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ABSTRACT

We (re)derive the propagators and Feynman rules for the massless scalar and

vector multiplets in N=2 Projective Superspace (‘Projective Hyperspace’). With

these, we are able to calculate both the divergent and finite parts of 2, 3 & 4−point

functions at 1-loop for N=2 Super-Yang-Mills theory (SYM) explicitly in Projec-

tive Hyperspace itself. We find that effectively only the coupling constant needs

to be renormalized unlike in the N=1 case where an independent wavefunction

renormalization is also required. This feature is similar to that of the background

field gauge, even though we are using ordinary Fermi-Feynman gauge. The com-

putation of 1-hoop beta-function is then straightforward and matches with the

known result. We also show that it receives no 2-hoops contributions. All these

calculations provide an alternative proof of the finiteness of N=4 SYM.
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1 Introduction

There has been a renewed interest in N=4 Super Yang-Mills theory (SYM) and its on-shell

perturbative structure. These calculations mostly use components and / or some on-shell

formulation of N=4 supersymmetry but often rely on unproven assumptions. It would be

best to have an off-shell formalism for N=4 supersymmetry itself but it has been elusive for

decades. The next best thing would be to use N=2 off-shell formalism which, as we show in

this paper, is simpler than the well-known N=1 formalism.

Recently, we proposed the non-Abelian SYM action in N=2 Projective Superspace (Hyper-

space) in [1]. N=2 Supermultiplets (Hypermultiplets) in Projective Hyperspace have been

long known since the work of Lindström and Roček[2]. The Feynman rules were derived for

scalar and vector hypermultiplets in three successive papers by Gonzalez-Rey, et al[3]. Some

one-loop calculations involving scalar hypermultiplet’s contributions to effective action were

done in [4] but as the non-Abelian action was lacking, not much could be accomplished as

far as calculations involving vector hypermultiplet were concerned.

Analogous (but slightly better) situation exists in the case of Harmonic Hyperspace de-

veloped by GIKOS[5]. One-loop two-point functions for SYM effective action and four-point

functions (both divergent & finite) with external scalar hypermultiplets were computed by

them in [6]. The n−point calculations were accomplished by Buchbinder, et al[7] but these

are contributions to the effective action for the Abelian case only. Even a direct computation

of the β−function for N=2 SYM has not been done, which requires a 3−point calculation

with ordinary Feynman rules. However, a 3−point calculation is unnecessary in the case of

background field formalism, which does exist for Harmonic Hyperspace[8]. Using this for-

malism, even a 4−point S-matrix calculation in N=4 SYM has been done in [9], which also

includes effective potential calculations similar to those in [4].

In this paper, we extend the possible set of loop calculations in Projective Hyperspace

and show that the hypergraphs are easier to handle than their N=1 counterparts. We cal-

culate both the divergent and finite parts of 1-hoop 2, 3 & 4−point functions. It turns out

that the scalar hypermultiplet action (including its coupling to vector hypermultiplet) is not

renormalized at any loop order. We also find that the divergent (and some finite) 1-loop

corrections to SYM effective action have the same form as the classical action (modulo their

momentum dependence) proving its renormalizability.

Both the wavefunction and coupling constant are linearly renormalized at 1-loop for N=2

SYM, which is not the case when N=1 supergraph methods are used[10, 11]. An independent

(non-linear) wavefunction renormalization is required in that case to keep the effective action

renormalizable. Additionally, we learn from using hypergraph rules that there is effectively

only one renormalization factor as is encountered when using background field formalism.
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These 1-hoop calculations enable us to compute the well-known β−function for N=2 SYM

coupled to scalar hypermultiplet (matter) in any representation of the gauge group. We

also perform a few ‘selected’ 2-hoops calculations to prove its two-loop finiteness. All these

calculations and a few ‘miraculous’ cancellations also show that the β−function of N=4 SYM

vanishes at 1 & 2-loop(s)1.

In the next section, we review the basics of Projective Hyperspace. After that, we write

various hypermultiplet actions to derive the propagators and vertices, which enable us to

present the revised ‘complete’ Feynman rules to evaluate any possible hypergraph. Then, as

mentioned above, we present some examples of 1 & 2-hoop(s) hypergraph calculations and

the resulting consequences for N=2 & 4 theories.

2 Generic Theory

We review the (relevant) generalities of Projective Hyperspace that are discussed in gory

details in [12].

2.1 Hyperspace

We start with SU(2,2|2) group element gM
A. The SU(2) bosonic (Latin) and SU(2,2)

fermionic (Greek) indices contained in the group indices are divided into two parts and shuf-

fled such that M = {M,M ′} = {(m,µ), (m′, µ̇)} with their values being {1, (1, 2), 1′, (1̇, 2̇)}.
Since the bosonic indices take only one value, they will be suppressed.

The projective coordinates (4x′s, 4 θ′s& 1 y) are arranged in an off-diagonal square matrix

wM
A′ inside gM

A. The rest of the fermionic coordinates (ϑµ, ϑ
α̇) are contained in the diagonal

parts of g and can be understood by the method of projection given below:

g : gM
A → z̄M

A′ (2.1)

g−1 : gA
M → zA

M (2.2)

Constraint : zA
Mz̄M

A′ = 0 (2.3)

Solution :

{
z̄M

A′ =
(
wM

N ′ , δN
′

M ′

)
ūN ′

A′ ;

zA
M = uA

N
(
δMN ,−wNM

′)
.

(2.4)

1Using N=1 supergraph methods, finiteness of N=4 SYM has been shown till 3-loops explicitly in [13, 14].

Using N=2 superfields and background field formalism, such cancellations leading to UV finiteness of N=2

& 4 theories were explained in [15] for all loop orders.
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The coordinates in w, u, & ū are arranged as follows:

wM
A′ =

(
y θ̄α̇

θµ xµ
α̇

)
(2.5)

uM
A =

(
I 0

ϑµ I

)
(2.6)

ūA
′

M ′ =

(
I −ϑ̄α̇
0 I

)
(2.7)

These matrices have the following finite superconformal transformations (indices are sup-

pressed in matrix notation below):

z̄′ = g0z̄, z′ = zg−1
0 ; g0 =

(
a b

c d

)
, g−1

0 =

(
d̃ −b̃
−c̃ ã

)
(2.8)

⇒ w′ = (aw + b)(cw + d)−1, u′ = (wc̃+ d̃)−1u, ū′ = ū(cw + d)−1 (2.9)

We can also construct symmetry invariants as differentials or finite differences:

zA
Mdz̄M

A′ = uA
M
(
dwM

M ′
)
ūM ′

A′ , z2A
Mz̄1M

A′ = u2A
M (w1 − w2)M

M ′ū1M ′
A′ (2.10)

2.2 Covariant Derivatives

It is easier to derive the symmetry generators (G = g∂g) and covariant derivatives (D =

∂gg) from the infinitesimal forms of the transformations given above and in matrix form,

they read:

Gw = ∂w, Gu = w∂w + u∂u, Gū = ∂ww + ∂ūū (2.11)

Dw = ū∂wu, Du = ∂uu, Dū = ū∂ū (2.12)

This defines the ‘projective representation’, which is not quite useful for the construction of

a ‘simple’ N=2 SYM action. For that, we need what is called a ‘reflective representation’ in

which the D’s are ‘switched’ with G’s. The explicit forms of covariant derivatives for all the

coordinates in both representations are given in table 1.

