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Abstract

The ionization of atomic electrons by scattering of neutrinos is revisited. This process is the one

studied in the experimental searches for a neutrino magnetic moment using germanium detectors.

Current experiments are sensitive to the ionization energy comparable with the atomic energies,

and the effects of the electron binding should be taken into account. We find that the so-called

stepping approximation to the neutrino-impact ionization is in fact exact in the semiclassical limit

and also that the deviations from this approximation are very small already for the lowest bound

Coulomb states. We also consider the effects of electron-electron correlations and argue that the

resulting corrections to the ionization of independent electrons are quite small. In particular we

estimate that in germanium these are at a one percent level at the energy transfer down to a

fraction of keV. Exact sum rules are also presented as well as analytical results for a few lowest

hydrogen-like states.
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I. INTRODUCTION

The neutrino magnetic moments (NMM) expected in the Standard Model are very small

and proportional to the neutrino masses [1]: µν ≈ 3 × 10−19 µB (mν/1 eV) with µB = e/2m

being the electron Bohr magneton, and m is the electron mass. Thus any larger value of

µν can arise only from physics beyond the Standard Model (a recent review of this subject

can be found in Ref. [2]). Current direct experimental searches [3–5] for a magnetic moment

of the electron (anti)neutrinos from reactors have lowered the upper limit on µν down to

µν < 3.2 × 10−11 µB [5]. These ultra low background experiments use germanium crystal

detectors exposed to the neutrino flux from a reactor and search for scattering events by

measuring the energy T deposited by the neutrino scattering in the detector. The sensitivity

of such a search to NMM crucially depends on lowering the threshold for the energy transfer

T , due to the enhancement of the magnetic scattering relative to the standard electroweak

one at low T . Namely, the differential cross section dσ/dT is given by the incoherent sum

of the magnetic and the standard cross section, and for the scattering on free electrons the

NMM contribution is given by the formula [6, 7]

dσ(µ)
dT

= 4π α µ2
ν

(

1

T
− 1

Eν

)

= π
α2

m2

(

µν

µB

)2 (

1

T
− 1

Eν

)

(1)

where Eν is the energy of the incident neutrino, and displays a 1/T enhancement at low

energy transfer. The standard electroweak contribution is constant in T at Eν ≫ T :

dσEW

dT
=
G2

F m

2π

(

1 + 4 sin2 θW + 8 sin4 θW
)

[

1 +O

(

T

Eν

)]

≈ 10−47 cm2/keV. (2)

In what follows we refer to these two types of contribution to the scattering as, respectively,

the magnetic and the weak.

The current experiments have reached threshold values of T as low as few keV and are

likely to further improve the sensitivity to low energy deposition in the detector. At low

energies however one can expect a modification of the free-electron formulas (1) and (2) due

to the binding of electrons in the germanium atoms, where e.g. the energy of the Kα line,

9.89 keV, indicates that at least some of the atomic binding energies are comparable to the

already relevant to the experiment values of T . Thus a proper treatment of the atomic effects

in neutrino scattering is necessary and important for the analysis of the current and even

more of the future data with a still lower threshold. Furthermore, there is no known means

2



of independently calibrating experimentally the response of atomic systems, such as the

germanium, to the scattering due to the interactions relevant for the neutrino experiments.

Therefore one has to rely on a pure theoretical analysis in interpreting the neutrino data.

For the first time this problem was addressed in Ref. [8], where a 2-3 times enhancement of

the electroweak cross section in the case of ionization from a 1s state of a hydrogen-like atom

with nuclear charge Z had been numerically determined at neutrino energies Eν ∼ αZmc2.

Subsequent numerical calculations within the Hartree-Fock-Dirac method for ionization from

inner shells of various atoms showed much lower enhancement (∼ 5−10%) of the electroweak

contribution [9–12]. The interest to the role of atomic effects was renewed in several recent

papers, which however are ridden by a ‘trial and error’ approach. The early claim [13] of

a significant enhancement of the NMM contribution by the atomic effects has been later

disproved [14, 15] and it was argued [14] that the modification of the formulas (1) and (2)

by the atomic binding effects is insignificant down to very low values of T . It has been

subsequently pointed out [16] that the analysis of Ref. [14] is generally invalidated in multi-

electron systems, including atoms with Z > 1. Furthermore, the analysis of Ref. [14] is

also generally invalidated by singularities of the relevant correlation function in the complex

plane of momentum transfer, so that the claimed behavior of the cross section at low T

applies only in the semiclassical limit, although, as will be shown here, it gives a very good

approximation to the actual behavior for an electron bound by a Coulomb potential.

In this paper we revisit the subject of neutrino scattering on atoms at low energy transfer.

We aim at describing this process at T in the range of few keV and lower, so that the motion

of the electrons is considered as strictly nonrelativistic. Also in this range the energy of the

dominant part of the incident neutrinos from the reactor is much larger than T and we thus

neglect any terms whose relative value is proportional to T/Eν (in particular, in this range

one can neglect the 1/Eν term in Eq. (1) in comparison with 1/T ). Furthermore any recoil

of the germanium atom as a whole results in an energy transfer less than 2E2
ν/MGe, which at

the typical reactor neutrino energy is well below the considered here keV range of the energy

transfer. Thus we formally set the mass of the atomic nucleus to infinity and neglect any

recoil by the atom as a whole. In particular, under these conditions the interaction of the

neutrino with the nucleus can be entirely neglected, and only the scattering on the atomic

electrons is to be considered.

