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Abstract

If the fundamental mass scale of superstring theory is as low as few TeVs, the massive modes of vi-

brating strings, Regge excitations, will be copiously produced at the Large Hadron Collider (LHC).

We discuss the complementary signals of low mass superstrings at the proposed electron-positron

facility (CLIC), in e+e− and γγ collisions. We examine all relevant four-particle amplitudes eval-

uated at the center of mass energies near the mass of lightest Regge excitations and extract the

corresponding pole terms. The Regge poles of all four-point amplitudes, in particular the spin

content of the resonances, are completely model independent, universal properties of the entire

landscape of string compactifications. We show that γγ → e+e− scattering proceeds only through

a spin-2 Regge state. We estimate that for this particular channel, string scales as high as 4 TeV

can be discovered at the 11σ level with the first fb−1 of data collected at a center-of-mass energy

≈ 5 TeV. We also show that for e+e− annihilation into fermion-antifermion pairs, string theory

predicts the precise value, equal 1/3, of the relative weight of spin 2 and spin 1 contributions. This

yields a dimuon angular distribution with a pronounced forward-backward asymmetry, which will

help distinguishing between low mass strings and other beyond the standard model scenarios.
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I. INTRODUCTION

e+e− linear colliders are considered as the most desirable facility to complement measure-

ments at the Large Hadron Collider (LHC). Two alternative linear projects are presently

under consideration: the International Linear Collider (ILC) and the Compact LInear Col-

lider (CLIC). The first one is based on superconducting technology in the TeV range, whereas

the second one is based on the novel approach of two beam acceleration to extend linear

colliders into the multi-TeV range. The choice will be based on the respective maturity of

each technology and on the physics requests derived from the LHC physics results when

available.

CLIC aims at multi-TeV collision energy with high-luminosity, Le+e− ∼ 8 ×
1034 cm−2 s−1 [1]. The facility would be built in phases. The initial center-of-mass en-

ergy has been arbitrarily chosen to be
√
s = 500 GeV to allow direct comparison with ILC.

The collider design has been optimized for
√
s = 3 TeV, with a possible upgrade path to

√
s = 5 TeV at constant luminosity [2]. To keep the length (and thereby the cost) of the

machine at a reasonable level, the CLIC study foresees a two beam accelerating scheme fea-

turing an accelerating gradient in the presence of a beam (loaded) in the order of 80 MV/m

and 100 MV/m, for the 500 GeV and 3 TeV options; the projected total site lengths are

13.0 km and 48.3 km, respectively [3]. The CLIC technology is less mature than that of the

ILC. In particular, the target accelerating gradient is considerable higher than the ILC and

requires very aggressive performance from accelerating structures.

In addition, photon collisions that will considerably enrich the CLIC physics program

can be obtained for a relatively small incremental cost. Recently, an exploratory study has

been carried out to determine how this facility could be turned into a collider with a high

geometric luminosity, which could be used as the basis for a γγ collider [4]. The hard photon

beam of the γγ collider can be obtained by using the laser back-scattering technique, i.e.,

the Compton scattering of laser light on the high energy electrons [5]. The scattered photons

have energies close to the energy of the initial electron beams, and the expected γγ and γe

luminosities can be comparable to that in e+e− collisions, e.g., Lγγ ∼ 2× 1034 cm−2 s−1.

If either supersymmetry (SUSY) or extra dimensions exist at the TeV scale, signals of new

physics should be found at the LHC. However, the proper interpretation of such discoveries,

namely the correct identification and the nature of the new physics signals, may not be
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straightforward at the LHC and may require complementary data from CLIC. In particular,

a multi-TeV collider would ensure a sensitivity over a broad mass range allowing a complete

investigation of the SUSY particle spectrum [6]. Alternatively, distinct signals of new vector

resonances and quantum black holes could also be at reach [7]. Along the lines, in this

work we discuss direct searches of string physics at CLIC drawing upon LHC techniques

developed elsewhere [8–16].

In string theory, elementary particles are quantized vibrations of fundamental strings.

The zero modes are massless, the first harmonics have masses equal to the fundamental

mass M , the second
√
2M and, in general

Mn =
√
nM . (1)

These massive Regge particles have higher spins, ranging from 0 to n+1 and come in SU(3)×
SU(1)×U(1)Y representations copied from gauge bosons, quarks and leptons. For example,

gluon’s lowest Regge excitations are spin 0, 1 and 2 color octets. The Standard Model (SM)

spectrum is replicated at mass M and then at each
√
nM level. It is possible that loop

corrections can split some levels, however this infinite replication is the most fundamental

property of string theory.

If, as commonly believed, M is in the Planckian regime, then the landscape problem

makes it very difficult to connect string theory to experimental data. However theoretically,

M can be as low as few TeVs, provided that Nature endowed us with some large extra

dimensions, with typical length scale of order 0.1 mm [17]. Such a “low string mass” scenario

leads to some spectacular experimental consequences, universal to all compactifications thus

insensitive to the landscape problem. After operating for only few months, with merely 2.9

inverse picobarns of integrated luminosity, the LHC CMS experiment has recently ruled out

M < 2.5 TeV by searching for narrow resonances in the dijet mass spectrum [18]. In fact,

LHC has the capacity of discovering strongly interacting resonances in practically all range

up to
√
sLHC. The present study is based on the optimistic assumption that by the time

the ILC/CLIC start operating, there will be at least some indications for the existence of

Regge resonances. We will argue that the proposed e+e− and γγ colliders offer an excellent

opportunity for probing string physics.

The layout of the paper is as follows. In Sec. II we outline the basic setting of TeV-scale

string compactifications and discuss general aspects of intersecting D-brane configurations
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that realize the SM by open strings. In Sec. III we present a complete calculation of all

relevant four-point string scattering amplitudes. The computation is performed in a model

independent and universal way, and so our results hold for all compactifications. In Sec. IV

we discuss the associated phenomenological aspects of Regge recurrences of open strings

related to experimental searches for new physics at CLIC. Our conclusions are collected in

Sec. V.