All the D−commutators can be read directly from table 1 and are same in both the

representations except the first one below, which is non-trivial only in z:

{d1ϑ, d̄2ϑ} = y12dx (2.13)

{d1θ, d̄2ϑ} = dx = {d̄1θ, d2ϑ} (2.14)

[dy, dϑ] = dθ & [dy, d̄ϑ] = d̄θ (2.15)
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Table 1: Covariant Derivatives

D’s Projective (Π̌) Reflective (z)

dx ∂x ∂x
dθ ∂θ − ϑ̄∂x ∂θ
d̄θ ∂θ̄ + ∂xϑ ∂θ̄
dy ∂y − ϑ̄∂θ̄ − ϑ∂θ − ϑ̄∂xϑ ∂y
dϑ ∂ϑ ∂ϑ + y∂θ + θ̄∂x
d̄ϑ ∂ϑ̄ ∂ϑ̄ + y∂θ̄ + ∂xθ

The subscript ‘a’ in daϑ’s labels different y’s (to condense notation, it will also label ϑ’s

wherever required), y12 ≡ y1− y2 and dθ ≡ daθ. All these commutations lead to the following

useful identities2:

d1ϑd
4
2ϑ = y12d1θd

4
2ϑ (2.16)

d4
1ϑd

4
2ϑ = y2

12

[
1

2
� + y12d1θdxd̄1θ + y2

12d
4
1θ

]
d4

2ϑ (2.17)

δ8(θ12)d4
1ϑd

4
2ϑδ

8(θ21) = y4
12δ

8(θ12) (2.18)

d4
ϑd

2
yd

4
ϑ = �d4

ϑ (2.19)

2.3 Hyperfields

We define a projective hyperfield Φ such that dϑΦ = d̄ϑ̄Φ = 0. In Π̌, it just means that

Φ ≡ Φ(x, θ, θ̄, y). This representation is useful for defining actions in projective hyperspace.

In z, the dependence on (ϑ& ϑ̄) is non-trivial and looks like: Φ ≡ Φ(x+ ϑθ̄ + θϑ̄− yϑϑ̄, θ−
yϑ, θ̄ − yϑ̄, y). This representation is more suited for writing actions in the ‘full’ hyperspace

with 8 θ’s.

The superconformal transformation of Φ with a (superscale) weight ‘ω’ can be deduced

by requiring that dwΦ1/ω transforms as a scalar. The resulting transformations are:

dw′ = dw[sdet(cw + d)]2, Φ(w′) = [sdet(cw + d)]−2ωΦ(w) (2.20)

This means that the Lagrangian should have ω = 1 for the action to be superconformally

invariant. An example of this will be the scalar hypermultiplet action.

Charge conjugate expressions of the coordinates can be derived in a way similar to the

2d4
θ = d2

θd̄
2
θ, d

2
θ = 1

2Cβαd
α
θ d

β
θ , and so on.
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derivation of superconformal transformations:

C
(
y θ̄

θ x

)†
=

(
− 1
y

θ̄
y

θ
y

x− θθ̄
y

)
(2.21)

C(ϑ)† =ϑ− θ

y
(2.22)

C(ϑ̄)† = ϑ̄+
θ̄

y
(2.23)

The conjugate of the hyperfield Φ can be now defined as follows:

C(Φ)† = y2ω[Φ(Cw)]† (2.24)

2.4 Internal Coordinate

Much of projective hyperspace can be understood by analogy to full N=1 superspace, as

a consequence of both having 2 θ’s and 2 θ̄’s. Then what we’ve left to understand is the

treatment of the internal y−coordinate. The field strengths turn out to be Taylor expandable

in y on-shell[12], so their charge conjugates must be Laurent expandable on-shell. Thus, it

seems natural to use contour integration:∮
dy

2πι̇

ym

yn
= δm+1,n (2.25)

(The factor of 2πι̇ will be suppressed in what follows.) This makes the y−space effectively

compact, as expected for an internal symmetry. It is also a convenient way to constrain a

generic hyperfield Φ’s y−dependence:

φ(y)
[
0↑
]

=

∮
0,y

dy′
1

y′ − y
Φ(y′)

[
0↑↓

]
=
∞∑
n=0

yn
∮

0

dy′
1

y′n+1 Φ(y′)
[
0↑↓

]
(2.26)

Here, φ(y) has only the non-negative powers of y encoded in the notation
[
0↑
]
. The coeffi-

cients of different powers of y in φ matches with the correct ones in Φ(y′) which has all the

powers of y denoted by
[
0↑↓

]
. Thus, the contour integral acts as an ‘arctic’ projector and φ

is an arctic hyperfield, being regular at origin.

As for Feynman diagrams in Minkowski space, it is often more convenient, when defining

how to integrate around poles (especially when there’s more than one integral to evaluate),

to move the poles rather than the contour. In this interpretation, instead of having a bunch

of integrals over various contours, with the poles for integration over each variable lying on

the contour of another variable, we have all integrals over the same contour, with all poles in

various different positions near that contour. For our case, the appropriate ‘ε−prescription’

is given by writing the arctic projection of Φ as

φ(y2)
[
0↑
]

=

∫
dy1

1

y12

Φ(y1)
[
0↑↓

]
,

1

y12

≡ 1

y1 − y2 + ε(y1 + y2)
(2.27)
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at least for the case of any convex contour (e.g., a circular one) about the origin; other-

wise, we need to invent a fancier notation. Similarly, an ‘antarctic’ projector with the same

ε−prescription can be written for an antarctic hyperfield,

φ̄(y2) [(−1)↓] =

∫
dy1

1

y21

Φ(y1)
[
0↑↓

]
(2.28)

where, [(−1)↓] denotes φ̄ contains all the negative powers of y.

All these generalities now enable us to properly see them in action!

3 Specific Theory

We start with writing the actions for various hypermultiplets and end with enumerating

the Feynman rules, which allow us to do all the necessary calculations presented in the next

section.

3.1 Actions

Scalar Hypermultiplet

For the scalar hypermultiplet, the requirement of Laurent expandability in y turns out

to be too weak off-shell; we therefore require that it be Taylor expandable. This ‘polarity’

(i.e. arctic or antarctic) will be the analog of the ‘chirality’ of N=1 supersymmetry. Unlike

the N=1 case, we now have an infinite number of auxiliary component fields because of the

infinite Taylor expansion in y. The free action can be written in analogy to N=1 as:

SΥ = −
∫
dx d4θ dy ῩΥ. (3.1)

For superconformal invariance and reality, the arctic hyperfield Υ
[
0↑
]

must have ω = 1
2
.