We find that in the scattering on realistic atoms, such as germanium, the so-called step-
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ping approximation works with a very good accuracy. The stepping approach, introduced

in Ref. [11] from an interpretation of numerical data, treats the process as scattering on

individual independent electrons occupying atomic orbitals and suggests that the cross sec-

tion follows the free-electron behavior in Eqs. (1) and (2) down to T equal to the ionization

threshold for the orbital, and that below that energy the electron on the corresponding or-

bital is ‘deactivated’ thus producing a sharp ‘step’ in the dependence of the cross section on

T . In the present paper, we consider general relations for the discussed scattering on atomic

systems in Sec. II and present in Appendix A sum rules for the theoretical objects involved

in the calculations [21]. In Sec. III we prove that for the scattering on individual electrons

the stepping approximation becomes exact in the semiclassical limit, so that its applicability

is improved with the principal number n of the atomic orbital. We also find by an explicit

calculation (Appendix B) for a hydrogen-like ground state, i.e. at n = 1, that the deviation

from the stepping behavior is less than 5% at the worst point, where the energy transfer T is

exactly at the threshold. The accuracy of the approach based on considering the scattering

on individual electrons is limited by the existence of the electron-electron correlations in

the process. We consider the correction introduced by these correlations in Sec. IV and,

in Sec. V, apply the derived formula to an estimate of the effect for germanium, using the

Thomas-Fermi model. We find that the correlation correction grows at smaller T but is still

small, of order of a few percent, for T in the range of a few hundred eV. We thus argue that

the stepping approach describes the scattering cross section with a sufficient for practical

purposes accuracy, and that it can be applied to the analysis of the present and future data

of searches for NMM with germanium detectors down to the values of the energy deposition

T ∼ 0.3 keV.

II. GENERAL FORMULAS FOR NEUTRINO SCATTERING ON ATOMIC

ELECTRONS

In this section we briefly recapitulate the general expressions and introduce the relevant

atomic objects for the neutrino scattering on atomic electrons. We start with the magnetic

process and then also apply a similar treatment to the standard weak part of the cross

section.

The kinematics of the scattering of a neutrino on atomic electrons is generally char-
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acterized by the components of the four-momentum transfer, the energy transfer T and

the spatial momentum transfer ~q, from the neutrino to the electrons with two rotationally

invariant variables being T and q2 = ~q 2. At small T the electrons can be treated nonrela-

tivistically both in the initial and in the final state, so that the process is that of scattering of

an NMM in the electromagnetic field A = (A0, ~A) of the electrons: A0(~q) =
√
4πα ρ(~q)/~q 2,

~A(~q) =
√
4πα~j(~q)/~q 2, where ρ(~q) and ~j(~q) are the Fourier transforms of the electron number

density and current density operators, respectively,

ρ(~q) =
Z
∑

a=1

exp(i~q · ~ra) , (3)

~j(~q) = − i

2m

Z
∑

a=1

[

exp(i~q · ~ra)
∂

∂~ra
+

∂

∂~ra
exp(i~q · ~ra)

]

, (4)

and the sums run over the positions ~ra of all the Z electrons in the atom.

In this limit the expression for the double differential cross section is given by [16]

d2σ(µ)
dT dq2

= 4π α
µ2
ν

q2

[(

1− T 2

q2

)

S(T, q2) +

(

1− q2

4E2
ν

)

R(T, q2)

]

, (5)

where S(T, q2), also known as the dynamical structure factor [17], and R(T, q2) are

S(T, q2) =
∑

n

δ(T −En + E0) |〈n|ρ(~q)|0〉|2 , (6)

R(T, q2) =
∑

n

δ(T −En + E0) |〈n|j⊥(~q)|0〉|2 , (7)

with j⊥ being the ~j component perpendicular to ~q and parallel to the scattering plane, which

is formed by the incident and final neutrino momenta. The sums in Eqs. (6) and (7) run

over all the states |n〉 with energies En of the electron system, with |0〉 being the initial

state.

Clearly, the factors S(T, q2) and R(T, q2) are related to respectively the density-density

and current-current Green’s functions

F (T, q2) =
∑

n

|〈n|ρ(~q)|0〉|2
T −En + E0 − i ǫ

=

〈

0

∣

∣

∣

∣

ρ(−~q) 1

T −H + E0 − i ǫ
ρ(~q)

∣

∣

∣

∣

0

〉

, (8)

L(T, q2) =
∑

n

|〈n|j⊥(~q)|0〉|2
T − En + E0 − i ǫ

=

〈

0

∣

∣

∣

∣

j⊥(−~q)
1

T −H + E0 − i ǫ
j⊥(~q)

∣

∣

∣

∣

0

〉

, (9)

as

S(T, q2) =
1

π
ImF (T, q2) , (10)
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R(T, q2) =
1

π
ImL(T, q2) , (11)

withH being the Hamiltonian for the system of electrons. For small values of q, in particular,

such that q ∼ T , only the lowest-order non-zero terms of the expansion of Eqs. (10) and (11)

in powers of q2 are of relevance (the so-called dipole approximation). In this case, one has [16]

R(T, q2) =
T 2

q2
S(T, q2). (12)

Taking into account Eq. (12), the experimentally measured singe-differential inclusive

cross section is, to a good approximation, given by (see e.g. in Refs. [14, 16])

dσ(µ)
dT

= 4π αµ2
ν

∫ 4E2
ν

T 2

S(T, q2)
dq2

q2
. (13)

The standard electroweak contribution to the cross section can be similarly expressed in

terms of the same factor S(T, q2) [14] as

dσEW

dT
=
G2

F

4π

(

1 + 4 sin2 θW + 8 sin4 θW
)

∫ 4E2
ν

T 2

S(T, q2) dq2 , (14)

where the factor S(T, q2) is integrated over q2 with a unit weight, rather than q−2 as in

Eq. (13).

