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Abstract

We propose a scenario to stabilize all geometric moduli – that is, the complex structure,

Kähler moduli and the dilaton – in smooth heterotic Calabi-Yau compactifications without

Neveu-Schwarz three-form flux. This is accomplished using the gauge bundle required in any

heterotic compactification, whose perturbative effects on the moduli are combined with non-

perturbative corrections. We argue that, for appropriate gauge bundles, all complex structure

and a large number of other moduli can be perturbatively stabilized – in the most restrictive

case, leaving only one combination of Kähler moduli and the dilaton as a flat direction. At

this stage, the remaining moduli space consists of Minkowski vacua. That is, the perturbative

superpotential vanishes in the vacuum without the necessity to fine-tune flux. Finally, we

incorporate non-perturbative effects such as gaugino condensation and/or instantons. These are

strongly constrained by the anomalous U(1) symmetries which arise from the required bundle

constructions. We present a specific example, with a consistent choice of non-perturbative

effects, where all remaining flat directions are stabilized in an AdS vacuum.
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1 Introduction

In this work, we present a scenario for stabilizing the dilaton and all geometric moduli in

smooth, N = 1 supersymmetric vacua of the heterotic string [1, 2] and heterotic M-theory

[3, 4, 5, 6]. Heterotic compactifications to four dimensions on Calabi-Yau three-folds with

holomorphic, slope-stable vector bundles have produced phenomenologically realistic particle

physics models [7, 8, 9], and have stimulated new ideas in cosmology [10, 11, 12]. However,

moduli stabilization in this context has been more problematical1. In type IIB string theory,

moduli stabilization can be achieved with KKLT type vacua [20]. Here, one first fixes some of

the moduli, including the complex structure, using flux. The flux is then “tuned” so that the

perturbative superpotential in the vacuum is very small. It follows that the fields which are

not stabilized by the flux only have a small perturbative contribution to their F-terms. This

can then be balanced by non-perturbative effects to form a completely stable supersymmetric

vacuum. There are two problems which arise in trying to repeat this approach in heterotic

Calabi-Yau three-fold compactifications. First, the Calabi-Yau condition appears to forbid the

introduction of topologically non-trivial Neveu-Schwarz flux to stabilize the complex structure

moduli2. Second, even if one naively allows such field strengths while retaining the Calabi-

Yau geometry, the available flux does not allow for a small vacuum value of the perturbative

superpotential – see the Appendix for a proof of this in the large complex structure limit. Thus,

even if one can stabilize the complex structure in this way, there is a resulting instability in the

remaining moduli which is too large to be balanced by non-perturbative effects.

In this paper, instead of using Neveu-Schwarz flux, we will stabilize the complex structure,

as well as many of the other geometrical moduli, using fundamental properties of the gauge

field strength present in any heterotic compactification [22]-[29]. These effects are perturbative,

compatible with the compactification manifold being a Calabi-Yau three-fold, and give rise to

N = 1 supersymmetric Minkowski vacua. Because the superpotential vanishes after pertur-

bative stabilization, this naturally avoids a runaway potential for the few remaining moduli.

These can then be stabilized with non-perturbative effects, without the need to tune any flux at

all. We emphasize, however, that although the problem of tuning flux does not arise, stabilizing

moduli in our approach requires very specific choices of vector bundles. The relevant gauge field

strengths can be in either the hidden or visible sector, or even split between the two. However,

since it has less impact on phenomenology, in the generic discussion in the Introduction, and

when presenting an explicit example that fixes all moduli, we locate the associated vector bundle

in the hidden sector.

Let us now discuss in more detail the perturbative moduli stabilization mechanisms at the

heart of our scenario. It is well known that there are contributions to the four-dimensional

potential of a heterotic compactification arising from non-vanishing gauge fields in the extra

1See [13]-[19] for related work, including stabilization mechanisms in heterotic orbifold models.
2However, see [21] for a possible counterexample.
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dimensions. The ten-dimensional action of heterotic theories contains the terms

S = − 1

2κ2
10

α′

4

∫

M10

√−g
{

trF 2 − trR2
}

+ . . . . (1.1)

Using an integrability condition on the Bianchi identity, (1.1) can be rewritten, for the case of

a Calabi-Yau compactification, as

S = − 1

2κ2
10

α′

∫

M10

√−g

{

−1

2
tr(gab̄Fab̄)

2 + tr(gaāgbb̄FabFāb̄)

}

+ . . . . (1.2)

The integrand in (1.2) contains no four-dimensional indices – a, b are holomorphic and ā, b̄ anti-

holomorphic indices with respect to a chosen complex structure on the Calabi-Yau three-fold.

Hence, upon dimensional reduction, (1.2) gives rise to a potential in the four-dimensional the-

ory. For the low-energy theory to be N = 1 supersymmetric it must be possible to express the

potential coming from (1.2) in terms of F- and D-terms. Indeed, the link between supersym-

metry and (1.2) is rather direct. To preserve supersymmetry, the gauge fields in a heterotic

compactification must satisfy the Hermitian Yang-Mills equations of zero slope; that is,

Fab = Fāb̄ = 0 , gab̄Fab̄ = 0 . (1.3)

Clearly, if these equations are satisfied then (1.2) leads to a vanishing potential. If, however,

for some values of the moduli, Eqs. (1.3) are not satisfied, then (1.2) gives rise to a positive-

definite potential in four dimensions. Thus, the potential (1.2) can stabilize at least some of the

moduli in a supersymmetric, Minkowski vacuum. From the point of view of the four-dimensional

theory, the expressions gaāgbb̄FabFāb̄ and (gab̄Fab̄)
2 are associated respectively with F- and D-

term contributions to the N = 1 potential. In recent work [22]-[29], it has been shown how

to calculate these as explicit functions of the moduli fields. This paves the way to using this

potential to stabilize moduli in heterotic models.

First, consider the requirement in (1.3) that both the holomorphic and anti-holomorphic

components of the gauge field strength must vanish to preserve supersymmetry. This im-

plies that the associated vector bundle must be holomorphic with respect to a given complex

structure. It is clear, however, that this field strength need not have zero holomorphic and

anti-holomorphic components with respect to a different complex structure. If this is the case,

it corresponds to the stabilization of some – possibly all – of the complex structure moduli. Ex-

plicit examples, together with the associated mathematical and field theoretic formalisms, were

presented in [27, 29]. It was shown that these holomorphy “obstructions” are indeed related

to non-vanishing F-terms, but with an important subtlety. There are regions of moduli space

where the scale of the potential is as large as the compactification scale. In such regimes, the

stabilized complex structure moduli should never have been regarded as four-dimensional fields

at all – they are fixed at a high scale. For regions of moduli space where this scale is small,

however, it was shown in [27, 29] that these complex structure are fixed by F-terms.

The second condition for supersymmetry in (1.3) requires the vector bundle to have the

geometrical properties of poly-stability and vanishing slope. These properties depend on the
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Kähler moduli of the Calabi-Yau three-fold, as can be seen from the appearance of the metric

in gab̄Fab̄ = 0. Some bundles are only poly-stable with slope zero for a restricted set of Kähler

moduli. In addition, due to the warping of the moduli across the M-theory orbifold direction

[25] – or, equivalently, to 1-loop corrections in the weakly coupled string [24] – the last equation

in (1.3) also involves the four-dimensional dilaton. In favourable cases, these effects can stabilize

combinations of the Kähler moduli and dilaton. However, since neither slope nor poly-stability

(nor, indeed, holomorphy) depend on the overall size of the compactification, there is always

at least one unstabilized modulus remaining. It was shown in [22]-[26] that these effects are

associated with non-vanishing D-terms. As with the F-terms, one must be careful in attributing

this stabilization mechanism to a D-term potential. The scale of this potential is, once again,

often as large as the compactification scale. In such cases, the stabilized dilaton and Kähler

moduli should never have been regarded as four-dimensional fields at all – they are fixed at a

high scale. However, when this scale is small, it was shown in [22]-[26] that the Kähler moduli

and dilaton are directly fixed by D-terms.