II. PHOTON IN THE INTERSECTING BRANE SM CONSTRUCTIONS

TeV-scale superstring theory provides a brane-world description of the SM, which is

localized on D-branes extending in p + 3 spatial dimensions. Gauge interactions emerge as

excitations of open strings with endpoints attached on the D-branes, whereas gravitational

interactions are described by closed strings that can propagate in all nine spatial dimensions

of string theory (these comprise parallel dimensions extended along the (p + 3)-branes and

transverse dimensions).

The basic unit of gauge invariance for D-brane constructions is a U(1) field, and so one can

stack up N identical D-branes to generate a U(N) theory with the associated U(N) gauge

group. Gauge bosons are due to strings attached to stacks of D-branes and chiral matter due

to strings stretching between intersecting D-branes [19]. Each of the two strings endpoints

carries a fundamental charge with respect to the stack of branes on which it terminates.

Mater fields carry quantum numbers associated with bifundamental representations.

While the existence of Regge excitations is a completely universal feature of string theory,

there are many ways of realizing SM in such a framework. Individual models utilize various

D-brane configurations and compactification spaces. They may lead to very different SM

extensions, but as far as the collider signatures of Regge excitations are concerned, their

differences boil down to a few parameters. The most relevant characteristics is how the

U(1)Y hypercharge is embedded in the U(1)s associated to D-branes. One U(1) (baryon

number) comes from the “QCD” stack of three branes, as a subgroup of the U(3) group

that contains SU(3) color but obviously, one needs at least one extra U(1). In D-brane

compactifications, hypercharge always appears as a linear, non-anomalous combination of

the baryon number with one, two or more U(1)s. The precise form of this combination bears

down on the photon couplings, however the differences between individual models amount to
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TABLE I: Chiral fermion spectrum of the U(3)a × Sp(1)L × U(1)c D-brane model.

Name Representation QU(3) QU(1) QY

Ui (3̄, 1) −1 1 −2
3

Di (3̄, 1) −1 −1 1
3

Li (1, 2) 0 1 −1
2

Ei (1, 1) 0 −2 1

Qi (3, 2) 1 0 1
6

numerical values of a few parameters. In order to develop our program in the simplest way,

we work within the construct of a minimal model in which the color stack a of three D-branes

are intersected by the (weak doublet) stack b and by one (weak singlet) D-brane c [20]. For

the two-brane stack b, there is a freedom of choosing physical state projections leading either

to U(2)b or to the symplectic Sp(1) representation of Weinberg-Salam SU(2)L [21].

In the bosonic sector, the open strings terminating on QCD stack a contain the standard

SU(3) octet of gluons gaµ and an additional U(1)a gauge boson Cµ, most simply the manifes-

tation of a gauged baryon number symmetry: U(3)a ∼ SU(3)× U(1)a. On the U(2)b stack

the open strings correspond to the electroweak gauge bosons Aa
µ, and again an additional

U(1)b gauge field Xµ. So the associated gauge groups for these stacks are SU(3) × U(1)a,

SU(2)L × U(1)b, and U(1)c, respectively. We can further simplify the model by eliminating

Xµ; to this end instead we can choose the projections leading to Sp(1) instead of U(2)b [21].

The U(1)Y boson Yµ, which gauges the usual electroweak hypercharge symmetry, is a linear

combination of Cµ, the U(1)c boson Bµ, and perhaps a third additional U(1) gauge field, Xµ.

The fermionic matter consists of open strings located at the intersection points of the three

stacks. Concretely, the left-handed quarks are sitting at the intersection of the a and the b

stacks, whereas the right-handed u quarks comes from the intersection of the a and c stacks

and the right-handed d quarks are situated at the intersection of the a stack with the c′

(orientifold mirror) stack. All the scattering amplitudes between these SM particles, which

we will need in the following, essentially only depend on the local intersection properties of

these D-brane stacks [22].

The chiral fermion spectrum of the U(3)a × Sp(1) × U(1)c D-brane model is given in
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Table I. In such a minimal D-brane construction, if the coupling strength of Cµ is down by

root six when compared to the SU(3)C coupling ga, the hypercharge QY ≡ 1
6
QU(3)− 1

2
QU(1) is

free of anomalies. However, the QU(3) (gauged baryon number) is anomalous. This anomaly

is canceled by the f-D version [23] of the Green-Schwarz mechanism [24]. The vector boson

Y ′
µ, orthogonal to the hypercharge, must grow a mass in order to avoid long range forces

between baryons other than gravity and Coulomb forces. The anomalous mass growth allows

the survival of global baryon number conservation, preventing fast proton decay [25].

In the U(3)a × Sp(1)L × U(1)c D-brane model, the U(1)a assignments are fixed (they

give the baryon number) and the hypercharge assignments are fixed by SM. Therefore, the

mixing angle θP between the hypercharge and the U(1)a is obtained in a similar manner

to the way the Weinberg angle is fixed by the SU(2)L and the U(1)Y couplings (gb and

gY , respectively) in the SM. The Lagrangian containing the U(1)a and U(1)c gauge fields is

given by

L = gc B̂µ J
µ
B +

ga√
6
Ĉµ J

µ
C (2)

where B̂µ = cos θP Yµ+sin θP Y ′
µ and Ĉµ = − sin θP Yµ+cos θP Y ′

µ are canonically normalized,

and gc is the coupling strength of the U(1)c gauge field. Substitution of these expressions

into (2) leads to

L = Yµ

(

gc cos θPJ
µ
B − ga√

6
sin θPJ

µ
C

)

+ Y ′
µ

(

gc sin θPJ
µ
B +

ga√
6
cos θPJ

µ
C

)

, (3)

with gc cos θP Jµ
B − 1√

6
ga sin θP Jµ

C = gY Jµ
Y . We have seen that the hypercharge is anomaly

free if JY = 1
6
Jµ
C − 1

2
Jµ
B, yielding

gc cos θP =
1

2
gY and

ga√
6
sin θP =

1

6
gY . (4)

From (4) we obtain the following relations

tan θP =

√

2

3

gc
ga
,

(

gY
2gc

)2

+

(

1√
6

gY
ga

)2

= 1, and
1

4g2c
+

1

6g2a
=

1

g2Y
. (5)

