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We study the small mass limit of the one-loop spinor effective action, comparing the derivative
expansion approximation with exact numerical results that are obtained from an extension to spinor
theories of the partial-wave-cutoff method. In this approach one can compute numerically the
renormalized one-loop effective action, for radially separable gauge field background fields in spinor
QED. We highlight an important difference between the small mass limit of the derivative expansion
for spinor and scalar theories.
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I. INTRODUCTION

The one-loop effective action in a background field is an important quantity in quantum field theory [1, 2]. In
gauge theories, the one-loop effective action has been calculated exactly and analytically only for certain very special
gauge field backgrounds, such as those with constant (or, in non-Abelian theories, covariantly constant) field strength,
based on the seminal work of Heisenberg and Euler [3], and Schwinger [4]; and for some very special one-dimensional
cases where the field is inhomogeneous [5]. The goal of this paper is to extend further the class of background fields
for which we can compute the renormalized one-loop effective action. We are particularly interested in studying the
small fermion mass limit, motivated by its importance for chiral physics, and also by the fact that while the large
mass limit is well understood [6], much less is known about the small mass limit for general gauge backgrounds.

Recently, a new approach has been developed for computing exactly, but numerically, the gauge theory effective
action in a class of background fields that permit a separation of variables reducing to a set of one-dimensional
operators. This has been explored in most detail for radially separable backgrounds, where the method has been
called the ”partial-wave cutoff method” [7–11]. The first application of this method was to the full mass dependence
of the quark determinant in an instanton background, yielding a smooth interpolation between the known large and
small mass extreme limits [7]. Subsequent papers have concentrated on scalar theories. Indeed, even the instanton
background computation made use of a special property of self-dual backgrounds that implies that the spinor effective
action can be expressed directly in terms of the scalar effective action [12–15]. Here, in this paper, we present the
spinor approach without assuming self-duality of the background gauge field.

The basic idea of the ”partial-wave cutoff method” is simple: the one-loop effective action requires the logarithm
of the determinant of an operator, and there is a simple method [known as the Gel’fand-Yaglom method [16]] for
computing the determinant of an ordinary differential operator, without computing its eigenvalues. For a partial
differential operator, if the problem is separable down to a set of ordinary differential operators, we can formally sum
over the Gel’fand-Yaglom results for each term in the separation sum. The technical difficulty is that this sum is
naively divergent, and this must be addressed by a suitable regularization and renormalization. This has been resolved
in previous publications for gauge theories with scalars and for self-interacting scalar theories. Here we show how this
works for spinor theories with background gauge fields that are radially separable, and not necessarily self-dual.

While this class of radially separable backgrounds is large, and includes important special cases such as instantons,
monopoles and vortices, there are of course many other physically important background fields that are not separable
in this way. In these cases we must resort to approximation methods in order to compute the effective action. In
order to investigate the region of validity of these approximations, we compare our exact numerical results with two
such approximations, the large mass expansion and the derivative expansion, and show that for spinor theories a new
feature arises when evaluating the derivative expansion approximation for light fermions.

II. PARTIAL-WAVE DECOMPOSITION OF THE DIRAC OPERATOR

We begin with a chiral decomposition of the effective action. The Euclidean one-loop effective action in spinor QED
is the logarithm of the determinant of the corresponding Dirac operator:

Γ[A] = − ln det (6D +m) = −1

2
ln det

(
−6D2 +m2

)
(1)
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Here 6D = γµ(∂µ + iAµ(x)) is the Dirac operator in Euclidean 4-dimensional spacetime, and Aµ(x) is the classical
background gauge field. We will use the following standard representation for the 4× 4 Dirac matrices in Euclidean
spacetime [13]:

γµ =

(
0 αµ
ᾱµ 0

)
(2)

where

αµ = (−i~σ, 1) , ᾱµ = (αµ)† = (i~σ, 1) (3)

and the σi are the 2×2 Pauli matrices. Using this Dirac algebra representation we see clearly the chiral decomposition:

−6D2 +m2 =

(
m2 +DD† 0

0 m2 +D†D

)
(4)

where we have defined

D ≡ αµDµ , D† ≡ −ᾱµDµ (5)

Thus, we write

Γ[A] = −1

2
ln det

(
m2 +DD†

)
− 1

2
ln det

(
m2 +D†D

)
≡ Γ(+)[A] + Γ(−)[A] (6)

