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Abstract
We systematically study dijet production in various processes in the small-x limit and establish

an effective kt-factorization for hard processes in a system with dilute probes scattering on a dense

target. We find that the well-known Weizsäcker-Williams gluon distribution can be directly probed

in the quark-antiquark jet correlation in deep inelastic scattering and the dipole gluon distribution

can be directly measured in the direct photon-jet correlation in pA collisions. In the large-Nc limit,

the unintegrated gluon distributions involved in other different dijet channels in pA collisions are

shown to be related to two widely proposed ones: the Weizsäcker-Williams gluon distribution and

the dipole gluon distribution.
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I. INTRODUCTION

Factorization is part of the foundations of high-energy hadronic physics, as it provides the
key ingredient for the phenomenological studies of high-energy experiments. Factorization
theorems make the separation between short-distance perturbative physics and long-distance
nonperturbative effects possible. Thus, cross sections measured in high-energy experiments
can be factorized into products of hard parts (short-distance physics) and parton distri-
butions (nonperturbative physics). In addition, an essential part of factorization is the
universality of the parton distributions, among different processes.

While collinear factorization has been the most widely used framework in phenomenolog-
ical studies, and remains a sufficiently good approximation of QCD for the most inclusive
processes in hadronic collisions, the investigation of less inclusive observables showed the
need for a transverse-momentum dependent (TMD) factorization. During the last decade,
a large amount of work has been devoted to establish such a framework in QCD. However,
recent progress [1–7] has shown that TMD factorization is violated for dijet production in
hadron-hadron (e.g., pp) collisions, due to a loss of universality.

In this paper, we propose a solution to this problem in the small-x limit: we succeeded in
establishing an effective TMD factorization for hard processes in collisions of dilute probes
off dense hadrons (or large nuclei)1. We confirm that TMD parton distributions are not
universal, but we show that at small-x they can be constructed from several universal indi-
vidual building blocks. This is achieved by working with an appropriate approximation of
QCD in the small-x limit of QCD, where large parton densities and non-linear saturation

effects are crucial.
The saturation phenomena in high-energy collisions has attracted great attention in the

last two decades. At very high energies corresponding to the low-x regime, parton distri-
butions reach very high densities and non-linear effects become important in describing the
dynamics of the hadronic system [8–11]. The transition to the saturation regime is char-
acterized by the saturation scale, which is interpreted as the typical transverse momentum
of the small-x partons, and is also related to the transverse color charge density in the in-
finite momentum frame of the dense target. It has been argued [10] that the high density
of gluons inside a hadron or nucleus allows for a semiclassical treatment of the color field,
leading to the Color Glass Condensate (CGC) effective description of the small-x part of
the hadronic/nuclear wave function which has been widely used to systematically study
saturation physics [11].

Experimental data is still not conclusive in this matter, but strong evidence of these
effects have been found in the deep inelastic scattering (DIS) experiments at HERA and
deuteron-gold collisions at RHIC [11]. It is expected that saturation physics will play an
important role in explaining the results of the ongoing measurements of single-inclusive
production and two-particle correlations in the forward region at RHIC as well as future
heavy-ion experiments at LHC. In addition, the planned Electron-Ion Collider [12] will be
able to provide ideal experimental conditions to study the low-x parton distributions and
thus test the saturation physics in both protons and large nuclei.

In saturation physics, two different unintegrated gluon distributions (UGDs) have been

1 Note that this effective TMD factorization does not hold for high energy pp and AA collisions due to

final state soft gluon exchanges from both the projectile and the target to the hard part. See Ref. [6] for

detailed discussion. For the case of dilute projectiles scattering on a dense target, we can always neglect

the soft gluon exchanges from the dilute projectile to the hard part while we resum all the soft gluon

exchanges attached the dense target to the hard part since the gluon field is much stronger in the dense

target. 2
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FIG. 1. Schematic diagrams for two-particle production in a dilute system scattering on a dense

target with multiple scattering. The imbalance between the two-particle in transverse momentum

can be used to probe the unintegrated gluon distribution of the dense target.

widely used in the literature. The first gluon distribution, which is known as the Weizsäcker-
Williams (WW) gluon distribution, is calculated from the correlator of two classical gluon
fields of relativistic hadrons (non-abelian Weizsäcker-Williams fields) [10, 13]. The WW
gluon distribution has a clear physical interpretation as the number density of gluons inside
the hadron in light-cone gauge, but is not used to compute cross sections. On the other hand,
the second gluon distribution, which is defined as the Fourier transform of the color dipole
cross section, does not have a clear partonic interpretation, but it is the one appearing
in most of the kt-factorized formulae found in the literature for single-inclusive particle
production in pA collisions [11].

It was a long-standing question what is fundamentally different between these two gluon
distributions, and whether there is any observable sensitive to the WW distribution [14].
The objective of this paper is to answer these questions and show that these two gluon
distributions are the fundamental building blocks of all the TMD gluon distributions at
small x. Eventually, this leads us to an effective TMD-factorization for dijet production, in
the collision of a dilute probe with a dense target. We find that, in the small momentum
imbalance limit described below, the dijet production process in DIS can provide direct
measurements of the WW gluon distribution and the photon-jet correlations measurement
in pA collisions can access the dipole gluon distribution directly. In addition, other more
complicated dijet production processes in pA collisions will involve both of these gluon
distributions through convolution in transverse momentum space, when the large-Nc limit
is taken.

A short summary of our study has been published in Ref. [15]. Here we present the
detailed derivations, and the precise equivalence between the TMD and CGC approaches,
in the overlapping domain of validity, i.e. to leading power of the hard scale and in the
small x limit. In general, the TMD factorization is valid whatever x is but is a leading-twist
approach, while the CGC is applicable only at small x but contains all the power correc-
tions. Since the main objective of this paper is to understand dijet production processes
theoretically, we will put the phenomenological studies in a future work.

We focus on the two particle production (or dijet production at higher energy) in the
case of a dilute system scattering on a dense target, as illustrated in Fig. 1,

B + A→ H1(k1) +H2(k2) +X , (1)
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where A represents the dense target (we shall call it a nucleus in the following), B stands for
the dilute projectile (such as a photon or a high-x parton in a hadron),H1 andH2 are the final
state two particles with momenta k1 and k2, respectively. Let us denote as xB the light-cone
momentum fraction of the parton (or virtual photon) from the incoming projectile B, and
as xg ≪ 1 the momentum fraction of the gluon from the incoming target. We are interested
in the kinematic region where the transverse momentum imbalance between the outgoing

particles is much smaller than their individual momenta: q⊥ = |~k1⊥ + ~k2⊥| ≪ k1 ≃ k2 ≃ P⊥
where ~P⊥ is defined as (~k1⊥ − ~k2⊥)/2. This is referred to as the back-to-back correlation
limit (the correlation limit) in the following discussions. An important advantage of taking
this limit is that we can apply the power counting method to obtain the leading order
contribution of q⊥/P⊥ where the differential cross section directly depends on the UGDs of
the nuclei.

For each individual dijet production process, we employ two independent approaches,
namely the TMD approach and the CGC approach2. The TMD approach is straightforward
and clear in terms of factorization. On the other hand, the CGC approach is commonly
used in dealing with small-x calculations. It allows to go beyond the correlation limit,
which gives a deeper access to the QCD dynamics at small x, but this is not the purpose
of this paper. In this more general situation, cross sections involve multi-gluon distribution
functions, as expected due to parton saturation and multiple scatterings, and therefore there
is no kt-factorization. Except for the most inclusive observables (such as inclusive and semi-
inclusive DIS, single-gluon and valence quark production in pA collisions), kt factorization
is only a property of the linear BFKL regime. However taking the correlation limit allows
to simplify the dijet production results of the CGC, and to obtain an effective factorization
which coincides with that found in the TMD approach.

The Weizsäcker-Williams gluon distribution can be defined following the conventional
gluon distribution [17, 18]

xG(1)(x, k⊥) =

∫
dξ−d2ξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |F+i(ξ−, ξ⊥)L†

ξL0F
+i(0)|P 〉 , (2)

where F µν is the gauge field strength tensor F µν
a = ∂µAν

a − ∂νAµ
a − gfabcA

µ
bA

ν
c with fabc the

antisymmetric structure constants for SU(3), and

Lξ = P exp{−ig
∫ ∞

ξ−
dζ−A+(ζ, ξ⊥)}P exp{−ig

∫ ∞

ξ⊥

dζ⊥ · A⊥(ζ
− = ∞, ζ⊥)}

is the gauge link in the adjoint representation Aµ = Aµ
ata with ta = −ifabc. It contains

a transverse gauge link at spatial infinity which is important to make the definition gauge
invariant [20]. These gauge links have to be made non-light-like to regulate the light-cone
singularities when gluon radiation contributions are taken into account [17]. In the above
definition, we assume that the hadron is moving along the +ẑ direction. The light-cone
momenta P± are defined as P± = (P 0 ± P z)/

√
2. This gluon distribution can also be

defined in the fundamental representation [2],

xG(1)(x, k⊥) = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |Tr

[
F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]

]
|P 〉 , (3)

2 Our formulation of the CGC approach leads to similar intermediate steps as in Ref. [16]. However, we

treat the n-point functions differently by using Wilson lines.
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where the gauge link U [+]
ξ = Un [0,+∞; 0]Un [+∞, ξ−; ξ⊥] with Un being reduced to the

light-like Wilson line in covariant gauge. It is straightforward to see that U [+] represents the
final state interactions according to its future integration path to +∞.

By choosing the light-cone gauge with certain boundary condition for the gauge potential
(A⊥(ζ

− = ∞) = 0 for the specific case above), we can drop out the gauge link contribution in
Eqs. (2) and (3) and find that this gluon distribution has the number density interpretation.
Then, it can be calculated from the wave functions or the WW field of the nucleus target
[10, 13]. Within the CGC framework, this distribution can be written in terms of the
correlator of four Wilson lines as (see Section IIB),

xG(1)(x, k⊥) = − 2

αS

∫
d2v

(2π)2
d2v′

(2π)2
e−ik⊥·(v−v′)

〈
Tr [∂iU(v)]U

†(v′) [∂iU(v
′)]U †(v)

〉
xg
, (4)

where the Wilson line U(x⊥) is defined as Un [−∞,+∞; x⊥]. At small-x for a large nucleus,
this distribution can be evaluated using the McLerran-Venugopalan model3 [10]

xG(1)(x, k⊥) =
S⊥
π2αs

N2
c − 1

Nc

∫
d2r⊥
(2π)2

e−ik⊥·r⊥

r2⊥

(
1− e−

r2
⊥

Q2
s

4

)
, (5)

where Nc = 3 is the number of colors, S⊥ is the transverse area of the target nucleus, and

Q2
s = g2Nc

4π
ln 1

r2
⊥
λ2

∫
dx−µ2(x−) is the gluon saturation scale [11] with µ2 the color charge

density in a large nuclei. We have cross checked this result by directly calculating the
gluon distribution function in Eq. (2) following the similar calculation for the quark in
Ref. [20, 21]. The derivation of the WW gluon distribution from its operator definition is
provided in Appendix A1.