Its conjugate is an (almost) antarctic hyperfield Ῡ [1↓] = y[Υ(Cw)]†. Note that the integral of

Υ2 or Ῡ2 would give 0, just as for N=1, but now because of polarity rather than chirality. Also,

since there is no analog to the chiral superpotential terms of N=1, there are no renormalizable

self-interactions for this hypermultiplet. All its interactions will be through coupling to the

vector hypermultiplet.

There is not much to say about the off-shell components: they are just the coefficients

of Taylor expansion in y and the θ’s. So we examine the field equations to see how only a

finite number of components survive on-shell. A direct and easy way to accomplish that is to

use reflective representation. Using the 4 extra ϑ’s, we can write both the arctic & antarctic
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hyperfields in terms of an unconstrained (in both y and ϑ) hyperfield:

Υ(y2)
[
0↑
]

= d4
2ϑ

∫
dy1

1

y12

Φ(y1)
[
0↑↓

]
(3.2)

Ῡ(y2) [1↓] = d4
2ϑd

2
y2

∫
dy1

1

y21

Φ̄(y1)
[
0↑↓

]
(3.3)

The y−derivatives appear in 3.3 because: (1) the antarctic projection makes ‘−1’ the high-

est power of y; (2) the y term in each d2ϑ increases this to ‘3’; and (3) the two y−derivatives

decrease this to the correct power of ‘1’. Unconstrained variation of the action with respect

to Φ̄ (after using the d4
ϑ to turn

∫
d4θ into d8θ) then gives the field equations d2

yΥ = 0 (the

arctic projection is redundant). On the other hand, variation with respect to Φ kills the

antarctic pieces of Ῡ, which is the same as d2
yῩ = 0. Due to superconformal invariance, the

rest of the superconformal equations are also satisfied.

Thus, the on-shell component expansion of the scalar hypermultiplet reads3:

Υ(x, θ, θ̄, y) =(A+ yB) + θχ+ θ̄ ¯̃χ− θ∂Bθ̄ (3.4)

Ῡ(x, θ, θ̄, y) =y

[
Ā− θ∂Āθ̄

y
+
θ2θ̄2�Ā
y2

− B̄

y
+
θ2θ̄2�B̄
y3

+
θ

y

(
χ− θ∂χθ̄

y

)
+
θ̄

y

(
¯̃χ− θ∂ ¯̃χθ̄

y

)]
(3.5)

From the last equation, we clearly see that the equations of motion for the complex scalars

and the Weyl spinors are satisfied if d2
yῩ = 0 applies.

Vector Hypermultiplet

Like the scalar hypermultiplet, we look for a description of the vector hypermultiplet

in terms of a prepotential defined on projective hyperspace. Again in analogy to N=1, this

should be a real prepotential, rather than a polar one. Because it lacks the polarity restriction,

and is thus Laurent expandable in y, it is called ‘tropical’. Like the scalar hypermultiplet, it

will have only a few powers of y surviving on-shell.

Just as for both N=0 & 1, gauge symmetry is understood as a generalization of global

symmetry, so we derive its form by coupling to matter. The straightforward generalization

of the N=1 coupling is then given by the action for the scalar hypermultiplet coupled to a

vector hypermultiplet background:

SΥ−V = −
∫
dx d4θ dy ῩeV Υ. (3.6)

This coupling fixes the weight of V to be 0:

V ′(w) = V (w′), V̄ (w) ≡ [V (Cw)]† = V (w) (3.7)

3The θθ̄−term in Υ can be understood as a consequence of one of the superconformal field equations[12],

which schematically reads: ∂x∂y + ∂θ∂θ̄ = 0.
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The gauge transformations are then

Υ′ = eι̇ΛΥ, Ῡ′ = Ῡe−ι̇Λ̄, eV
′
= eiΛ̄eV e−ι̇Λ (3.8)

where Λ is arctic like Υ, but has ω = 0 like V . Thus, Λ̄ has only non-positive powers of y,

unlike Ῡ. Because of the 1/y’s associated with conjugated coordinates, setting Λ to Λ̄ would

reduce Λ to a real constant, i.e. the global symmetry.

With this gauge invariance, we can examine the on-shell component fields of the vector

hypermultiplet. Since Λ contains all non-negative powers of y, and Λ̄ contains all non-positive

powers, it might seem that everything can be gauged away, but again the additional 1/y’s

associated with charge conjugation modify things: The 1/y in Cθ increases the number of non-

gauge components of V with increasing θ, while the θθ̄/y in Cx leads to an x−derivative gauge

transformation, again in analogy with the N=1 case. (We can also look at just what Λ gauges

away, and then apply ‘reality’ to V .) The result is that, unlike the scalar hypermultiplet (but

like the N=1 vector multiplet), V has a finite number of auxiliary fields.

In a Wess-Zumino gauge,

V =
1

y

[(
θAθ̄ + θ2φ+ θ̄2φ̄

)
+ θ̄2θ

(
λ+

λ̃

y

)
+ θ2θ̄

(
λ̄+

¯̃λ

y

)
+ θ2θ̄2

(
D +

D0

y
+
D̄
y2

)]
(3.9)

where the residual gauge invariance is the usual one for the vector A. We thus find, in

addition to the expected physical vector (A), a complex scalar (φ) and SU(2) doublet of

spinors (λ& λ̃), there is an SU(2) triplet of auxiliary scalars (D, D̄&D0). This same set of

fields is found if the vector hypermultiplet is reduced to N=1 supermultiplets, one vector

supermultiplet plus one scalar supermultiplet. In the N=1 case, the construction of the

vector multiplet action depended on the fact that a spinor derivative could kill the chiral

gauge parameter. In the N=2 case, we have arctic and antarctic gauge parameters, and the

only way to kill them is by antarctic or arctic projection. This leads to an action of the form

SV =
tr

g2

∫
dx d8θ

∞∑
n=2

(−1)n

n

n∏
i=1

∫
dyi

(
eV1 − 1

)
...
(
eVn − 1

)
y12y23...yn1

(3.10)

where, Vi ≡ V (x, θ, ϑ, yi). This action is invariant under the following gauge transformation

(details are in [1]):

δ
(
eV
)

= ι̇
(
eV Λ− Λ̄eV

)
⇒ δV = ι̇

[
V

2
,

(
(Λ + Λ̄) +

[
coth

V

2
, (Λ− Λ̄)

])]
. (3.11)

Superconformal invariance of the action might not be obvious, especially because of the

non-locality. The first thing to note is that the full superspace volume element (
∫
dx d8θ)

is superconformally invariant (because sdet(g0) = 1). Next is to use the results for the
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superconformal transformations of dwi and wij, read from 2.9 & 2.10, to find those for the

coordinate y:

dy′i =
dyi

(wic̃+ d̃)(cwi + d)
(3.12)

y′ij =
yij

(wic̃+ d̃)(cwj + d)
(3.13)

where, the factors (cwi + d), etc denote the single matrix element corresponding to the

y−coordinate. We also use the fact that the other wij’s vanish as the action is local in these

coordinates. The similar transformation factors of dyi’s & yij’s then cancel due to the ‘cyclic’

nature of the denominator in SYM action proving its superconformal invariance.

