanescent photon (V boson).

The calculation of theV boson decay rate provides another instance of the equivalence the CDR and

DRED schemes at the four-loop level [23]. The ability to obtain the correct result using the DRED scheme

required a delicate balance of the many extra couplings and their renormalization effects upon one another.

Indeed, given the complexity needed to make the DRED scheme work, it seems that there should be little

surprise that the FDH scheme, with its greater simplicity, should fail.

Perhaps, it is worth considering how it is that the FDH schemehas been used successfully in so many

calculations. Its most common use has been in the construction of one-loop scattering amplitudes via

unitarity cuts, using four-dimensional helicity amplitudes as the primary building blocks. Thus, it is natural

that it restricts observed (external) states to be four-dimensional. Because the FDH scheme defines that

Ds > Dm > 4, this restriction excludes evanescent fields from appearing as external states. This is very

important because, as one can see from comparing Eqs. (30) and (55), terms involving external evanescent

states are the most dangerous. Even though it does not renormalize evanescent states and couplings properly

the FDH is able to get the non-evanescent part of the vacuum polarization tensor correct at NLO, while the

evanescent part is ready to contribute a finite error at NLO. Because the DRED scheme defines 4> Dm, the

evanescent states areparts of the classical four dimensional states. It would not seem natural to exclude

them from appearing as external states. Instead, they are handled through the renormalization program

so that their effects are removed from physical scattering amplitudes. In the FDH scheme, the evanescent

states are insteadadditions to the four dimensional states (as are the extra degrees of freedom that come

from regularizing momentum integrals) and there is no barrier to excluding them as observed states.

In an FDH scheme calculation, a tree-level term is strictly four-dimensional and is free from evanescent

contributions. (Depending on interpretation, this may be astronger condition than is given in the rules

of Ref [5], but it is the actual condition imposed if one defines the tree-level amplitude as being a four-

dimensional helicity amplitude.) Because evanescent terms are absent at tree-level, they cannot generate

ultraviolet poles at one loop. Even if one were to renormalize them properly, as in the DRED scheme,

there would be nowhere to make the counter-term insertion! In fact, the one-loop contributions are not even

finite, as the counting over the number of states (2ε) makes the result of orderε . This is clearly illustrated

in Eq. (28). Neitherαs, nor αe appear at LO. Therefore, the contributions at NLO are finite for αs and of

orderε (because of the counting over the number of states) forαe. In more complicated QCD calculations,
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αs will appear at LO and will therefore contribute an ultraviolet pole at one-loop, which will be removed

by renormalization.αe, however, will still make its first appearance at NLO and thatcontribution will be of

orderε . Thus, one can expect that the FDH scheme, used as above, should be reliable for computing NLO

corrections through finite order (ε0). The error from improperly identifying evanescent quantities should be

of orderε . At NNLO and beyond however, the failure to properly identify and renormalize the evanescent

parameters leads to incorrect results and the violation of unitarity.

So, as suggested [5], one of the FDH scheme’s most important assets is that it definesDs > Dm > 4. This

feature is also the scheme’s undoing, though not of necessity. Because the effects of external evanescent

states can be removed (or indeed never seen) by imposing a four-dimensionality restriction, and because the

effects of internal evanescent states therefore contribute at orderε at one loop, it appears that one can simply

ignore the distinction between gauge and evanescent terms.In contrast, because the DRED scheme must

deal with external evanescent terms from the beginning, itsadvocates were forced to develop a successful

renormalization program [8, 9]. Extensive testing [8, 9, 23, 24] has shown that this program works to at

least the fourth order and that it handles the effects of bothinternal and external evanescent contributions.

As I remarked earlier, calculations in the DRED and FDH schemes are term-by-term identical, except for

the identification of the couplings and propagating states.Thus, one could make the FDH scheme a unitary

regularization scheme for non-supersymmetric calculations by recognizing the distinction between gauge

and evanescent terms and adopting the DRED scheme’s renormalization program. This would, of course,

do away with any notion of the FDH scheme being simple, but it would at least be correct. The FDH scheme

would still be distinguished from the DRED scheme by the factthatDs > Dm > 4, which facilitates helicity

amplitude calculations and, in chiral theories, improves its situation with regard toγ5 and the Levi-Civita

tensor [27, 28]. Furthermore, with a valid renormalizationprogram, the requirement of four-dimensional

observed states could be made optional. This would lead to two linked, slightly different, schemes, just

like the HV and CDR schemes. This suggestion has already beenmade by Signer and Stöckinger [29] who

in fact define their version of the DRED scheme to have precisely the Ds > Dm > 4 hierarchy of the FDH

scheme.