Given these mechanisms, we propose the following three stage stabilization scenario for

heterotic compactifications.

• Stage 1: Choose part of the hidden sector vector bundle so that it is holomorphic only

for an isolated locus in complex structure moduli space. This corresponds to F-term

stabilization of the complex structure moduli.

• Stage 2: Choose the remaining part of the hidden sector bundle to be holomorphic for

this isolated complex structure. In addition, construct the hidden bundle so that it is poly-

stable with zero slope only for restricted values of the dilaton and Kähler moduli. This,

we will show, is easily achieved by an appropriate choice of line bundles and corresponds

to D-term stabilization of these moduli. It is possible to fix all but one of the remaining

geometric moduli in this way. However, as we will see in stage 3, leaving more than one

modulus unconstrained at the second stage is desirable.

• Stage 3: A crucial point about stages 1 and 2 is that the resulting moduli space of vacua is

supersymmetric and Minkowski. That is, the unstabilized fields have no potential and the

cosmological constant vanishes. In the final stage of our scenario, we fix these remaining

degrees of freedom using a more traditional mechanism – non-perturbative effects such as

gaugino condensation and membrane (or string) instantons. The inclusions of such effects

is extremely constrained. The D-terms introduced in stage 2 are associated with anomalous

U(1) symmetries under which various linear combinations of the axions transform. Any

allowed non-perturbative superpotential must be consistent with these U(1) symmetries.

We find this restriction sufficiently severe that – if only one linear combination of the

Kähler moduli and dilaton is left unstabilized in stage 2 – it is not possible to fix this

modulus in a controlled regime of field space. If, however, two moduli remain to be

stabilized, then non-perturbative effects consistent with the U(1) symmetries can fix the
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remaining moduli. Moreover, this can be achieved in a region of moduli space where the

effective field theory is valid. We will present an explicit example of such a vacuum.

The structure of the paper is as follows. In Section 2, we introduce the perturbative F-

and D-terms discussed above. These will be used to carry out the first two stages of our

stabilization mechanism in Section 3. This section also includes an explicit example of stage 2

and a demonstration that the moduli can be fixed in a controlled regime of the effective theory.

In Section 4, we describe the non-perturbative contributions to the potential. These will be

used in Section 5 to discuss the full scenario. Finally, in Section 6, we conclude. In addition,

a technical Appendix discussing the perturbative superpotential generated by heterotic Neveu-

Schwarz flux is attached.

2 Perturbative contributions to the potential

In this section, we review the perturbative F- and D-term contributions, introduced in [22]-[29],

to the four-dimensional potential of heterotic M-theory vacua. These will be important in stages

1 and 2 of our moduli fixing scenario. Specifically, the vacua we consider are smooth Calabi-

Yau compactifications of the ten-dimensional E8×E8 heterotic string (or its eleven-dimensional

strong-coupling counterpart) with a gauge bundle in each of the two E8 sectors. These bundles

are both of the form V = U⊕I LI . Hence, in each sector, they consist of a non-Abelian,

indecomposable piece, U , and a sum of line bundles, LI .

2.1 F-terms

The F-term contributions, associated with the failure of the gauge bundles to be holomorphic,

have been discussed in detail in [27, 29]. It is sufficient for the purposes of this paper, to

illustrate our stabilization mechanism within the context of an explicit example.

Consider the complete intersection Calabi-Yau three-fold defined by

X =









P
1 2

P
1 2

P
2 3









3,75

. (2.1)

We construct a rank 2 holomorphic bundle U on this three-fold via the short exact “extension”

sequence

0 → L → U → L∗ → 0 , (2.2)

where L is the line bundle OX(−2,−1, 2). At any point in the 75-dimensional complex structure

moduli space, with moduli denoted Za, the holomorphic extensions correspond to elements of

Ext1(L∗,L) = H1(X,L2) . (2.3)
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It is well-known that the dimension of a sheaf cohomology, while possessing a generic value,

can “jump” at special values of complex structure. For the example discussed here, it was

shown in [27, 29] that (2.3) vanishes everywhere in complex structure moduli space except on a

specific 58-dimensional sub-locus, where h1(X,L2) = 18. The dimensions of such cohomologies

are computed in this work using techniques and code created in the development of [9, 40].

We choose a point Za
0 on this sub-locus and a non-vanishing extension class far from zero.

Corresponding to this choice is a holomorphic, indecomposable SU(2) bundle U . Now move

infinitesimally to a generic point Za
0 + δZa not on this sub-locus. Then, h1(X,L2) = 0 and

the only holomorphic bundle is the direct sum L⊕L∗. Since an indecomposable SU(2) bundle

cannot split into a direct sum under an infinitesimal change in complex structure, it is clear

that U is not holomorphic at a generic point in moduli space. That is, the holomorphicity of U
is “obstructed” in the 75 − 58 = 17 directions in complex structure moduli space leading away

from the special sub-locus.

As discussed in [27, 29], these obstructions correspond to specific non-vanishing F-terms

in the effective theory and, hence, the breakdown of supersymmetry. It is straightforward

to determine the zero-mode spectrum of the bundle U defined in (2.2). As above, consider

a point Za
0 on the sub-locus. For a non-vanishing extension class far from zero, there are

h1(X,U ⊗ U∗) = h1(X,L2) − 1 = 17 bundle moduli. However, to discuss the F-term structure

it is helpful to first consider bundles near 0 ∈ Ext1(L∗,L). Here, as shown in [22, 25, 26],

the low-energy gauge group is enhanced by an anomalous U(1) factor and the bundle moduli

are counted by h1(X,L2) = h1(X,L∗2) = 18. We denote these massless fields by Ci
+ and Cj

−

respectively, with the subscript ± indicating the U(1) charge. Therefore, to lowest order, the

four-dimensional superpotential is

W = λij(Z)Ci
+Cj

− . (2.4)

The dimension one coefficients λij(Z) are functions of the complex structure moduli Za. The

associated F-terms are

FCi
+

= λijC
j
− + KCi

+
W , F

Cj
−

= λijC
i
+ + K

Cj
−
W, (2.5)

FZa
‖

=
∂λij

∂Za
‖

Ci
+Cj

− + Kz
a
‖
W , FZa

⊥
=

∂λij

∂Za
⊥

Ci
+Cj

− + KZa
⊥
W

where we have distinguished between derivatives within the 58-dimensional sub-locus (specified

by 58 coordinates Za
‖ ) and those leaving this sub-locus (specified by 17 coordinates Za

⊥). Since

the fields Ci
+ and Cj

− are zero-modes, for Za
0 on the sub-locus, it follows that

λ(Z0)ij = 0 ⇒ ∂λij(Z0)

∂Za
‖

= 0 . (2.6)

In the next section, we show how the Za
⊥-dependence in the superpotential can stabilize the

complex structure moduli to the sub-locus where holomorphic, indecomposable SU(2) bundles
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exist. In performing this analysis we will look for supersymmetric Minkowski vacua for which

W , as well as the F-terms (2.5), vanishes. Given this we will not need to know the exact form

of the Kähler potential in (2.5).