We use the evolution of gauge couplings from the weak scale MZ as determined by the

one-loop beta-functions of the SM with three families of quarks and leptons and one Higgs

doublet,
1

αi(M)
=

1

αi(MZ)
− bi

2π
ln

M

MZ
; i = a, b, Y, (6)

where αi = g2i /4π and ba = −7, bb = −19/6, bY = 41/6. We also use the measured values of

the couplings at the Z pole αa(MZ) = 0.118± 0.003, αb(MZ) = 0.0338, αY (MZ) = 0.01014
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(with the errors in αb,Y less than 1%) [26]. Running couplings up to 3 TeV, which is where the

phenomenology will be, we get κ ≡ sin θP ∼ 0.14. When the theory undergoes electroweak

symmetry breaking, because Y ′ couples to the Higgs, one gets additional mixing. Hence Y ′

is not exactly a mass eigenstate. The explicit form of the low energy eigenstates Aµ, Zµ,

and Z ′
µ is given in [27].

In the U(3)a × U(2)b × U(1)c D-brane model, the hypercharge is given by

QY = caQU(3) + cbQU(2) + ccQU(1). (7)

Note that we have, in the covariant derivative Dµ,

Dµ = ∂µ − igcBµ QU(1) − i
gb
2
XµQU(2) − i

ga√
6
CµQU(3). (8)

We can define Yµ and two other fields Y ′
µ, Y

′′
µ that are related to Cµ, Xµ, Bµ by a orthogonal

transformation O defined as










Y

Y ′

Y ′′











= O











C

X

B











.

In order for Yµ to have the hypercharge QY as in Eq. (7), we need,

Cµ =

√
6cagY
ga

Yµ + . . . , Xµ =
2cbgY
gb

Yµ + . . . , Bµ =
ccgY
gc

Yµ + . . . . (9)

where gY is given by
1

g2Y
=

6c2a
g2a

+
4c2b
g2b

+
c2c
g2c

. (10)

The field Yµ then appears in the covariant derivative with the desired QY ,

Dµ = ∂µ − igY YµQY + . . . . (11)

The ratio of the coefficients in Eq. (9) is determined by the form of Eq. (7) and Eq. (8). More

explicitly, only with such ratio, we can have QY in Eq. (11). The value of gY is determined

so that the coefficients in Eq. (9) are components of a normalized vector so that they can

be a row vector of O. The rest of the transformation (the ellipsis part) involving Y ′, Y ′′ is

not necessary for our calculation. The point is that we now know the first row of the matrix

O and hence we can get the first column of OT , which gives the expression of Yµ in terms of

Cµ, Xµ, Bµ,

Yµ =

√
6cagY
ga

Cµ +
2cbgY
gb

Xµ +
ccgY
gc

Bµ. (12)
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This is all we need when we calculate the interaction involving Yµ; the rest of O, which tells

us the expression of Y ′, Y ′′ in terms of C,X,B is not necessary. For later convenience, we

define κ, η, ξ as

Yµ = κCµ + ηXµ + ξBµ ; (13)

therefore

κ =

√
6cagY
ga

, η =
2cbgY
gb

, ξ =
ccgY
gc

. (14)

We pause to summarize the degree of model dependency stemming from the multiple

U(1) content of the minimal model containing 3 stacks of D-branes. First, there is an initial

choice to be made for the gauge group living on the b stack. This can be either Sp(1) or

U(2). In the case of Sp(1), the requirement that the hypercharge remain anomaly-free was

sufficient to fix its U(1)a and U(1)c content, as explicitly presented in Eqs. (4) and (5).

Consequently, the fermion couplings, as well as the mixing angle θP between hypercharge

and the baryon number gauge field are wholly determined by the usual SM couplings. The

alternative selection – that of U(2) as the gauge group tied to the b stack – branches into some

further choices. This is because the Qa, Qb, Qc content of the hypercharge operator is not

uniquely determined by the anomaly cancelation requirement. In fact, as seen in [20], there

are 5 possibilities. This final choice does not depend on further symmetry considerations; in

Ref. [20] it was fixed (ca = 2/3, cb = 1/2, cc = 1) by requiring partial unification (ga = gb)

and acceptable value of sin2 θW at string scales of 6 to 8 TeV. In Ref. [28], a different

choice is made (ca = −2/3, cb = 1, cc = 0 ) to explain the CDF anomaly [29]. Clearly the

mixing possibilities within the U(1)a×U(1)b×U(1)c serve to introduce a discrete number of

phenomenological ambiguities. This contrasts strongly with the case where all the scattering

evolves on one brane (e.g., the a stack on the color brane, which serves as the locale for

stringy dijet processes at LHC. [12]).

In principle, in addition to the orthogonal field mixing induced by identifying anomalous

and non-anomalous U(1) sectors, there may be kinetic mixing between these sectors. In

our case, however, since there is only one U(1) per stack of D-branes, the relevant kinetic

mixing is between U(1)’s on different stacks, and hence involves loops with fermions at

brane intersection. Such loop terms are typically down by g2i /16π
2 ∼ 0.01 [30]. Generally,

the major effect of the kinetic mixing is in communicating SUSY breaking from a hidden

U(1) sector to the visible sector, generally in modification of soft scalar masses. Stability
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of the weak scale in various models of SUSY breaking requires the mixing to be orders of

magnitude below these values [30]. For a comprehensive review of experimental limits on

the mixing, see [31]. Moreover, the model discussed in the present work does not have a

hidden sector– all our U(1)’s (including the anomalous ones) couple to the visible sector.1

In summary, kinetic mixing between the non-anomalous and the anomalous U(1)’s in our

basic three stack model will be small because the fermions in the loop are all in the visible

sector. In the absence of electroweak symmetry breaking, the mixing vanishes.