The second gluon distribution, the Fourier transform of the dipole cross section, is defined
in the fundamental representation4

xG(2)(x, k⊥) = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |Tr

[
F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]

]
|P 〉 , (6)

where the gauge link U [−]
ξ = Un [0,−∞; 0]Un [−∞, ξ−; ξ⊥] stands for initial state interac-

tions. Thus, the dipole gluon distribution contains both initial and final state interactions
in the definition.

U [+] and U [−] are the gauge links which appear in the quark distributions in the DIS and
Drell-Yan process, respectively. It is well-known that there is only final state effect in the
DIS, while there is only initial state interaction in the Drell-Yan process. In addition, in
processes involving gluons and more complicated partonic structures, more complex gauge
links may appear, such as combinations of U [+] and U [−] [2]. We will see this in our following
calculations especially in dijet production in pA collisions.

For the second gluon distribution xG(2) as shown in Eq. (6), the gauge link contribution
can not be completely eliminated. In other words, there is no number density interpretation
for this gluon distribution. This is also because it contains both initial and final state

3 To obtain this result, it was assumed that the color charge densities in the nucleus obey a Gaussian

distribution with variance µ2. It was recently argued that this assumption is inconsistent with the QCD

non-linear evolution [19], except for two-point functions.
4 The Fourier transform of the dipole cross section in the adjoint representation is also commonly used,

as it enters single gluon production in pA collisions [22–24]. In the large-Nc limit, it is related to the

convolution of two xG(2).
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interaction effects. Due to the gauge link in this gluon distribution from −∞ to +∞,
naturally this gluon distribution can be related to the color-dipole cross section evaluated
from a dipole of size r⊥ scattering on the nucleus target, and has been calculated in the
CGC formalism,

xG(2)(x, q⊥) =
q2⊥Nc

2π2αs

S⊥

∫
d2r⊥
(2π)2

e−iq⊥·r⊥ 1

Nc

〈
TrU(0)U †(r⊥)

〉
xg
. (7)

The derivation of this dipole gluon distribution from its operator definition is provided in
Appendix A2.

These two gluon distributions have been intensively investigated in the last few years5.
In particular, it was found that they

• have the same perturbative behavior. They both scale as Q2
s/q

2
⊥ at large transverse

momentum q⊥ ≫ Qs;

• however, they differ dramatically at small transverse momentum: G(1) ∼ lnQ2
s/q

2
⊥

whereas G(2) ∼ q2⊥.

It will be very important to test these predictions by measuring the quark-antiquark corre-
lation in DIS process and direct photon jet correlation in pA collisions, since these processes
can directly probe these two gluon distributions separately.

The second gluon distribution (xG(2)) depends on the dipole cross section, which appears
in various inclusive and semi-inclusive processes. For example, the total cross section (or the
structure functions) in DIS, the single inclusive hadron production in DIS and pA collisions,
and the Drell-Yan lepton pair production in pA collisions, are all depending on this dipole
gluon distribution. Tremendous phenomenological analysis have been performed to constrain
this gluon distribution from the experimental data.

On the other hand, the first gluon distribution (xG(1)) only appears in few physical
processes. Thus, we do not have much constraints on its behavior. The only knowledge
comes from model calculations (i.e., the GBW model[25] which provides a good description
of all DIS data below x = 0.01). Therefore, it is very crucial to carry out experimental
observation of the quark-antiquark jet correlation in DIS process in the planed Electron-Ion
collider, which shall provide very important information on this gluon distribution.

Two particle production in pA collisions are found to depend on both gluon distribu-
tions [15]. In Table I, we summarize the current status for the two gluon distributions
probed in high energy processes, where we find that the dipole gluon distribution con-
tributes to most of them, such as inclusive DIS, semi-inclusive DIS(SIDIS) [26], Drell-Yan
(DY) processes, single inclusive hadron production in pA collisions, photon-jet correlations
and dijet in pA collisions, whereas the WW gluon distribution only appears in the quark-
antiquark dijet correlation in DIS and dijet correlations in pA collisions. It is important
to note that our derivations for the two basic processes, where the two distributions can
be measured independently (dijet correlations in DIS and photon-jet correlation in pA col-
lisions), are exact for finite Nc. The large-Nc limit is only necessary for more complicated

5 There have been an observation that these two UGDs can be related through a mathematical formula

xG
(2)
g (x, q⊥) ∝ q2

⊥
∇2

q⊥
xG

(1)
g (x, q⊥) where xG

(2)
g (x, q⊥) stands for the gluon distribution in the adjoint

representation which is derived from a dipole formed by two gluons (e.g., see ref. [14]). However, we believe

that this relation is just a mathematical observation without any physics derivation. In addition, we find

that it only works for MV model which assumes the local gaussian approximation. This mathematical

relation is invalidated beyond the local gaussian approximation. (e.g., see Appendix A1.) From the above

operator definition of these two UGDs, we can see that they are two independent gluon distributions.
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DIS and DY SIDIS hadron in pA photon-jet in pA Dijet in DIS Dijet in pA

G(1) (WW) × × × × √ √

G(2) (dipole)
√ √ √ √ × √

TABLE I. The involvement of these two gluon distributions in high energy processes.

processes where it allows us to write the new distributions as convolutions of the two basic
ones.

In the following sections, we will carry out the detailed derivations for the two-particle
correlations in these processes. Quark-antiquark correlation in DIS process will be calculated
in Sec.II. Sec.III will be devoted to the direct photon jet correlation in pA collisions. We
will derive the formalism for dijet correlation in pA collisions in Sec. IV. Summary and
further discussions will be given in Sec. V. In all these calculations, we will show the results
from both transverse momentum dependent approach and the CGC calculations and we will
demonstrate that they are consistent in the correlation limit.

II. DIJET PRODUCTION IN DIS

Despite the nice physical interpretation, it has been argued that the gluon distribution
in Eq. (2) is not directly related to physical observables in the CGC formalism. However,
we will show that xG(1) can be directly probed through the quark-antiquark jet correlation
in DIS,

γ∗TA→ q(k1) + q̄(k2) +X , (8)

where the incoming (virtual) photon carries momentum kγ∗ , the target nucleus has momen-
tum PA, and the final state quark and antiquark with momenta k1 and k2, respectively.
Again, we focus on the kinematic region with the correlation limit: q⊥ = |~k1⊥ + ~k2⊥| ≪ P⊥.
The transverse momenta are defined in the center of mass frame of the virtual photon γ∗

and the nucleus A. The calculations are performed for Q2 in the same order of P 2
⊥. As

we discussed in the above, we take the leading order contribution in the correlation limit:
q⊥ ≪ P⊥, and neglect all higher order corrections. We plot the typical Feynman diagram
for the process of (8) in Fig. 2, where the bubble in the partonic part represents the hard
interaction vertex including gluon attachments to both quark and antiquark lines. Fig. 2 (a)
is the leading Born diagram whose contributions can be associated with the hard partonic
cross section times the gluon distribution from Eq. (2) [3]. In high energy scattering with
the nucleus target, additional gluon attachments are important and we have to resum these
contributions in the large nuclear number limit. Figs. 1(b,c) represent the diagrams con-
tributing at two-gluon exchange order, where the second gluon can attach to either the quark
line or the antiquark line. By applying the power counting method in the correlation limit
(q⊥ ≪ P⊥), we can simplify the scattering amplitudes with the Eikonal approximation [3].
For example, Fig. 2 (b) can be reduced to:

g

−q+2 + iǫ
T bΓa , (9)

where q2 is the gluon momentum, T b is the SU(3) color matrix in the fundamental repre-
sentation and Γa represents the rest of the partonic scattering amplitude with color indices

7
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k2 k2

k1

FIG. 2. Typical Feynman diagrams contributing to the quark-antiquark jet correlation in deep

inelastic scattering: (a) leading order, where the bubble represents the gluon attachments to both

quark lines; (b,c) two-gluon exchange diagrams.

for the two gluons a and b. Similarly, Fig. 2(c) can be reduced to:

− g

−q+2 + iǫ
ΓaT b . (10)

The sum of these two diagrams will be g/(−q+2 + iǫ)
[
T bΓa − ΓaT b

]
. Because of the unique

color index in Γa, we find the effective vertex as,

Fig. 2(b, c) ∼ i

−q+2 + iǫ
(−ig)(−ifbca)T c , (11)

which corresponds to the first order expansion of the gauge link contribution in the gluon
distribution defined in Eq. (2). For all high order contributions, we can follow the procedure
outlined in Ref. [2, 20] to derive the gluon distribution.

In particular, we calculate the differential cross section contributions from the diagrams
of Fig. 2, assuming the generic coupling between the exchanged gluons and the nucleus
target. The contributions at given order can be reproduced by the hard partonic cross
section (given below) multiplying the TMD gluon distribution defined as Eq. (2) at the
same order from the similar diagrams. This method is particular useful to identify the gluon
distributions involved in the hard scattering processes and will be applied throughout the
following calculations.

Of course, to build a rigorous TMD factorization theorem for this process, we have to go
beyond the diagrams shown in Fig. 2, and include the real gluon radiation contributions [17,
18]. These diagrams will introduce the large logarithms of ℓn(P 2

⊥/q
2
⊥), in addition to the

small-x logarithms ℓn(1/x). The combination of both effects has not yet been systematically
studied in the literature. We hope to address this issue in the future. Moreover, there have
been discussions on the power counting method to factorize the gluon distribution from any
generic Feynman diagrams, where one has to be extra cautions about the “super-leading-
power” contributions (see, for example, Ref. [27]).

From our analysis, we identified the gluon distribution involved in the quark-antiquark jet
correlation in DIS process is the first gluon distribution at small-x. We want to emphasize
that this result is also the unique consequence of non-abelian feature of QCD. For Abelian
theory, we can easily find that the final state interactions between the quark and antiquark
with the nucleus target cancel out completely. Therefore, there is no final state interaction
effects in the similar QED process.

Furthermore, the gauge link U [+] in Eq. (3) can be viewed as the sum of all the final state
interactions between the nucleus target and the produced quark as shown in Fig. 2 (b). In the

8



meantime, the gauge link U [+]† in Eq. (3) takes care of the final state interactions between the
nucleus target and the produced antiquark as illustrated in Fig. 2 (c). Therefore, following
Ref. [2], it is straightforward to show that the Weizsäcker-Williams gluon distribution is
the relevant gluon distribution in DIS dijet since it correctly resums all the final state
interactions.