For later use, we recall the familiar properties of the αµ matrices:

m2 +DD† = m2 −D2
µ +

1

2
Fµν η̄

a
µν σa (7)

m2 +D†D = m2 −D2
µ +

1

2
Fµνη

a
µν σa (8)

where ηaµν and η̄aµν are the ’t Hooft symbols [12, 13].
Now we make the following simple observation, that we can write the renormalized effective action as

Γren[A] = 2Γ(±)
ren [A]∓

(
Γ(+)

ren [A]− Γ(−)
ren [A]

)
(9)

Furthermore, we know that the difference of the renormalized effective action for the two chiralities takes a special
form, related to the chiral anomaly:

∆Γren[A] ≡
(

Γ(+)
ren [A]− Γ(−)

ren [A]
)

=
1

2

1

(4π)2
ln

(
m2

µ2

)∫
d4xFµνF

∗
µν (10)

Thus, to evaluate the spinor effective action it is sufficient to evaluate the effective action for just one of the chiralities.
That is, we can compute either Γ(+) or Γ(−), but we do not need to compute both [17].

This is a useful observation because there exist background fields for which the computation is significantly easier
for one chirality than for the other. For example, if the background field is self-dual then Fµν η̄

a
µν = 0, since η̄aµν is

anti-self-dual. Therefore the positive chirality operator reduces to the scalar Klein-Gordon operator:

m2 +DD† = m2 −D2
µ (11)

which implies that

Γspinor[A] = −2Γscalar[A]−∆Γ[A] (12)

This familiar result enables the computation of the quark determinant in an instanton background via the associated
scalar determinant, which has a partial-wave decomposition [7, 8, 12, 14, 15].
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In this paper we study a special class of background gauge fields that are not self-dual, but for which the Dirac
operator still admits a partial wave decomposition [18–23]. Before coming to the radial decomposition, we first note
that these gauge fields admit a simple chiral decomposition. Specifically, we consider gauge fields of the form

Aµ(x) = η3
µνxνg(r) , (13)

where η3
µν are the ’t Hooft symbols [12], and g(r) is a radial profile function, to be specified below. The relevant

properties of the ’t Hooft symbols are that they are antisymmetric in µ and ν, and that: η3
µν = ε3µν for µ, ν = 1, 2, 3,

and η3
4ν = −δ3ν for ν = 1, 2, 3. This type of background field is symmetric under O(2)×O(3) transformations, leading

to a partial wave decomposition [20, 21]. This decomposition applies for any radial profile function g(r), so we have
the freedom to study a wide class of background fields. In particular, we can investigate the role of zero modes, the
presence or absence of which depends on the form of g(r). The associated field strength tensor is

Fµν(x) = −2η3
µνg(r)− g′(r)

r

(
η3
µσxνxσ − η3

νσxµxσ
)

(14)

Note that this field strength is not self-dual, due to the presence of the term proportional to g′(r). Thus, the positive
chirality operator DD† does not simplify as in (11). However, for this field the negative chirality operator does take
a particularly simple form:

m2 +D†D = m2 −D2
µ + (4g(r) + r g′(r))σ3 (15)

This is diagonal in spinor degrees of freedom, so if we work in the negative chirality sector, then we can immediately
use our previous results for scalar Klein-Gordon operators [7–11], just by including an extra ”potential” equal to
± (4g(r) + r g′(r)). Thus, we can write

m2 +D†D = −
[
∂2
r +

4l + 3

r
∂r − r2g(r)2 − 4g(r)l3 −m2 ∓ (4g(r) + rg′(r))

]
≡ m2 +H(l,l3,s) (16)

where the quantum number l takes half-integer values: l = 0, 1
2 , 1,

3
2 , . . . , while l3 ranges from −l to l, in integer steps.

In this way, we compute Γ(−)[A], and then the full spinor effective action can then be obtained using (9) and (10).

III. THE PARTIAL-WAVE CUTOFF METHOD

In this section we briefly recall the partial-wave cutoff method developed previously for radially separable fields of
the form (13), adapted to the negative chirality sector of the spinor theory using (15). The basic idea of the partial-
wave cutoff method involves separating the sum over the the quantum number l into a low partial-wave contribution,
each term of which is computed using the (numerical) Gelfand-Yaglom method, and a high partial-wave contribution,
whose sum is computed analytically using a WKB expansion. The regularization and renormalization procedure tells
us how to combine these two contributions to yield the finite and renormalized effective action [7–11].

A. Low partial-wave contribution

The low partial-wave contribution for our system is given by

Γ
(−)
L = −

∑
s=±

L∑
l=0, 12 ,1,...