The scattering amplitudes involving four gauge bosons as well as those with two gauge

bosons plus two leptons do not depend on the compactification details of the transverse

space [11].2 They will be particularly useful for testing low mass strings in γγ colli-

sions. On the other hand, the amplitudes involving four fermions, including e+e− → e+e−,

e+e− → µ+µ− and e+e− → qq̄ (in general, e+e− → FF̄ , where FF̄ is a fermion-antifermion

pair), which are of particular interest for the e+e− collider, depend on the properties of extra

dimensions and may include resonant contributions due to Kaluza-Klein excitations, string

excitations of the Higgs scalar etc. However, it follows from Ref.[16] that the three-point

couplings of Regge excitations to fermion-antifermion pairs are model-independent. Further-

more, the relative weights of resonances with different spins J = 0, 1, 2 are unambigously

predicted by the theory. Thus the resonant contributions to these amplitudes, with Regge

excitations propagating in the s-channel, are model-independent. e+e− colliders can be used

not only for discovering such resonances, but most importantly, for detailed studies of their

spin content, therefore for distinguishing low mass string theory from other beyond the SM

extensions predicting the existence of similar particles.

1 We also work in the weak coupling regime. For an alternate approach, see [32].
2 The only remnant of the compactification is the relation between the Yang-Mills coupling and the string

coupling. We take this relation to reduce to field theoretical results in the case where they exist, e.g.,

gg → gg. Then, because of the require correspondence with field theory, the phenomenological results are

independent of the compactification of the transverse space. However, a different phenomenology would

result as a consequence of warping one or more parallel dimensions [33].
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III. REGGE RESONANCES IN γγ AND e+e− CHANNELS

A. Universal amplitudes for γγ fusion

1. γγ → γγ, γγ → Z0Z0, γγ → W+W−, γγ → gg

As explained in the previous section, the electroweak hypercharge is a linear combi-

nation of charges associated to different stacks of D-branes, therefore photons are linear

combinations of three or more vector bosons. On the other hand, at the string disk level,

non-vanishing amplitudes with no external particles other than gauge bosons always involve

a single stack of D-branes at the disk boundary. Nevertheless, γγ fusion into gluon pairs etc.

is possible already at this level because the two initial photons are superpositions of states

associated to different stacks. We will first study the resonant behavior of single-stack am-

plitudes and then compute the weights of the corresponding contributions to γγ processes

under consideration.

All string disk amplitudes with four external gauge bosons A can be obtained from the

MHV amplitude [34]:3

M(A−
1 , A

−
2 , A

+
3 , A

+
4 ) = 4 g2〈12〉4

[

Vt

〈12〉〈23〉〈34〉〈41〉Tr(T
a1T a2T a3T a4 + T a2T a1T a4T a3)

+
Vu

〈13〉〈34〉〈42〉〈21〉Tr(T
a2T a1T a3T a4 + T a1T a2T a4T a3)

+
Vs

〈14〉〈42〉〈23〉〈31〉Tr(T
a1T a3T a2T a4 + T a3T a1T a4T a2)

]

, (15)

where the string “formfactor” functions of the Mandelstam variables s, t, u (s+ t+ u = 0)4

are defined as

Vt = V (s, t, u) , Vu = V (t, u, s) , Vs = V (u, s, t) , (16)

with

V (s, t, u) =
s u

tM2
B(−s/M2,−u/M2) =

Γ(1− s/M2) Γ(1− u/M2)

Γ(1 + t/M2)
. (17)

3 We use the standard notation of [35], although the gauge group generators are normalized here in a

different way, according to Tr(T aT b) = 1
2δ

ab.
4 Here, s, t, u refer to parton subprocesses.
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TABLE II: Group factors and couplings for the pole terms (20) and (22).

Process Coupling C1234

CC → gg g2a
2
3δa3a4

CC → CC g2a
2
3

XX → XX g2b 1

A3A3 → XX g2b 1

A3A3 → A3A3 g2b 1

A3X → A3X g2b 1

BB → BB 2g2c 2

The amplitudes have s-channel poles at each s = nM2, as seen from the expansion [36]:

B(−s/M,−u/M2) = −
∞
∑

n=0

M2−2n

n!

1

s− nM2

[

n
∏

J=1

(u+M2J)

]

, (18)

reflecting the propagation of resonances with spins up to n + 1.

We first focus on the lowest, n = 1 resonances. Near s = M2, Vs is regular while

Vt →
u

s−M2
, Vu → t

s−M2
. (19)

Thus the s-channel pole term of the amplitude (15), relevant to (−−) decays of intermediate

states, is

M(A−
1 , A

−
2 , A

+
3 , A

+
4 ) → 2 g2 C1234 〈12〉4

〈12〉〈23〉〈34〉〈41〉
u

s−M2
, (20)

where

C1234 = 2Tr({T a1 , T a2}{T a3, T a4}) = 16
N2−1
∑

a=0

da1a2ada3a4a . (21)

The amplitude with the s-channel pole relevant to (+−) decays is

M(A−
1 , A

+
2 , A

+
3 , A

−
4 ) → 2 g2 C1234 〈14〉4

〈12〉〈23〉〈34〉〈41〉
u

s−M2
. (22)

In Table II, we list the group factors and couplings [replacing g2 in Eqs.(20) and (22)] for

the single-stack processes contributing to γγ fusion into gauge bosons, evaluated according

to Eq.(21). 5

5 As can be seen in Eq. (8) the Xµ and Cµ normalization carries a factor 1/
√
2N , which is absent in the

Bµ field. Hence, we should recover the
√
2N factor (to be Bµ(

√
2gc)/

√
2QU(1)) and use

√
2gc in any

calculation that follows from a general N .

11



We now proceed to higher level resonances, starting from n = 2. Three-particle ampli-

tudes involving one level n Regge excitation (gauge index a) and two massless U(N) gauge

bosons (gauge indices a1 and a2) are even under the world-sheet parity (reversing the order

of Chan-Paton factors) for odd n, and odd for even n [16]. As a result, the respective group

factors are the symmetric traces da1a2a for odd n and non-abelian structure constants fa1a2a

for even n, respectively. For all configuration of initial particles in the processes listed in

Table II, fa1a2a = 0, therefore the corresponding amplitudes have no s-channel poles as-

sociated to Regge resonances with even n.6 For USp(N) groups, the parity assignment is

reversed, however the relevant symmetric trace d33a = 0 for Sp(1), therefore the same con-

clusion holds for all SM embeddings under consideration. Thus in order to observe higher

level resonances, γγ collisions would have to reach
√
s >

√
3M , which due to the recently

established M > 2.5 TeV bound translates into
√
s > 4.3 TeV. It is unlikely that such high

energies will be reached in the next generation of γγ colliders, therefore from now on our

discussion will be limited to the lowest level resonances.