The kinematical limits for q2 in an actual neutrino scattering are explicitly indicated in

Eqs. (13) and (14). At large Eν , typical for the reactor neutrinos, the upper limit can in fact

be extended to infinity, since in the discussed here nonrelativistic limit the range of momenta

∼ Eν is indistinguishable from infinity. The lower limit can be shifted to q2 = 0, since the

contribution of the region of q2 < T 2 can be expressed in terms of the photoelectric cross

section [14] and is negligibly small (at the level of below one percent in the considered range

of T ). For this reason we henceforth discuss the momentum-transfer integrals in Eqs. (13)

and (14) running from q2 = 0 to q2 = ∞:

I1(T ) =

∫ ∞

0

S(T, q2)
dq2

q2
, and I2(T ) =

∫ ∞

0

S(T, q2) dq2 . (15)

For a free electron, which is initially at rest, the density-density correlator is the free

particle Green’s function

F(FE)(T, q
2) =

(

T − q2

2m
− i ǫ

)−1

, (16)
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so that the dynamical structure factor is given by S(FE)(T, q
2) = δ(T − q2/2m), and the

discussed here integrals are in the free-electron limit as follows:

I
(FE)
1 =

∫ ∞

0

S(FE)(T, q
2)
dq2

q2
=

1

T
, I

(FE)
2 =

∫ ∞

0

S(FE)(T, q
2) dq2 = 2m . (17)

Clearly, these expressions, when used in the formulas (13) and (14), result in the free-electron

cross section in Eqs. (1) and (2).

III. SCATTERING ON ONE BOUND ELECTRON

The binding effects generally deform the density-density Green’s function, so that both

the integrals (15) are somewhat modified. Namely, the binding effects spread the free-

electron δ-peak in the dynamical structure function at q2 = 2mT and also shift it by the scale

of characteristic electron momenta in the bound state. However it turns out that the free

electron expressions are quite robust in the sense that in realistic systems the modification

of the integrals, relative to their free-electron limit, are quite small. As a formal statement,

we will show in the Appendix A that when the function F (T, q2) is analytically continued in

complex plane of q2 the free-electron expressions are valid for the integrals over q2 extending

from −∞ to +∞, and in the case of the integral, similar to I2 i.e. with the weight q0,

this property also holds for scattering on multi-electron atomic systems, while for that with

the weight q−2 it generally holds only for the scattering on one electron, or on independent

electrons. Clearly, the latter integrals over the full axis of q2 differ from those of physical

interest in Eq. (15) by the contribution of negative q2, which although numerically small even

at low T still makes the scattering on bound electrons different from that on free electrons.

In this section we consider the scattering on just one electron. The Hamiltonian for the

electron has the form H = p2/2m + V (r), and the density-density Green’s function from

Eq. (8) can be written as

F (T, q2) =
〈

0
∣

∣ e−i~q·~r [T −H(~p, ~r) + E0]
−1 ei~q·~r

∣

∣ 0
〉

=
〈

0
∣

∣ [T −H(~p+ ~q, ~r) + E0]
−1

∣

∣ 0
〉

=

〈

0

∣

∣

∣

∣

∣

[

T − ~q 2

2m
− ~p · ~q

m
−H(~p, ~r) + E0

]−1
∣

∣

∣

∣

∣

0

〉

, (18)

where the infinitesimal shift T → T − iǫ is implied.
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Clearly, a nontrivial behavior of the latter expression in Eq. (18) is generated by the

presence of the operator (~p · ~q) in the denominator, and the fact that it does not commute

with the Hamiltonian H . Thus an analytical calculation of the Green’s function as well

as the dynamical structure factor is feasible in only few specific problems. In Appendix B

we present such a calculation for ionization from the 1s, 2s, and 2p hydrogen-like states.

In particular, we find analytically that the deviation of the discussed integrals (15) from

their free values are very small: the largest deviation is exactly at the ionization threshold,

where, for instance, each of the 1s integrals is equal to the free-electron value multiplied

by the factor (1 − 7 e−4/3) ≈ 0.957 [22]. Our findings thus substantiate the results of the

theoretical analysis carried out in Ref. [16], where the 1s case was examined numerically.

The problem of calculating the integrals (15) however can be solved in the semiclassical

limit, where one can neglect the noncommutativity of the momentum ~p with the Hamil-

tonian, and rather treat this operator as a number vector. Taking also into account that

(H − E0) |0〉 = 0, one can then readily average the latter expression in Eq. (18) over the

directions of ~q and find the formula for the dynamical structure factor:

S(T, q2) =
m

2 p q

[

θ

(

T − q2

2m
+
p q

m

)

− θ

(

T − q2

2m
− p q

m

)]

, (19)

where p = |~p| and θ is the standard Heaviside step function. The expression in Eq. (19)

is nonzero only in the range of q satisfying the condition −p q/m < T − q2/2m < p q/m,

i.e. between the (positive) roots of the binomials in the arguments of the step functions:

qmin =
√

2mT + p2 − p and qmax =
√

2mT + p2 + p. One can notice that the previously

mentioned ‘spread and shift’ of the peak in the dynamical structure function in this limit

corresponds to a flat pedestal between qmin and qmax. The calculation of the integrals (15)

with the expression (19) is straightforward, and yields the free-electron expressions (17) for

the discussed here integrals in the semiclassical (WKB) limit [23]:

I
(WKB)
1 =

1

T
, I

(WKB)
2 = 2m . (20)

The difference from the pure free-electron case however is in the range of the energy trans-

fer T . Namely, the expressions (20) are applicable in this case only above the ionization

threshold, i.e. at T ≥ |E0|. Below the threshold the electron becomes ‘inactive’.

