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Parity-violating (PV) elastic electron-proton scattering measures Q-weak for the proton,Qp
W. To extractQp

W
from data, all radiative corrections must be well-known. Recently, disagreement on theγZ-box contribution to
Qp

W has prompted the need for further analysis of this term. Here, we support one choice of a debated factor,
go beyond the previously assumed equality of electromagnetic andγZ structure functions, and find an analytic
result for one of theγZ-box integrals. Our numerical evaluation of theγZ-box is in agreement within errors with
previous reports, albeit somewhat larger in central value,and is within the uncertainty requirements of current
experiments.

I. INTRODUCTION

Parity-violating (PV) elastic electron-proton scattering
measuresQ-weak for the proton,Qp

W, which in leading or-
der is the proton’sZ-current Dirac form factor and is directly
related to the sine of the Weinberg angle. The Weinberg an-
gle has been measured at a number of energy scales, and part
of the motivation for the PV experiment is to check its evo-
lution against predictions of the standard model. Deviations
from the predictions could be a signal of new physics, that is,
of currently unknown terms in the Lagrangian. Of particu-
lar interest is to check the consistency of the Weinberg angle
measured by NuTeV at a scale of a few GeV2 [1] versus mea-
surements using other processes, albeit there are suggestions
that understanding [2, 3] charge symmetry violating and other
effects involving the heavy nuclear target of the NuTeV ex-
periment may show that the NuTeV result is consistent with
standard model expectations.

Knowing all corrections is important to accurately obtain-
ing Qp

W from the e-p parity violating asymmetry. Correc-
tions from, among other sources,γγ, WW, and ZZ boxes
have been well considered. A surprise came when Gorchtein
and Horowitz [4] evaluated the inelastic corrections to theγZ
box at zero overall momentum transfer (inelastic meaning the
hadron state between theγ andZ connections is not a proton),
using a dispersive method that connected the box evaluation
to the inelastic structure functions. Their result was unexpect-
edly large and of of uncertain robustness. Sibirtsevet al. [5]
subsequently reevaluated theγZ box, finding even larger cor-
rections but importantly asserting that the uncertainty inthe
corrections was safely below the projected uncertainty in the
experimental result. This is in line with the conclusions in[6].

Because of the importance of the consequences and of the
differences in the two results, including an overall factor”2”
in one of the main formulas, we present another visit to this
subject. We corroborate the factor ”2” as given by Sibirtsevet
al. and give numerical evaluations with at least partly different
input that leads to results slightly larger but compatible within
uncertainty limits compared to Sibirtsevet al. We also show a
useful technical advance not mentioned in [4] or [5], that one
of the triple integrals required to obtain the answer can be ana-
lytically done, leading to an easier numerical evaluation of the
final result. Our results are still at zero momentum transfer;
a partonic calculation of theγZ box valid at high momentum

transfer can be found in [7].

II. CALCULATION OF γZ BOX DIAGRAMS

The quantityQp
W is the Z-boson current Dirac form fac-

tor of the proton, evaluated at zero momentum transfer. One
can measure it from the parity violating asymmetry in elastic
electron-proton scattering,

APV =
σR−σL

σR+σL
=

GF

4πα
√

2
t Qp

W , (1)

whereσR,L are cross sections for electron helicitiesλ =±1/2
and unpolarized protons, and we have also given an opera-
tional definition ofQp

W. To lowest order,APV comes from
interference between singleγ and singleZ exchanges, and

ALO
PV =

GF

4πα
√

2
t Qp,LO

W , (2)

wheret is the overall momentum transfer, negative for space-
like momentum transfers, andQp,LO

W = 1−4sin2 θW(0). With
corrections, one has, following [8],

Qp
W = (1+∆ρ +∆e)

(

Qp,LO
W +∆′

e

)

+�WW+�ZZ+Re�γZ.

(3)
TheWW andZZ box diagrams give�WW and�ZZ, and are
well calculated perturbatively. TheγZ box diagrams, Fig. 1,
involve low momentum scales where perturbation theory is
not reliable for the hadronic part of the diagram. Gorchtein
and Horowitz [4], calculating only contributions from the
inelastic intermediate states (elastic contributions have been
considered in [9–12]), showed how to dispersively relate the
γZ box at t = 0 to hadronic structure functions. With some
approximations, they obtained a result that was larger thanex-
pected. Sibirtsevet al.[5] improved the calculation, obtaining
in fact a somewhat larger result but with tighter uncertainty
limits.