Ω(l)

l∑
l3=−l

ln

(
det(m2 +H(l,l3,s))

det(m2 +Hfree
(l,l3,s)

)

)
, (17)

where L is an arbitrary angular momentum cutoff. The factor Ω(l) = (2l + 1) is the degeneracy factor, and the s
sum comes from adding the contributions of each spinor component in (16). In order to evaluate this quantity, we
use the Gel’fand-Yaglom method, which we now briefly review (for further details see [7–9]). LetM1 andM2 denote
two second-order radial differential operators on the interval r ∈ [ 0,∞) and let Φ1(r) and Φ2(r) be solutions to the
following initial value problem :

MiΦi(r) = 0; Φi(r) ∼ r2l as r → 0 . (18)
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Then the ratio of the determinants is given by

detM1

detM2
= lim

R→∞

(
Φ1(R)

Φ2(R)

)
. (19)

In the negative chirality sector we can take, M1 = m2 +H(l,l3,s), and M2 to be the corresponding free operator: i.e,
the same operator with the background field set to zero: g(r) ≡ 0. Thus, for a given radial profile function g(r) in
(13), for each value of (l, l3, s) we need to solve

Φ′′±(r) +
4l + 3

r
Φ′±(r)−

(
m2 + 4l3g(r) + r2g(r)2 ∓ [4g(r) + rg′(r)]

)
Φ±(r) = 0 , (20)

with the initial value boundary condition in (18). The value of Φ at r =∞ gives us the value of the determinant for
that partial wave. In fact, the corresponding free equation is analytically soluble. It is numerically more convenient
to define

S
(l,l3)
± (r) ≡ ln

(
Φl,l3,±(r)

Φfree
l,l3,±(r)

)
, (21)

and solve numerically the corresponding initial value problem for S(r), as explained in [8, 10]. Then the contribution
of the low-angular-momentum partial-waves to the effective action is

Γ
(−)
L = −

L∑
l=0, 12 ,1,...

Ω(l)

l∑
l3=−l

[S
(l,l3)
+ (∞) + S

(l,l3)
− (∞)] . (22)

While each term in the sum over l is finite and simple to compute, the sum over l is divergent as L → ∞. In fact,
only after adding the renormalized contribution of the high partial-wave modes do we obtain a finite and renormalized
result for the effective action.

B. High partial-wave contribution

The high partial-wave contribution for our system is given by

Γ
(−)
H = −

∑
s=± 1

2

∞∑
l=L+ 1

2

Ω(l)

l∑
l3=−l

ln

(
det(m2 +H(l,l3,s))

det(m2 +Hfree
(l,l3,s)

)

)
. (23)

Again, since by (15) we only need the negative chirality sector, and the negative chirality sector diagonalizes fully, we
can apply our previous scalar analysis to each of the diagonal components, adding the appropriate term ±(4g + rg′)
to the Klein-Gordon operator. This modifies the detailed expressions as follows. In the large L limit, we have

Γ
(−)
H =

∫ ∞
0

dr

(
8 g(r)r3

3
√
r̃2 + 4

)
L2 +

∫ ∞
0

dr

(
2r3(3r̃3 + 8)g(r)2

(r̃2 + 4)3/2

)
L (24)

+

∫ ∞
0

dr

{
r3

45(r̃2 + 4)7/2

[
− 6r4(5r̃4 + 28r̃2 + 32)g(r)4 (25)

+ 15(33r̃6 + 335r̃4 + 1192r̃2 + 1600)g(r)2 (26)

+ 10r(15r̃6 + 184r̃4 + 776r̃2 + 1120)g(r)g′(r) (27)

+ 5r2(3r̃6 + 38r̃4 + 160r̃2 + 224)g′(r)2 + 20r2(4 + r̃2)2g(r)g′′(r)]

]
(28)

+
r3(20g(r)2 + 10g(r)g′(r)r + g′(r)2r2)

12

[
γ + 2 lnL− 2 ln

(
r

2 +
√
r̃2 + 4

)]}
(29)

− r3(20g(r)2 + 10g(r)g′(r)r + g′(r)2r2)

12 ε
+O

(
1

L

)
, (30)
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where r̃ ≡ rm
L . We now identify the counterterm as

δΓ(−) =
1

12

(
1

ε
− γ − 2 lnµ

)∫ ∞
0

dr r3(20g(r)2 + 10g(r)g′(r)r + g′(r)2r2) , (31)