A. TMD-factorization approach to the DIS dijet production

By putting in the hard partonic cross section Hγ∗g→qq̄ and especially the correct gluon
distribution, namely the WW gluon distribution, which resums all the final state interac-
tions between the qq̄ pair and the target nucleus, we obtain the following transverse and
longitudinal differential cross sections for the quark-antiquark jet correlation in DIS process

dσ
γ∗
TA→qq̄+X

TMD

dP.S. = δ(xγ∗ − 1)xgG
(1)(xg, q⊥)Hγ∗

T
g→qq̄, (12)

dσ
γ∗
L
A→qq̄+X

TMD

dP.S. = δ(xγ∗ − 1)xgG
(1)(xg, q⊥)Hγ∗

L
g→qq̄, (13)

where xg is the momentum fraction of hadron A carried by the gluon and is determined by
the kinematics, xγ∗ = zq + zq̄ with zq = z and zq̄ = 1 − z being the momentum fractions of
the virtual photon carried by the quark and antiquark, respectively. The phase space factor
is defined as dP.S. = dy1dy2d

2P⊥d
2q⊥, and y1 and y2 are rapidities of the two outgoing

particles in the lab frame. In terms of the rapidities and the center of mass energy
√
s, one

can find

z =
|k1⊥|ey1

|k1⊥|ey1 + |k2⊥|ey2
, xγ∗ =

|k1⊥|ey1 + |k2⊥|ey2√
s

, xg =
|k1⊥|e−y1 + |k2⊥|e−y2

√
s

. (14)

In addition, in the correlation limit, one has |P⊥| ≃ |k1⊥| ≃ |k2⊥| ≫ |q⊥| = |k1⊥ + k2⊥|. The
leading order hard partonic cross section reads

Hγ∗
T
g→qq̄ = αsαeme

2
q

ŝ2 +Q4

(ŝ+Q2)4

(
û

t̂
+
t̂

û

)
(15)

Hγ∗
L
g→qq̄ = αsαeme

2
q

8ŝQ2

(ŝ+Q2)4
(16)

with the usually defined partonic Mandelstam variables ŝ = (k1 + k2)
2 = P 2

⊥/(z(1 − z)),
t̂ = (k2−kγ∗)2 = −(P 2

⊥+ǫ
2
f )/(1−z), and û = (k1−kγ∗)2 = −(P 2

⊥+ǫ
2
f )/z with ǫ

2
f = z(1−z)Q2

and z = zq.
Finally, in the correlation limit, one obtains the differential total cross section as follows:

dσγ∗A→qq̄X
tot

dy1dy2d
2P⊥d

2q⊥
= δ(xγ∗ − 1)

z(1 − z)

(P 2
⊥ + ǫ2f )

4

[(
z2 + (1− z)2

)
(P 4

⊥ + ǫ4f ) + 8z(1− z)P 2
⊥ǫ

2
f

]

×
S⊥Ncαeme

2
q

4π4

∫
d2r⊥e

−iq⊥·r⊥ 1

r2⊥

[
1− exp

(
−1

4
r2⊥Q

2
s

)]
, (17)

where σtot is defined as σtot = σT +σL and we have substituted the CGC result for the WW
gluon distribution in Eq. (5). By taking Q2 = 0, we can extend the above result to the
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FIG. 3. Typical diagrams contributing to the cross section in the deep inelastic process.

case of dijet production in real photon scattering on nuclei. The longitudinal contribution
vanishes and the total cross section only contains the transverse part. Therefore, we obtain

dσγA→qq̄X

dy1dy2d
2P⊥d

2q⊥
= δ(xγ − 1)

S⊥Ncαeme
2
q

4π4P 4
⊥

z(1 − z)
[
z2 + (1− z)2

]

×
∫

d2r⊥e
−iq⊥·r⊥ 1

r2⊥

[
1− exp

(
−1

4
r2⊥Q

2
s

)]
. (18)

For the real photon case, there will be resolved photon contributions which should be taken
care separately following that in the dijet production in pA collisions discussed in Sec. IV
below.

B. CGC approach to the DIS dijet production

The quark-antiquark jet cross section can also be calculated in the CGC formalism.
In this setup the photon splits into a quark-antiquark pair which subsequently undergoes
multiple interactions with the nucleus (see Fig. 3). Previous calculations performed under
this framework [22, 28] have focused mainly on the total cross section or single inclusive gluon
production, which are calculations involving a different color structure than the process we
are interested in. Here we calculate the cross section in the most general case and then we
show how the factorization formula is recovered in the correlation limit.

At the amplitude level the process can be divided into two parts: the splitting wave
function of the incoming photon and the multiple scattering factor. It is convenient to
write these quantities in transverse coordinate space since in this basis, and in the eikonal
approximation, the multiple interaction factor is diagonal. To be consistent with previous
CGC calculations in the literature, we choose a frame that the photon is moving along the
+ẑ direction whereas the nuclear target in the −ẑ direction. When we compare the results
to those obtained in the last subsection, we have to keep in mind this difference. However,
we note that the differential cross section does not depend on the frame. For a right-moving
photon with longitudinal momentum p+, no transverse momentum, and virtuality Q2, the

10



splitting wave function in transverse coordinate space takes the form,

ψT λ
αβ (p

+, z, r) = 2π

√
2

p+




iǫfK1(ǫf |r|) r·ǫ

(1)
⊥

|r| [δα+δβ+(1− z) + δα−δβ−z], λ = 1,

iǫfK1(ǫf |r|) r·ǫ
(2)
⊥

|r| [δα−δβ−(1− z) + δα+δβ+z], λ = 2,
(19)

ψL
αβ(p

+, z, r) = 2π

√
4

p+
z(1 − z)QK0(ǫf |r|)δαβ. (20)

where again z is the momentum fraction of the photon carried by the quark, λ is the photon
polarization, α and β are the quark and antiquark helicities, r the transverse separation of
the pair, ǫ2f = z(1 − z)Q2, and the quarks are assumed to be massless. The heavy quark
case will be considered in the next subsection.

The multiple scattering factor is expressed in terms of Wilson lines in the funda-
mental representation. It can be shown [28] that this interaction term takes the form[
U †(x2)U(x1)− 1

]
ji
where x1 and x2 are the transverse positions of the quark and the anti-

quark, i and j are their color indices, and the Wilson line is given in terms of the background
field by

U(x) = P exp

{
igS

∫ +∞

−∞
dx+ T cA−

c (x
+, x)

}
. (21)

The gauge field is directly related to the color charge density of the nucleus which will be
averaged over the nuclear wave function at the level of the cross section. The way the color
indices are contracted in the scattering factor is due to the fact that the pair is initially in
a singlet state but no assumptions are made about the final state. The color indices i and
j will be summed over independently also at the cross section level.

With the pieces described above we can write down an explicit formula for the differen-
tial cross section for dijet production. After averaging over the photon’s polarization and
summing over the quark and antiquark helicities and colors we obtain,

dσγ∗
T,L

A→qq̄X

d3k1d3k2
= Ncαeme

2
qδ(p

+ − k+1 − k+2 )

∫
d2x1
(2π)2

d2x′1
(2π)2

d2x2
(2π)2

d2x′2
(2π)2

×e−ik1⊥·(x1−x′
1)e−ik2⊥·(x2−x′

2)
∑

λαβ

ψT,Lλ
αβ (x1 − x2)ψ

T,Lλ∗
αβ (x′1 − x′2)

×
[
1 + S(4)

xg
(x1, x2; x

′
2, x

′
1)− S(2)

xg
(x1, x2)− S(2)

xg
(x′2, x

′
1)
]
, (22)

where the two- and four-point functions are defined as

S(2)
xg

(x1, x2) =
1

Nc

〈
TrU(x1)U

†(x2)
〉
xg

, (23)

S(4)
xg

(x1, x2; x
′
2, x

′
1) =

1

Nc

〈
TrU(x1)U

†(x′1)U(x
′
2)U

†(x2)
〉
xg

. (24)

The notation 〈. . . 〉xg
is used for the CGC average of the color charges over the nuclear

wave function where xg is the smallest fraction of longitudinal momentum probed, and is
determined by the kinematics.

Notice that the transverse coordinates of the quark and antiquark in the amplitude (un-
primed coordinates) are different from the coordinates in the complex conjugate amplitude
(primed coordinates) since the two final momenta are not integrated over. This is a very
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important feature of our calculation that, to our knowledge, does not appear in previous
CGC calculations of DIS in nuclei. It allows for a different color structure and in particular

it is responsible for the appearance of the 4-point function S
(4)
xg which cannot be expressed

in terms of 2-point functions, even in the large Nc limit (see Appendix B 2 for an explicit
evaluation of the medium average).

In order to compare with the TMD-factorization result discussed in the previous section,
we need to consider the relevant kinematic region, in particular in the correlation limit of
Eq. (22). For convenience, we introduce the transverse coordinate variables: u = x1 − x2
and v = zx1+(1− z)x2, and similarly for the primed coordinates. The respective conjugate
momenta are P̃⊥ = (1− z)k1⊥ − zk2⊥ ≈ P⊥ and q⊥, and therefore the correlation limit can
be taken by assuming u and u′ are small and then expanding the integrand with respect to
these two variables before performing the Fourier transform.

Let us focus on the multiple scattering factor first. By using the following identities,

S(4)
xg

(x1, x2; v
′, v′) = S(2)

xg
(x1, x2) , (25)

S(4)
xg

(v, v; x′2, x
′
1) = S(2)

xg
(x′2, x

′
1) , (26)

it is easy to see that terms from the expansion of S
(4)
xg cancel the other terms in (22). After

applying

U †(v) (∂iU(v)) = −
(
∂iU

†(v)
)
U(v) ,

we can show that the lowest order contribution in u and u′ to the scattering factor can be
written as

−uiu′j
1

Nc

〈Tr [∂iU(v)]U †(v′) [∂jU(v
′)]U †(v)〉xg

. (27)

Taking into account the path ordering of the Wilson lines, we have the following formula for
their derivatives,

∂iU(v) = igS

∫ ∞

−∞
dv+ U [−∞, v+; v]

(
∂iA

−(v+, v)
)
U [v+,∞; v], (28)

where U [a, b; x] = P exp{igS
∫ b

a
dx+ T cA−

c (x
+, x)}. We notice that (∂iA

−(v+, v)) is part of
the gauge invariant field strength tensor F i−(~v)6. Therefore, the above correlator can be
written in terms of gauge invariant matrix element,

−〈Tr [∂iU(v)]U †(v′) [∂jU(v
′)]U †(v)〉xg

= g2S

∫ ∞

−∞
dv+dv′+

〈
Tr
[
F i−(~v)U [+]†F j−(~v′)U [+]

]〉
xg

.