It is instructive to point out that the validity of the result in Eq. (20) is based on the

semiclassical approximation and is not directly related to the value of the energy T . In
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particular, for a Coulomb interaction the WKB approximation is applicable at energy near

the threshold [18]. For T exactly at the threshold, T = −E0, the criterion for applicability

of the semiclassical approach in terms of the force F = |~F | = |[~p,H ]| acting on the electron

and the momentum p of the electron is that [18] the ratio of the characteristic values mF/p3

is small. For the excitation of a state with the principal number n this ratio behaves para-

metrically as 1/n [24]. Thus the applicability of a semiclassical treatment of the ionization

near the threshold improves for initial states with large n. As previously mentioned, the

modification of the integrals (15) by the binding is already less than 5% for n = 1, so that

we fully expect this deviation to be smaller for the higher states, and even smaller at larger

values of T above the threshold due to the approach to the free-electron behavior at T ≫ E0.

We believe that the latter conclusion explains the so-called stepping behavior observed

empirically [11] in the results of numerical calculations. Namely the calculated cross section

dσ/dT for ionization of an electron from an atomic orbital follows the free-electron depen-

dence on T all the way down to the threshold for the corresponding orbital with a very small,

at most a few percent, deviation. This observation led the authors of Ref. [11] to suggest

the stepping approximation for the ratio of the atomic cross section (per target electron) to

the free-electron one:

f(T ) ≡ dσ/dT

(dσ/dT )FE
=

1

Z

∑

i

ni θ(T − |Ei|) , (21)

where the sum runs over the atomic orbitals with the binding energies Ei and the filling

numbers ni. Clearly, the factor f(T ) simply counts the fraction of ‘active’ electrons at the

energy T , i.e. those for which the ionization is kinematically possible. For this reason we

refer to f(t) as an activation factor. We conclude here that the stepping approximation is

indeed justified with a high accuracy in the approximation of the scattering on independent

electrons, i.e. if one neglects the two-electron correlations induced by the interference of

terms in the operator ρ(~q) in Eq. (3) corresponding to different electrons. In the next

section we estimate the effect of such an interference and find that the resulting corrections

are small, at least in atoms with large Z, such as the germanium.
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IV. TWO-ELECTRON CORRELATION

In this section we discuss the correction arising from a correlation between two electrons.

We consider the energy T and hence the relevant momentum transfer q as large in comparison

with the atomic scale. In this way we estimate the relevant parameter for the significance

of the correlation effect.

We start with considering an isolated system of two electrons interacting among them-

selves through the Coulomb potential V (r). The Hamiltonian for this system thus has the

form

H =
P 2

4m
+
p2

m
+ V (r) , (22)

where ~P = −i∂/∂ ~R and ~p = −i∂/∂~r are, as usual, the momenta conjugate to respectively

the center of mass coordinate ~R and the relative coordinate ~r.

The spatial part of the wave function of the system factorizes into the product φ(~R)ψ(~r),

with φ(~R) and ψ(~r) being respectively the center of mass and the relative motion position-

space wave functions, while the spin part will be considered later. We consider here the

system at rest, i.e. φ(R) = const, since a boost to a momentum P does not change the cross

section.

The density-density Green’s function then takes the form

F (T, q2) =
∑

n

〈

0
∣

∣ei~q·~r/2 + e−i~q·~r/2∣
∣n

〉 〈

n
∣

∣ei~q·~r/2 + e−i~q·~r/2∣
∣ 0
〉

T − q2

4m
−En + E0

, (23)

where the states |0〉, |n〉 and the energies E0, En refer to the relative motion in the system

with |0〉 standing for the initial state. Clearly, it is implied in Eq. (23) that the corresponding

matrix elements for the (trivial) dynamics of the system as a whole are already taken, which

results in replacing in the energy denominator the excitation energy T by its value corrected

for the recoil of the system as a whole: T → T − q2/4m.

The cross terms between exp(i~q · ~r/2) and exp(−i~q · ~r/2) in the expression (23) result in

the previously discussed one-particle Green’s function

F1(T, q
2) = 2

〈

0

∣

∣

∣

∣

∣

(

T − q2

2m
− ~p · ~q

m
−H + E0

)−1
∣

∣

∣

∣

∣

0

〉

, (24)

where the overall factor of 2 arises from the two identical (after averaging over the direction

of ~q) cross terms, and physically is corresponding to the presence of two particles in the

system.
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The discussed here contribution of the two-electron correlation arises from the diagonal

terms, whose contribution is given by

Fc(T, q
2) = 2 η

∑

n

〈

0
∣

∣ei~q·~r/2
∣

∣n
〉 〈

n
∣

∣ei~q·~r/2
∣

∣ 0
〉

T − q2

4m
− En + E0

, (25)

where, again, the two terms give the same contribution after the averaging over the direction

of ~q, which is accounted for by the factor of 2 in the latter expression. The factor η is the

symmetry factor for the spin part of the two-electron system: η = −1 for the spin-singlet

state of the pair and η = +1 for the spin-triplet. The appearance of this factor can be

explained as follows. The discussed correlation arises from the situation where an excitation

of one electron by the operator ρ produces the same spatial wave function as an excitation

of another one. In order for the wave functions to be identical the spin variables of the

two electrons should also be switched, which operation results in the factor η. Clearly,

no such factor arises in the one-particle term (24) since the spin of both electrons simply

‘goes through’. It can be also mentioned that, naturally, the symmetry of the spatial wave

function ψ(~r) is opposite to η.