Demands on the uncertainty limits are set by current and
planned experiments. The Q-weak experiment at JLab aims
to measureQp

W to about 4% combined statistical and system-
atic error at an incoming electron energy of 1.165 GeV and
MAMI is discussing an experiment with approximately 180
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MeV incoming electron energy measuringQp
W to perhaps a

percent.
Theoretically, the quantity�γZ is obtained from the par-

ity violating part ofMγZ, Fig. 1, by comparison to the corre-
sponding term in singleZ-exchange,

�γZ =
MγZ;λ=1/2−MγZ;λ=−1/2

MZ;λ=1/2−MZ;λ=−1/2
Qp,LO

W . (4)

(Reference [4] presents results usingδγZ =�γZ/Qp,LO
W .)

For the exchange of a Z-boson between an electron with
momentumk and proton with momentump, the denominator
of �γZ is

MZ;λ=1/2−MZ;λ=−1/2 =
8√
2

GFQp,LO
W p ·kge

A. (5)

wherege
A =− 1

2.
The calculation of the numerator of Re�γZ requires the ap-

plication of the optical theorem. The imaginary portion of the
amplitude for photon, Z-boson exchange is

ImMγZ =−1
2

e2
(

g
2cosθW

)2∫ d3~k1

(2π)32E1

4πLµν
γZ WγZ

µν

q2(q2−M2
Z)

(6)

with

Lµν
γZ = 2(ge

V − (2λ )ge
A)

× (kµ
1 kν + kν

1kµ − k1 ·kgµν + i(2λ )εµναβ kαk1β ), (7)

WγZ
µν =

1
4π

∫

d4ηeiqη〈ps
∣

∣JZµ(η)Jγν (0)+ Jγµ(η)JZν (0
∣

∣ ps〉

=
[

(

−gµν +
qµqν

q2

)

FγZ
1 (x,Q2)+

pµ pν

p ·q FγZ
2 (x,Q2)

− iεµναβ
qα pβ

2p ·qFγZ
3 (x,Q2)

]

. (8)

Here,k1 is the intermediate 4-momenta of the electron,Q2 =
−q2, andge

V =− 1
2 +2sin2θW. One obtains

Im
(

MγZ;λ=1/2−MγZ;λ=−1/2
)

=
16π√

2
GFe2

∫

d3~k1

(2π)32E1

1

1+Q2/M2
Z

×
[

ge
A

(

FγZ
1 (x,Q2)+AFγZ

2 (x,Q2)
)

+ge
VBFγZ

3 (x,Q2)
]

(9)
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FIG. 1: Theγ-Z box diagrams.

where

A=
2p ·k1p ·k

Q2p ·q − p2

2p ·q and B=
p ·k+ p ·k1

2p ·q . (10)

Upon changing integration variables using

d3~k1

(2π)32E1
=

dQ2dW2

(2π)24(s−M2)
(11)

(the azimuthal integration has beeen done), Im�γZ becomes

Im�
V
γZ(E) =

α
(2ME)2

∫ s

W2
π

dW2

×
∫ Q2

max

0
dQ2 FγZ

1 (x,Q2)+AFγZ
2 (x,Q2)

1+Q2/M2
Z

, (12)

whereW2
π = (M + mπ)

2, mπ is the mass of the pion, and
Q2

max= (s−M2)(s−W2)/s. TheFγZ
3 structure function has

been dropped because the ratioge
V/ge

A ≈ 0. The remaining
term is labeled by a superscript ”V” to indicated its association
with the vector part of theZ-boson current. This expression
agrees with the result reported in [5].

The real part, Re�γZ, is given by the dispersion relation,

Re�V
γZ(E) =

2E
π

∫ ∞

νπ

dE′

E′2−E2 Im�
V
γZ(E

′) (13)

whereνπ = (W2
π −M2)/2M.

Rewriting Eq. (10) in the current context as

A=
(2ME′)2+2ME′(M2−W2−Q2)−M2Q2

Q2(−M2+W2+Q2)
, (14)

we notice that theE′ dependent terms can be separated from
those dependent onQ2 andW2. The E′ integrands can be
evaluated analytically if the order of integration is switched.
Sliding the energy integration to the inside changes all three
integration bounds. TheW2 integral is now evaluated from
W2

π to ∞, Q2 from 0 to∞, andE′ from Emin =
1

4M [W2−M2+

Q2+((W2−M2+Q2)2+4M2Q2)1/2] to ∞. After evaluating
theE′ integrals, Re�V

γZ becomes

Re�V
γZ(E) =− α

2πM2E

∫ ∞

W2
π

dW2
∫ ∞

0

dQ2

1+Q2/M2
Z

×
{[

1
Emin

+
1

2E
ln

( |Emin−E|
Emin+E

)]