2.2 D-terms

The low-energy gauge group arising from a bundle of the form V = U⊕I LI necessarily in-

cludes a number of anomalous U(1) factors, one for each line bundle, LI . Associated with

each anomalous U(1) is a Kähler moduli dependent D-term, whose form is well-known [22]-[26].

These four-dimensional D-terms are the low energy manifestation of the requirement that the

internal bundle be poly-stable with zero slope. Here, we simply present these D-terms, using

the notation of [25, 26]. Corresponding to each line bundle, LI , they are

D
U(1)
I = fI −

∑

LM̄

QL
I GLM̄CLC̄M̄ , (2.7)

where CL are the zero-mode fields with charge QL
I under the I-th U(1), GLM is a Kähler metric

with positive-definite eigenvalues and

fI =
3

16

ǫSǫ2
R

κ2
4

µ(LI)

V +
3πǫ2

Sǫ2
R

8κ2
4

βic
i
1(LI)

2s
(2.8)

is a dilaton and Kähler moduli dependent Fayet-Iliopoulos (FI) term [25, 26]. The quantities

µ(LI) = dijkc
i
1(LI)t

jtk, V =
1

6
dijkt

itjtk (2.9)

are the slope of the associated line bundle LI and the Calabi-Yau volume respectively. Here

ti are the Kähler moduli relative to a basis of harmonic (1, 1) forms ωi, with the associated

Kähler form given by J = tiωi. Furthermore, s is the real part of the dilaton. The quantities

dijk =
∫

X ωi ∧ ωj ∧ ωk are the triple intersection numbers of the three-fold and the βi are the

charges on the orbifold plane where the associated line bundle is situated. Explicitly, these

charges are

βi =

∫

X
(ch2(V ) − 1

2
ch2(TX)) ∧ ωi . (2.10)

The parameters ǫS and ǫR are given by

ǫS =
(κ11

4π

)2/3 2πρ

v2/3
, ǫR =

v1/6

πρ
. (2.11)

Here v is the coordinate volume of the Calabi-Yau three-fold, ρ is the coordinate length of

the M-theory orbifold and κ11 is the eleven-dimensional gravitational constant. The four-

dimensional gravitational constant κ4 can be expressed of these 11-dimensional quantities as

κ2
4 = κ2

11/(2πρv). In the subsequent discussion we will set κ11 = 1 and further, in order to

simplify the FI terms (2.8), choose the coordinate parameters ρ and v such that

3

16

ǫSǫ2
R

κ2
4

=
3πǫ2

Sǫ2
R

16κ2
4

= 1 . (2.12)
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Finally, for the explicit vacua discussed in this paper, we choose each line bundle LI such that

all of the CL fields with non-vanishing charges QL
I are absent. Hence, the second term in (2.7)

will not appear.

3 Stages 1 and 2: Minimizing the perturbative po-

tential

In this section, we describe the first two stages of our scenario within the explicit context of

Section 2. Stage 1 involves fixing the complex structure by setting to zero the F-terms arising

from superpotential (2.4). In stage 2, using the expressions given in Subsection 2.2, we fix linear

combinations of the Kähler moduli and the dilaton by solving the D-flat constraints. Crucially,

both steps lead to a four-dimensional supersymmetric Minkowski vacuum. Hence, by the end of

this section, we will have achieved a perturbative stabilization of all but one of the geometrical

moduli, with the resulting vacuum space having a vanishing perturbative potential.

3.1 Stage 1: Fixing the complex structure

We will demonstrate stage 1 within the context of the explicit example presented in Subsection

2.1. First, choose the complex structure moduli Za
0 to be in the 58-dimensional sub-locus for

which an indecomposable bundle U can be holomorphic. Note from (2.6) that the superpotential

(2.4) and the first three F-terms in (2.5) always vanish. What are the implications of the fourth

term, FZa
⊥
, in (2.5)? The associated potential is

V = |FZa
⊥
|2 = |∂λij(Z0)

∂Za
⊥

〈Ci
+〉|2|Cj

−|2 + . . . , (3.1)

where we suppress the multiplicative factor of eKGaā for simplicity.

Now consider a bundle U defined by a non-vanishing class in Ext1(L∗,L) and, hence, by

〈Ci
+〉 6= 0. As mentioned earlier, such a bundle only has Ci

+ fields as zero-modes. Hence, the Cj
−

fields must have a non-vanishing mass. It then follows from (3.1) that, in contrast to Eq. (2.6),

∂λij(Z0)

∂Za
⊥

6= 0 . (3.2)

One immediate implication is

〈FZa
⊥
〉 =

∂λij(Z0)

∂Za
⊥

〈Ci
+〉〈Cj

−〉 = 0 ⇒ < Cj
− >= 0 . (3.3)

More interestingly, now consider the potential energy obtained from all four F-terms in (2.5) eval-

uated at a generic point Za
0 +δZa

⊥ not on the 58-dimensional sub-locus where non-decomposable

bundles U exist. Then, to quadratic order in the field fluctuations we find, in addition to the

Cj
− term in (3.1), that

V = |∂λij(Z0)

∂Za
⊥

〈Ci
+〉|2|δZa

⊥|2 + . . . . (3.4)
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where a sum over index j is implied. It follows from (3.2) that any of the fluctuations in the

complex structure away from the special sub-locus has a positive mass and, hence,

〈δZa
⊥〉 = 0 . (3.5)

That is, the complex structure moduli are fixed to be on the sub-locus where an indecomposable

bundle U can be holomorphic!

There are several things to note about the above discussion. First, the dilaton and Kähler

moduli have yet to appear in the analysis. Second, the above example is somewhat special

in that it is possible to give a four-dimensional description of the stabilization of the complex

structure. In general, for the mechanism presented in [27, 29], this stabilization will take place

at high scale. Hence, the fixed complex structure should never have been included as fields in

the four-dimensional theory in the first place. In such cases, one should simply write down the

low-energy N = 1 theory without these fields present3.

Regardless, for the rest of this paper we simply assume that the complex structure moduli

have been stabilized by some appropriate bundle in the theory. For the subsequent stages of

our scenario, we will not need to know any more information about what this bundle actually

is, other than its second Chern class and how its structure group (times some U(1) factors)

is embedded in E8. Both this topological quantity and the group embedding are required to

satisfy certain conditions, as we will discuss below.

3.2 Stage 2: Fixing the Kähler moduli and dilaton

For simplicity, we assume in the following that there are no matter fields CI which are charged

under the anomalous U(1) symmetries4. This can be achieved by an appropriate choice of line

bundles LI and we present an explicit example below. Using the results in the previous section

and our choice of conventions, the N D-terms are then given by

D
U(1)
I =

µ(LI)

V +
βic

i
1(LI)

s
= ci

1(LI)ti + γIs
−1 , (3.6)

where we find it convenient to define the “dual” Kähler moduli ti = 1
V dijkt

jtk as well as γI =

βic
i
1(LI).