Thus, in conclusion, the CDR and DRED schemes are correct andequivalent ways of performing QCD

calculations through N3LO. The FDH scheme, however, has been shown to be incorrect and to violate

unitarity beyond NLO when applied to non-supersymmetric theories. It must therefore be viewed as a

shortcut for performing NLO calculations and should only beused for such calculations with great caution.
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Appendix A: Renormalization parameters for the CDR scheme

To three-loop order, I find the coefficients of theβ -function to be

β MS
0 =

11
12

CA −
1
6

N f , β MS
1 =

17
24

C2
A −

5
24

CA N f −
1
8

CF N f ,

β MS
2 =

2857
3456

C3
A −

1415
3456

C2
A N f −

205
1152

CACF N f +
1
64

C2
F N f +
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3456

CA N2
f +

11
576

CF N2
f ,

(A1)

while the coefficients of the mass anomalous dimension are

γMS
0 =

3
4

CF , γMS
1 =

3
32

C2
F +

97
96

CF CA −
5
48

CF N f ,

γMS
2 =

129
128

C3
F −

129
256

C2
F CA +

11413
6912

CF C2
A −

(
23
64

−
3
8

ζ3

)
C2

F N f −

(
139
864

+
3
8

)
CF CA N f −

35
1728

CF N2
f ,

(A2)

in agreement with known results [30–33].

Appendix B: Renormalization parameters for the DRED scheme

The coefficients of the QCDβ -function,β DR(αDR
s ) through three loops are:

β DR
20 =
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CA −
1
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N f , β DR
30 =
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C2
A −
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CA N f −
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,CA N2
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11
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CF N2
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β DR
31 =−

1
16

CF N f

(
3
2

CF

)
, β DR

22 =−
1
16

CF N f

(
1
2

CA −CF −
1
4

N f

)
,

(B1)

where the notation is that

β DR(αDR
s ) =−ε

αDR
s

π
− ∑

i, j,k,l,m

β DR
i jklm

(
αDR

s

π

)i(
αDR

e

π

) j(
ηDR

1

π

)k(
ηDR

2

π

)l(
ηDR

3

π

)m

. (B2)

The last three indices ofβ DR
i jklm are omitted when they are all equal to 0.
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Theβ -function of evanescent QCD coupling,β DR
e, (αDR

e ) is

β DR
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(B3)
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The mass anomalous dimension in the DRED scheme is

γDR
10 =

3
4

CF

γDR
20 =

3
32

C2
F +

91
96

CACF −
5
48

CF N f γDR
11 =−

3
8

C2
F γDR

02 =
1
4

C2
F −

1
8

CACF +
1
16

CF N f

γDR
30 =

129
128

C3
F −

133
256

C2
F CA +

10255
6912

CF C2
A −

(
23
64

−
3
8

ζ3

)
C2

F N f −

(
281
1728

−
3
8

ζ3

)
CACF N f −

35
1728

CF N2
f

γDR
21 =−

27
64

C3
F −

21
32

C2
F CA −

15
256

CF C2
A +

9
64

C2
F N f

γDR
12 =

9
8

C3
F −

21
32

C2
F CA +

3
64

CF C2
A +

3
128

CF CA N f +
3
16

C2
F N f

γDR
03 =−

3
8

C3
F +

3
8

C2
F CA −

3
32

CF C2
A +

1
16

CF CA N f −
5
32

C2
F N f −

1
128

CF N2
f

γDR
02100=

3
8

γDR
02010=−

5
12

γDR
02001=−

1
4

γDR
01200=−

9
64

γDR
01101=

3
16

γDR
01020=

5
4

γDR
01002=−

7
32

(B4)

The above results forβ DR, β DR
e, andγDR all agree with the results of Refs. [23, 24]

The QCD contributions to theβ -function of the evanescent part of a non-QCD gauge couplingis a new

result. I find
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