One can notice that unlike in the one-particle contribution [Eq. (24)], where the momen-

tum ~q flows in and out of the system, the correlation contribution in Eq. (25) corresponds

to the net momentum ~q flowing into the system. Clearly, for non-interacting particles such

contribution would vanish and the whole correlation effect arises only due to the interaction

between the electrons, which interaction absorbs the momentum transfer. The term (25)

can be graphically represented as shown in Fig. 1, where the system lines correspond to the

propagation of the system in the potential V with the outer legs corresponding to the wave

functions of the initial state in the momentum space 〈ψ(~p ′)| and |ψ(~p)〉 and the line between

the action of the operators exp(i~q · ~r/2) corresponding to the Green’s function. One can

write in terms of these objects the expression for Fc(T, q
2) as

Fc(T, q
2) = 2

∫

d3p′

(2π)3

∫

d3p

(2π)3
ψ∗(~p ′)G(E; ~p ′ − ~q

2
, ~p+

~q

2
)ψ(~p) , (26)

where G(E;~k ′, ~k) is the Green’s function (E−H)−1 in the momentum representation at the

energy E = T + E0 − q2/4m. We shall consider separately the effect of the interaction in

the wave functions and in the Green’s function. For the zeroth order Green’s function

G0(E;~k
′, ~k) =

(2π)3 δ(3)(~k ′ − ~k)

E − k2

m

(27)
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FIG. 1: Graphical representation of the two-electron correlation. The external legs correspond to

the momentum-space wave function and the propagator is the Green’s function in the potential V .

and the exact wave functions one finds

F (0)
c (T, q2) = 2 η

∫

d3p

(2π)3
ψ∗(~p+ ~q)ψ(~p)

T − q2

2m
− (~p·~q)

m
− p2

m
+ E0

. (28)

Let us consider now q as a large parameter in comparison with the characteristic momenta

p0 in ψ(~p), beyond which the wave function falls off. At such values of q the product

ψ∗(~p+ ~q)ψ(~p) carries a suppression in only one of the factors in two regions of ~p: one where

p ∼ p0 and the other where |~p+~q| ∼ p0. Clearly, by shifting the integration variable ~p+~q → ~p

one can readily see that the contribution of the latter region is the same as of the first one,

so that one evaluates the integral in Eq. (28) by considering only the contribution of the

region p ≪ q and taking it with a factor of two. Then the leading at large q expression for

the function in Eq. (28) takes the form

F (0)
c (T, q2) = 4 η

ψ∗(~q)

T − q2

2m

∫

d3p

(2π)3
ψ(~p) = 4 η

ψ∗(~q)ψ(0)

T − q2

2m

. (29)

The appearance of the wave function at the origin ~r = 0, ψ(0), in this expression implies

that at large q the considered contribution to the correlation correction arises only for an

S-wave relative motion within the electron pair, which thus have to be a spin-singlet, and

therefore η = −1.

In fact, for a S-wave motion the momentum-space wave function ψ(~q) can be also ex-

pressed at large q in terms of the position-space wave function at the origin ψ(0). Indeed,

in the S-wave case the wave function is a function of r: ψ(r). At small r the Coulomb

repulsion between the electrons dominates over all other interactions and the Schrödinger

12



equation for ψ(r) reads

− 1

m
ψ′′ − 2

m r
ψ′(r) +

α

r
ψ(r) = E ψ(r) . (30)

By requiring the two singular at r → 0 as 1/r terms to match in this expression, one finds

that the derivative of ψ(r) over r at the origin is expressed in terms of ψ(0):

ψ′(0) =
mα

2
ψ(0) . (31)

A finite derivative over r implies that the gradient ~∇ψ(r) = ~r ψ′(r)/r is singular at r =

0, so that the asymptotic at large |~q| behavior of the momentum space wave function is

proportional to 1/|~q|4 with the coefficient determined by ψ′(0), which in turn is determined,

according to Eq. (31), by ψ(0):

ψ(~q)||~q|→∞ = −4πmαψ(0)

|~q|4 . (32)

Using this relation in Eq. (29) one finds in the large q2 limit

F (0)
c (T, q2) = 16 π α

m |ψ(0)|2
q4

1

T − q2

2m

. (33)

The latter expression is manifestly proportional to first power of the interaction between

the electrons. Therefore a similar contribution can arise from the first order in the expansion

of the Green’s function in the interaction potential V . In this order one finds for the discussed

correlation part of F (T, q2):

F (1)
c (T, q2) = 2η

∫

d3p′

(2π)3

∫

d3p

(2π)3
ψ∗(~p ′) V (−~q + ~p ′ − ~p)ψ(~p)

[

T − q2

2m
+ (~p ′·~q)

m
− p′2

m
+ E0

] [

T − q2

2m
− (~p·~q)

m
− p2

m
+ E0

] ,

(34)

where V (~k) is the Fourier transform of the potential, so that for the Coulomb repulsion

between the electrons

V (~k) =
4πα

k2
. (35)

Considering as before the limit of large q and thus neglecting p and p′ in comparison with

q, one readily finds that the result is again proportional to |ψ(0)|2, so that the effect remains

only in the S-wave (and hence η = −1):

F (1)
c (T, q2)

∣

∣

mT,q2≫p2,p′2
= −8π α

|ψ(0)|2

q2
(

T − q2

2m

)2 (36)

13



Collecting the formulas (33) and (36) together one finds the estimate of the two-electron

correlation part of F (T, q2) in the limit of large T and q2:

Fc(T, q
2) = 8π α |ψ(0)|2







2m

q4
(

T − q2

2m

) − 1

q2
(

T − q2

2m

)2






. (37)

The corresponding two-electron correlation correction to the integrals for the neutrino scat-

tering cross section is then calculated by shifting T → T − iǫ and considering only the

contribution of the singularity at q2 = 2mT :

1

π

∫

ImFc(T, q
2)
dq2

q2
= −4π α

|ψ(0)|2
mT 3

,
1

π

∫

ImFc(T, q
2) dq2 = 0 . (38)

Notice, that the two-electron contribution to the integral relevant for the standard elec-

troweak scattering vanishes in the discussed approximation due to a cancelation of the two

terms in Eq. (37).