Where µ is the renormalization scale. Note that

1

2

∫ ∞
0

dr r3(FµνFµν) =

∫ ∞
0

dr r3(8g(r)2 + 4g(r)g′(r)r + g′(r)2r2) , (32)

1

2

∫ ∞
0

dr r3(Fµν F̃µν) =

∫ ∞
0

dr r3(8g(r)2 + 4g(r)g′(r)r) , (33)

and thus, the counterterm corresponds to the following combination:

δΓ(−) =
1

24

(
1

ε
− γ − 2 lnµ

)∫ ∞
0

dr r3

(
FµνFµν +

3

2
Fµν F̃µν

)
. (34)

The appearance of the Fµν F̃µν term is a special feature of the spinor calculation that does not occur in the scalar
case.

Having identified the counter-term, we can now write an explicit expression for the large L behavior of the high
partial-wave contribution to the renormalized effective action:

Γ
(−)
H =

∫ ∞
0

dr

(
Qlog(r) lnL+

2∑
n=0

Qn(r)Ln +

N∑
n=1

Q−n(r)
1

Ln

)
+O(

1

Ln+1
) , (35)

with the following expansion coefficients:

Q2(r) =
8 g(r)r3

3
√
r̃2 + 4

Q1(r) =
2r3(3r̃3 + 8)g(r)2

(r̃2 + 4)3/2

Qlog(r) = −1

6
r3(20g(r)2 + 10g(r)g′(r)r + g′(r)2r2)

Q0(r) =
r3

45(r̃2 + 4)7/2

[
− 6r4(5r̃4 + 28r̃2 + 32)g(r)4

+ 15(33r̃6 + 335r̃4 + 1192r̃2 + 1600)g(r)2

+ 10r(15r̃6 + 184r̃4 + 776r̃2 + 1120)g(r)g′(r)

+ 5r2(3r̃6 + 38r̃4 + 160r̃2 + 224)g′(r)2 + 20r2(4 + r̃2)2g(r)g′′(r)

]

−Qlog(r) ln

(
µr

2 +
√
r̃2 + 4

)

Q(−1)(r) = − r3

4(r̃2 + 4)9/2

[
6r4(r̃6 + 4r̃4)g(r)4

+ 2r2(r̃6 + 16r̃4 + 80r̃2 + 128)g′(r)2

+ (−4r̃8 + 89r̃6 + 1104r̃4 + +3456r̃2 + 5120)g(r)2

+ 16r(2r̃6 + 21r̃4 + 92r̃2 + 160)g(r)g′(r)

− 4r2(r̃6 + 8r̃4 + 16r̃2)g(r)g′′(r)

]
. (36)

Note that Γ
(−),ren
H involves L2, L and lnL terms that diverge as L → ∞, but these divergences exactly cancel those

of the ΓL contribution (coming from the numerical Gel’fand-Yaglom computation for the low partial-wave modes),
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yielding a finite renormalized result for the effective action. This method is essentially exact (up to numerical precision)
and accurately provides the value of the effective action for any value of the mass:

Γ(−)
ren (m) = Γ

(−),ren
H (m) + Γ

(−)
L (m) . (37)

The effective action calculated as above is finite for any non-zero value of the mass, however, from eq. (36), we note
that Q0(r) contains a term proportional to lnµ and therefore when we use ”on-shell” renormalization (µ = m), we
have

Γren(m) ∼

(
−
∫ ∞

0

dr Qlog(r)

)
lnm ; m→ 0 . (38)

In order to analyse the mass dependence of the effective action, we introduce a modified effective action defined as

Γ̃ren(m) ≡ Γren(m) +

(∫ ∞
0

dr Qlog(r)

)
lnµ . (39)

which is independent of the renormaliztion scale µ, and which is finite at m = 0.

IV. RESULTS FOR SPECIFIC BACKGROUND PROFILES

Within the class of background gauge fields (13), we still have the freedom to specify the radial profile function
g(r). Here we note that the large r behavior of g(r) determines the presence or absence of zero-modes. To be specific,

the integral of Fµν F̃µν counts the number of zero-modes. From (33) we have:

1

2

∫ ∞
0

dr r3(Fµν F̃µν) =

∫ ∞
0

dr r3(8g(r)2 + 4g(r)g′(r)r) ,

= 2(g(r)r2)2
∣∣∣∞
0
. (40)

Therefore, as long as g(r) falls faster than 1/r2 we don’t have zero-modes. In this paper, we study the background
fields using two different profile functions to set the background field. The first one is

g1(r) ≡ B(1− Tanh(β(
√
Br − ξ))) , (41)

where B, β and ξ are parameters that control the amplitude, range and steepness of the potential. We may call g1(r)
the ”step potential”. Since g1(r) falls off exponentially fast as r →∞, this case is free of zero-modes.