(

F1−
M2FγZ

2

W2−M2+Q2

)

− ln

( |E2
min−E2|
E2

min

)

MFγZ
2

Q2

+ ln

( |Emin−E|
Emin+E

)

2M2EFγZ
2

Q2(W2−M2+Q2)

}

. (15)

III. EVALUATION OF Re�V
γZ

Experimental data do not exist forFγZ
1,2. In the scaling re-

gion, highQ2 and highW, there are separated parton distribu-
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tions [13, 14] and one getsFγZ
1,2 using

FγZ
2 = x∑

q,q̄
2eqgV

q fq(x,Q
2) , (16)

similar to the purely electromagneticFγγ
1,2 where 2eqgV

q → e2
q.

However, one expects and can verify that the bulk of the sup-
port for theγZ box comes from the resonance region and from
lowerQ2. In order to proceed, earlier work accepted [4, 5] the
equalityFγZ

1,2 = Fγγ
1,2, which can be shown to be approximately

true in certain regions and certain limits. We will investigate
the equality and improve upon it.

Our numerical evaluation of Re�V
γZ uses the Christy-

Bosted fits [15] in the resonance region (W < 2.5 GeV), the
Capellaet al. fits in the high-energy low-Q2 region (W > 2.5
GeV andQ2 < 5 GeV2), both of these with some modifica-
tion, and used the CTEQ parton distributions CT10.00 [13] in
the scaling region (W > 2.5 GeV andQ2 > 5 GeV2).

For resonance photoproduction and electroproduction, the
parton model (e.g., [16]) shows how each amplitude depends
on the quark charges. It is useful to note that later analysis
indicated that two-quark operators play a small role in photo-
production amplitudes [17]. The charges then can be changed
to theZ-boson vector coupling parametersgq

V to compare res-

onance contributions inFγZ
1,2 andFγγ

1,2. For any isospin-3/2 res-

onance, the result is just a multiplication by(1+Qp,LO
W ), since

only the∆I = 1 currents contribute [5]. Two of the seven res-
onances included in the Christy-Bosted fit are isospin-3/2.

Other resonances are more complicated. For example, for
the D13(1520), theA3/2 electroproduction amplitude (where
the subscript gives the helicity magnitude of the outgoing
baryon, in a frame where the baryons and photon have
collinear three-momenta) also scales like(1+ Qp,LO

W ), but
the A1/2 amplitude has two contributions, one sharing a ma-
trix element withA3/2 and one which will be multiplied by

(1/3+Qp,LO
W ). There is extra phenomenological information,

that theA3/2 dominates in photoproduction and that there is
a rapid transition to the highQ2 dominance of theA1/2 ex-
pected from hadron helicity conservation [18, 19]. This give
enough information to modify the Christy-BostedD13 contri-
bution for theγZ in a Q2 dependent fashion. As a remark,
the averageQ2 within the integrals for incoming energies in
the JLab range is only about 0.4 GeV2. Similar considera-
tions apply to theF15(1690), although now the multiplication
factors areQp,LO

W for theA3/2 and(2/3+Qp,LO
W ) for the other

amplitude, so the reduction from the purely electromagnetic
case is quite noticeable. The modification of the resonant part
of the Christy-Bosted fit is thus straightforwardly done, and
gives a resonant contribution toFγZ

1,2 about 9% smaller than

to Fγγ
1,2. The Christy-Bosted fits come within 3% of nearly all

the data points, and the points themselves have comparable
(mostly systematic) error. We allow some margin, assigninga
10% uncertainty in this part of the calculation.

An additional note is that the amplitude for electromagnetic
excitation of a proton to a state with quark spin-3/2 is propor-
tional to(eu+2ed) (this is the Moorhouse selection rule [20]),
which is not zero when turned into itsZ-current analog. How-
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FIG. 2: The ratioFγZ
2 /Fγγ

2 vs. W obtained from the CTEQ parton
distribution functions at fixedQ2 = 5 GeV.

ever, this excitation seems small also for a neutron target,with
amplitudes of magnitude about 0.05 GeV−1/2 at the photo-
production point compared to magnitudes in the 0.1 to 0.25
GeV−1/2 range [21] for resonant excitations that are more sig-
nificant. We do not consider it further.