The above calculation shows, as expected, that at large q the two-electron correlation

arises only when the electrons are separated by a short distance. For this reason one can

relax the assumption, we made in the beginning of this section, that the system of two

electrons is in a free motion. Indeed the same result would apply in the situation, where

the pair as a whole moves in a potential that is sufficiently smooth so that the ‘tidal force’

interaction with the rest of the atomic system does not overcome the Coulomb singularity

of the repulsion between the electrons at distances of order 1/q.

V. SCATTERING ON ATOMIC ELECTRONS IN GERMANIUM

In considering the neutrino scattering on actual atoms one needs to evaluate the depen-

dence of the number of active electrons on T and generally also evaluate the effect of the

two-electron correlations. The energies of the inner K, L and M orbitals in the germanium

atom are well known (see e.g. Ref. [12] and references therein) and provide the necessary

data for a description of the neutrino scattering by the stepping formula (21) down to the

values of the energy transfer T in the range of the binding of the M electrons, i.e. at

T > |EM | ≈ 0.18 keV. The corresponding steps in the activation factor are shown in Fig. 2.

It can be mentioned that if one applies formulas of the Appendix B to the onset of the K

shell step, i.e. just above 10.9 keV, the difference from the shown in the plot step function

would be practically invisible in the scale of Fig. 2.

14



Our goal in this section is to estimate the effect of the two-electron correlations in the

scattering on germanium. We shall estimate this effect by considering the atomic number

Z as a large parameter and using the Thomas-Fermi model, which, in spite of its known

shortcomings, appears to be appropriate for evaluating average bulk properties of atomic

electrons at large Z, such as in the problem at hand.

In the Thomas-Fermi model (see e.g. Ref. [18]) the atomic electrons are described as

a degenerate free electron gas in a master potential φ(r) filling the momentum space up

to the zero Fermi energy, i.e. up to the momentum p0(r) such that p20/2m − eφ = 0. The

electron density n(r) = p30/(3π
2) then determines the potential φ(r) from the usual Poisson’s

equation. In the discussed picture at an energy transfer T the ionization is possible only

for the electrons whose energies in the potential are above −T , i.e. with momenta above

pT (r) with p2T/2m − eφ = −T . The electrons with lower energy are inactive. Calculating

the density of the inactive electrons as p3T/(3π
2) and subtracting their total number from Z,

one readily arrives at the formula for the activation factor, i.e. the effective fraction of the

active electrons Zeff/Z as a function of T :

f(T ) =
Zeff(T )

Z
= 1−

∫ x0(T )

0

[

χ(x)

x
− T

T0

]3/2

x2 dx , (39)

where χ(x) is the Thomas-Fermi function, well known and tabulated, of the scaling variable

x = 2(4/3π)2/3mαZ1/3, the energy scale T0 is given by

T0 = 2

(

4

3π

)2/3

mα2Z4/3 ≈ 30.8Z4/3 eV , (40)

and, finally, x0(T ) is the point where the integrand becomes zero, i.e. corresponding to the

radius beyond which all the electrons are active at the given energy T . The energy scale

T0 in germanium (Z=32) evaluates to T0 ≈ 3.1 keV. The Thomas-Fermi activation factor

for germanium calculated from the formula (39) is shown by the dashed line in the plot of

Fig. 2. One can see that in the shown energy range it reasonably approximates the stepping

behavior of the atomic orbitals. The discussed statistical model is known to approximate

the average bulk properties of the atomic electrons with a relative accuracy O(Z−2/3) and as

long as the essential distances r satisfy the condition Z−1 ≪ mαr ≪ 1, which condition in

terms of the scaling variable x reads as Z−2/3 ≪ x≪ Z1/3. In terms of the formula (39) for

the number of active electrons, the lower bound on the applicability of the model is formally

broken at T ∼ Z2/3T0, i.e. at the energy scale of the inner atomic shells. However the effect
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FIG. 2: The activation factor f for germanium in the stepping approximation with the actual

energies of the orbitals (solid line) and its interpolation in the Thomas-Fermi model (dashed).

of the deactivation of the inner electrons is small, of order Z−1 in comparison with the total

number Z of the electrons. On the other hand, at low T , including the most interesting

region of T ∼ T0, the integral in Eq. (39) is determined by the range of x of order one, where

the model treatment is reasonably justified.

In order to apply the same model for an estimate of the correlation effect we replace in

the estimated correlation contribution to the magnetic neutrino scattering in Eq. (38) the

factor |ψ(0)|2 by the total density of the electrons that an active electron ‘sees’ at its location

in the atom. Then the resulting correction to the integral I1 for an atom can be written in

terms of the density na(r) of the active electrons and the total density n(r) of the electrons

in the atom:

I1c = − π α

2mT 3

∫

na(r)n(r) d
3r. (41)

It should be pointed out that the numerical coefficient in this expression contains a factor

of 1/8 as compared to Eq. (38). This is because of a factor of 1/4 corresponding to the

statistical weight of the spin-singlet state and an extra 1/2 compensating for the double
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counting of electrons in the pairs.

One can write the correction described by Eq. (41) in terms of a correction to the acti-

vation factor in the Thomas-Fermi model as

fc(T ) ≡ T
I1c
Z

= −
(

T1
T

)2 {
∫ ∞

x0(T )

χ3(x)
dx

x

+

∫ x0(T )

0

χ3/2(x)

[

χ3/2(x)−
(

χ(x)− T

T0
x

)3/2
]

dx

x

}

, (42)

where the correlation energy scale T1 is given by

T1 =

√
2

3π
mα2 Z ≈ 4.1Z eV (43)

and evaluates to about 131 eV in germanium. The plot of the estimated correlation correction

in germanium is shown in Fig. 3. One can readily see that this correction is below 1.5% at

T ≈ 0.3 keV and rapidly decreases at higher energy transfer. Clearly, this estimate refers

only to the magnetic part of the scattering, while for the weak part we find no correlation

effect in the considered order due to the cancelation found in Eq. (38). We thus conclude

that in the range of values of T above a few hundred eV the correlation effect can be safely

neglected for both contributions to the neutrino scattering on germanium.