The second profile function we use is

g2(r) ≡ ν e−αr
2

/(ρ2 + r2) , (42)

where ν, ρ and α are parameters that control the amplitude, range and steepness of the potential. This potential has
the following properties:

α > 0 =⇒
∫
d4xFµνFµν <∞ ,

∫
d4xFµν F̃µν = 0

α = 0 =⇒
∫
d4xFµνFµν →∞ , 0 <

∣∣∣ ∫ d4xFµν F̃µν

∣∣∣ <∞ . (43)

Note that g2(r) goes like 1/r2 when we set α = 0, so that in this case there are zero modes. However, whenever the
profile function g(r) decays as 1/r2 we have

1

2

∫ ∞
0

dr r3FµνFµν =

∫ ∞
0

dr r3(8g(r)2 + 4g(r)g′(r)r + g′(r)2r2) ,

=

∫ ∞
0

dr r3Fµν F̃µν +

∫ ∞
0

dr r3(g′(r)2r2) (44)

which diverges logartihmically. In Figure 1 we show some plots of our chosen profile functions g1(r) and g2(r) for
different values of their parameters.

Our calculational method allows one to compute the effective action for arbitrary values of the fermion mass m.
This provides us with a unique opportunity to study the validity of various approximate methods that yield estimates
in the limits of large or small mass. In particular, we are able to probe exactly the m → 0 limit, which is of great
interest in spinor theories but which is notoriously inaccessible by approximate means.
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FIG. 1: The upper figure shows the radial profile function: g1(r) = B(1−Tanh(β(
√
Br− ξ))). We have fixed B = 1 and β = 1

in all the curves. The parameter ξ which controls the range of the potential is varied. The lowest curve corresponds to ξ = 1
(solid/red), followed by curves corresponding to ξ = 3/2 (dashes/blue), ξ = 2 (dots/black), ξ = 3 (dot-dashes/green). The

lower figure shows a second radial profile function: g2(r) = νe−αr
2

/(ρ2 + r2). We have fixed ν = 1 and ρ = 1 in all the curves,
the lowest curve corresponds to α = 1 (solid/red), followed by curves corresponding to α = 1/20 (dashes/blue), and α = 1/400
(short-dashes/black).

V. APPROXIMATION METHODS

A. The large-mass expansion

The large-mass expansion is the most general approximation method in the sense that that it may be applied to
calculate the effective action for any well-behaved background. Its main limitation is that it only applies for large
values of the mass and, in fact, it diverges as m → 0. Thus, it is not directly useful for probing issues related to
massless quarks. To outline this method, consider for instance, the spinor case

Γ = −1

2
ln det(−6D2 +m2) =

1

2

∫ ∞
0

ds

s
e−m

2s Tr e−s(− 6D
2
) .
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In order to analyse the large-mass limit, we may take the small s limit in the proper-time integral and expand the
trace factor in powers of s, yielding the heat kernel or Seeley-De Witt expansion:

s→ 0 : Tr e−s(− 6D
2
) ∼ 1

(4πs)d/2

∞∑
n=0

snan[Fµν ] . (45)

The Seeley-DeWitt coefficients an are given by Lorentz traces of powers of Fµνand its derivatives. For the Aµ(x)
backgrounds given by (41) and (42) the Seeley-DeWitt coefficients are proportional to those found in the scalar case:

a1 = 0 ,

a2 =
2

3

∫
d4xFµνFµν ,

a3 = − 3

45

∫
d4x (DµFνλ)(DµFνλ) . (46)

Since we are considering potentials of the form (13), with field strength (14), we find an expansion of the renormalized
effective action as:

Γ̃ren = Γ̃
(0)
LM lnm+ Γ̃

(2)
LM

1

m2
+ Γ̃

(4)
LM

1

m4
+ · · · (47)

The first two coefficients are:

Γ̃
(0)
LM =

1

6

∫ ∞
0

dr r3(8g(r)2 + 4g(r)g′(r)r + g′(r)2r2) ,

Γ̃
(2)
LM =

1

180

∫ ∞
0

dr
[
24r2g(r)

(
15g′(r) + r

(
9g′′(r) + rg(3)(r)

))
+r3

(
221g′(r)2 + 9r2g′′(r)2 + 2rg′(r)

(
71g′′(r) + 6rg(3)(r)

))
] (48)

Figure 2 presents a comparison between the effective action, as calculated using large-mass expansion and its exact
value obtained using our partial-wave cutoff method. As expected, both methods agree well for large masses. We
note that, as has been studied in detail in [24], inclusion of more terms in the large mass expansion can improve
the behavior at large mass, but it does not improve the behavior in the small mass limit, since the Seeley-De Witt
expansion (45), and the associated large mass expansion (47), are asymptotic expansions.