The γγ amplitudes are linear combinations of the amplitudes for processes listen in Table

II, with the weights determined by the constants κ, η, ξ, c.f. Eq.(14), and the Weinberg

angle θW with:

CW = cos θW , SW = sin θW . (23)

6 For n = 2, this has already been checked by explicit computation in Ref.[37].
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For the U(3)a × U(2)b × U(1)c minimal model, they are given by:

M(γγ → gg) = κ2CW
2M(CC → gg), (24)

M(γγ → γγ) = κ4CW
4M(CC → CC) + 4η2SW

2CW
2M(XA3 → XA3)

+ η4CW
4M(XX → XX) + SW

4M(A3A3 → A3A3)

+ η2SW
2CW

2M(A3A3 → XX) + η2SW
2CW

2M(XX → A3A3)

+ ξ4CW
4M(BB → BB)

= κ4CW
4M(CC → CC) + 4η2SW

2CW
2M(XA3 → XA3)

+ (SW
4 + η4CW

4 + 2η2SW
2CW

2)M(XX → XX)

+ ξ4CW
4M(BB → BB) , (25)

M(γγ → Z0Z0) = κ4CW
2SW

2M(CC → CC) + 4η2SW
2CW

2M(XA3 → XA3)

+(SW
2CW

2 + η4CW
2SW

2 + η2SW
4 + η2CW

4)M(XX → XX)

+ ξ4SW
2CW

2M(BB → BB) , (26)

M(γγ → W+W−) = η2CW
2M(XX → W+W−) + SW

2M(A3A3 → W+W−)

= (η2CW
2 + SW

2)M(XX → XX). (27)

For the U(3)a × Sp(1)L × U(1)c D-brane model, η = 0, ξ2 = 1 − κ2, and all amplitudes

involving X or A3 vanish. We obtain

M(γγ → gg) = κ2CW
2M(CC → gg) , (28)

M(γγ → γγ) = κ4CW
4M(CC → CC) + (1− κ2)2CW

4M(BB → BB) , (29)

M(γγ → Z0Z0) = CW
2SW

2[κ4M(CC → CC) + (1− κ2)2M(BB → BB)] , (30)

M(γγ → W+W−) = 0 . (31)

2. γγ → FF̄

Since the vertex operators creating chiral mater fermions contain boundary changing

operators connecting two different stacks of intersecting D-branes, say a and b, the disk

boundary in the amplitudes involving two fermions and two gauge bosons is always attached

to two stacks of D-branes. The gauge bosons can couple either to the same stack or to two

different stacks. In the latter case, the amplitude with two gauge bosons in the initial state is

13



proportional to Vs, which has no poles in the s-channel [11]. The only amplitudes exhibiting

s-channel poles involve the two initial gauge bosons associated the same stack, but carrying

opposite helicities [11]:

M(A−
1 , A

+
2 , F

−
3 , F̄+

4 ) = 2 g2
〈13〉2

〈32〉〈42〉

[

t

s
Vt(T

a1T a2)α3α4
+

u

s
Vu(T

a2T a1)α3α4

]

. (32)

The above equation describes the case of stack a, hence the (fermion) spectator indices

associated to stack b have been suppressed. The lowest Regge excitations give rise to the

pole term

M(A−
1 , A

+
2 , F

−
3 , F̄+

4 ) → 2 g2 D1234 〈13〉2
〈32〉〈42〉

tu

M2(s−M2)
, (33)

where the group factor

D1234 ≡ {T a1 , T a2}α3,α4
. (34)

The group factors and couplings for the processes relevant to γγ → FF̄ are listed in Table III.

As in the case of γγ fusion into gauge boson pairs, the higher level resonances contributing

to γγ → FF̄ come from odd n levels only, so here again, we limit our discussion to n = 1.

In the U(3)a × U(2)b × U(1)c case, the relevant amplitudes are

M(γγ → qLq̄R) = η2CW
2M(XX → qLq̄R) + SW

2M(A3A3 → qLq̄R)

+κ2CW
2M(CC → qLq̄R) + 2ηCWSW M(XA3 → qLq̄R)

= (η2CW
2 + SW

2)M(XX → qLq̄R) + κ2CW
2M(CC → qLq̄R)

+ 2ηCWSW M(XA3 → qLq̄R) , (35)

M(γγ → qRq̄L) = ξ2CW
2M(BB → qRq̄L) + κ2CW

2M(CC → qRq̄L) , (36)

M(γγ → e+Re
−
L) = η2CW

2M(XX → e+Re
−
L) + SW

2M(A3A3 → e+Re
−
L )

+ξ2CW
2M(BB → e+Re

−
L) + 2ηCWSW M(XA3 → e+Re

−
L)

= (η2CW
2 + SW

2)M(XX → e+Re
−
L) + ξ2CW

2M(BB → e+Re
−
L)

+ 2ηCWSW M(XA3 → e+Re
−
L) , (37)

M(γγ → e+Le
−
R) = ξ2CW

2M(BB → e+Le
−
R). (38)

The amplitudes describing neutrino-antineutrino pair production can be obtained from

Eqs.(37) and (38) by the replacement e−L → νL, e+R → ν̄R. For the U(3)a × Sp(1)L × U(1)c

14



TABLE III: Group factors and couplings for the pole terms (33).