(29)
Performing the u and u′ integration in (22) after the expansion of the multiple scattering
term, we find an explicit formula for the differential cross section in the desired kinematic

6 The other part of the the field strength tensor shall come from the transverse component of the Wilson lines

as the gauge invariance of QCD requires. When the A+ = 0 gauge is used the only non-zero component

of the gauge field is A− [29] and the transverse parts drop out of the equations, giving a simpler form of

the equations.
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region,

dσγ∗
TA→qq̄X

dP.S. = αeme
2
qαsδ (xγ∗ − 1) z(1− z)

(
z2 + (1− z)2

) P 4
⊥ + ǫ4f

(P 2
⊥ + ǫ2f )

4

×(16π3)

∫
d3vd3v′

(2π)6
e−iq⊥·(v−v′)2

〈
Tr
[
F i−(v)U [+]†F i−(v′)U [+]

]〉
xg

, (30)

dσγ∗
L
A→qq̄X

dP.S. = αeme
2
qαsδ (xγ∗ − 1) z2(1− z)2

8P 2
⊥ǫ

2
f

(P 2
⊥ + ǫ2f)

4

×(16π3)

∫
d3vd3v′

(2π)6
e−iq⊥·(v−v′)2

〈
Tr
[
F i−(v)U [+]†F i−(v′)U [+]

]〉
xg

. (31)

These results are to be compared to the factorized results in Eq. (12,13). The hard cross
section factor in (12) is recovered by noticing that in the kinematic region we are considering
the Mandelstam variables are given by ŝ = P 2

⊥/(z(1 − z)), t̂ = −(P 2
⊥ + ǫ2f)/(1 − z), and

û = −(P 2
⊥ + ǫ2f )/z. To recover the gluon distribution function as written in Eq. (3) it

is necessary to account for the different normalizations used to calculate the average of
Wilson lines above. In Eq. (3) the average is calculated with a definite momentum (and
therefore translational invariant) hadronic state |P 〉 which is relativistically normalized to
〈P ′|P 〉 = (2π)32P+δ(P+ − P ′+)δ(2)(P⊥ − P ′

⊥), while the average in Eqs. (30) and (31) is
taken over the CGC wave function and is normalized such that 〈1〉xg

= 1. Using translational
invariance Eq. (3) can be written as

xG(1)(x, k⊥) =
4

〈P |P 〉

∫
dξ−1 d

2ξ1⊥dξ
−
2 d

2ξ2⊥
(2π)3

eixP
+(ξ−1 −ξ−2 )−ik⊥·(ξ1⊥−ξ2⊥)

×〈P |Tr
[
F+i(ξ−1 , ξ1⊥)U [+]†F+i(ξ−2 , ξ2⊥)U [+]

]
|P 〉 . (32)

It is easy to see that the discrepancy between normalizations is accounted for by the re-

placement 〈P |...|P 〉
〈P |P 〉 → 〈. . . 〉xg

, giving complete agreement between the CGC approach and

the factorized form in the small-x region.
In the end of this subsection, we would like to compare the dijet production process in DIS

to the inclusive and semi-inclusive DIS. As shown above, we derive that the dijet production
cross section in DIS is proportional to the WW gluon distribution in the correlation limit.
On the other hand, it is well-known that inclusive and semi-inclusive DIS involves the dipole
cross section instead [26], which can be related to the second gluon distribution. This might
look confusing at first sight, so let us take a closer look at Eq. (22). If one integrates over
one of the outgoing momenta, say k1, one can easily see that the corresponding coordinates
in the amplitude and conjugate amplitude are identified (x1 = x′1) and, therefore, the four-

point function S
(4)
xg (x1, x2; x

′
2, x

′
1) collapses to a two-point function S

(2)
xg (x2, x

′
2). As a result,

The SIDIS and inclusive DIS cross section only depend on two-point functions, thus they
only involve the dipole gluon distribution. Now we can see the unique feature of the dijet
production process in DIS. By keeping the momenta of the quark and antiquark unintegrated,
we can keep the full color structure of the four-point function which eventually leads to the
WW gluon distribution in the correlation limit. Therefore, measuring the dijet production
cross sections or dihadron correlations in DIS at future experimental facilities like EIC or
LHeC would give us a first direct and unique opportunity to probe and understand the
Weizsäcker-Williams gluon distribution.
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C. Heavy quark production in DIS dijet

In order to expand our calculation and include the possibility of charm and bottom
production, we now consider the finite quark mass case. From the TMD point of view,
having massive quarks modifies the hard cross sections while the parton distributions remain
the same. The new leading order hard partonic cross sections read

Hγ∗
T
g→qq̄ = αsαeme

2
qz

2(1− z)2

[
P 4
⊥ + ǫ′4f

(P 2
⊥ + ǫ′2f )

4

(
ũ

t̃
+
t̃

ũ

)
+

2m2
qP

2
⊥

z(1− z)(P 2
⊥ + ǫ′2f )

4

]
, (33)

Hγ∗
L
g→qq̄ = αsαeme

2
q

8Q2

(s̃+Q2)4

(
s̃−

m2
q

z(1 − z)

)
, (34)

where s̃ = (k1 + k2)
2 = (P 2

⊥ +m2
q)/(z(1 − z)), t̃ = (k2 − kγ∗)2 −m2

q = −(P 2
⊥ + ǫ′2f )/(1 − z),

and ũ = (k1 − kγ∗)2 −m2
q = −(P 2

⊥ + ǫ′2f )/z with ǫ′2f = z(1 − z)Q2 +m2
q and z = zq.

In terms of the CGC approach, one needs to modify the dipole splitting wave functions
as follows:

ψT λ
αβ (p

+, z, r) = 2π

√
2

p+






iǫ′fK1(ǫ
′
f |r|)

r·ǫ(1)
⊥

|r| [δα+δβ+(1− z) + δα−δβ−z]

+δα−δβ+mqK0(ǫ
′
f |r|), λ = 1,

iǫ′fK1(ǫ
′
f |r|)

r·ǫ(2)
⊥

|r| [δα−δβ−(1− z) + δα+δβ+z]

+δα+δβ−mqK0(ǫ
′
f |r|), λ = 2,

(35)

ψL
αβ(p

+, z, r) = 2π

√
4

p+
z(1 − z)QK0(ǫ

′
f |r|)δαβ . (36)

Following the same procedure, it is easy to show that again both approaches agree in the
correlation limit for heavy quark production. By setting Q2 = 0, one can get the results for
the heavy quark production in real photon-nucleus scattering.

III. DIRECT-PHOTON JET IN pA COLLISIONS

Now let us turn our attention to the second gluon distribution. In this context, the sim-
plest process where we can access this distribution is the direct photon-quark jet correlation
in pA collisions,

pA→ γ(k1) + q(k2) +X , (37)

where the incoming quark carries momentum p, and nucleus target with momentum PA,
and outgoing photon and quark with momenta k1 and k2, respectively. The analysis of this
process follows that for the quark-antiquark jet correlation in DIS process in the previous
section.

We plot the relevant diagrams in Fig. 4(a,b,c), again for the leading one gluon exchange
and two gluon exchanges. Similarly, the two gluon exchange contributions can be summa-
rized as7

Fig. 4(b, c) ∼ (−ig)
(

i

−q+2 + iǫ
T bΓa +

i

q+2 + iǫ
ΓaT b

)
, (38)

7 There is a misprint, which we have corrected below in the eq.(38), in the Eq.(11) of the short summary

[15] of this paper.)
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FIG. 4. Same as Fig. (2) for direct photon-jet correlation in pA collisions.

where the plus sign comes from the fact that the second gluon attaches to the quark line in
the initial and final states. Since there is no color structure corresponding to Eq. (38), we
can only express it in the fundamental representation. Following Ref. [2], we find that the
gluon distribution in this process can be written as

xG(2)(x, k⊥) = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |Tr

[
F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]

]
|P 〉 , (39)

where the gauge link U [−]
ξ = Un [0,−∞; 0]Un [−∞, ξ−; ξ⊥] resums the initial state interac-

tions between the incoming quark and the target nucleus. On the other hand, the gauge
link U [+] represents the final state interactions between the outgoing quark and the target
nucleus. This gluon distribution can also be calculated in the CGC formalism where it is
found to be

xG(2)(x, q⊥) ≃
q2⊥Nc

2π2αs

S⊥Fxg
(q⊥), (40)

with the normalized unintegrated gluon distribution Fxg
(q⊥) =

∫
d2r⊥
(2π)2

e−iq⊥·r⊥S
(2)
xg (0, r⊥).

Therefore, by plugging in the appropriate gluon distribution, namely the dipole gluon dis-
tribution, which resums both the initial and final state interactions, one can write the
differential cross section of (37) as8

dσ(pA→γq+X)

dP.S. =
∑

f

xpqf(xp)xgG
(2)(xg, q⊥)Hqg→γq , (41)

where x1 is the momentum fraction of the projectile nucleon carried by the quark, qf (x1)
is the integrated quark distribution. Because we are taking large nuclear number limit, the
intrinsic transverse momentum associated with it can be neglected compared to that from
the gluon distribution of nucleus. The hard partonic cross section is given by

Hqg→γq =
αsαeme

2
q

Ncŝ2

(
− ŝ

û
− û

ŝ

)
. (42)

Inserting Eqs. (40) and (42) in Eq. (41), one gets

dσ(pA→γq+X)

dP.S. =
∑

f

xpqf (xp)
αeme

2
f

2π2
S⊥q

2
⊥F

g
xg
(q2⊥)

[
1 + (1− z)2

]
z2 (1− z)

P 4
⊥

, (43)

8 Here we assume that one can employ the collinear factorization for the integrated quark density or gluon

density inside the dilute proton at large xp, although the proof of this assumption is omitted throughout

this paper. We will leave this study for future work.
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where we have expressed the Mandelstam variables in terms of P⊥ and z: ŝ = (k1 + k2)
2 =

P 2
⊥

z(1−z)
, û = (k1 − p)2 = −P 2

⊥

z
and t̂ = (k2 − p)2 = − P 2

⊥

1−z
. The momentum fraction of the

incoming quark p carried by the outgoing photon z is defined as

z =
|k1⊥|ey1

|k1⊥|ey1 + |k2⊥|ey2
, (44)

where y1 and y2 are rapidities of the photon and outgoing quark in the Lab frame.
The current running RHIC and LHC experiments shall provide us some information

on the dipole gluon distribution by measuring direct photon-quark jet correlation in pA
collisions.

A. CGC approach to the direct photon-jet production in pA collisions

This process was already considered in the CGC framework in [33] where the calculation
was performed entirely in momentum space. In order to compare with the result from the
previous section and illustrate why a different distribution should be used, we will derive the
corresponding cross section following the same procedure as the previous section by showing
the splitting wave function and the multiple scattering factor in transverse coordinate space.
Our result is consistent with [33].

Let us consider the partonic level process q → qγ. For a right-moving massless quark,
with initial longitudinal momentum p+ and no transverse momentum, the splitting wave
function in transverse coordinate space is given by

ψλ
αβ(p

+, k+1 , r) = 2πi

√
2

k+1





r·ǫ(1)
⊥

r2
(δα−δβ− + (1− z)δα+δβ+), λ = 1,

r·ǫ(2)
⊥

r2
(δα+δβ+ + (1− z)δα−δβ−), λ = 2.