B. The leading-order derivative expansion

Another widely used approximation in gauge theories is the derivative expansion. This method is based on the
fundamental result that for background gauge fields with constant field strength Fµν it is possible to compute the
renormalized effective action in a simple analytic form [3–5]. One can then expand around this soluble case, leading
to an expansion of the form [25–27]

Seff ≈ S0[F ] + S2[F, (∂F )2] + S4[F, (∂F )2, (∂F )4] + · · · (49)

The leading term in this expansion is the well-known one-loop effective action for constant backgrounds, first computed
by Heisenberg and Euler [3]. In euclidean QED, the corresponding one-loop effective Lagrangians for spinor and scalar
QED are

Lspinor(a, b) = − 1

8π2

∫ ∞
0

ds

s3
e−m

2s
{
abs2 coth(as)coth(bs) + 1− s2

3
(a2 + b2)

}
, (50)

and

Lscalar(a, b) =
1

16π2

∫ ∞
0

ds

s3
e−m

2s

{
ab s2

sinh(as)sinh(bs)
− 1 +

s2

6
(a2 + b2)

}
, (51)

where ±ia and ±b are the eigenvalues of the 4× 4 constant matrix Fµν , and are related to the field invariants in the
following way:

a2 + b2 =
1

2
FµνF

µν , ab =
1

2
Fµν F̃

µν . (52)
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FIG. 2: The graph shows the one-loop effective action, Γ̃(m), as a function of fermion mass m, with the radial profile function:

g1(r) = B(1− Tanh(β(
√
Br − ξ))). We have set B = 1, β = 1 and ξ = 1. The dots correspond to our exact numerical results,

based on the Gelfand-Yaglom theorem, Γ̃GYT(m), and the solid line shows the outcome of the larg-mass expansion Γ̃LM(m).

The leading term in the derivative expansion of the effective action is obtained by simply replacing the the constants a
and b in the effective Lagrangian by the corresponding spacetime dependent quantities inside these integral expressions,
and then obtaining the effective action from the effective Lagrangian by integrating over spacetime. For the class of
backgrounds that we are considering, the corresponding substitution is

a −→ a(r) = 2g(r) ,

b −→ b(r) = 2g(r) + rg′(r) , (53)

such that,

ΓDE = 2π2

∫ ∞
0

r3 drL(a(r), b(r)) . (54)

At first sight, one would expect the derivative expansion to be a good approximation only at large mass, similar to
the large mass expansion, since the expansion over derivatives in (49) is balanced by inverse powers of m. However,
the situation is more subtle than that naive expectation, as the derivative expansion expression at a given order
is a resummation of all powers of the field strength with a fixed number of derivatives. To distinguish carefully
between the large mass expansion (47) and the derivative expansion (49), note that although both expansions involve
inverse powers of m2, they are nevertheless different expansions. The most direct way to see this is to note that the
leading derivative expansion approximation, the Euler-Heisenberg result S0[F ], which involves no derivatives of the
field strength tensor Fµν , can itself be expanded as an infinite series in inverse powers of m2

S0[F ] =
∑
k,l

ck,l
(F 2)k(FF̃ )l

m4k+4l
(55)

by expanding the Euler-Heisenberg integrals in (50) and (51). Thus, it involves a resummation of all terms in the
large-mass expansion (47) that have no derivatives of the field strength. By contrast, a given order of the large mass
expansion (47) contains a finite sum of terms involving powers of F and its derivatives, all having the same net mass
dimension.