Ghost Hypermultiplets

The introduction of ghosts follows the usual BRST procedure and is analogous to the case

of N=1 at least in the Fermi-Feynman gauge (see section 3.2 for some details.):

Sbc =− tr
∫
dx d4θ dy (y b+ b̄)

[
V

2
,

((
c+

c̄

y

)
+

[
coth

V

2
,

(
c− c̄

y

)])]
=− tr

∫
dx d4θ dy

[
b̄ c+ c̄ b+ (y b+ b̄)

V

2

(
c+

c̄

y

)
+

1

3
(y b+ b̄)

V 2

4

(
c− c̄

y

)
+ ...

]
(3.14)

We can also choose a non-linear gauge like the Gervais-Neveu gauge in which the ghost

action would be simplified to:

Sbc =− tr
∫
dx d4θ dy (y b+ b̄)

[
eV c− c̄

y
eV
]

=− tr
∫
dx d4θ dy

[
y b eV c+ c̄ eV b+ b̄ eV c+

1

y
c̄ eV b̄

]
(3.15)

There does not seem to be any real advantage of this gauge (e.g. to show the non-

renormalization of g in N=4 SYM is not that straightforward) apart from the absence of

‘weird’ numerical factors coming from the expansion of coth(x) in the case of Fermi-Feynman

gauge. So we will use action 3.14 in all the calculations presented later.

3.2 Propagators

Scalar

We add source terms to the quadratic action of Υ and convert the d4θ integral to d8θ
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integral by rewriting Υ’s using equations 3.2 & 3.34:

SΥ−J =−
∫
dx d4θ dy

[
ῩΥ + J̄Υ + ῩJ

]
(3.16)

=−
∫
dx d8θ

∫
dy1

[
d2
y1

∫
dy3

Ῡ3

y13

d4
1ϑ

∫
dy2

Υ2

y21

+ J̄1

∫
dy2

Υ2

y21

+ d2
y1

∫
dy3

Ῡ3

y13

J1

]

The sources J & J̄ are generic projective hyperfields with ω = 1
2
. Now, the modified

equations of motion of Ῡ & Υ can be derived from above and (after some integration by

parts) they read: ∫
dy1

d4
1ϑd

2
y1

Υ1

y13

=−
∫
dy1d

4
1ϑd

2
y1

(
1

y13

)
J1

⇒ �Υ3 =− d4
3ϑ

∫
dy1

2J1

y3
13

(3.17)

Similarly, �Ῡ2 =− d4
2ϑ

∫
dy1

2J̄1

y3
21

(3.18)

Plugging the equations 3.17 & 3.18 back in action 3.16, we get:

SΥ−J =
1

2

∫
dx d8θ dy1

[
J̄1

1
1
2
�

∫
dy2

J2

y3
21

+
1

1
2
�

∫
dy2

J̄2

y3
12

J1

]
=

∫
dx d8θ dy1 dy2

[
J̄1

1

y3
21

1
1
2
�
J2

]
(3.19)

This gives us the following scalar propagator:

〈Υ(1)Ῡ(2)〉 = −d
4
1ϑd

4
2ϑδ

8(θ12)

y3
21

δ(x12)
1
2
�

. (3.20)

Vector

Gauge fixing of the vector hypermultiplet action looks similar to the N=1 case, in the same

sense that the scalar hypermultiplet action does. The main modifications are that now d4θ

is projective, there is also dy, the ghosts and Nakanishi-Lautrup fields are projective arctic

/ antarctic fields instead of chiral / anti-chiral ones. The y−dependence of ghosts c& c̄ is[
0↑
]

& [0↓]; anti-ghosts b& b̄ is
[
0↑
]

& [2↓] and NL fields B& B̄ is
[
0↑
]

& [2↓]. We redefine

the conjugates so that their y−dependence is similar to Ῡ:

c̄ [0↓]→
1

y
c̄ [1↓] ; b̄ [2↓]→ y b̄ [1↓] ; B̄ [2↓]→ y B̄ [1↓] (3.21)

4Writing Υ instead of Φ does not make a difference here.
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We choose the following gauge-fixing function:

Vgf =

∫
dx d4θ dy (y b+ b̄)V (3.22)

δVgf =

∫
dx d4θ dy

[
(y B + B̄)V + (y b+ b̄)δV

(
c,
c̄

y

)]
(3.23)

The second term gives Sbc in Fermi-Feynman gauge5 (eq. 3.14). The first term along with a

gauge-averaging term (kinetic term for NL field) gives us the gauge-fixing action:

Sgf =
tr

g2

∫
dx d4θ dy

[
−B̄ 1

�
B + (y B + B̄)V

]
(3.24)

⇒ Sgf =
tr

2g2

∫
dx d8θ dy1 dy2 V1

[
y2

y12
3

+
y1

y21
3

]
V2 (3.25)

The final expression for Sgf follows from similar manipulations employed in deriving eq. 3.19,

i.e. by integrating out B & B̄ using their equations of motion.

We now combine the terms quadratic in V from the above equation and eq. 3.10 to get:

S(2)
V + S(2)

gf =− tr

2g2

∫
dx d4θ dy1 dy2 V1

1

y2
12

[
1− y2

y12

− y1

y21

]
d4

1ϑV2

=
tr

2g2

∫
dx d4θ dy1 dy2 V1

1

y2
12

[
y1 + y2

2
δ(y12)

]
y2

12

(
1

2
� +O(y12)

)
V2

=
tr

2g2

∫
dx d4θ dy y

V�V
2

(3.26)

This gives the following vector propagator:

〈V (1)V (2)〉 = d4
1ϑδ

8(θ12)
δ(y12)

y1

δ(x12)
1
2
�

. (3.27)

Ghosts

The derivation of ghost propagators proceeds along similar lines to that of the scalar

propagator and the results are:

〈b̄(1)c(2)〉 = 〈c̄(1)b(2)〉 =
d4

2ϑd
4
1ϑδ

8(θ12)

y3
12

δ(x12)
1
2
�

, (3.28)

〈c(1)b̄(2)〉 = 〈b(1)c̄(2)〉 =− d4
1ϑd

4
2ϑδ

8(θ12)

y3
21

δ(x12)
1
2
�

. (3.29)

5Choosing
(
eV − 1

)
instead of V in Vgf gives the ghost action 3.15.