, (45)

where again λ is the photon polarization, α, β are helicities for the incoming and outgoing
quarks, and z is the momentum fraction of the incoming quark carried by the photon. To
account for the multiple scatterings in this process we have to consider interactions both
before and after the splitting. If the transverse coordinates of the quark and photon in the
final state are b and x respectively, then the multiple scattering factor in the amplitude takes
the form U(b)− U(zx + (1− z)b).

After summing over final polarization, helicity and color, and averaging over initial helicity
and color, we find the following expression for the partonic level cross section (see Fig. 5).

dσqA→qγX

d3k1d3k2
= αeme

2
qδ(p

+ − k+1 − k+2 )

∫
d2x

(2π)2
d2x′

(2π)2
d2b

(2π)2
d2b′

(2π)2

×e−ik1⊥·(x−x′)e−ik2⊥·(b−b′)
∑

λαβ

ψλ∗
αβ(x

′ − b′)ψλ
αβ(x− b)

×
[
S(2)
xg

(b, b′) + S(2)
xg

(zx+ (1− z)b, zx′ + (1− z)b′)

−S(2)
xg

(b, zx′ + (1− z)b′)− S(2)
xg

(zx + (1− z)b, b′)
]
. (46)

Notice that the color structure is simpler than in the DIS case. There is no four-point
function and all the terms in the multiple scattering factor can be expressed in terms of
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FIG. 5. Interactions before and after the splitting have to be taken into account for both amplitude

and conjugate amplitude. Here is a typical diagram representing the third interaction term in Eq.

(46).

the color dipole cross section S
(2)
xg . By changing the variables on each of the terms of the

scattering factor to u = x − b and either v = b or v = zx + (1 − z)b , and similarly for the
primed coordinates, the cross section above can be written as

dσqA→qγX

d3k1d3k2
= αeme

2
qδ(p

+ − k+1 − k+2 )

∫
d2u

(2π)2
d2u′

(2π)2
d2v

(2π)2
d2v′

(2π)2

×e−iq⊥·(v−v′)S(2)
xg

(v, v′)
∑

λαβ

ψλ∗
αβ(u

′)ψλ
αβ(u)

×
[
e−iu·(P̃⊥+zq⊥)eiu

′·(P̃⊥+zq⊥) + e−iu·P̃⊥eiu
′·P̃⊥

−e−iu·(P̃⊥+zq⊥)eiu
′·P̃⊥ − e−iu·P̃⊥eiu

′·(P̃⊥+zq⊥)
]
, (47)

where P̃⊥ = (1− z)k1⊥ − zk2⊥ ≈ P⊥.

From the above expression it is easy to see that performing the u and u′ integrations
reduces to taking the Fourier transform of the splitting wave function with different values
of the momentum variable for each term. Clearly, the Fourier transform of the dipole cross
section factors out giving the gluon distribution we found from the TMD-factorized form.
Using collinear approximation for the proton projectile we find our final result for the cross
section of the desired process.

dσpA→γq+X

dP.S. =
∑

f

xpqf (xp)αeme
2
fNc

[
1 + (1− z)2

]
z2(1− z)

2q2⊥
P̃ 2
⊥(P̃⊥ + zq⊥)2

×
∫

d2v

(2π)2
d2v′

(2π)2
e−iq⊥·(v−v′)S(2)

xg
(v, v′). (48)

This result agrees with the factorized result (41) in the correlation limit P⊥ ≫ q⊥. To make
more clear the relation between the distribution xG(2) in Eq. (6) and the result above notice
that the factor q2⊥ can be brought inside the integral as derivatives of the exponential factor
with respect to v and v′. Using integration by parts and the derivation formula for Wilson
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lines it is easy to show that the cross section takes the form

dσpA→γq+X

dP.S. =
∑

f

xpqf(xp)αeme
2
f

[
1 + (1− z)2

]
z2(1− z)

2

P̃ 2
⊥(P̃⊥ + zq⊥)2

× 16π3αS

∫
d3v

(2π)3
d3v′

(2π)3
e−iq⊥·(v−v′)

〈
Tr
[
F i−(~v)U [−]†F i−(~v′)U [+]

]〉
. (49)

Taking into account the same considerations about different normalizations of the averaging
procedures as in the DIS case, it is easy to see that the two expressions for xG(2) agree in
the small-x region.

IV. DIJET PRODUCTION IN pA COLLISIONS

Dijet production in pA collisions receive contributions from several channels such as
qg → qg, gg → qq̄ and gg → gg. For convenience, we define the following common variables
as in the last two sections,

z =
|k1⊥|ey1

|k1⊥|ey1 + |k2⊥|ey2
, xp =

|k1⊥|ey1 + |k2⊥|ey2√
s

, xg =
|k1⊥|e−y1 + |k2⊥|e−y2

√
s

, (50)

where k1 and k2 are momenta, and y1 and y2 are rapidities for the two outgoing particles,
xp is the momentum fraction of the projectile nucleon carried by the incoming parton, xg
is the momentum fraction of the target nucleus carried by the gluon, respectively. Taking
into account that the quark distribution functions are dominant at large-x and the gluon
distribution functions are dominant at low-x, it comes as no surprise the fact that different
channels are relevant in different kinematic regions. At RHIC energies, the low -x region is
only accessible in events where the two jets are produced in the forward rapidity region of
the projectile. Under those conditions we have xp ∼ 0.1 and xg ≪ 0.1, and therefore quark
initiated processes dominate (qg → qg channel).

The higher energies available at LHC will allow to explore more thoroughly the low-x
regime in the target nucleus as well as in the projectile(see e.g., in a recent study[34]). Under
these circumstances, and in particular at central rapidities at the LHC, it is possible to have
processes with both xp and xg small where the dominant channels are gg → qq̄ and gg → gg.

Let us first take the partonic channel qg → qg as an example and calculate the dijet
production cross section. Then it is straightforward to generalize the calculation to the
other partonic channels gg → qq̄ and gg → gg.

A. TMD-factorization approach

1. The qg → qg channel

The calculations follow the previous examples. However, there are several different Feyn-
man graphs contributing to the production of qg in the final state, as shown in Fig. 6. In
addition, they have different color structures. Therefore, we need to compute the hard fac-
tors and the associated initial/final state interaction phases separately. In the end, we will
sum their contributions together to obtain the final result.
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(2) (3)

(6)

(1)

(4) (5)

FIG. 6. Quark-gluon scattering diagrams. The mirror diagrams of (3), (5) and (6) give identical

contributions.

TABLE II. The color and hard factors for the qg → qg scattering channels in Fig. 6, where

CF = (N2
c − 1)/2Nc.

(1) (2) (3) (4) (5) (6)

h − 4(t̂2−ŝû)2

t̂2ŝû
− 2(û2+t̂2)

ŝû
2(t̂2−ŝû)(û−t̂)

ŝt̂û
− 2(ŝ2+t̂2)

ŝû
− 2(t̂2−ŝû)(ŝ−t̂)

ŝt̂û
2t̂2

ŝû

Cu
1
2

CF

2Nc
−1

4
CF

2Nc

1
4 − 1

4N2
c

It is straightforward to obtain the hard cross section contributions from each diagram in
Fig. 6 for the qg → qg process, and have been calculated in Ref. [3]. We list these results

in Table II with the same notations, where h(i) is the partonic hard factor and C
(i)
u is the

associated color factor. In the calculations, in order to apply the eikonal approximation
when multiple gluon interactions are formulated, we have chosen the physical polarizations
for the outgoing gluon. However, the final result for the differential cross section does not
depend on this choice.

As a consistency check, we can easily reproduce the known results for the total hard cross
section by summing all the graphs in Fig. 6 and explicitly taking Nc = 3,

dσ̂

dt̂
(gq → gq) =

g4

16πŝ2

{
∑

i=1,2,4

C(i)
u h(i) + 2

∑

i=3,5,6

C(i)
u h(i)

}

=
g4

16πŝ2

(
4

9

ŝ2 + û2

−ŝû +
ŝ2 + û2

t̂2

)
. (51)

Since the graphs in Fig. 6 have different color structure, the gluon distributions associated
with those graphs have different gauge links according to Ref. [2]. Therefore, the corre-
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sponding gluon distributions in coordinate space are found as follows:

Φ(1)
g =

〈
Tr

[
F (ξ)

{
1

2

Tr
[
U [�]

]

Nc

U [+]† +
1

2
U [−]†

}
F (0)U [+]

]〉
, (52)

Φ(2)
g =

〈
Tr

[
F (ξ)

{
N2

c

N2
c − 1

Tr
[
U [�]

]

Nc

U [+]† − 1

N2
c − 1

U [−]†

}
F (0)U [+]

]〉
, (53)

Φ(3)
g =

〈
Tr

[
F (ξ)

Tr
[
U [�]

]

Nc

U [+]†F (0)U [+]

]〉
, (54)

Φ(4),(5),(6)
g =

〈
Tr
[
F (ξ)U [−]†F (0)U [+]

]〉
, (55)

where U [�] = U [+]U [−]† = U [−]†U [+] emerges as a Wilson loop. Now we are ready to combine
all the channels together. As mentioned in the introduction, the distributions above will
be factorizable in terms of convolutions of the two basic distributions from the previous
sections. Anticipating this result, we consider only the leading contribution in Nc. Noting
that graph (6) in Fig 6 does not contribute in the large-Nc limit, one can find

dσqA→qgX
TMD

d2P⊥d2q⊥dy1dy2
=
∑

f

xpq(xp)
α2
s

ŝ2
[
F (1)

qg H
(1)
qg→qg + F (2)

qg H
(2)
qg→qg

]
, (56)

with

F (1)
qg = xG(2) (x, q⊥) = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

〈
Tr
[
F (ξ)U [−]†F (0)U [+]

]〉
, (57)

F (2)
qg = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

〈
Tr

[
F (ξ)

Tr
[
U [�]

]

Nc

U [+]†F (0)U [+]

]〉
. (58)

In the large-Nc limit, it is straightforward to find that only graphs (1), (2) and (3) in Fig. 6

(t and u channels together with their cross diagrams) contribute to H
(2)
qg→qg and only graphs

(1), (4) and (5) (t and s channels together with their cross diagrams) contribute to H
(1)
qg→qg.

By using CF

2Nc
= 1

4
in the large-Nc limit, one obtains

H(1)
qg→qg = −

(
t̂2 − ŝû

)2

ŝût̂2
− 1

2

t̂2 + ŝ2

ŝû
−
(
t̂2 − ŝû

) (
ŝ− t̂

)

ŝût̂
= − û

2 (ŝ2 + û2)

2ŝût̂2
, (59)

H(2)
qg→qg = −

(
t̂2 − ŝû

)2

ŝût̂2
− 1

2

t̂2 + û2

ŝû
−
(
t̂2 − ŝû

) (
û− t̂

)

ŝût̂
= − ŝ

2 (ŝ2 + û2)

2ŝût̂2
. (60)

We note that although the individual diagram’s contribution to the above two hard factors
depends on the polarization we choose for the outgoing gluon, the final results for the hard
factors do not depend on this choice. This means the combination of Feynman graphs
according to the relevant color structure is gauge invariant. Similar conclusion has also been
obtained for the spin related observables calculated in Refs. [2, 3].