The D-term equations D
U(1)
I = 0 for I = 1, . . . , N form a linear system of equations for

the h1,1(X) + 1 variables (ti, 1/s). The system is homogeneous which means that one modulus,

3Indeed, this will even be the case in the above example if the mass term in equation (3.4) is of the order of the

compactification scale.
4The general case, including U(1) charged matter fields, may be interesting and is compatible with our three-

stage scenario. However, the detailed analysis is significantly more complicated. The D-terms (2.7) now fix linear

combinations of the T-moduli, the dilaton and the matter fields. In addition, the presence of matter fields typically

allows for more general non-perturbative contributions consistent with the U(1) symmetries. This will be important

for stage 3 of our scenario. We defer a detailed discussion of these possibilities to future work.
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corresponding to the overall scaling of the moduli, cannot be fixed. Physically, this occurs

because holomorphy and poly-stability/vanishing slope are geometrical properties which do not

depend on the overall size of the three-fold. Provided that all of the equations are linearly

independent, a non-trivial solution requires that N ≤ h1,1(X).

If any of the coefficients γI , for definiteness say γ1, is different from zero we can proceed by

solving the first equations for the dilaton s in terms of the Kähler moduli. This leads to

s = − γ1

tic
i
1(L1)

. (3.7)

Substituting this into the remaining N − 1 equations, and taking the Calabi-Yau volume V to

be finite, we obtain the linear equations
(

ci
1(LI) −

γI

γ1
ci
1(L1)

)

ti = 0 , I = 2, . . . , N , (3.8)

which fix a number of directions in Kähler moduli space. In the most restrictive case, that is,

if we start with N = h1,1(X) linearly independent D-term equations, we can solve for all of the

Kähler moduli in terms of the overall scaling modulus. Then, this scaling modulus is the only

flat direction left.

If, on the other hand, all of the coefficients γI = 0, then the dilaton drops out of the D-term

equations and remains a flat direction. In this case, the Kähler moduli are constrained by

ci
1(LI)ti = 0 , (3.9)

and for a non-trivial solution we should have at most N ≤ h1,1(X) − 1 linearly independent

such equations. In the most restrictive case with precisely N = h1,1(X)−1 linearly independent

equations all Kähler moduli can be solved for in terms of an overall scaling modulus. Hence,

we are left with two flat directions, the scaling modulus and the dilaton.

As a final comment, note that the axions associated with the stabilized combinations of s and

ti are “eaten” by massive anomalous U(1) gauge bosons through the standard supersymmetric

Higgs effect [30], albeit involving fields with non-canonical kinetic terms.

3.2.1 An example

As we did for stage 1, we now present an explicit realization of stage 2. This example is intended

as a clear example of stage 2 of our scenario and, in particular, as an illustration of how the

dilaton can be stabilized. It should be noted that it is not compatible with the particular

example given for stage 1 of the scenario. However, in Section 5 we will describe how to obtain

a single consistent vacuum in which stages 1 and 2 can coexist, as well as being compatible with

explicit non-perturbative contributions.

Consider the CICY three-fold

(

P
3 0 1 1 1 1

P
5 2 1 1 1 1

)2,50

. (3.10)

10



The triple intersection numbers are specified by d111 = 2, d112 = 8, d122 = 12, d222 = 8. Since

h1,1(X) = 2, we need to specify two linearly independent D-terms, in the most restrictive case.

We accomplish this by choosing one line bundle on each of the two orbifold fixed planes. That

is, the vector bundles on the visible and hidden planes are of the form V1 = U1 ⊕ L1 and

V2 = U2 ⊕ L2 respectively, where both U1 and U2 have rank of at least two. This gives rise to

two anomalous U(1) factors in the low-energy gauge group and, hence, two associated D-terms.

On the three-fold (3.10), the line bundle L1 = OX(−2, 1) has no cohomology for a generic

complex structure. Thus it gives rise to no C fields. This is also true for L2 = OX(3,−2).

In addition, any other cohomologies which would give rise to fields charged under the two

anomalous U(1)’s vanish. We use these two line bundles to stabilize the dilaton and one Kähler

modulus in stage 2. Given these line bundles, we find that γ1 = −2β1 +β2 and γ2 = −3β1 +2β2.

Now choose U1 and U2 to have second Chern characters

ch2(U1) = −38ν1 + 4ν2 , ch2(U2) = 15ν1 − 36ν2 (3.11)

respectively, where νi is a basis of harmonic four-forms dual to ωi. It is assumed that U2

stabilizes the complex structure as in stage 1. In addition we find

ch2(L1) = −6ν1 − 4ν2 , ch2(L2) = −15ν1 − 20ν2 (3.12)

and

ch2(TX) = −c2(TX) = −44ν1 − 56ν2 . (3.13)

Combining these results gives

β = −22ν1 + 28ν2 . (3.14)

Note that the charges on the two fixed planes are equal and opposite5. We define β to be the

fixed plane charge for the locus where the line bundle L1 is situated. This implies γ1 = 72 and

γ2 = 122.

For this example, equations (3.7) and (3.8) become

s = −72

3
((t1)3 + 12(t1)2t2 + 18t1(t2)2 + 4(t2)3)/(4((t1)2 − 2t1t2 − 4(t2)2)) (3.15)

and

−151(t1)2 + 122t1t2 + 424(t2)2 = 0 (3.16)

respectively. Note that we have expressed the dual Kähler moduli ti in terms of ti using the

intersection numbers presented above. The above equations can be solved to give the relations

t1 = 2.13t2 , s = 171t2 (3.17)

between the moduli in the vacuum. Hence, the only remaining flat direction is the overall scaling

of all three moduli.

5Here, and in all the examples, we have, for simplicity, chosen vacua where no M5 branes are present.
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The D-terms we have been solving are derived (in the language of the strongly coupled

theory) for small warping. This approximation will be valid, in our conventions, if the moduli

dependent strong-coupling parameters, given by

ǫ̂S =
V1/3

s
ǫS , ǫ̂R =

s1/2

V1/3
ǫR , (3.18)

are sufficiently small. The Calabi-Yau volume V was defined in equation (2.9). For the example

in this subsection, we find

ǫ̂S = 0.006 ≪ 1 (3.19)

and that ǫR may be made arbitrarily small by increasing the size of the one remaining modulus.

A number of other consistency checks must also be satisfied. First, the non-Abelian bundles

added to each of the fixed planes must be slope stable. A necessary condition for this is that

the topological quantities associated with those bundles satisfy the Bogomolov bound [31] for

the Kähler moduli evaluated on each fixed plane. We find that this is indeed the case if 1) the

rank of the non-Abelian bundle is greater than or equal to 1 on the first fixed plane and 2)

greater than or equal to 3 on the second plane. One must also check that the line bundles on

each fixed plane are zero slope inside the Kähler cone. Working in terms of the variables ti, the

two line bundles in question are zero slope on the lines of gradient 2 and 3/2 respectively. The

Kähler cone, in these variables, is the region between the lines of slope 4 and 2/3, so this test

is passed as well.

Thus we have stabilized all but one linear combination of the dilaton and Kähler moduli, in

a supersymmetric Minkowski vacuum, in an allowed region of field space.

4 Non-perturbative contributions

Non-perturbative contributions to the superpotential in our scenario are strongly constrained

by gauge invariance. To discuss this we first introduce the complexified dilaton and Kähler

moduli fields S = s + iσ and T i = ti + i2χi, which include the axions σ and χi. The D-terms

in stage 2 are associated with Green-Schwarz anomalous U(1) symmetries under which these

axions transform non-trivially. Explicitly, these transformations read

δχi = − 3

16
ǫSǫ2

Rci
1(LI)ǫ , δσ = −3

8
πǫ2

Sǫ2
Rci

1(LI)βiǫ (4.1)

for the D-terms as given in Eq. (2.7). Note that there is one such transformation for each

D-term.