11



3.3 Vertices

Υ

The scalar hypermultiplet does not have any self-interactions. Only Υ − V vertices are

possible as is evident from the actions written above (We use the group theoretical conventions

and diagrams along the lines of [13]6.):

ῩiV j1 ...V jnΥk →
∫
d4θ

∫
dy

(
i

j1

...
jn

k

)
where, the group theory factor (shown in parentheses) is for adjoint representation.

V

Pure vector hypermultiplet vertices take the following form:

(V1)m1 ...(Vn)mn →
∫
d8θ dy1 ... dyn

1

y12...yn1

(
1 ... n

)
The group theory factor shown above corresponds to the case of m1 = ... = mn = 1. For

other cases, this factor depends on the number of V ’s rather than that of the independent

y−coordinates. Apart from this subtlety, the factor is still similar to the simplest case but

we will not consider diagrams containing such vertices (with mi > 1) here.

(b, c)

There are altogether four possibilities for ghost vertices and they differ in the accompanying

y−integrals:

b V n c →
∫
d4θ

∫
dy y

c̄ V n b →
∫
d4θ

∫
dy

b̄ V n c →
∫
d4θ

∫
dy

c̄ V n b̄ →
∫
d4θ

∫
dy

1

y

Group theory factors for these ghost vertices are similar to those for the scalar vertices.

6To summarize: The vector & ghost hyperfields are in the adjoint representation of gauge group and

the scalar hyperfield is in some representation R: V = V aTa, Υ = ΥaTa, etc. The group generators (Ta)

satisfy [Ta, Tb] = ι̇fab
cTc and in adjoint rep: (Ta)b

c
= ι̇fab

c = . The Dynkin index (cA) is defined by:

trA(TaTb) = facdfb
cd = cAδab. In R, this trace generalizes to: trR(TaTb) = cRδab.
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3.4 Feynman Rules

1. Basic set-up: Apply usual Feynman rules for drawing diagrams and writing expressions

for them using the propagators & vertices derived above.

2. d−Algebra: Convert d4θ integrals to d8θ integrals by taking d4
aϑ’s off the propagators.

There should be at least two d4
aϑ’s remaining for the diagram to not vanish. Remove the

remaining d4
aϑ’s using integration by parts (which implicitly assumes using the ‘freed’

δ8(θ12) to do one d8θ integral) and keep using the identity 2.17 till only one d4
aϑ is left7.

As far as computing divergences is concerned, this leads to a deceptively simple result

for a 1-hoop diagram (or a particular 1-hoop in a multi-hoop diagram):

d4
aϑd

4
bϑ...d

4
zϑ =

1

2
k2y2

aby
2
b·...y

2
·zy

2
zad

4
zθd

4
zϑ (3.30)

where, k is the loop momentum and the second-to-last θ−integral can be done by using

this identity: δ8(θ12)d4
θd

4
ϑδ

8(θ12) = δ8(θ12).

3. y−Calculus: Use the identities in Appendix A to do ‘some’ of the y−integrals. Specif-

ically, for evaluation of divergences, perform partial fractions to generate the cyclic

y−denominator (y12y23...yn1) of the SYM action. Then, performing the extra y−integrals

is equivalent to just replacing the extra y’s in the integrand by following these two rules:

(a) Remove the factor
∫

dya
ya1

after replacing all non-negative powers of ya by y1 and set-

ting its negative powers to 0; (b) Remove the factor
∫

dya
y1a

after replacing all negative

powers of ya by y1 and setting other (non)-occurrences of ya to 0.

4. Miscellaneous: Evaluate group theoretical factors and track down signs & symmetry

factors. Finally, evaluate the integrals over loop-momenta.

4 Results

4.1 1-hoop Examples

4.1.1 Scalar Self-energy

There are two diagrams with different propagators making the loop as shown in figure 1.

1. 1V−propagator: Remove d4
ϑ from the vector propagator to get the d8θ measure. This

leaves no dϑ’s to kill the δ8(θ12), so this diagram vanishes. Such tadpole diagrams (even

7All this can be summarized by the formula: nθ −
(
nδ − nϑ

2

)
= 1+n

2 ; where, nθ=no. of
∫
d8θ, nδ=no. of

δ8(θ), nϑ=no. of d4
aϑ and n=no. of times the identity 2.17 has to be applied, which means that a diagram

vanishes if n ≤ 0.

13



1.(=0) 2.(=0)

Figure 1: Scalar self-energy diagrams at 1-hoop.

multi-hoop diagrams containing these as sub-diagrams) always vanish, so we will not

consider these anymore in what follows.

2. 1V − & 1 Υ−propagators: Remove two d4
ϑ’s from these propagators to complete the

two d4θ measures. This means there are not enough (in fact, only 4) dϑ’s left to kill

one of the δ8(θ12), so this diagram also vanishes.

This means that the scalar hyperfield is not renormalized which is obvious from the fact

that its action is over only the projective hyperspace but the Feynman diagrams give contri-

butions over full hyperspace. In other words, scalar hypermultiplet action (coupled to vector

hypermultiplet, as shown below) is not renormalized at any loop order.

4.1.2 ῩV Υ

There are four diagrams in this case as shown in figure 2. Two of these diagrams vanish

because of d−algebra similar to the self-energy case. The other two are evaluated below:

1. 2 . = 0 = 0

Figure 2: ῩV Υ diagrams at 1-hoop.

1. 1V − & 2 Υ−propagators: This diagram has enough (8, at last!) dθ’s to kill one of

the δ(θ) functions so that two θ−integrals can now be done. However, this generates

only a y4
12−factor without any momentum factors in the numerator, which makes this

diagram power-counting finite and the explicit finite result reads:

− cA
2

∫
d4k

(2π)4

1
1
2
k2 1

2
(k + p2)2 1

2
(k − p1)2

∫
d8θ

∫
dy1,2

y2

Ῡ2(p2)V1(p1)Υ2(p3)

y12 y21

(4.1)

where, pi’s are the external momenta.
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2. 2V − & 1 Υ−propagators: Applying similar maneuvers as above, we conclude that this

diagram is also finite:

−A3(p2,−p1)× cA
2

∫
d8θ

∫
dy1,2,3

y2 y3

Ῡ2(p2)V1(p1)Υ3(p3)

y12 y31

(4.2)

where, A3(p2,−p1) is just the momentum integral of eq. 4.1.

In fact, all hoop diagrams for any ῩV n Υ vertices are finite because of the non-cancellation

of ‘sufficient’ momentum factors in the denominator.

4.1.3 Ῡ Υ Ῡ Υ

Such a vertex does not appear in the action and hence, the 1-hoop diagrams (figure 3)

contributing to this vertex can not be divergent.

= 0 = 0

Figure 3: Ῡ Υ Ῡ Υ diagrams at 1-hoop.