VI. SUMMARY

We have considered the scattering of neutrinos on electrons bound in atoms. Our main

finding is that the differential over the energy transfer cross section given by the free-electron

formulas (1) and (2) and the stepping behavior of the activation factor given by Eq. (21)

provides a very accurate description of the neutrino-impact ionization of a complex atom,

such as germanium, down to quite low energy transfer. The deviation from this approxima-

tion due to the onset of the ionization near the threshold is less than 5% (of the height of

the step) for the K electrons, if one applies the analytical behavior of this onset that we find

for the ground state of a hydrogen-like ion. We also find that the free-electron expressions

for the cross section are not affected by the atomic binding effects in the semiclassical limit

and for independent electrons. For this reason we expect that the deviation of the actual

onset from a step function at the threshold for ionization of higher atomic orbitals is even
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FIG. 3: The correlation correction fc to the activation factor f for germanium in the Thomas-Fermi

model.

smaller than for the ground state, since the motion in the higher states is closer to the semi-

classical limit. Thus, our analytical results explain the numerically determined behaviors

of the electroweak and magnetic contributions to the neutrino-impact ionization of various

atomic targets within the mean-field model [9–12].

The approximation of independent electrons lacks an account for the electron-electron

correlations arising from the Coulomb repulsion between the electrons in the atom. And to

our knowledge, the present study gives the first theoretical consideration of the influence

of such correlations, which are beyond the mean-field model, on neutrino-impact ionization

processes. We estimate this effect in the large Z limit using the Thomas-Fermi model

and show that it is small in germanium when the values of the energy transfer are above

0.2 ÷ 0.3 keV. We thus argue that for practical applications, i.e. for the analysis of data

of the searches for NMM, one can safely apply the free-electron formulas and the stepping

approximation at the energy transfer down to this range.
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Appendix A: Sum rules

We consider here the general sum rules for the dynamical structure factor S(T, q2), which

stem from the analyticity of the density-density Green’s function F (T, q2) at a fixed T and

complex q2 and also from its asymptotic behavior at large |q2|. At a non-zero T the dynamical

structure function, defined by Eq. (6), vanishes at q2 = 0, due to the orthogonality of the

excited states |n〉 and the initial state |0〉 in Eq. (6) since ρ(0) reduces to a unit operator.

For this reason the function F (T, q2) is real at q2 = 0 and thus satisfies in the complex plane

the condition F (T, z∗) = F ∗(T, z). At a non zero real q2 the imaginary part of this function

is not vanishing for both positive and negative q2, so that it has cuts along the real axis

extending from zero to both infinities [25]. On the other hand, the asymptotic at large |q2|
behavior of the Green’s function F (T, q2) is determined by the free-electron formula (16),

since at |q2| → ∞ any interaction terms can be neglected. For a scattering on an atom with

Z electrons one finds

F (T, q2)
∣

∣

|q2|→∞ → −2mZ

q2
. (A1)

This behavior enables one to write a dispersion relation for the Green’s function with no

subtractions:

F (T, q2) =
1

π

∫ ∞

−∞

ImF (T,Q2)

Q2 − q2 − iǫ
dQ2 . (A2)

By comparing the dispersion relation at q2 → ∞ with the asymptotic behavior in Eq. (A1)

one readily finds the sum rule for an integral similar to I2, but extended to include also the

negative q2:
∫ ∞

−∞
S(T, q2) dq2 = 2mZ , (A3)

where the dynamical structure function at negative q2 is defined by the analytical continu-

ation and Eq. (10), rather than by Eq. (6).
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In order to derive from Eq. (A2) a relation for an integral similar to I1 it is necessary to

consider the Green’s function near the origin, i.e. at q2 → 0. In multi-electron systems the

behavior in this region is generally complicated by the two-electron correlations. For this

reason we limit the consideration here to the system with just one electron, Z = 1. In such

a system one has ρ(~q) → 1 at q → 0, so that the Green’s function in Eq. (8) is contributed

by only the initial state |0〉:
F (T, 0) =

1

T
. (A4)

By comparing this formula with Eq. (A2) at Q2 → 0 one immediately finds the sum rule
∫ ∞

−∞
S(T, q2)

dq2

q2
=

1

T
. (A5)

It should be pointed out that unlike the sum rule (A3) this latter relation is generally

invalidated in multi-electron system by the correlation effects. In fact an indication of such

a difference in the behavior of the two integrals can be seen in Eq. (38), where the discussed

there correlation effect vanishes for the integral I2, but not for the I1.

The sum rule (A5) can also be derived from the latter expression in Eq. (18). Indeed,

one can rewrite the formula as

F (T, q2) =
1

T − q2

2m

+
1

T − q2

2m

〈

0

∣

∣

∣

∣

∣

1

T − q2

2m
− (~p·~q)

m
−H + E0

(~p · ~q)
m

∣

∣

∣

∣

∣

0

〉

(A6)

and consider the expansion of the last term in powers of (~p · ~q). Only the even terms in

this expansion are non vanishing, since the odd terms give zero due to the parity. One can

readily see that in each term in the expansion the pole in q2 is of a higher order than the

power of q2 in the numerator, so that the imaginary part of each term integrates to zero in

the integral as in Eq. (A5), while the term of the zeroth order in (~p · ~q) in Eq. (A6) gives

the sum rule (A5). It is again important here that the integration runs over all values of q2,

i.e. from −∞ to +∞, since only in this case all the poles of the terms in the expansion are

within the integration range. Any restriction of the range of integration over q2 may leave

some poles out so that the vanishing of the contribution of all higher terms in the expansion

is generally not guaranteed.