To analyze non-perturbative superpotentials, we work, without loss of generality, in the

“Kähler frame” – where the superpotential is gauge invariant [30]. Non-perturbative corrections

typically depend on linear combinations niT
i + mS of the moduli, where, for now, ni and m

are arbitrary coefficients. A particular non-perturbative correction which depends on such a
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linear combination is allowed only if this linear combination is U(1) invariant6. From the

transformations (4.1) this implies, given the conventions (2.12), that

ci
1(LI)ni + γIm = 0 . (4.2)

We note that this is precisely the same linear system of equations, in variables (ni,m), as the

D-term equations (3.6) which we have used to fix linear combinations of the moduli (ti, s
−1) in

stage 2. This means that the number of linear independent combinations niT
i + mS on which

non-perturbative effects can, in principle, depend equals the number of flat directions left after

stage 2. For this reason, there is a tension between our desire to fix as many moduli as possible

perturbatively at stage 2 and retaining enough flexibility with non-perturbative effects.

Let us now discuss this in some more detail and ask which, if any, of the known non-

perturbative effects can co-exist with our D-terms, that is, with our choice of gauge bundle?

We begin with gaugino condensation which is described by a non-perturbative superpotential

Wgaugino = Ae−α(S−βiT i) , (4.3)

where A, α are constants. In our earlier language this means we have ni = −βi and m = 1.

This choice is consistent with gauge symmetry provided that all anomalous U(1) symmetries

are located on the orbifold plane opposite the one which carries the condensate. Indeed, in this

case we have γI = ci
1(LI)βi and the conditions (4.2) are obviously satisfied. This fact can be

easily understood from Green-Schwarz anomaly cancellation. Given that the anomalous U(1)

symmetries and the condensate are on opposing planes, no fields on the condensate plane carry

U(1) charge. Hence, there is no triangle anomaly to be cancelled on this plane and, consequently,

its gauge kinetic function which appears in the exponent of (4.3) should not transform. If we

have anomalous U(1) symmetries on both fixed planes they will, in general, forbid gaugino

condensates from forming in any gauge group factor. However, this can be avoided for special

topological choices. For example, if all line bundles are chosen such that ci
1(LI)βi = 0, then the

associated U(1) symmetries do not constrain gaugino condensate potentials at all – on either

fixed plane.

Membrane instanton superpotentials take the form

Wmembrane = Be−niT
i

, (4.4)

where B and ni are constants. This means we have to satisfy the conditions (4.2) for m = 0.

If we stabilize all but one modulus at stage 2 we need at least one of the coefficients γI to be

non-zero. At the same time, the D-term equations (3.6) as well as the conditions (4.2) have a

one-dimensional common solution space which, for finite dilaton s−1 6= 0 cannot point into the

6Here we assume the absence of singlet matter charged under the anomalous U(1) symmetries, as discussed earlier.

If such singlet matter is present additional non-perturbative corrections may be allowed and the discussion becomes

more complicated.
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m = 0 direction. This means that, in this case, instanton corrections are excluded. For two flat

directions left at stage 2 we have two linearly independent vectors of the form (ni,m) solving

the invariance conditions (4.2). By taking an appropriate linear combination we see that at

least one type of instanton correction is allowed in this case.

Given these facts we should first think about the “maximal” stabilization scenario where we

only leave one flat direction at stage 2. As argued above, there is no instanton superpotential

in this case. However, if we locate all anomalous U(1) symmetries on one orbifold plane, then

gaugino condensates can form on the opposite plane so that we can attempt to stabilize the one

remaining modulus by a race-track potential. Unfortunately, this obvious course of action runs

into a serious problem. In this case, the solution to the invariance conditions (4.2) is ni = −βi

and m = 1 and, hence, the D-term equations (3.6) are solved by ti = kβi and s−1 = k with an

arbitrary constant k. Hence, the ratio of the one-loop term βit
i in the gauge kinetic function

relative to the tree-level part s is given by

βit
i

s
= 6 . (4.5)

This means that the expansions defining our four-dimensional theory have broken down and

we can not trust any resulting vacuum. For this reason, we will consider models with two flat

directions left at stage 2 in the subsequent discussion.

5 Stages 1, 2 and 3: Minimizing the full potential

In this section, we combine stages 1 and 2, outlined in Subsections 3.1 and 3.2 above, with

a third stage, involving the non-perturbative effects discussed in Section 4, to give a complete

description of our moduli stabilization scenario. Making the various stages of stabilization

compatible is non-trivial. We begin by separating off stage 1. That is, we show that it is

possible to stabilize the complex structure using only the perturbative potential described in

Subsection 3.1 and, having done so, that we can simply ignore these moduli in the remaining

discussion. That this can be done is non-trivial, since there is no separation in scale between

the perturbative F-terms of stage 1 and the D-terms used in stage 2.

Once the complex structure has been fixed, we move on to stages 2 and 3 and stabilize the

remaining moduli. As we have seen, the allowed non-perturbative effects are restricted by the

presence of the D-terms. Conversely, in order to have a stable minimum of the potential, one

can view the D-terms one can include as being restricted by the non-perturbative effects. In

Subsections 5.2.1 and 5.2.2, we will describe how to fit these competing effects together. We

then finish this section by providing an explicit example of our stabilization scenario.
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5.1 Separating off Stage 1

We want to extremize the potential of the theory, including all perturbative and non-perturbative

effects, with respect to all fields in the problem. Furthermore, to preserve supersymmetry in

the vacuum, we set all F-terms and D-terms to zero. In general this means that, in consider-

ing the stabilization of the complex structure in stage 1, one should include contributions to

the F-terms coming from the non-perturbative effects introduced in stage 3. Since fixing these

moduli involves solving FZa = 0, this would modify the simple perturbative analysis performed

in Subsection 3.1. Furthermore, the expectation values for the complex structure moduli must

be substituted into the remaining F-terms equations which are solved in stages 2 and 3 to fix

some of the remaining fields. Since the FZa depend on S and T i, so will the solutions for Za.

Thus, substituting these expectation values back into the other F-terms introduces additional

S and T i dependence, which must be taken into account in the remaining analysis.

This effect could, in principle, link perturbative and non-perturbative contributions to the

potential in a complicated way. Happily, however, this is not the case for the smooth heterotic

vacua discussed in this paper, as we now explain. First, a few facts.

• The superpotential contains two types of contributions – perturbative and non-perturbative.

In our theory, these are given by

W = W (P)(Z) + W (NP)(Z,S, T i) . (5.1)

The perturbative term, as was described in Section 2.1, does not depend on S or T i. We

emphasize that this is not generically the case in string vacua. It arises in our theory

precisely because our complex structure is fixed to lie in the image of the Atiyah map

discussed in [27, 29]. The non-perturbative term, which contains all fields, is much smaller

than the perturbative contribution in any controlled regime of field space.

• The Kähler potential takes the form

K = KCS(Z) + KST(S, T i) . (5.2)

As with the superpotential, there are both perturbative and non-perturbative contributions

to K. However, the non-perturbative contributions to the Kähler potential are always of

higher order in our analysis and, hence, we ignore them in (5.2).