Process Coupling D1234

CC → qq̄ g2a
1
3δα3α4

XX → qLq̄R g2b
1
2

A3A3 → qLq̄R g2b
1
2

A3X → uLūR g2b
1
2

A3X → dLd̄R g2b −1
2

BB → qRq̄L 2g2c 1

XX → e+Re
−
L g2b

1
2

A3X → e+Re
−
L g2b −1

2

A3A3 → e+Re
−
L g2b

1
2

XX → ν̄RνL g2b
1
2

A3X → ν̄RνL g2b
1
2

A3A3 → ν̄RνL g2b
1
2

BB → e+Re
−
L 2g2c 1

BB → e+Le
−
R 2g2c 2

BB → ν̄RνL 2g2c 1

BB → ν̄LνR 2g2c 2

D-brane model, we obtain:

M(γγ → qLq̄R) = κ2CW
2M(CC → qLq̄R) , (39)

M(γγ → qRq̄L) = (1− κ2)CW
2M(BB → qRq̄L) + κ2CW

2M(CC → qRq̄L) , (40)

M(γγ → e±e∓) = (1− κ2)CW
2M(BB → e±e∓) , (41)

M(γγ → νν̄) = (1− κ2)CW
2M(BB → νν̄) . (42)
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B. e+e− annihilation into gauge bosons and resonant contributions to e+e− → FF

1. e+e− → γγ, e+e− → Z0Z0, e+e− → Z0γ, e+e− → W+W−

Leptons are decoupled from gluons at the disk level because they originate from strings

ending on different D-branes. Thus e+e− pairs can annihilate into photons and electroweak

bosons only.7 The corresponding resonance pole terms are obtained by crossing from Eq.(20):

M([e±]−1 , [e
∓]+2 , A

−
3 , A

+
4 , ) → 2 g2 D1234 〈13〉2

〈14〉〈24〉
tu

M2(s−M2)
, (43)

with the same group factors as in Table III, but running in the time-reversed channels. In

the U(3)a×U(2)b×U(1)c case, the physical amplitudes for the processes under consideration

are

M(e+Re
−
L → γγ) = η2CW

2M(e+Re
−
L → XX) + SW

2M(e+Re
−
L → A3A3)

+ ξ2CW
2M(e+Re

−
L → BB) + 2ηCWSW M(e+Re

−
L → XA3)

= (η2CW
2 + SW

2)M(e+Re
−
L → XX) + ξ2CW

2M(e+Re
−
L → BB)

+ 2ηCWSW M(e+Re
−
L → XA3) , (44)

M(e+Le
−
R → γγ) = ξ2CW

2M(e+Le
−
R → BB) , (45)

M(e+Re
−
L → Z0Z0) = (η2SW

2 + CW
2)M(e+Re

−
L → XX) + ξ2SW

2M(e+Re
−
L → BB)

+ 2ηCWSW M(e+Re
−
L → XA3) , (46)

M(e+Le
−
R → Z0Z0) = ξ2SW

2M(e+Le
−
R → BB) , (47)

M(e+Re
−
L → Z0γ) = SWCW (η2 + 1)M(e+Re

−
L → XX) + ξ2SWCW M(e+Re

−
L → BB)

+ η(CW
2 + SW

2)M(e+Re
−
L → XA3) , (48)

M(e+Le
−
R → Z0γ) = ξ2SWCWM(e+Le

−
R → BB) , (49)

M(e+Re
−
L → W+W−) = M(e+Re

−
L → A3A3) , (50)

M(e+Le
−
R → W+W−) = 0 . (51)

7 e+e− → γγ in a toy, one-stack, stringy model has been discussed in [38].
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For the U(3)a × Sp(1)L × U(1)c D-brane model, we have

M(e+Re
−
L → γγ) = ξ2CW

2M(e+Re
−
L → BB) , (52)

M(e+Le
−
R → γγ) = ξ2CW

2M(e+Le
−
R → BB) , (53)

M(e+Re
−
L → Z0Z0) = ξ2SW

2M(e+Re
−
L → BB) , (54)

M(e+Le
−
R → Z0Z0) = ξ2SW

2M(e+Le
−
R → BB) , (55)

M(e+Re
−
L → Z0γ) = ξ2SWCW M(e+Re

−
L → BB) , (56)

M(e+Le
−
R → Z0γ) = ξ2SWCWM(e+Le

−
R → BB) , (57)

M(e+Re
−
L → W+W−) = M(e+Re

−
L → A3A3) , (58)

M(e+Le
−
R → W+W−) = 0 . (59)

2. Resonant contributions to e+e− → e+e−, e+e− → νν̄, e+e− → qq̄

Four-fermion amplitudes [11] are not universal – they depend on the internal radii and

other details of extra dimensions already at the disk level. In particular, they contain

resonance poles due to Kaluza-Klein excitations. More serious problems though are due to

the presence of resonance poles associated to both massless and massive particles that are

either unacceptable from the phenomenological point of view, or are expected to receive

large mass corrections due to quantum (anomaly) effects, see Ref.[14] for more details. For

example, the same Green-Schwarz mechanism that generates non-zero masses for anomalous

gauge bosons does also affect the masses of their Regge excitations. For the above reasons,

phenomenological analysis of e+e− annihilation into lepton-antilepton pairs will be quite

complicated, as described in more detail in the following Sec. IV B.

Here, we focus on the lowest Regge excitations of the photon and Z0, remaining in the

spectrum of any realistic model. Since we are considering energies far above the electroweak

scale, we can replace γ and Z0 by the neutral gauge bosons of unbroken SU(2)× U(1)Y .

At the lowest, n = 1 level, each gauge boson comes with several Regge excitations with

spins ranging from 0 to 2, but only two particles couple to quark-antiquark and lepton-

antilepton pairs: one spin 2 boson and one spin 1 vector particle [10]. All three-particle

couplings involving one Regge excitation, one fermion and one antifermion have been de-

termined in Ref.[10] by using the factorization methods. These S-matrix elements are com-
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pletely sufficient for reconstructing the resonance part of four-fermion amplitudes [10] by

using the Wigner matrix techniques. In the center of mass frame, the relevant amplitudes

can be written as

M(e−Le
+
R → FLF̄R) → M2

s−M2

e2

4

( YF

C2
W

+
I3F
S2
W

)[

d21,1(θ) +
1

3
d11,1(θ)

]

, (60)

M(e−Le
+
R → FRF̄L) → M2

s−M2

e2

4

YF

C2
W

[

d21,−1(θ) +
1

3
d11,−1(θ)

]

, (61)

M(e−Re
+
L → FLF̄R) → M2

s−M2

e2

2

YF

C2
W

[

d21,−1(θ) +
1

3
d11,−1(θ)

]

, (62)

M(e−Re
+
L → FRF̄L) → M2

s−M2

e2

2

YF

C2
W

[

d21,1(θ) +
1

3
d11,1(θ)

]

, (63)

where YF is the fermion hypercharge, I3F is the fermion weak isospin, and

d21,±1(θ) =
1± cos θ

2
(2 cos θ ∓ 1) , d11,±1(θ) =

1± cos θ

2
, (64)

are the spin 2 and spin 1 Wigner matrix elements [39, 40], respectively. A very interesting

aspect of the above result is that string theory predicts the precise value, equal 1/3, of the

relative weight of spin 2 and spin 1 contributions.