Appendix B: Momentum-transfer integrals for hydrogen-like states

Consider the situation when the initial electron occupies the discrete nl orbital in a

Coulomb potential V (~r) = −αZ/r. The dynamical structure factor for this hydrogen-like
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system is given by

S(nl)(T, q
2) =

mk

(2π)3
1

2l + 1

l
∑

ml=−l

∫

dΩk|〈ϕ−
~k
|ρ(~q)|ϕnlml

〉|2, (B1)

where ϕnlml
is the bound-state wave function, ϕ−

~k
is the outgoing Coulomb wave for the

ejected electron with momentum ~k, and k = |~k| =
√

2mT − p2n, with pn = αZm/n being

the electron momentum in the nth Bohr orbit. The closed-form expressions for the bound-

free transition matrix elements in Eq. (B1) can be found, for instance, in Ref. [19]. In

principle, they allow for performing angular integrations in Eq. (B1) analytically. This task,

however, turns out to be formidable for large values of n. Therefore, below we restrict our

consideration to the n = 1, 2 states only, which nevertheless is enough for demonstrating the

validity of the semiclassical approach developed in Sec. III.

Using results of Ref. [20], we can present the function (B1) when n = 1, 2 as

S(nl)(T, q
2) =

28mp6n
3[1− exp(−2πη)]

q2fnl(q
2)

[(q2 − k2 + p2n)
2 + 4p2nk

2]2n+1

× exp

[

−2η arctan

(

2pnk

q2 − k2 + p2n

)]

, (B2)

where the branch of the arctangent function should be used that lies between 0 and π,

η = αZm/k is the Sommerfeld parameter, and

f1s(q
2) = 3q2 + k2 + p21, (B3)

f2s(q
2) = 8

[

3q10 − (32p22 + 11k2)q8 + (82p42 + 72p22k
2 + 14k2)q6

+(20p62 − 62p42k
2 − 20p22k

4 − 6k6)q4 + (p22 + k2)

×
(

47

5
p62 −

47

5
p42k

2 − 7p22k
4 − k6

)

q2 + (4p22 + k2)(p22 + k2)4
]

, (B4)

f2p(q
2) = 2p22

[

36q8 − 48(p22 + k2)q6 + (152p42 − 48p22k
2 − 8k4)q4 + (p22 + k2)

×
(

1712

15
p42 +

1568

15
p22k

2 + 16k4
)

q2 +

(

44

3
p22 + 4k2

)

(p22 + k2)3
]

. (B5)

Insertion of Eq. (B2) into the integrals (15) and integration over q2, using the change of

variable
2pnk

q2 − k2 + p2n
= tanx

and the standard integrals involving the products of the exponential function and the powers
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of sine and cosine functions, yields

I
(1s)
1 (T ) =

I
(1s)
2 (T )

2mT
=

T−1

1− exp(− 2π√
y1−1

)

{

1− exp

(

− π√
y1 − 1

)

× exp

[ −2√
y1 − 1

arctan

(

y1 − 2

2
√
y1 − 1

)](

1− 4

y1
+

16

3y21

)}

, (B6)

I
(2s)
1 (T ) =

T−1

1− exp(− 4π√
y2−1

)

{

1− exp

(

− 2π√
y2 − 1

)

× exp

[ −4√
y2 − 1

arctan

(

y2 − 2

2
√
y2 − 1

)](

1− 8

y2
+

80

3y22
− 448

15y32
+

1792

15y42

)}

,

(B7)

I
(2s)
2 (T ) =

2m

1− exp(− 4π√
y2−1

)

{

1− exp

(

− 2π√
y2 − 1

)

× exp

[ −4√
y2 − 1

arctan

(

y2 − 2

2
√
y2 − 1

)](

1− 8

y2
+

80

3y22
− 448

15y32
+

1024

15y42

)}

,

(B8)

I
(2p)
1 (T ) =

T−1

1− exp(− 4π√
y2−1

)

{

1− exp

(

− 2π√
y2 − 1

)

× exp

[ −4√
y2 − 1

arctan

(

y2 − 2

2
√
y2 − 1

)](

1− 8

y2
+

80

3y22
− 704

15y32
+

3328

45y42

)}

,

(B9)

I
(2p)
2 (T ) =

2m

1− exp(− 4π√
y2−1

)

{

1− exp

(

− 2π√
y2 − 1

)

× exp

[ −4√
y2 − 1

arctan

(

y2 − 2

2
√
y2 − 1

)](

1− 8

y2
+

80

3y22
− 704

15y32
+

512

15y42

)}

,

(B10)

where yn = 2mT/p2n ≡ T/|En|. The largest deviations of these integrals from the free-

electron analogs (17) occur at the ionization threshold T = |En|. The corresponding relative

values in this specific case are

I
(1s)
1

I
(FE)
1

=
I
(1s)
2

I
(FE)
2

= 1− 7

3
e−4 = 0.9572635093,

I
(2s)
1

I
(FE)
1

= 1− 1639

15
e−8 = 0.9633451168,

I
(2s)
2

I
(FE)
2

= 1− 871

15
e−8 = 0.9805208034,
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I
(2p)
1

I
(FE)
1

= 1− 2101

45
e−8 = 0.9843376226,

I
(2p)
2

I
(FE)
2

= 1− 103

15
e−8 = 0.9976964900.

The above results indicate a clear tendency: the larger n and l, the closer I
(nl)
1 and I

(nl)
2

are to the free-electron values. The departure from the free-electron behavior does not

exceed several percent at most. These observations provide a solid base for the semiclassical

approach of Sec. III.
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