Since one has ŝ =
P 2
⊥

z(1−z)
, û = −P 2

⊥

z
and t̂ = − P 2

⊥

1−z
in the correlation limit, Eq. (56) leads
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FIG. 7. gg → qq̄ scattering diagrams. The mirror diagrams of (3), (5) and (6) give identical

contributions.

TABLE III. The color and hard factors for the gg → qq̄ scattering channels in Fig. 7.

(1) (2) (3) (4) (5) (6)

h 2(3t̂2+û2)û

(t̂+û)2 t̂

2(t̂2+3û2)t̂

(t̂+û)2û

2(t̂−û)2

(t̂+û)2
4t̂û

(t̂+û)2
− 4t̂û

(t̂+û)2
4t̂û

(t̂+û)2

Cu
1

4Nc

1
4Nc

− 1
4Nc(N2

c−1)
Nc

2(N2
c−1)

Nc

4(N2
c−1) − Nc

4(N2
c−1)

to the following cross section for qg dijet production in pA collisions

dσpA→qgX
TMD

d2P⊥d2q⊥dy1dy2

=
∑

f

xpqf(xp)
α2
s

2P 4
⊥

[
1 + (1− z)2

]
(1− z)

[
(1− z)2 xG(2) (x, q⊥) + F (2)

qg

]
, (61)

where xpqf (xp) is the integrated quark distribution for the proton projectile.

2. The gg → qq̄ channel

Following the same procedure illustrated in the qg → qg channel, we can calculate the
dijet production cross section from the gg → qq̄ channel. First of all, we compute the color
factors and hard factors for each graph in Fig. 7 and list them in Table III. Then, we plug
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in the appropriate gluon distributions9 as found in Ref. [2].

Φ(1),(2)
g =

〈
Tr

[
F (ξ)

{
Tr
[
U [�]

]

Nc

U [−]†

}
F (0)U [+]

]〉
, (62)

Φ(3)
g = −Nc

〈
Tr
[
F (ξ)U [�]

]
Tr
[
F (0)U [�]†]〉 , (63)

Φ(4),(5),(6)
g =

〈
Tr
[
F (ξ)U [−]†F (0)U [+]

] Tr
[
U [�]

]

Nc

〉

− 1

Nc

〈
Tr
[
F (ξ)U [�]

]
Tr
[
F (0)U [�]†]〉 . (64)

Combining all the channels in the large Nc limit, we can find

dσgA→qq̄X
TMD

d2P⊥d2q⊥dy1dy2
=
∑

f

xpg(xp)
α2
s

ŝ2

[
F (1)

gg H
(1)
gg→qq̄ + F (2)

gg H
(2)
gg→qq̄

]
, (65)

with

F (1)
gg = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

〈
Tr

[
F (ξ)

Tr
[
U [�]

]

Nc

U [−]†F (0)U [+]

]〉
, (66)

F (2)
gg = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥ 1

Nc

〈
Tr
[
F (ξ)U [�]†]Tr

[
F (0)U [�]

]〉
, (67)

and

H
(1)
gg→qq̄ =

1

4Nc

2
(
t̂2 + û2

)2

ŝ2ût̂
, (68)

H
(2)
gg→qq̄ =

1

4Nc

4
(
t̂2 + û2

)

ŝ2
, (69)

where xpg(xp) is the integrated gluon distribution in the proton projectile.

3. The gg → gg channel

Similarly, the color factors and hard factors for all the graphs plotted in Fig. 8 have been
calculated and listed in Table IV. Combining these factors with the corresponding gluon

9 We have simplified these gluon distributions by using large-Nc limit and the fact that they are real in the

CGC formalism.
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FIG. 8. gg → gg scattering diagrams. The mirror diagrams of (3), (5) and (6) give identical

contributions.

TABLE IV. The color and hard factors for the gg → gg scattering channels in Fig. 8.

h Cu

(1) 2(ŝ4+4ŝ3t̂+11ŝ2t̂2+10ŝt̂3+4t̂4)

(ŝ+t̂)2ŝ2
N2

c

N2
c−1

(2) 2(2ŝ6+6ŝ5t̂+14ŝ4 t̂2+20ŝ3 t̂3+21ŝ2 t̂4+14ŝt̂5+4t̂6)

(ŝ+t̂)2ŝ2t̂2
N2

c

N2
c−1

(3) − (2ŝ4+5ŝ3 t̂+10ŝ2 t̂2+10ŝt̂3+4t̂4)(ŝ+2t̂)

(ŝ+t̂)2ŝ2t̂

N2
c

2(N2
c −1)

(4) 2(ŝ4+ŝ3t̂+5ŝ2 t̂2+6ŝt̂3+2t̂4)

(ŝ+t̂)2ŝ2
N2

c

N2
c−1

(5) 2ŝ5+ŝ4t̂−ŝ3t̂2−10ŝ2 t̂3−12ŝt̂4−4t̂5

(ŝ+t̂)2ŝ2 t̂

N2
c

2(N2
c −1)

(6) (ŝ3+10ŝ2 t̂+12ŝt̂2+4t̂3)t

(ŝ+t̂)2ŝ2
− N2

c

2(N2
c−1)
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distributions, taking into account the appropriate gauge links [2], we arrive at

Φ(1),(2)
g =

1

2

〈
Tr
[
F (ξ)U [+]†F (0)U [+]

] Tr
[
U [�]

]

Nc

Tr
[
U [�]

]

Nc

〉

+

〈
Tr
[
F (ξ)U [−]†F (0)U [+]

] Tr
[
U [�]

]

Nc

〉
, (70)

Φ(3)
g =

〈
Tr
[
F (ξ)U [+]†F (0)U [+]

] Tr
[
U [�]

]

Nc

Tr
[
U [�]

]

Nc

〉

+
1

Nc

〈
Tr
[
F (ξ)U [�]

]
Tr
[
F (0)U [�]†]〉 , (71)

Φ(4),(5),(6)
g =

〈
Tr
[
F (ξ)U [−]†F (0)U [+]

] Tr
[
U [�]

]

Nc

〉

− 1

Nc

〈
Tr
[
F (ξ)U [�]

]
Tr
[
F (0)U [�]†]〉 . (72)

Summing over all the channels in the large-Nc limit, we can obtain

dσgA→ggX
TMD

d2P⊥d2q⊥dy1dy2
=
∑

f

xpg(xp)
α2
s

ŝ2
[
F (1)

gg H
(1)
gg→gg + F (2)

gg H
(2)
gg→gg + F (3)

gg H
(3)
gg→gg

]
, (73)

where F (1,2)
gg have been defined in Eqs. (66,67) and F (3)

gg is defined as

F (3)
gg = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

〈
Tr
[
F (ξ)U [−]†F (0)U [+]

] Tr
[
U [�]

]

Nc

Tr
[
U [�]

]

Nc

〉
.(74)

The hard factors are found as

H(1)
gg→gg =

2
(
t̂2 + û2

) (
ŝ2 − t̂û

)2

û2t̂2ŝ2
, H(2)

gg→gg =
4
(
ŝ2 − t̂û

)2

ût̂ŝ2
,

H(3)
gg→gg =

2
(
ŝ2 − t̂û

)2

û2t̂2
. (75)

Using the mean field approximation [7], we can simplify the gluon distributions and find
the total dijet production cross section which includes the qg → qg, gg → qq̄ and gg → gg
channels as follows

dσ(pA→Dijet+X)

dP.S. =
∑

q

x1q(x1)
α2
s

ŝ2
[
F (1)

qg H
(1)
qg→qg + F (2)

qg H
(2)
qg→qg

]

+ x1g(x1)
α2
s

ŝ2

[
F (1)

gg

(
H

(1)
gg→qq̄ +

1

2
H(1)

gg→gg

)

+F (2)
gg

(
H

(2)
gg→qq̄ +

1

2
H(2)

gg→gg

)
+

1

2
F (3)

gg H
(3)
gg→gg

]
, (76)
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FIG. 9. Interactions before and after the splitting have to be taken into account for both amplitude

and conjugate amplitude. After the splitting the nucleus interacts coherently with the quark-gluon

system. Here is a typical diagram representing the second interaction term in Eq. (78).

where again q(x1) and g(x1) are integrated quark and gluon distributions from the projectile
nucleon. We have included a statistical factor of 1

2
in Eq. (76) for the gg → gg channel due

to the identical final state. The various gluon distributions of nucleus A are defined as

F (1)
qg = xG(2)(x, q⊥), F (2)

qg =

∫
xG(1)(q1)⊗ F (q2) ,

F (1)
gg =

∫
xG(2)(q1)⊗ F (q2), F (2)

gg = −
∫

q1⊥ · q2⊥
q21⊥

xG(2)(q1)⊗ F (q2) ,

F (3)
gg =

∫
xG(1)(q1)⊗ F (q2)⊗ F (q3) , (77)

where ⊗ represents the convolution in momentum space:
∫
⊗ =

∫
d2q1d

2q2δ
(2)(q⊥− q1− q2).

These expressions follow directly from Eqs. (57), (58), (66), (67), (74) and the assumption
that in the large-Nc limit the expectation values involved in these equations can be factored
as products of expectation values of the traces within. Clearly, this process depends on both
UGDs in a complicated way, and the naive TMD-factorization does not hold.

B. CGC Calculations

1. q → qg

This process is studied in detail in Refs. [35, 36], and in particular Ref. [36] is close to
the approach we have followed in this paper, where an explicit formula analogous to the
ones cited here for DIS and photon emission is given. We take as starting point Eq. (24) in
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Ref. [36] which in our notation takes the form (see Fig. 9)

dσqA→qgX

d3k1d3k2
= αSCF δ(p

+ − k+1 − k+2 )

∫
d2x

(2π)2
d2x′

(2π)2
d2b

(2π)2
d2b′

(2π)2

×e−ik1⊥·(x−x′)e−ik2⊥·(b−b′)
∑

λαβ

ψλ∗
αβ(x

′ − b′)ψλ
αβ(x− b)

×
[
S(6)
xg

(b, x, b′, x′)− S(3)
xg

(b, x, zx′ + (1− z)b′)

−S(3)
xg

(zx+ (1− z)b, x′, b′) + S(2)
xg

(zx+ (1− z)b, zx′ + (1− z)b′)
]
. (78)

where

S(6)
xg

(b, x, b′, x′) =
1

CFNc

〈
Tr
(
U(b)U †(b′)T dT c

) [
W (x)W †(x′)

]cd〉
xg

, (79)

S(3)
xg

(b, x, v′) =
1

CFNc

〈
Tr
(
U(b)T dU †(v′)T c

)
W cd(x)

〉
xg
, (80)

and W (x) is a Wilson line in the adjoint representation. In the correlators above, Wilson
lines in the fundamental representation appear when considering the multiple interaction
of a quark with the nucleus and Wilson lines in the adjoint representation appear when

considering multiple interactions of a gluon with the nucleus. Clearly, the S
(6)
xg term rep-

resents the case where interactions occur after the splitting both in the amplitude and in

the conjugate amplitude, the S
(3)
xg terms represent the interference terms, and the S

(2)
xg term

represent interactions before the splitting only.