• Using (5.1) and (5.2), it follows that FZa is of the form

FZa = F
(P)
Za (Z) + F

(NP)
Za (Z,S, T i) . (5.3)

The discussion of Section 3.1 was concerned with finding a solution to F
(P)
Za = 0, that is, the

vanishing of the perturbative F-term. This resulted in a solution Za = Za
0 , which is independent

of the S and T i moduli. The addition of a small correction F
(NP)
Za to this F-term changes this

analysis by inducing a similarly small correction Za = Za
0 + δZa. The crucial point is that,
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in our theory, if we substitute this perturbed solution for Za into the other F-terms and solve

for the remaining fields, then it is easy to show that the correction δZa only enters into terms

which are second order in the small non-perturbative quantities. This is due to two important

features of our theory; 1) the property that W (P) in (5.1) depends on the complex structure

only and 2) the fact the analysis of Section 3.1 resulted in a supersymmetric Minkowski vacuum

with

W (P)(Z0) = ∂W (P)(Z0) = 0 . (5.4)

Hence, to achieve a result accurate to first order in small quantities, one need only set Za = Za
0 .

One can then also forget about the perturbative superpotential in the remaining analysis, as

this vanishes for this value of the moduli. This is what we will do in the remainder of the paper.

This establishes a separation between stage 1 and the remaining two stages. In the following,

we will assume that the vector bundles are chosen so that stage 1 is accomplished. Recall that

– in each E8 sector – the vector bundle is of the form V = U⊕I LI . The relevant quantity in

stage 1 is the subbundle U which, via the perturbative superpotential W (P)(Z), stabilizes the

complex structure moduli which can be integrated out and, henceforth, ignored. That is, for

stages 2 and 3 only the Abelian subbundles
⊕

I LI with I = 1, . . . , N are relevant. However,

certain topological data associated with the full bundles V still appears in stages 2 and 3. Before

continuing, we list this data. The bundles and their constituents must be consistent with

• Anomaly cancellation: ch2(TX) = ch2(V1) + ch2(V2)

• Bogomolov bound:
∫

X

(

2 rk(U)c2(U) − (rk(U) − 1)c2
1(U)

)

∧ J ≥ 0

Furthermore, the charges βi given by Eq. (2.10) depend on the choice of bundle U at stage 1

and should be consistent with the values used at later stages. Lastly the rank and embedding

of the hidden sector bundle within E8 must be compatible with the existence of the gaugino

condensates which will be employed in stage 3. With this in hand, we continue to the full

stabilization scenario.

5.2 Stabilizing the remaining moduli: Stages 2 and 3

In the rest of this section we carry out stages 2 and 3 of our scenario simultaneously, thus

stabilizing the remaining geometrical moduli in a supersymmetric vacuum. We will see that,

by allowing the two effects – D-terms and non-perturbative F-terms – to coexist, one places

considerable constraint on which theories can be considered. Not only does the presence of

D-terms restrict the non-perturbative effects one can use, but the non-perturbative potential,

together with the requirement that there exist a stable supersymmetric vacuum, restricts the

form of the D-terms in stage 2. In particular, we begin by showing that no supersymmetric

vacua exist unless the gauge bundle, and thus the D-terms, satisfy specific constraints. When
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these constraints are satisfied, however, we will find explicit supersymmetric AdS vacua with

all of the geometric moduli stabilized at a minimum in a controlled regime of field space.

5.2.1 A no-go result

Previously, we have seen that leaving only one flat direction after stage 2 leads to a break-

down of the expansions defining the four-dimensional heterotic theory. Here, we present an

independent reason for why leaving only one modulus un-stabilized after perturbative effects is

problematic. Recall that in this case, at least one of the coefficients γI , say γ1, is different from

zero so that the associated D-term equation can be solved for the dilaton. This results in

s = − γ1

tici
1(L1)

. (5.5)

Following Section 4, one can write the most general non-perturbative superpotential as

W =
∑

a

Aae
−αa(S−βiT i) +

∑

x

Bxe−nx
i
T i

, (5.6)

where nx
i , Aa, Bx, αa are constants. To ensure gauge invariance of the instanton terms under

the first U(1) symmetry, we require that

nx
i ci

1(L1) = 0 (5.7)

for all x. Some of the constants Aa, Bx may be set to zero if required for invariance under all

U(1) symmetries. The corresponding F-terms are

FS = −
∑

a

Aaαae
−αa(S−βiT i) − 1

κ2
4

1

2s
W (5.8)

FT j =
∑

a

Aaαaβje
−αa(S−βiT i) −

∑

x

Bxnx
j e

−nx
i
T i

+ KT jW (5.9)

Multiplying Eq. (5.9) by cj
1(L1) and using γ1 = cj

1(L1)βj , Eq. (5.7) and KT j = − tj
4κ2

4

, we find

cj
1(L1)FT j =

∑

a

Aaαaγ1e
−αa(S−βiT

i) − 1

4κ2
4

tjc
j
1(L1)W . (5.10)

Substituting Eq. (5.8) into (5.10) and setting cj
1(L1)FT j = 0, we obtain

W
(

γ1 +
s

2
tjc

j
1(L1)

)

= 0 . (5.11)

There are now two possibilities. If W = 0 then we are considering Minkowski vacua. Such

vacua, while desirable, require a careful tuning of the constants Aa, Bx. At present we cannot

justify this from string theory so we will focus on the case where W 6= 0 which leads to AdS

vacua. Then, Eq. (5.11) implies that

s = −2
γ1

tici
1(L1)

, (5.12)

which is clearly inconsistent with the D-flat condition (5.5). We conclude that if any of the

anomalous U(1) factors have ci
1(L)βi 6= 0, it is not possible to simultaneously solve the D- and

F-flat conditions and, hence, no supersymmetric AdS vacua exist.
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5.2.2 Avoiding the no-go result

The no-go result of the previous subsection tells us that, if we are to successfully combine the

stabilization mechanisms in stages 2 and 3, we must constrain the gauge bundle such that, for

each anomalous U(1),

ci
1(LI)βi = 0 . (5.13)

It follows from (3.6) that the dilaton no longer appears in any D-term. Hence, when combining

the various effects in our scenario, one can not use the full power of stage 2 to stabilize the

dilaton in linear combination with the Kähler moduli. It follows that one need only include

N = h1,1 − 1 D-terms in the four-dimensional theory which will stabilize an equivalent number

of Kähler moduli. The overall Kähler modulus as well as the dilaton will remain as flat directions.

Non-perturbative effects prevent us from making “optimal” use of the D-term stabilization at

stage 2 which would only leave one flat direction.

From Eqs. (3.6) and (5.13), the D-term equations D
U(1)
I = 0 now take the form

ci
1(LI)ti = 0 . (5.14)

These equations are obviously solved by choosing ti ∝ βi. We take the superpotential to be

of the general form (5.6). Recall that the gaugino condensation part is automatically gauge-

invariant thanks to the condition (5.14) while for the instanton corrections we have to impose

Eq. (4.2). For the present case, this along with (5.13) implies that nx
i = bxβi for each x. Then,

the associated F-terms are

FS = −
∑

a

αaAae
−αa(S−βiT

i) − 1

2κ2
4s

W (5.15)

FT j =
∑

a

Aaαaβje
−αa(S−βiT

i) −
∑

x

Bxbxβje
−bxβiT

i − 3

2

1

κ2
4

βj

βiti
W (5.16)

for j = 1, . . . , h1,1. In Eq. (5.16) we have used the relation KT j = −3
2

1
κ2
4

βj

βiti
which follows from

ti ∝ βi. Note that every term in FT j is proportional to βj . Therefore, setting all of the Kähler

moduli F-terms to zero leads to just one equation. We will look for solutions to our theory

where the axion expectation values appearing in the F-terms vanish. For such a choice, we see

that this equation and FS = 0 only depend on two variables, s and βit
i. Note that the latter is

proportional to the volume of the Calabi-Yau three-fold, that is, βit
i ∝ V since ti ∝ βi. Thus,

we end up with two constraints on two real variables from the F-terms. Recalling that the

h1,1 − 1 D-terms constrain the remaining variables, one expects to find isolated solutions to this

system. This is indeed the case, as we now demonstrate with an explicit example.