This means that while in the large mass limit, the large mass expansion (47) and the derivative expansion (49)
have similar behavior, the situation is quite different at small mass. Because of the infinite resummation of terms in
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the derivative expansion, one might expect that the derivative expansion is better than the large mass expansion for
smaller values of the mass. For example, the small mass behavior of the leading derivative expansion approximation
is proportional to lnm, while the truncation of the large mass expansion at O(1/m2N ) behaves like 1/m2N , by
construction. Indeed, in previous work on the partial-wave cutoff method in scalar theories it was found that even
the leading term of the derivative expansion provides a surprisingly accurate approximation to the mass dependence
of effective action [10], even for very small mass. In the next section we study this question for spinor theories and
find an interesting difference.

VI. APPROXIMATION METHODS VERSUS EXACT CALCULATION

In this section we use exact results obtained from our partial-wave cutoff method to probe the validity of the large-
mass and deriative expansion approximations, for spinor QED. In order to emphasize the similarities and differences
between the scalar and spinor cases, we also show some results for the scalar action as well.

A. The scalar case

To exemplify how the partial-wave cutoff method works in the scalar theory, we use the background field given by
g1(r), choosing different values of the range parameter ξ. We present a comparison between the the exact effective
action as calculated with the partial-wave cutoff method, the large-mass expansion and the derivative expansion.
From the plots in Figure 3, we make the following observations:

• The large-mass expansion result agrees very well with the exact result, already for m ∼ 2.

• The leading order derivative expansion is good at large m, and also provides a very good approximation to the
effective action for large values of the parameter ξ.

• In particular, as long as the steepness parameter ξ is large enough, the derivative expansion provides accurate
results in both the large-mass and small-mass regimes.

B. The spinor case

In this section we compare and analyse the different approximation methods against the GYT method. The first
background configuration we investigate is g1(r), the plots shown in fig. (4) correspond to the GYT method, the
large-mass expansion and the derivative expansion. From the plot in Figure 4, we make the following observations:

• The partial-wave cutoff method produces a finite value for the effective action in the small-mass regime.

• As in scalar QED, for spinor QED the large-mass expansion result agrees very well with the exact result, already
for m ∼ 2.

• As in scalar QED, for spinor QED the leading order derivative expansion is good at large m. However, the
leading order derivative expansion result diverges in the small-mass regime.

To understand why the leading-order derivative expansion fails in the small-mass limit, we analyse equation (50) in
the small-mass regime. The small-mass regime is obtained by taking s→∞, which gives:

Lspinor(a, b) ∼ −
1

8π2

[
ab− 1

3
(a2 + b2)

] ∫ ∞
0

ds

s
e−m

2s

∼ 1

4π2

[
ab− 1

3
(a2 + b2)

]
lnm . (56)

We recognize one lnm divergence proportional to FµνFµν , and another proportional to Fµν F̃µν . Contrast this with
scalar QED where

Lscalar(a, b) ∼
1

16π2

[
0 +

1

6
(a2 + b2)

] ∫ ∞
0

ds

s
e−m

2s ,

∼ − 1

8π2

[1

6
(a2 + b2)

]
lnm . (57)
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which has a lnm divergence proportional to FµνFµν , but none proportional to Fµν F̃µν . This is simply a reflection

of the fact that zero modes can occur in spinor QED but not in scalar QED, with the Fµν F̃µν term determining the
number of zero modes.

But note that Lspinor(a, b) = Lspinor(−a,−b). Therefore, (56) really should read

Lspinor(a, b) ∼
1

4π2

[
|ab| − 1

3
(a2 + b2)

]
lnm . (58)

Therefore, our naive application of the leading-order derivative expansion includes a term in the effective action that
behaves in the small mass limit as (∫

d4x |a(r)b(r)|
)

lnm (59)

instead of the correct form (∫
d4x a(r)b(r)

)
lnm (60)

It is this latter form that counts the number of zero modes, and appears in the counter-term. To show the effect
of this, consider the radial profile function g1(r) for which

∫
d4xFµν F̃µν = 0, indicating the absence of zero modes.

For this profile function, this integral vanishes because the integrand changes sign. But the derivative expansion

expression does not allow for such changes of sign, and so we effectively compute
∫
d4x

∣∣∣Fµν F̃µν∣∣∣, which is non-zero.

This mis-match is demonstrated clearly in Figures 5, which show that the divergent small-mass behavior of the
derivative expansion corresponds exactly to

Γ̃spinor
DE (m) ∼ f(m) =

( 1

4π2

∫
d4x |a(r)b(r)|

)
lnm ; m→ 0 . (61)

The number of zero-modes is given by 1
4π2

∫
d4xa(r)b(r) and it is always equal to zero for the backgrounds of the class

g1(r), however, 1
4π2

∫
d4x|a(r)b(r)| does not vanish and this adds an incorrect residual logarithmic dependence to the

derivative expansion, as we have shown. No such mis-match occurs for scalar QED because the small m behavior of
the derivative expansion expression only involves the combination FµνFµν ∝ [a2(r) + b2(r)], which is always positive.
Thus there is no lnm divergence in the small m behavior of the derivative expansion plots shown in Figure 3 for scalar
QED.