This formula for the cross section has the same structure as Eqs. (22) and (47). The
splitting wave function is the same as in the photon emission case (Eq. (45)). The only
difference in the emission vertex is a color matrix which is included as part of the multiple
scattering factor (therefore confining the color algebra to just the multiple scattering factor).
Using Fierz identities, the terms appearing in the multiple scattering factor above can be
written in terms of fundamental Wilson lines only as

S(6)
xg

(b, x, b′, x′) =
1

2CFNc

〈
Tr
(
U(b)U †(b′)U(x′)U †(x)

)
TrU(x)U †(x′)− 1

Nc

TrU(b)U †(b′)

〉

xg

,

(81)

S(3)
xg

(b, x, v′) =
1

2CFNc

〈
TrU(b)U †(x)TrU(x)U †(v′)− 1

Nc

TrU(b)U †(v′)

〉

xg

, (82)

Some of the correlators appearing in the expressions above are familiar or have been

calculated in the literature before. The 4-point function in S
(3)
xg is different from the one

appearing in the DIS case but it has been studied and calculated in a model with Gaussian

distribution of sources in [31]. The 6-point function appearing in S
(6)
xg presents a more

difficult challenge even with only four independent coordinates. In order to deal with this
difficulty, it is convenient to address the problem in the large-Nc limit where correlators
of products of traces are evaluated as product of correlators of traces. Specifically, for the
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FIG. 10. Graphical representation of the splitting q → qg in the large-Nc limit, in the amplitude

and the conjugate amplitude.

correlators above we get

S(6)
xg

(b, x, b′, x′) ≃ 1

N2
c

〈
TrU(b)U †(b′)U(x′)U †(x)

〉
xg

〈
TrU(x)U †(x′)

〉
xg
, (83)

= S(4)
xg

(b, x, b′, x′)S(2)
xg

(x, x′), (84)

S(3)
xg

(b, x, v′) ≃ 1

N2
c

〈
TrU(b)U †(x)

〉
xg

〈
TrU(x)U †(v′)

〉
xg
, (85)

= S(2)
xg

(b, x)S(2)
xg

(x, v′). (86)

Note that in the large-Nc limit, the 6-point function is related to the 4-point function that
appeared in the DIS dijet case. In Appendix B 2, we point out that the result of [36] for the

6-point function misses the inelastic part of S
(4)
xg .

To enforce the correlation limit we follow the procedure used in the DIS case. From the
structure of the terms in the multiple scattering factor, we can see that the same kind of
cancellations will occur and the final result will be the sum of the lowest order non-vanishing

terms from the expansion of S
(6)
xg . Moreover, since there is no linear term in the expansion

of S
(4)
xg , the lowest non-vanishing terms come separately from the S

(4)
xg factor and the S

(2)
xg

in the same fashion as in the previous calculations for DIS and photon emission. With the
previous considerations in mind, it is easy to see that the final result takes the form

dσpA→qgX

d2q⊥d2P⊥dy1dy2
=
∑

f

xpqf(xp)16π
3 α

2
S

P 4
⊥
(1− z)

[
1 + (1− z)2

]

×
∫

d3v

(2π)3
d3v′

(2π)3
e−iq⊥·(v−v′)

[
(1− z)2

〈
Tr
[
F i−(~v)U [−]†F i−(~v′)U [+]

]〉
xg

+
1

Nc

〈
TrU(v)U †(v′)

〉
xg

〈
Tr
[
F i−(~v)U [+]†F i−(~v′)U [+]

]〉
xg

]
.

(87)

Taking into account the difference between the normalizations, it is straightforward to
see that the result above agrees with the factorized formula (61).

In order to bring some insight to the relation between the processes considered so far, and
how the different distributions come in for this particular channel, it is useful to consider
the graphical representation of the large-Nc limit used to factorize the correlators of Wilson
lines. In the large-Nc limit, a gluon line can be effectively considered as a quark-antiquark
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pair. Forgetting about the multiple interactions for the moment, and focusing primarily in
the color flow of the process, we see that in the large-Nc limit the process takes the form
depicted in Fig. 10. The system splits into two separate pieces, a quark line in the lower
part of the diagram which resembles the photon emission process, and a loop in the upper
part of the diagram which has the same color structure as the DIS dijet case. Interactions
involving both parts of the process are Nc-suppressed, so it comes as no surprise that the
final result can be written as two separate pieces each involving the respective distributions
found for DIS and photon emission.

The fact that one of the terms in the final result involves only one of the distributions
while the other involves a convolution of two factors can also be understood in a simple way
from the previous considerations. The enforcement of the correlation limit is schematically
the same as singling out one hard scattering in the process and then taking u = u′ = 0
for the rest of the interactions. When the hard scattering occurs on the lower part of the
diagram in Fig. 10, the quark-antiquark pair in the upper part does not interact by color

transparency (S
(4)
xg (b, b; b

′, b′) = 1) and therefore there is no trace of it in the first term of the
factorized expression. When the hard scattering occurs in the upper part of the diagram in
Fig. 10, the quark in the lower part still interacts with the nucleus (and exchanges transverse
momentum) and therefore has to be included in the form of a dipole cross section.

2. g → qq̄

Following the same strategy from previous sections, we start with the partonic level
formula for the cross section built from the splitting wave function and the multiple scattering
factor. In this particular case it takes the following form,

dσgA→qq̄X

d3k1d3k2
= αSδ(p

+ − k+1 − k+2 )
1

2

∫
d2x1
(2π)2

d2x′1
(2π)2

d2x2
(2π)2

d2x′2
(2π)2

×e−ik1⊥·(x1−x′
1)e−ik2⊥·(x2−x′

2)
∑

λαβ

ψTλ
αβ (x1 − x2)ψ

Tλ∗
αβ (x′1 − x′2)

×
[
Cxg

(x1, x2, x
′
1, x

′
2) + SA

xg
(zx1 + (1− z)x2, zx

′
1 + (1− z)x′2)

−S(3)
xg

(x1, zx
′
1 + (1− z)x′2, x2)− S(3)

xg
(x′2, zx1 + (1− z)x2, x

′
1)
]
, (88)

where S
(3)
xg is given by (82) and

Cxg
(x1, x2, x

′
1, x

′
2) =

1

CFNc

〈
Tr
(
U †(x2)T

cU(x1)U
†(x′1)T

cU(x′2)
)〉

xg
, (89)

SA
xg
(v, v′) =

1

N2
c − 1

〈
TrW (v)W †(v′)

〉
, (90)

and the splitting wave function is the same as in the DIS case with Q2 = 0. Notice this
cross section is down by a factor of Nc as compared to the q → qg case. This is due to the
averaging over the incoming particle which amounts for a factor of 1

N2
c−1

for gluons instead

of the factor of 1
Nc

for quarks.
All the correlators above have been previously studied in the literature and explicit ex-

pressions for a Gaussian distribution of charges have been found. The only new ingredient

28



that has not been considered in previous sections is Cxg
which was thoroughly studied in

[40]. Following the procedure from the previous section, let us express the correlators defined
above in terms of fundamental Wilson lines only by means of Fierz identities.

Cxg
(x1, x2, x

′
1, x

′
2) =

1

2CFNc

〈
TrU(x1)U

†(x′1)TrU(x
′
2)U

†(x2)

− 1

Nc

TrU(x1)U
†(x′1)U(x

′
2)U

†(x2)

〉

xg

, (91)

SA
xg
(v, v′) =

1

N2
c − 1

〈
TrU(v)U †(v′)TrU(v′)U †(v)− 1

〉
xg
. (92)

We take the large-Nc limit in order to be able to compare with the results from the previous
section and relate the cross section to the gluon distributions defined before. Under this
approximation, the correlators above can be expressed entirely in terms of 2-point functions.

Cxg
(x1, x2, x

′
1, x

′
2) ≃ S(2)

xg
(x1, x

′
1)S

(2)
xg

(x′2, x2), (93)

SA
xg
(v, v′) ≃ S(2)

xg
(v, v′)S(2)

xg
(v′, v). (94)

This way of factorizing the correlators and the fact that the 4-point function is absent
suggests that this process is related to the distribution given by the Fourier transform of the

dipole cross section only. With this consideration in mind, we Fourier transform all the S
(2)
xg

factors and perform the usual change of variables u = x1 − x2 and v = zx1 + (1− z)x2 (and
similarly for the primed coordinates) and obtain

dσgA→qq̄X

d3k1d3k2
= αSδ(p

+ − k+1 − k+2 )
1

2

∫
d2u

(2π)2
d2u′

(2π)2
d2v

(2π)2
d2v′

(2π)2
d2q1d

2q2Fxg
(q1)Fxg

(q2)

×e−i(q⊥−q1−q2)·(v−v′)e−iP̃⊥·(u−u′)
∑

λαβ

ψλ∗
αβ(u

′)ψλ
αβ(u)

×
[
ei((1−z)q2−zq1)·(u−u′) − ei((1−z)q2−zq1)·u − e−i((1−z)q2−zq1)·u′

+ 1
]
. (95)

As in the photon emission case, the u and u′ integrations reduce to calculate the Fourier
transform of the splitting wave function with different momentum variables for each of the
terms. The v and v′ integrations give a δ-function relating the momentum variables of the
two distributions and a factor of the total transverse area. As in previous cases, we use
collinear factorization for the incoming parton from the proton projectile and obtain

dσpA→qq̄X

dP.S. = xpgf (xp)αS

[
z2 + (1− z)2

]
z(1− z)

S⊥
(2π)2

×
∫

d2q1d
2q2δ

(2)(q⊥ − q1 − q2)Fxg
(q1)Fxg

(q2)
(zq1 − (1− z)q2)

2

P̃ 2
⊥(P̃⊥ + zq1 − (1− z)q2)2

. (96)

In the correlation limit, the denominator of the last fraction above becomes just P 4
⊥. From

this expression it is clear that the distributions involved will be written as a convolution of
two factors involving the Fourier transform of the dipole cross section. To notice how this
equation above agrees with the factorized form in (65), expand the numerator and write the
momentum factors as derivatives with respect to transverse coordinates of the dipole cross
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FIG. 11. Above: graphical representation of the splitting in the amplitude and conjugate amplitude.