5.3 An example

Let us consider an example where h1,1 = 2 and, hence, we need only one line bundle L. Further-

more, take the moduli fixing bundle V = U⊕L to be located in the hidden sector. As discussed
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above, the subbundle U is assumed to fix the complex structure moduli and does not enter

the rest of the calculation. Now demand that there be two gaugino condensates and a single

membrane instanton present. Note that, although the higher rank subbundle does not enter

the remaining calculation, the condition that there be two gaugino condensates requires that

the structure group of U⊕L be embedded in E8 in such a way that the commutant has two

non-Abelian gauge factors. This is easily accomplished. We will specify a Calabi-Yau three-fold

and the line bundle L shortly. However, one can get a surprisingly long way in the analysis

without giving this data, as we now show.

Although physically the parameters in the superpotential would be determined by funda-

mental theory, and one would then solve for the field values at the minimum, it is simpler in

practice to proceed in the inverse fashion. That is, we can ask what parameter values are re-

quired in the superpotential to give a minimum with specified vacuum expectation values for the

fields. Setting the F-terms (5.15) and (5.16) to zero for the case at hand gives us the following

result.

A1 = Beα1(s−βit
i)−bβit

i

(

bβit
i + α2(βit

i + s(3 + 2bβit
i))

(α1 − α2)(3s + βiti)

)

(5.17)

A2 = −Beα2(s−βit
i)−bβit

i

(

bβit
i + α1(βit

i + s(3 + 2bβit
i))

(α1 − α2)(3s + βiti)

)

(5.18)

Note that the fields that appear in the analysis of the F-terms are exactly those not constrained

by the D-term. More precisely, the dilaton, s, does not appear in the D-term since βic
i
1(F) = 0.

In addition, the D-term constrains a different combination of Kähler moduli than βit
i. If, for

example, we ask that the dilaton be stabilized at s = 1000 and the overall volume be fixed at

βit
i = 100, we find the following values solve equations (5.17) and (5.18),

A1 = −299, A2 = 734, α1 = 1/10, α2 = 10/99, b = 1, B = 1000 . (5.19)

Note that these are reasonable parameter choices and that the moduli are stabilized in controlled

regions of field space. Also note that the two exponents associated with the gaugino condensates

are quite close in value. This is as expected since the dilaton here is being stabilized essentially

by the racetrack mechanism [32, 33, 34, 35].

Up to this point, the F-term equations have not depended on the specific choice of Calabi-

Yau three-fold, except through the value of h1,1(X). In particular, to discuss the stabilization

of the overall volume and the dilaton, we have not needed the intersection numbers of the three-

fold in any way. To go further, however, and write down the specific solution for both Kähler

moduli, one must introduce this data. We then use the D-term constraint (5.14), that is,

ci
1(L)dijkt

jtk = 0 , (5.20)

together with the values of s and βit
i fixed by the F-terms, to determine the stabilized values

of the real parts of the Kähler moduli, ti. To proceed, one must now specify, in addition to
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the triple intersection numbers dijk of the Calabi-Yau three-fold, the charges βi and the explicit

anomalous U(1) in the hidden sector. We take the Calabi-Yau three-fold to be that given in

equation (3.10), which has non-vanishing intersection numbers

d111 = 2, d112 = 8, d122 = 12, d222 = 8 (5.21)

as well as those related to the above by symmetry of the indices. We choose the anomalous

U(1) in the hidden sector to be associated with the line bundle

L = OX(−2, 1) . (5.22)

Finally, let

β = (1, 2) . (5.23)

Note that, as required by (5.13), βic
i
1(L1) = 0. Having explicitly chosen the Calabi-Yau three-

fold, this choice of βi corresponds to a specification of the second Chern class of the non-Abelian

part of the hidden sector gauge bundle, that is, c2(U). Thus, again, despite the fact that U does

not enter the calculation in stages 2 and 3, the conditions required to solve for the vacuum put

further constraints on the choice of U . Given these choices, (5.20) tells us that

t1 = (1 +
√

5)t2 . (5.24)

Using the fact that βit
i = 100 and the value of βi in (5.23), we find

t1 = 61.8 , t2 = 19.1 . (5.25)

As stated in the previous subsection, the vacuum we are describing has vanishing vevs for the

axionic components of the Kähler modulus and the dilaton stabilized by the F-terms. The

remaining axion, associated with the Kähler modulus fixed by the D-term, is a “flat direction”

of the potential – as is required by the fact that it will be “eaten” in the process of the associated

anomalous gauge boson becoming massive. Putting everything together, we have shown that in

this example the vevs of the moduli are

〈s〉 = 1000, 〈σ〉 = 0, 〈t1〉 = 61.8, 〈t2〉 = 19.1, 〈χ〉 = 0 . (5.26)

Finally, it is easily demonstrated that the vacuum presented here has a positive definite mass

squared matrix for all fields. That is, it corresponds to a supersymmetric minimum of the

potential and not merely a saddle point. Some plots of the potential for various slices through

field space are presented in Figure 1. We emphasize that stage 1 also results in a minimum of

the potential for the h2,1 = 50 complex structure moduli. Thus, this vacuum is a true minimum

of the full theory. The minimum is Minkowski at the perturbative level. However, the non-

perturbative effects induce a small non-vanishing superpotential in the vacuum – as can be

verified by substituting the vevs (5.26) into the superpotential (5.6) – resulting in a shallow

AdS vacuum at the end of stage 3.

20



Figure 1: Plots of the potential, for the example in Section 5.3 of the text, for various slices through

field space. The left hand image presents the potential as a function of s and t1, whereas the right

hand image depicts the s, χ2 plane. The plots are color shaded as a function of the height of the

potential. Clearly the vacuum is a minimum of the potential in these directions, as confirmed, for all

field directions, by a calculation of the eigenvalues of the mass matrix.

There are various important consistency conditions that this example should, and does,

satisfy. For example, all of the expansion parameters of the four-dimensional theory can be

computed and are sufficiently small that the approximations used in the analysis are valid. In

addition, the second Chern class of the non-Abelian part of the hidden sector gauge bundle

is such that it satisfies the Bogomolov bound for the stabilized values of the Kähler moduli,

whatever the rank of that bundle may be. This is required for this Chern class to be consistent

with the existence of a supersymmetric bundle stabilizing the complex structure moduli.

6 Summary, conclusions, and future directions

The goal of this paper is to provide a new stabilization scenario for the geometric moduli – that

is, the dilaton, complex structure and Kähler moduli – of smooth heterotic compactifications.

Our approach has several novel features. These include using the natural constraints arising in

a heterotic theory – namely the holomorphy and slope-stability of the visible and hidden sector

gauge bundles – to perturbatively stabilize most of the moduli. The three stages of this scenario

are as follows.