Out of the three diagrams, two vanish due to d−algebra and the remaining box-diagram

can be evaluated in a straightforward manner to give a finite result:

∼
∫

d4k

(2π)4

1
1
2
k2 1

2
(k + p2)2 1

2
(k + p2 + p3)2 1

2
(k − p1)2

∫
d8θ

∫
dy1,2

y1y2

Ῡ1(p1)Υ1(p2)Ῡ2(p3)Υ2(p4)

y12 y21

(4.3)

4.1.4 Vector Self-energy

There are three classes of diagrams contributing to the self-energy corrections with different

hyperfields (vector, ghosts or scalar) running inside the loop as shown in figure 4:

1.(=0) 2. 3 .

Figure 4: Vector self-energy diagrams at 1-hoop.
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1. V−propagators: There are a couple of diagrams (not shown explicitly in fig. 4.1)

which have at least one V 2
1 V2-type vertex and they vanish trivially due to the presence

of expressions like y3δ(y) or y4δ(y)2. This is a generic feature of 1-hoop (at least)

diagrams containing such vertices and these will not be considered here anymore.

The diagram which has both vertices of V1V2V3-type (shown explicitly in fig. 4.18) also

vanishes but in a different way. After doing the d−algebra and integrating the two

δ(y)’s, we are left with the following y−integrals:∫
dy1,2,a,b

V1V2 yab yba
ya yb y1b ya1 y2a yb2

=

∫
dy1,2

V1V2

y12y21

∫
dya,b

(
1

ya1

+
1

y2a

)(
1

y1b

+
1

yb2

)(
2− ya

yb
− yb
ya

)
=

∫
dy1,2

V1V2

y12y21

(
2− y1

y1

− y2

y2

)
= 0.

2. (b, c)−propagators: There are four diagrams with different combinations of ghost prop-

agators and vertices. All of them combine to give (after relevant d−algebra)9:

A2(p)× 2
1

2
cA
g2

4

∫
d8θ

∫
dy1,2

V1V2

y12 y21

(
1 +

y1

y2

+
y2

y1

+ 1

)
=A2(p)× cA

4
g2

∫
d8θ

∫
dy1,2

V1V2

y12 y21

(
−y12 y21 + 4y1y2

y1y2

)
=A2(p)× cA g2

∫
d8θ

∫
dy1,2

V1V2

y12 y21

. (4.4)

The last line follows entirely from the second term in parentheses of the previous line.

This is because the first term with no y12’s in the integrand vanishes since d8θ kills

such projective integrands. Also, A2(p) is the divergent integral and is evaluated using

dimensional regularization to give:

A2(p) =

∫
dDk

(2π)D
1

1
2
k2 1

2
(k + p)2

=
1

4π2

[
1

ε
− γE − ln

(
p2

µ2

)]
,

1

ε
=

2

4−D

3. Υ−propagators: The calculation for this single diagram is similar to that of the ghost

which gives:

−A2(p)× cR g2

∫
d8θ

∫
dy1,2

V1V2

y12 y21

. (4.5)

8The red (straight) lines over the wavy lines depict the ‘y−dependence’ of the diagram following the rules

given in Appendix A.
9V → gV in rest of the paper.
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4.1.5 V1 V2 V3

Similar to the vector self-energy case, three classes of diagrams contribute in this case also

as shown in figure 5. We give only the final results after doing the d−algebra and y−calculus

in what follows.

(a)
1 .

(b)
2 . 3 .

Figure 5: V1 V2 V3 diagrams at 1-hoop.

1. V−propagators: There are two diagrams in this class and both are non-zero. We use

the notation
xy yi
yj

xy to denote the sum of permutations of yi
yj
−factors over all possible

values of i, e.g.
xyy1y2xy =

(
y1
y2

+ y2
y3

+ y3
y1

)
.

(a) (V V V )3 vertices: The full (divergent & finite) contribution of this diagram reads:

−cA
2
g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

[
A2(p3)

(
−3 +

xyy1

y2

xy)+

+ p2
2A3(p2,−p1)

(
1 +

xyy1

y2

− 1

3

(
y31

y1

)2
xy
)]

(4.6)

(b) (V V V V )− (V V V ) vertices: The (wavy line) diagram looks like contributing only

to the V1V
2

2 vertex term in the action but due to the 4−point vertex, this diagram

also contributes to V1V2V3 vertex as shown explicitly by the ‘y-dependence’ in

figure 5.1.(b). We will be giving the results for diagrams with all (external) V ’s

at distinct y’s only since the results for other diagrams follow from those of the

self-energy case. This particular diagram gives a very simple contribution similar

to the self-energy case:

−A2(p3)× 1

2

cA
2
g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

(
3−

xyy1

y2

xy) (4.7)

2. (b, c)−propagators: There are eight diagrams with different combinations of ghost prop-

agators and vertices. All of them combine to give the following part containing the

17



divergence:

A2(p3)× 2
cA
2

g3

8

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

(
1 +

xyy1

y2

+
y1

y3

xy+ 1

)
=A2(p3)× cA

8
g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

2

(
1 +

xyy1

y2

xy− y12 y23 y31

2 y1 y2 y3

)
(4.8)

where the last term in the parentheses does not contribute as in the case of self-energy

diagram but the last term does contribute in the remaining finite part given below:

p2
2A3(p2,−p1)× cA

4
g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

1

3

xy
(
y12

y31

)2
xy
(

1 +

xyy1

y2

xy− y12 y23 y31

2 y1 y2 y3

)
(4.9)

3. Υ−propagators: The calculation for this single diagram is again straightforward and

gives as expected:

− cR g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

[
A2(p3) + p2

2A3(p2,−p1)
1

3

xy
(
y12

y31

)2
xy
]
. (4.10)

4.1.6 V1 V2 V3 V4

The calculations in this case are similar to the earlier ones except for an increase in

the number of y−integrals to be evaluated. Before we proceed further, we make a group

theoretical comment. None of the 4−point diagrams generate terms proportional to

fipqfjqrfkrsflspV
i

1V
j

2 V
k

3 V
l

4 ≡ GijklV
i

1V
j

2 V
k

3 V
l

4 ,

which do not appear in the SYM action10. This was, however, not the case when similar

calculations were done using N=1 supergraph rules in [11] and a nonlinear (cubic) wave-

function renormalization (proportional to GV V V ) was required to keep the effective action

renormalizable as predicted in [10].

We do not encounter this feature because of the ‘antisymmetry’ of the yab factors, which

enforces the Jacobi identity leading (in this particular case) to this useful identity:

Gijkl −Gijlk =
cA
2
fijpfklp ≡

cA
2

.