The resonance region fit includes a smooth background
non-resonant part, which one can think of as scattering off
collections of quarks with scant final state interactions. In a
full SUf (3) limit, where all light quarks are equally likely and
which may be pertinent in a high-energyx= Q2/(2Mν)→ 0
limit, one hasFγZ

1,2/Fγγ
1,2 = 1+Qp,LO

W . In a valence quark limit

with SU(6) wave functions, one gets(2/3+ Qp,LO
W ) for the

same ratio. The latter is better at high-x and the former is bet-
ter at low-x and we take the mean, and use the extremes to set
our uncertainty estimate. One can examine theFγZ

1,2/Fγγ
1,2 ratio

in the scaling region, and the result along one boundary of the
CTEQ region is shown in Fig. 2. The value at the lowW end,
which corresponds to highx for the fixed value ofQ2 in the
plot, is in agreement with the high-x expectation for the back-
ground in the resonance region. The rest of this CTEQ-based
curve is at lower-x and theFγZ

1,2 andFγγ
1,2 structure functions are

nearly within 5% of equality for much of the range. This also
marks what we may expect at the upper end of the Capellaet
al. region, with expectation of closer equality asQ2 further
decreases. We estimate the modification of the Capellaet al.
fit for the present case by multiplying it by aW dependent
function which is the mean of unity and this boundary curve,
and take the extremes to estimate the uncertainty.

Our numerical results for Re�V
γZ as a function incoming

electron energy are shown in Fig. 3. We also show the sep-
arate results from the resonance region and from above the
resonance region, and show uncertainty limits for the total.
For the JLab Q-weak experiment,Elab = 1.165 GeV, and

Re�V
γZ(1.165 GeV) = 0.0057±0.0009. (17)
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FIG. 3: Plot of Re�V
γZ vs. incoming electron lab energy. The dashed

red line gives the resonance region contribution using the Christy
and Bosted [15] structure function fit; the dotted blue curvegives
the non-resonance region contribution using Capellaet al. [22] and
CTEQet al. [13]. The solid black curve gives the total, with an error
band indicated.

This agrees within uncertainty limits with the Sibirtsevet al.
result 0.0047+0.0011

−0.0004.
For information, at the JLab energy, the highQ2 above the

resonance region contribution from CTEQ gives 0.00019 of
the total; this is about 0.00004 lower would be gotten by sim-
ply extending Capellaet al. to the highQ2 region. Also,
the longitudinal part of the structure functions contribute only
about 0.0007 to the above result, roughly evenly split among
resonances in the resonance region, non-resonant background
with W < 2.5 GeV, and contributions whereW > 2.5 GeV.

Though we agree with the Sibirtsevet al. result, part of the
agreement is due to the reduction in our result from analyzing
theFγZ

2 = Fγγ
2 relation. Had we used the equality everywhere

but the scaling region, our result would have been 0.00065
higher. One difference between us is that in the resonance re-
gion, we used the Christy-Bosted fit [15], which represents the
data to 3% or better over almost the entire applicable range.
By way of examples, Christy and Bosted give plots of cross
section vs.W at a number of incoming energies and angles.
Sibirtsevet al. used their own dedicated resonance region fits,
and also fit the data well, as seen in their plots ofF2 vs. W at
several fixedQ2’s [5]. To facilitate direct comparison, Fig. 4
here shows the Christy-BostedF2 vs.W at a typicalQ2.

IV. DISCUSSION

With the corrections listed in Eq. (3),Qp
W somewhat ex-

ceeds 0.07. A 4% measurement of this number requires an

absolute accuracy of about 0.0028, so the Re�V
γZ correction

needs to be known more accurately than, say, 30%. This we
believe is the case.
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FIG. 4: Plot ofF2(Q2,W) vs. W using [15] atQ2 = 1.525 GeV2.
The data is from JLab [23, 24].

For the future, there are discussions of a more accurate PV
experiment using lower incoming electron energy [25]. A
goal would be to match the accuracy obtained for sin2 θW
at theZ-pole. Evolving theZ-pole result toQ2 = 0 using
only known physics leads to sin2 θW(0) = 0.23867(16) [26]
or Qp,LO

W = 0.04532(64). Hence theory uncertainties need to
be safely below 0.00064. At lower energy the expectedγZ
box correction is smaller, and for 180 MeV we obtain

Re�V
γZ(180 MeV) = 0.00125±0.00018. (18)

Hence, the accuracy goal appears again realized. We may note
that further improvement is possible with further accuratefits
in the resonance region, further thinking about the validity
of theFγZ

1,2 = Fγγ
1,2 approximation, and considering the Re�

A
γZ

term.
We conclude by restating that theγZ box contribution is

known well enough for current experiments, and that addi-
tional theoretical accuracy is feasible with further work when
needed.
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