First, in stage 1 the complex structure moduli are stabilized by the presence of a vector

bundle which is holomorphic only for an isolated locus in complex structure moduli space. This

geometric mechanism can, in concrete examples, be described by explicit F-term contributions

to the effective potential. In this approach, the stabilization of the complex structure is achieved

without introducing flux. As a result, the compactification remains a Calabi-Yau three-fold, and

hence we are able to retain a considerable mathematical toolkit for analyzing such geometries.

In stage 2, it is possible to use the remaining perturbative condition of slope-stability to
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restrict the dilaton and Kähler moduli. This corresponds to partial D-term stabilization of

these fields. We demonstrate that the presence of these D-terms is highly constraining to the

effective theory. In particular, the D-terms used in stage 2 are associated with gauging various

linear combinations of axions. Any non-perturbative superpotential must be consistent with

this.

Finally, in stage 3, we introduce more familiar non-perturbative effects such as gaugino

condensation and membrane instantons. However, a significant feature of our scenario is that

the presence of the D-terms in stage 2 highly constrains the possible non-perturbative effects

in stage 3. We prove a “no-go” result – namely, if only one linear combination of the Kähler

moduli and dilaton is left unstabilized in stage 2, there exists no AdS vacuum of the full theory

including non-perturbative effects. However, it is possible to avoid this no-go result by allowing

two free moduli to remain at the end of stage 2. We demonstrate explicitly that, in this case,

the non-perturbative mechanisms of stage 3 can complete the stabilization.

A crucial aspect of this scenario is that, at the end of stages 1 and 2, the resulting moduli

space of vacua is supersymmetric and Minkowski. That is, the unstabilized fields have no

potential and the classical cosmological constant is zero. As a result, this scenario does not

suffer from a need to “fine-tune” the perturbative potential to be small, as arises in some

“KKLT”-like scenarios.

It should be noted that while the geometric and effective field theory arguments given in

this paper are complete, the results presented here are still a “scenario” since we have not

provided a complete example of all three stages on a single Calabi-Yau three-fold. To find such

an example, and to couple it to realistic particle physics in the visible sector, would be an

important step forward in heterotic model building. A search for such geometries and vacua is

currently underway. This will be the subject of future work [36].

Finally, it is essential to stabilize the remaining compactification moduli not considered in

this paper – namely, the vector bundle moduli, counted by h1(V ⊗ V ∗). Potential mechanisms

for such stabilization are already evident in the proceeding sections. While stages 1 and 2 are

largely independent of these moduli, the non-perturbative effects considered in stage 3 are inher-

ently bundle moduli dependent. Specifically, the pre-factors of the superpotential contributions

of both gaugino condensation and membrane instantons, (4.3) and (4.4) respectively, mani-

festly depend on the bundle moduli. These pre-factors are complicated, manifold dependent

polynomials in these moduli. Their specific form, particularly the bundle moduli dependent

pfaffians associated with membrane instantons, has been studied in [37]. We hope to explore

this structure and the stabilization of the vector bundle moduli in future work.
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Appendix

A Complex structure moduli and NS flux

In this Appendix, we discuss the complex structure dependent heterotic superpotential W gen-

erated by Neveu-Schwarz flux. This topic lies somewhat outside our main line of development.

However, as we will see, the negative results presented here can be seen, in part, as the motiva-

tion for studying the alternative moduli stabilization mechanisms in heterotic theories discussed

in this paper. The analysis of this Appendix assumes one can continue to work on a Calabi-Yau

three-fold despite the introduction of NS flux [21].

The heterotic NS superpotential fixes the complex structure. However, it also destabilizes

the other moduli, specifically the Kähler moduli and the dilaton. Overall stabilization of the

model requires adding non-perturbative effects, such as gaugino condensation or instantons. For

this to work, the non-perturbative potential and the flux potential have to be comparable in

size so that the perturbative runaway can be balanced by the non-perturbative effects. Since

non-perturbative effects are exponentially suppressed, one way to achieve this is by having a

small flux superpotential, similar to what is required for the KKLT scenario in type IIB theories.

We would like to analyze whether such a small flux superpotential is possible for heterotic NS

flux. Given that the parameters in W are quantized flux, this is by no means obvious. In type

IIB, this can be achieved by an appropriate “tuning” of the integer NS and RR flux, but in the

heterotic case only NS flux is available.

We begin by introducing the projective complex structure fields ZA = (Z0,Za). The het-

erotic NS flux potential then takes the form

W = nAZA − mAFA , (A.1)

where FA = ∂F/∂ZA are the derivatives of the pre-potential F and nA, mA are flux integers.

We would like to study this superpotential in the large complex structure limit where the pre-

potential is given by

F =
d̃abcZaZbZc

6Z0
, (A.2)

with d̃abc the intersection numbers of the mirror Calabi-Yau manifold. In terms of the physical

fields Za = Za/Z0, the associated flux superpotential in the large complex structure limit reads

W = n0 + naZ
a − 1

2
d̃abcm

aZbZc +
1

6
m0d̃abcZ

aZbZc . (A.3)
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It is useful to split the fields into their real and imaginary parts as Za = ζa + iza. Further, we

introduce the quantity κ = d̃abcz
azbzc, which is proportional to the volume of the mirror mani-

fold and, hence, should be large in the large complex structure limit, as well as its derivatives

κa = d̃abcz
bzc and κab = d̃abcz

c.

What we would like to study, for now at large complex structure, is whether W can be made

small at a supersymmetric point, that is, at a solution of the F-equations Wa ≡ ∂W/∂Za = 0 7.

The imaginary parts of the F-equations read

Im(Wa) = κab(m
0ζb − mb) = 0 . (A.4)

It turns out that the matrix κab must be non-singular. This follows because the Kähler metric

for the complex structure moduli, given by

Kab = −3

2

(

κab

κ
− 3

2

κaκb

κ2

)

, (A.5)

must be non-singular. Consequently, we can solve Eq. (A.4) for ζa = ma/m0. (Here we can

assume that m0 is non-vanishing. Otherwise, all fluxes except n0 are forced to zero and no

moduli are fixed.) Inserting this result into the real parts of the F-equation gives

Re(Wa) = na −
1

2m0
d̃abcm

bmc − m0

2
κa , (A.6)

while the imaginary part of the superpotential can be written as

Im(W ) = naz
a − 1

2m0
d̃abcz

ambmc − m0

6
κ . (A.7)

Multiplying Eq. (A.6) with za and subtracting this from Re(W ), one easily finds

Im(W ) =
m0

3
κ . (A.8)

Since m0 is a flux integer and κ needs to be large in the large complex structure limit, this result

implies that |W | cannot be made small. Hence, the heterotic flux superpotential is always large

in the large complex structure limit.

What happens if we depart from the large complex structure limit? In this case, the pre-

potential F becomes a complicated function which was first computed for specific examples in

Refs. [38, 39]. While a general analysis covering the complete moduli space is not straightfor-

ward, we have looked at another limit, namely the region of moduli space near the conifold

point. We have also performed a simple computer scan of the models of Refs. [38, 39] and we

again find that |W | cannot be made small at a supersymmetric vacuum. In conclusion, although

we cannot show in general that |W | is large for vacua away from the large complex structure

limit, we have been unable to find any counterexamples.

7While these are the global F-equations, the local ones only differ by a term proportional to W which is negligible

if W is small. Hence, absence of solutions with small W at the global level implies their absence at the local level.
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