Hence, all the 4−point diagrams end up producing the V 4 term present in the SYM action

and the usual renormalization procedure is applicable. (One more reason is that ‘gV ’ is not

renormalized as explained later.) Now, we enumerate the complete results for the usual three

classes of diagrams shown in figure 6:

1. V−propagators: There are four non-zero diagrams in this class. After doing the relevant

algebra and including the permutations of yi
yj
−factors, we get:

10Recall from sub-section 3.3 that the V 4 term appearing in the action is proportional to fijpfklpV
i
1V

j
2 V

k
3 V

l
4 .
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(a)
1 .

2 . 3 .

(b) (c) (d)

Figure 6: V1 V2 V3 V4 diagrams at 1-hoop.

(a) (V V V )4 vertices:

− cA
2
g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

[(
A2(p4)− p2

2A3(−p3, p4)
)(1

2

xyy1

y2

+
y1

y4

xy−
−
xyy1

y3

xy
)

+A3(−p3, p4)

{
p2

1

(
1

4

xy3
y1

y2

− 2
y1

y3

− y2
3

y2
1

− y2
3

y1 y4

+
y3

3

y2
1 y4

xy)+

+ p2
2

(
−2 +

1

4

xy4
y1

y2

− 3
y1

y3

+
y3 y4

y2
1

− y2
4

y2
1

+
y2

4

y1 y2

xy)+

+ 2p1 · p2

(
2− 1

4

xy4
y1

y2

− y1

y3

+
y2

3

y2
1

− y2
3

y1 y4

− y3 y4

y2
1

xy)
}

+

+ p2
1(p1 + p2)2A4(p2, p2 + p3,−p1)

(
−4 +

1

4

xy5
y1

y2

+ 2
y1

y3

− y2
3

y2
1

− 3y2
3

y1 y4

+
y3

3

y2
1 y4

xy)
]

(4.11)

(b) (V V V V )− (V V V )2 vertices:

−cA
2
g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

[
A2(p4)

(
−8 + 2

xyy1

y3

xy)+

+ p2
3A3(−p3, p4)

xyy14

y12

y3
24

y2
2 y4

xy
]

(4.12)

(c) (V V V V )2 vertices:

−A2(p4)× 1

2

cA
2
g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

(
4− 1

2

xyy1

y2

+
y1

y4

xy) (4.13)
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(d) (V V V V V )− (V V V ) vertices:

−A2(p4)× 1

2
cAg

4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

(
4−

xyy1

y3

xy) (4.14)

2. (b, c)−propagators: There are sixteen diagrams that combine to give (after dropping

the term with a projective integrand):

cA
16
g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

[(
A2(p4)− p2

2A3(−p3, p4)
)(

2

xyy1

y2

+
y1

y4

xy)+

+

{
A3(−p3, p4)

1

4

(
p2

1

xy
(
y24

y41

)2
xy+ p2

2

xy
(
y13

y41

)2
xy− 2p1 · p2

xyy23

y14

+
y12

y41

y34

y41

xy
)

+

+ p2
1(p1 + p2)2A4(p2, p2 + p3,−p1)

1

4

xy
(
y12

y41

)2
xy
}(

2

xyy1

y2

+
y1

y4

xy+
y12 y23 y34 y41

y1 y2 y3 y4

)]
(4.15)

3. Υ−propagators: Without doing any new calculations, we can write the result, which is

similar to eq. 4.15:

−cR g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

[(
A2(p4)− p2

2A3(−p3, p4)
)

+

+A3(−p3, p4)
1

4

(
p2

1

xy
(
y24

y41

)2
xy+ p2

2

xy
(
y13

y41

)2
xy− 2p1 · p2

xyy23

y14

+
y12

y41

y34

y41

xy
)

+

+ p2
1(p1 + p2)2A4(p2, p2 + p3,−p1)

1

4

xy
(
y12

y41

)2
xy
]
. (4.16)

4.2 1-hoop β−function

The divergences proportional to the terms in the vector hypermultiplet’s action are ab-

sorbed via wavefunction (V ) and coupling constant (g) renormalization following the usual

well-known procedure.

Z− factor forV : VR =
√
ZV V ⇒ Z

(1)
V = Z

(1)
2 (4.17)

Z− factor for g : gR = Zggµ
ε ⇒ Z(1)

g = Z
(1)
3

(
Z

(1)
V

)−3
2

(4.18)

where, the Z
(1)
n ’s are the Z−factors for corresponding n−point vertex terms in the action,

i.e. S(V n
R ) = ZnS(V n). To figure these out, we combine the divergent term of A2 occurring
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in all n−point functions. The result is:

2− point (4.4 & 4.5) :
(cA − cR)g2

4π2ε

∫
d8θ

∫
dy1,2

V1V2

y12 y21

;

3− point (4.6− 4.10) :
(cA − cR)g3

4π2ε

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

;

4− point (4.11− 4.16) :
(cA − cR)g4

4π2ε

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

.

⇒ Z− factors for Vertices : Z
(1)
2 = Z

(1)
3 = Z

(1)
4 = 1 +

(cA − cR)g2

4π2ε
(4.19)

Finally, plugging eq. 4.19 in 4.17 & 4.18, we get:

Z
(1)
V = 1 +

(cA − cR)g2

4π2ε
; (4.20)

Z(1)
g = 1− (cA − cR)g2

8π2ε
. (4.21)

Using the coupling constant renormalization factor, the 1−loop β−function for N=2 SYM

coupled to matter in representation R is easily calculated:

β
(1)
N=2 = g3

∂
(
εZ

(1)
g

)
∂g2

= −(cA − cR)g3

8π2

(
= −(2n− cR)g3

8π2
for SU(n)

)
. (4.22)

For N=4 SYM, it is trivial to see that the beta-function vanishes at 1-loop since the scalar

hypermultiplet is in adjoint representation (so cR = cA) implying

β
(1)
N=4 = 0.

4.3 2-hoops Finiteness

We recall that any n−point function involving external scalar hyperfields (including ghosts)

can not be divergent and hence the hyperfields b, c & Υ and other terms in actions 3.6 &

3.14 are not renormalized. Thus, we need to calculate just the vector self-energy corrections

to compute the β−function at two-hoops. We can read off the Zg−factor from g b̄ V c (or

gῩVΥ in case of N=4 SYM) vertex at 2-hoops (which is true even in the case of 1-hoop as

can be easily checked.):

Z(2)
g =

(
Z

(2)
V

)− 1
2
. (4.23)

In other words, gV is not renormalized which means that the vector hyperfield V can not

have any non-linear renormalization since the coupling constant g is always linearly renormal-

ized. This is the same result as in the background field formalism as far as renormalization

is concerned.

There are a lot of diagrams to consider at 2-loops (at first sight) but their evaluation is

not any more difficult than those at 1-loop. Firstly, we consider the 11 diagrams shown in
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Figure 7: Vector self-energy diagrams at 2-hoops with only V−propagators.