Here again, we would like to stress that although the full four-fermion scattering ampli-

tudes are model-dependent, their resonance parts are universal because the three-particle

couplings involving one Regge excitation and two massless particles do not depend on the

compactification space [16].

IV. PHENOMENOLOGY

In this section we study the distinct phenomenology of Regge recurrences arising in the

γγ and e+e− beam settings.

A. γγ collisions

As an illustration of the CLIC potential to uncover string signals, we focus attention

on dominant γγ → e+e− scattering, within the context of the U(3)a × Sp(1)L × U(1)c D-

brane model. Let us first isolate the contribution to the partonic cross section from the first

resonant state, B∗. The s-channel pole term of the average square amplitude can be obtained
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from the formula (41) by taking into account all possible initial polarization configurations.

However, for phenomenological purposes, the pole needs to be softened to a Breit-Wigner

form by obtaining and utilizing the correct total widths of the resonance. After this is done

we obtain

|M(γγ → e+e−)|2 = (1 + 4) (1− κ2)2C4
W

4g4c
M4

[

ut(u2 + t2)

(s−M2)2 + (ΓJ=2
B∗ M)2

]

, (65)

where the factor of (1 + 4) in the numerator accounts for the fact that the U(1)c charge of

eR is twice that of eL. The decay width of B∗ is given by

ΓJ=2
B∗ = ΓJ=2

B∗→ll̄ + ΓJ=2
B∗→qRq̄L

+ ΓJ=2
B∗→BB

=
g2c
π
M

[

1

40

(

5

2
Ne +

1

2
Nν +

1

2
Nq

)

+
1

5N

]

=
13

20

g2c
4π

M, (66)

where Ne = 3, Nν = 3, Nq = 18. The first term comprises the contribution from the left-

handed (Ne/2) and right-handed (2Ne) electrons, the second term (Nν/2) comes from the

left-handed neutrinos, and the third term (Nq/2) subsume the right-handed quarks.

The total cross section at an e+e− linear collider can be obtained by folding σ̂(ŝ) with

the photon distribution function [41]

σtot(e
+e− ⇒ γγ → e+e−) =

∫ xmax

M/
√
s

dz
dLγγ

dz
σ̂(ŝ = z2s) , (67)

where ŝ and s indicate respectively the center-of-mass energies of the γγ and the parent

e+e− systems and

dLγγ

dz
= 2z

∫ xmax

z2/xmax

dx

x
fγ/e(x)fγ/e(z

2/x) (68)

is the distribution function of photon luminosity. The energy spectrum of the back scattered

photon in unpolarized incoming eγ scattering is given by

fγ/e(x) =
1

D(ξ)

[

1− x+
1

1− x
− 4x

ξ(1− x)
+

4x2

ξ2(1− x)2

]

, (x < xmax) , (69)

where x = 2ω/
√
s is the fraction of the energy of the incident electron carried by the back-

scattered photon and xmax = 2ωmax/
√
s = ξ/(1 + ξ). For x > xmax, fγ/e = 0. The function

D(ξ) is defined as

D(ξ) =

(

1− 4

ξ
− 8

ξ2

)

ln(1 + ξ) +
1

2
+

8

ξ
− 1

2(1 + ξ)2
. (70)
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FIG. 1: dσ/dMe+e− (units of fb/GeV) vs. Me+e− (TeV) is plotted for the case of SM background

(dot-dashed line) and (first resonance) string signal + background (solid line), for M = 4 TeV and

√
s = 5 TeV. (We have taken κ = 0.14.)

where ξ = 2ω0

√
s/me

2, me and ω0 are respectively the electron mass and laser-photon

energy, and (of course) the incoming electron energy is
√
s/2. In our evaluation, we choose

ω0 such that it maximizes the backscattered photon energy without spoiling the luminosity

through e+e− pair creation, yielding ξ = 2(1 +
√
2), xmax ≃ 0.83 and D(ξ) ≈ 1.84 [42].

We study the signal-to-noise of Regge excitations in data binned according to the invariant

mass Me+e− of the e+e− pair, after setting cuts on the different electron-positron rapidities,

|y1|, |y2| ≤ 2.4 and transverse momenta p1,2T > 50 GeV. With the definitions Y ≡ 1
2
(y1 + y2)

20



and y ≡ 1
2
(y1 − y2), the cross section per interval of Me+e− for γγ → e+e− is given by

dσ

dMe+e−
=

√
sz3

[∫ 0

−Ymax

dY fγ/e(xa) fγ/e(xb)

∫ ymax+Y

−(ymax+Y )

dy
dσ̂

dt̂

∣

∣

∣

∣

γγ→e+e−

1

cosh2 y

+

∫ Ymax

0

dY fγ/e(xa) fγ/e(xb)

∫ ymax−Y

−(ymax−Y )

dy
dσ̂

dt̂

∣

∣

∣

∣

γγ→e+e−

1

cosh2 y

]

(71)

where z2 = M2
e=e−/s, xa = zeY , xb = ze−Y , and

|M(γγ → e+e−)|2 = 16πŝ2
dσ

dt̂

∣

∣

∣

∣

γγ→e+e−
. (72)

The string signal is calculated using (71) with the corresponding γγ → e+e− scattering

amplitude given in Eq. (65). The SM background is calculated using

dσ̂

dt̂
=

2πα2

ŝ2

(

û

t̂
+

t̂

û

)

. (73)

The kinematics of the scattering also provides the relation Me+e− = 2pT cosh y, which

when combined with the standard cut pT & pT,min, imposes a lower bound on y to be

implemented in the limits of integration. The Y integration range in Eq. (71), Ymax =

min{ln(xmax/z), ymax}, comes from requiring xa, xb < xmax together with the rapidity cuts

0 < |y1|, |y2| < 2.4. Finally, the Mandelstam invariants occurring in the cross section are

given by ŝ = M2
e+e−, t̂ = −1

2
M2

e+e− e−y/ cosh y, and û = −1
2
M2

e+e− e+y/ cosh y. In Fig. 1 we

show a representative plot of the invariant mass spectrum, for M = 4 TeV and
√
s = 5 TeV.