The second background we examined is the one given by the profile function g2(r). Setting different values of the
parameter α, we can control the rate of decay of the potential. In figure 6, we present a comparison between the
different calculation methods for this kind of background. We corroborate once more how the derivative expansion
fails at the zero-mass limit. Also, the derivative expansion shows better accuracy in a wider mass-range as the for
those fields with slower variation (small α), as expected. It also evident that the residual logarithm is not the dominant
term in the derivative expansion when we move from the small-mass regime in to the large-mass regime.

VII. CONCLUSION

We have extended the partial-wave cutoff method to spinor theories with nontrivial [and non-self-dual] radially
symmetric gauge backgrounds. Different background fields were tested, resulting always in accurate values of the
effective action for both the large-mass and small-mass regimes. We provided an example of how our method allows
one to systematically investigate how the effective action responds to different characteristics of the background fields,
such as range, amplitude or rate of variation. We have also analyzed how certain approximation methods compare with
these exact results, in the different mass regimes, also comparing the scalar case with the the spinor case. Specifically,
we have tested the large-mass expansion and the derivative expansion. We have shown that the large mass expansion
works extremely well, as in the scalar case. However, the derivative expansion behaves in a different manner in
the small-mass regime for the spinor theory. We have explained this fact, both qualitatively and quantitatively, as
resulting from the changing sign of the local quantity Fµν F̃µν , and which in the derivative expansion approximation is
assumed to be constant and therefore of fixed sign. We have also shown that this is directly related to the appearance
of fermion zero modes.
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FIG. 3: The graphs show, for the case of scalar QED, our exact effective action, Γ̃GYT(m) (big-dots/red), the derivative

expansion expression Γ̃DE(m) (small-dots/blue), and the large mass expansion expression, Γ̃LM(m) (solid-line). We use the

profile function g1(r) = B(1−Tanh(β(
√
Br− ξ))) with B = 1, β = 1. We show results for three values of the range parameter:

ξ = 1 (upper graph), ξ = 3/2 (middle graph) and ξ = 2 (lower graph). Notice that the derivative expansion is a reasonable
approximation even at zero mass.
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FIG. 4: For spinor QED, this plot shows the exact effective action, Γ̃GYT(m) (big-dots/red), the derivative expansion expression,

Γ̃DE(m) (small-dots/blue), and the large mass expansion expression, Γ̃LM(m) (solid-line). We use the same profile function as

in the upper plot of Figure 3 [which is for scalar QED]: g1(r) = B(1−Tanh(β(
√
Br − ξ))) with B = 1, β = 1 and ξ = 1. Note

the very different behavior at small mass compared to the scalar QED case.
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FIG. 5: For spinor QED, these graphs show the exact effective action, Γ̃GYT(m) (big-dots/red), the derivative expansion

expression, Γ̃DE(m) (small-dots/blue), and the large-mass expansion expression Γ̃LM(m) (solid-line). The dashed line represents

the residual logarithm f(m) = 1
4π2 (

∫
d4x|a(r)b(r)|) lnm. We use the profile function g1(r) = B(1 − Tanh(β(

√
Br − ξ))) with

B = 1, β = 1. We show results for three values of the range parameter: ξ = 1 (upper graph), ξ = 3/2 (middle graph) and ξ = 2
(lower graph). Note that the divergent behavior at small mass is well fitted by the residual logarithm, as described in the text.
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FIG. 6: For spinor QED, these graphs show the exact effective action, Γ̃GYT(m) (big-dots/red), the derivative expansion ex-

pression, Γ̃DE(m) (small-dots/blue), and the large-mass expansion expression Γ̃LM(m) (solid-line). The dashed line corresponds

to 1
4π2 (

∫
d4x|a(r)b(r)|) lnm. We use the profile function g2(r) = νe−αr

2

/(ρ2 + r2) with ν = 1 and ρ = 1. We show three values
of the decay rate parameter: α = 1 (upper graph), α = 1/20 (middle graph) and α = 1/400 (lower graph). Note that the
divergent behavior at small mass is well fitted by the residual logarithm, as described in the text.