Figure 8: Vector self-energy diagrams at 2-hoops including b, c& Υ−propagators.

figure 7 which have only vector propagators. The first two rows in the figure show diagrams

that vanish due to d−algebra (i.e. insufficient number of d4
aϑ’s). The remaining 5 diagrams

require some y−calculus and we find that none of their divergent terms survive and only the

last two of them have finite terms. The vanishing of divergences for these two diagrams is

shown in the appendix.

Secondly, there are a lot more diagrams having ghost & scalar propagators but only 4

classes of such diagrams (figure 8) need to be examined in ‘detail’. The rest of such diagrams

vanish either due to the d−algebra or emergence of yδ(y) (even y2δ(y)) factor (mainly in

diagrams having only b̄ V c−type vertices). Again, after doing some y−calculus we see that

these four classes of diagrams also do not have any divergences. Thus, there are no divergent

vector self-energy corrections at 2-hoops (i.e. Z
(2)
V = 1) and hence for both N=2 SYM coupled

to matter in any representation and N=4 SYM,

β(2) ∼ ∂g2
(
Z(2)
g

)
= 0 .
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5 Conclusion

We investigated one & two-loop(s) diagrams for N=2 massless vector & scalar hypermul-

tiplets directly in projective hyperspace for the cases of 2, 3 & 4−point functions. We found

that the effective action receives only 1-loop divergent corrections, which have the same form

as the classical action. We also calculated all the 1-hoop finite pieces of the diagrams. Some

of them are similar to the classical action modulo the momentum factors whereas others have

extra y−factors, whose ‘non-linearity’ prevents any simplification of the results. In spite of

that, we derived the well-known result that the N=2 SYM coupled to matter is 2-loops finite.

These calculations also enable us to show that N=4 SYM is finite at one & two-loop(s).

Similar calculations can be done with the Harmonic hyperspace Feynman rules and the

procedure is not that different or difficult. However, the repeated use of harmonic derivatives

(dy & dȳ) to simplify the SU(2) invariant harmonics in order to do the SU(2) integrals is

definitely cumbersome compared to ‘evaluating’ some contour integrals on a complex plane

as in the Projective hyperspace.

Our results like the linear wavefunction renormalization and the non-renormalization of

‘gV ’ have the same simplicity as expected from a background field formalism. So, it would

be more interesting to construct a background field formalism for projective hyperspace that

would definitely simplify these calculations and also (hopefully) give us insights into the

origin of the Vector Hyperfield, V!

Acknowledgments

This work is supported in part by National Science Foundation Grant No. PHY-0653342.

DJ would like to thank Prerit Jaiswal for some useful discussions on Feynman diagrams.

23



A y−Calculus

Important Identities

These ‘simple’ identities are useful for proving gauge invariance of the vector action, deriv-

ing component action of N=2 SYM, deriving vector propagator and evaluating y−integrals

for Feynman diagrams:

1

yijyjk
=

1

yik

(
1

yij
+

1

yjk

)
(A.1)

1

y12

+
1

y21

= −2πι̇ δ(y12) (A.2)

y2

y12

+
y1

y21

− 1 = 2πι̇
y1 + y2

2
δ(y12) (A.3)

Sample Calculations

Pictorial rules for setting up y−integrals are shown in figure 9 and some examples of

applying these rules are given in figures 10, 11 & 12.

δ

Figure 9: Rules for setting up y−integrals.

: = 0 .=
1 1 22

a a

Figure 10: Vanishing of a 2-hoops diagram with ghost propagators.

In fig. 10, the emergence of yδ(y) factor is shown when only three y2a’s in the y4
2a factor

(produced via d−algebra) are cancelled by y3
2a factor present in the ghost propagator.

Actual evaluation of ‘q’ y−integrals (for the divergent pieces) is possible in ‘≤ q’ steps as

shown in the following sample calculations.
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1

2
3a

bc

Figure 11: Setting up y−integrals for diagram 1.(a) in fig. 5.

F.11 ≡
∫
dy1,2,3,a,b,c

ya yb yc

V1V2V3 yba yac ycb
y1c yc2 y2a ya3 y3b yb1

=

∫
dy1,2,3

V1V2V3

y12 y23 y31

∮
dya,b,c

(
1

y2a

+
1

ya3

)(
1

y3b

+
1

yb1

)(
1

y1c

+
1

yc2

)
×

×
(

1− ya
yb

)(
1− yc

ya

)(
1− yb

yc

)
=

∫
dy1,2,3

V1V2V3

y12 y23 y31

∮
dya,b

(
1

y2a

+
1

ya3

)(
1

y3b

+
1

yb1

)(
1− ya

yb

)(
1− y2

ya
− yb
y1

+
yb
ya

)
=

∫
dy1,2,3

V1V2V3

y12 y23 y31

∮
dya

(
1

y2a

+
1

ya3

)(
−ya
y3

− y2

ya
+
y2

y3

+
ya
y1

+
y1

ya
− 1

)
=

∫
dy1,2,3

V1V2V3

y12y23y31

(
−3 +

xyy1

y2

xy) .
(a)

(b)

1

1 2

2

a b

b

c
a

cd

d

e

e

Figure 12: Setting up y−integrals for the last two diagrams in fig. 7.
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F.12.(a) ≡
∫

dy1,2,a,b,c,d,e

ya yb yc yd ye

V1V2 y
3
ad ybc yce yeb

y1a yab yb2 y2c ycd yde yea yd1

=

∫
dy1,2,a,b,c,d

ya yb yd

V1V2 y
2
ad ybc

y1a yab yb2 y2c ycd yd1

(
1− ya

yc
− yb
yd

+
yb
yc

)
=

∫
dy1,2,a,b,d

ya yd

V1V2 y
2
ad

y1a yab yb2 yd1 y2d

(
1− ya

yd
− yb
yd

+
yb
y2

− yd
yb

+
ya
yb

)
=

∫
dy1,2,a,d

ya yd

V1V2 y
2
ad

y1a yd1 y2d ya2

(
3− ya

yd
− y2

yd
− yd
ya

)
=

∫
dy1,2,a

V1V2

y1a ya2 y21

(
−6 + 4

ya
y2

+ 5
y1

ya
−
(
ya
y2

)2

− y2

ya
−
(
y1

ya

)2
)

=

∫
dy1,2

V1V2

y12 y21

1

2

(
2−

xyy1

y2

xy)
⇒1

2

∫
d8θ

∫
dy1dy2

V1V2

y1 y2

= 0.

F.12.(b) ≡
∫

dy1,2,a,b,c,d,e

ya yb yc yd ye

V1V2 y
2
bc yae yed yda

y1a yba yac ycd ydb yd2 y2e ye1

=−
∫
dy1,2,a,b,d,e

ya yd ye

V1V2 yae yed
y1a yba ydb yd2 y2e ye1

(
−2 +

yb
ya
− yd
yb

)
=−

∫
dy1,2,a,d,e

ya yd ye

V1V2 yae yed
y1a yd2 y2e ye1

(−2 + 1 + 1) = 0.
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