We now estimate (at the parton level) the signal-to-noise ratio at CLIC. Standard bump-

hunting methods, such as obtaining cumulative cross sections, σ(M0) =
∫∞
M0

dσ
dM

e+e−

dMe+e−,

from the data and searching for regions with significant deviations from the SM background,

may reveal an interval of Me+e− suspected of containing a bump. With the establishment

of such a region, one may calculate the detection significance

Sdet =
NS√

NB +NS

, (74)

with the signal rate NS estimated in the invariant mass window [M − 2Γ, M + 2Γ], and

the number of background events NB defined in the same e+e− mass interval for the same

integrated luminosity [43]. For
√
s = 5 TeV andMs = 4 TeV we expect Sdet ≃ 139/12 = 11σ,

after the first fb−1 of data collection. The spin-2 nature of γγ → e+e− Regge recurrences

would make them smoking guns for low mass scale D-brane string compactifications.
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FIG. 2: Normalized angular distributions of Regge recurrences with spin 1, 2, and total in the

e+e− → µ+µ− channel.

B. e+e− collisions

We assume that the e+e− center-of-mass energy will be tuned to contain the interesting

range highlighted by LHC data and that the resolution of the machine will be sufficient to

probe narrow resonances. We are interested in the e+e− annihilation into lepton-antilepton

pairs, in particular in e−e+ → µ−µ+. Phenomenological analysis of such processes will be

quite complicated, due the presence of model-dependent backgrounds of Kaluza-Klein (KK)

excitations, anomalous gauge gauge bosons and their Regge excitations. Weakly-interacting

KK excitations are expected to have masses lower than the string scale [14], and can appear

as resonances in the e+e− annihilation channel. Their signals will be similar to a generic

Z ′, with a unique angular momenta, commonly J = 1 and will not provide direct evidence
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for the superstring substructure. The signals of gauge bosons associated to anomalous U(1)

gauge bosons, with masses always lower than the string scale, varying from a loop factor

to a large suppression by the volume of the bulk [44], will have a similar character. We

assume that no accidental degeneracy occurs between these particles and Regge excitations,

so that the string signal discussed Sec. III B 2 can be safely isolated from the background.

Even in this case, however, there is a certain amount of ambiguity due to the presence of

Regge excitations of anomalous U(1)’s with masses shifted by radiative corrections [45]. If

this shift is large, there will be a separate resonance peak, but if it is small, it will affect the

normalization of the signal.

Should a resonance be found, a strong discriminator between models will be the observed

angular distribution. Typical candidates for new physics such as Z ′ will have a unique

angular momenta, commonly J = 1. It is an interesting and exciting peculiarity of Regge

recurrences that the angular momenta content of the energy state is more complicated. As

we have shown in Sec. III B 2, for the lightest Regge excitation there is a specific combination

of J = 1 and J = 2, which are access by the e+e− beam setting. Specializing at this point

to e−e+ → µ−µ+, so that I3FL
= YFL

= 1
2
YFR

= −1/2, we obtain the normalized angular

distribution

dσ/d cos θ

σ
= N

{[

4 +

(

1

2 S2
W

)2
]

D+(θ)
2 + 2 D−(θ)

2

}

, (75)

where

D±(θ) ≡ d21,±1(θ) +
1

3
d11,±1(θ) (76)

and

N−1 = (64/135)

[

6 +

(

1

2 S2
W

)2
]

. (77)

For the J = 2 piece alone, the normalization constant is

N−1
2 = (2/5)

[

6 +

(

1

2 S2
W

)2
]

(78)

whereas for the J = 1 piece alone, the normalization constant is

N−1
1 = (2/27)

[

6 +

(

1

2 S2
W

)2
]

. (79)

In Fig. 2 we show the resulting angular distributions. The predicted dimuon angular distri-

bution has a pronounced forward-backward asymmetry. This is a realistic target for CLIC
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FIG. 3: Binned angular distributions of Regge recurrences with spin 1, 2, and total in the e+e− →

µ+µ− channel.

searches of low-mass scale string theory signals. (Note that the e+e− → e+e− Coulomb scat-

tering background, which peaks in the forward direction, tends to wash out the predicted

string signal.) In Fig. 3 we show the binned angular distributions. It is clearly seen that it

would be easy to distinguish the string excitation from single J = 2 resonance in the dimuon

angular distribution. To completely isolate the Regge excitation from a J = 1 resonance,

one can use string predictions in alternative channels, e.g. γγ → e+e−.

V. CONCLUSIONS

In this paper, we have explored the discovery potential of the proposed e+e− and γγ

colliders to unmask string resonances. We have studied the direct production of Regge
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excitations, focusing on the first excited level of open strings localized on the worldvolume

of D-branes. In such a D-brane construction the resonant parts of the relevant string theory

amplitudes are universal to leading order in the gauge coupling. Therefore, it is feasible to

extract genuine string effects which are independent of the compactification scheme. Among

the various processes, we found that the γγ → e+e− scattering proceeds only through a

spin-2 Regge state. Our detailed phenomenological studies suggest that for this specific

channel, string scales as high as 4 TeV can be unmasked at the 11σ level with the first

fb−1 of data collected at
√
s ≈ 5 TeV. We have also investigated intermediate Regge states

of e+e− → FF̄ and we have shown that string theory predicts the precise value, equal

1/3, of the relative weight of spin 2 and spin 1 contributions. The potential benefit of this

striking result becomes evident when analyzing the dimuon angular distribution, which has a

pronounced forward-backward asymmetry, providing a very distinct signal of the underlying

string physics.
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