Below: splitting in the large-Nc limit.

sections inside the definition of Fxg
as was explained for the case of photon emission. There

is a subtlety concerning the relative signs of the different terms when this identification is
made. In order to find a complete agreement between the formula above and the factorized
formula from the TMD formalism, it is necessary to write the two Fxg

factors as Fourier

transforms of Wilson loops in opposite directions (one of them in terms of U [�] and the other
in terms of U [�]†). Because of this, q1 and q2 enter with opposite signs when expressed as
derivatives of the Wilson loops. This sign is not visible in the terms with q21 or q22 but it
changes the sign of the cross term, giving complete agreement with the factorized expression.

As done for the previous channel, let us consider the graphical representation of this
channel in the large-Nc limit in Fig. 11. After replacing the gluon line with a quark-antiquark
pair we are left with two independent fermion lines which scatter separately with the nucleus.
Each of them resembles the photon emission case and therefore we expect, even before
performing the calculation, to obtain a convolution of two Fourier transforms of the dipole
cross section. In the correlation limit, the two terms in (65) have a simple explanation in
terms of a hard scattering. The first term accounts for the cases where the hard scattering
involves only one of the two quark lines, while the second term is an interference term when
the large momentum transfer involves the two participants.

This channel had already been considered in [40] where, due to the choice of gauge, the
separation of the amplitude in terms of splitting function and multiple scattering terms is
not visible. It is possible to show our expressions above are consistent with their results
when expressed in the same set of coordinates and momentum variables.

3. g→gg

In order to study the partonic process g → gg, we need to derive the splitting function
first. It can be written in momentum space as

Ψg→gg(z, p⊥) =
1√

8p+k+1 k
+
2

Vg→gg

k−1 + k−2 − p−
, (97)
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where Vg→gg is just the three-gluon vertex with the coupling and color factor factorized out.
This can be written as

Vg→gg = ǫαa ǫ
β
b ǫ

γ
c

[
gαβ (pa − pb)γ + gβγ (pb − pc)α + gγα (pc − pa)β

]
. (98)

Here ǫµi represents the polarization vector for gluon i with four momentum pi. It is straight-
forward to find that

∑

spin

|Vg→gg|2 =
8p2⊥

z(1− z)

[
z

1− z
+

1− z

z
+ z(1 − z)

]
. (99)

After summing over all polarizations, the squared splitting function in transverse coordi-
nate space reads

∑
Ψ∗

g→gg(z, u
′)Ψg→gg(z, u) = (2π)2

4

p+

[
z

1− z
+

1− z

z
+ z(1 − z)

]
u′ · u
u′2u2

. (100)

Now let us turn our attention to the multiple scattering terms. Since all the particles
involved in the process are gluons, all terms contain only Wilson lines in the adjoint rep-
resentation. In the following we give the explicit forms of the scattering terms with their
respective large-Nc expressions in terms of fundamental Wilson lines.
〈
fade

[
W (x1)W

†(x′1)
]db [

W (x2)W
†(x′2)

]ec
fabc

〉

xg

≃
〈
TrU †(x1)U(x

′
1)
〉
xg

〈
TrU(x2)U

†(x′2)
〉
xg

×
〈
TrU(x1)U

†(x′1)U(x
′
2)U

†(x2)
〉
xg
,

(101)

〈
fadeW

db(x1)W
ec(x2)ffbcW

fa(v′)
〉
xg

≃
〈
TrU †(x1)U(v

′)
〉
xg

〈
TrU(x2)U

†(v′)
〉
xg

×
〈
TrU(x1)U

†(x2)
〉
xg

, (102)
〈
fadeW

db(x′1)W
ec(x′2)ffbcW

fa(v)
〉
xg

≃
〈
TrU †(v)U(x′1)

〉
xg

〈
TrU(v)U †(x′2)

〉
xg

×
〈
TrU(x′2)U

†(x′1)
〉
xg
, (103)

Nc

〈
TrW (v)W †(v′)

〉
xg

≃ Nc

〈
TrU †(v)U(v′)

〉
xg

〈
TrU(v)U †(v′)

〉
xg
. (104)

The correlation limit is applied by following the procedure developed in the DIS case and
reproduced in the q → qg channel. By inspection of the multiple scattering terms above,
it is easy to see that the same kind of cancelations occur for this channel. Since the lowest
order terms left after the various cancelations come from the first of the scattering terms,
it is easy to see that the final result will involve combinations of one WW distribution and
two Fourier transforms of the dipole cross section. After some algebra we arrive at

dσpA→ggX

dP.S. = xpg(xp)64π
3α

2
S

P 4
⊥
z(1− z)

[
1− z

z
+

z

1− z
+ z(1 − z)

] ∫
d3v

(2π)3
d3v′

(2π)3
e−iq⊥·(v−v′)

×
[(
z2 + (1− z)2

) 1

Nc

〈
TrU(v)U †(v′)

〉
xg

〈
Tr
[
F i−(~v)U [+]†F i−(~v′)U [−]

]〉
xg

+
1

Nc

〈
TrU(v)U †(v′)

〉
xg

1

Nc

〈
TrU(v′)U †(v)

〉
xg

〈
Tr
[
F i−(~v)U [+]†F i−(~v′)U [+]

]〉
xg

+2z(1 − z)
1

Nc

〈
TrF i−(~v)U(v)U †(v′)

〉
xg

1

Nc

〈
TrF i−(~v′)U(v′)U †(v)

〉
xg

]
, (105)
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FIG. 12. Graphical representation of the splitting g → gg in the large-Nc limit, in the amplitude

and the conjugate amplitude.

which is straightforward to compare to the factorized expression in (73).
This structure could have been anticipated by looking at the graphical representation of

this process in the large-Nc limit shown in Fig. 12. In terms of the hard scattering picture
used in previous sections the structure of the expression above is consistent with previous
results. The first and third term look exactly the same as the two terms in the g → qq̄ case
and they correspond to the case in which the hard scattering does not involve the inner loop
in Fig. 12. The second term corresponds to the case where the hard scattering occurs in
the inner loop. It has the same structure as one of the terms found in the q → qg case with
an additional convolution associated to the extra quark line in the top of the diagram.

V. CONCLUSION

In this paper, we have studied and established an effective kt-factorization for dijet pro-
duction at small-x in dilute-dense collisions. Although kt-dependent parton distributions
are different in different processes, they can be calculated and related to each other. We
found that there are two fundamental unintegrated gluon distributions, namely, xG(1) and
xG(2), at small x. Although other different gluon distributions appear in many different
dijet production processes, one can compute them and find that they are related to these
two fundamental gluon distributions in the large Nc limit. In terms of the CGC framework,
this means that the two- and four-point functions are enough to compute any dijet cross
section, in the small momentum imbalance limit. In addition, there is similar conclusion for
the quark distributions at small x [7]. By doing so, we can restore the predictive power of
the theory.

Therefore, as part of the conclusion, we would like to summarize the empirical rules in
the large-Nc limit10 in this effective kt-factorization for dilute-dense system as follows:

• The cross section can be still separated into the products of the hard parts and parton
distributions;

• The hard factors should be calculated separately for each individual graph since the
parton distribution associated with each graph may be different;

10 Note that one does not need to take the large Nc limit in the calculation of xG(1) and xG(2) in DIS dijet

and photon-jet in pA collisions, respectively. However, the large Nc limit is essential in order to eliminate

other non-universal distributions or correlators in other different dijet channels, i.e., qg → qg, gg → qq̄

and gg → gg in pA collisions.
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• By replacing gluons into double lines, transform the Feynman graphs of the hard part
into large Nc planar graphs. The planar graphs show that there are only two building
blocks, namely, quark lines and color singlet quark loops, in any graphs (see e.g.,
Figs. 10, 11 and 12);

• Quark lines always have interactions with the dense target which contribute xG(2) or
Fxg

(q⊥) to the gluon distribution. However, the color singlet quark loop may or may
not interact with the dense target due to its peculiar color structure. If the quark loop
participates the interaction, it contributes xG(1) to the gluon distribution.

• If there are multiple objects involved in the soft interaction, the resulting gluon dis-
tribution can be written in terms of convolutions of all contributions in momentum
space. For quark distributions in the dense target, there are similar rules which can
be found in Ref. [7].

Using the above rules and calculating the coefficients of gluon distributions as illustrated in
Ref. [2], it is then straightforward to write down cross sections in terms of products of hard
parts and parton distributions as illustrated in the context of this paper.

There have been ambiguities regarding the unintegrated gluon distributions for more
than a decade. In this paper, we resolve this decade-long puzzle through explicit operator
definitions and propose measurements in physical processes which probe the distributions
directly. In particular, we find that quark-antiquark correlation in DIS collisions can probe
the Weizsäcker-Williams gluon distribution formulated in CGC many years ago.

It is well-known that in the color dipole approach, the cross sections of inclusive DIS and
SIDIS [26] at small-x are proportional to the dipole cross section. Since the dipole cross
section can be written as Fourier transform of the normalized gluon distribution Fx(q

2
⊥),

we can study the unintegrated gluon distribution xG(2) of nuclei through inclusive DIS and
SIDIS at EIC. Moreover, using DIS dijet (dihadron) processes at EIC in the correlation
limit, we can directly probe the Weizsäcker-Williams gluon distribution xG(1) which is the
distribution that actually counts the number of gluons in the nuclear wave function. This
would give us the golden opportunity to access the saturated WW gluon distribution which
has been studied for many years.

Recently, both STAR and PHENIX Collaborations have published experimental results
on di-hadron correlations in dAu collisions, where a strong back-to-back de-correlation of
the two hadrons was found in the forward rapidity region of the deuteron [37]. These results
have stimulated a number of theoretical calculations in the CGC formalism, where different
assumptions have been made in the formulations [38, 39], though not the correlation limit
we had to use in the present study. In particular, the numerical evaluation in Ref. [36, 38]
only contains the first term in the qg channel in Eq.(B22). The second term, as well as
other missing terms due to the use of a Gaussian approximation [19], are equally important
and should be taken into account to interpret the STAR data. In addition, we also present
the first CGC calculations on the g → qq̄ and g → gg channels in pA collisions. Although
these channels are subdominant in the forward dijet productions, they are important in the
central rapidity region.

At RHIC and LHC, by measuring the direct photon-jet correlation in pA collisions, one
can gain direct information about the dipole unintegrated gluon distribution xG(2). Fur-
thermore, by investigating the dijet (quark-gluon or gluon-gluon jet) production in the cor-
relation limit, one can test the universality of gluon distributions, and begin to see the con-
volutions of these two unintegrated gluon distributions. Using dijet production with more
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general kinematics, one can even probe deeper the small-x QCD dynamics, as multi-gluon
distributions become crucial.
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Appendix A: Derivation of two gluon distributions

1. The Weizsäcker-Williams gluon distribution

Let us focus on the Weizsäcker-Williams gluon distribution xG(1) (x, q⊥) first. Here we
provide a derivation of this gluon distribution from its operator definition, together with the
gauge links for a large nucleus, by using the McLerran-Venugopalan model. According to
its definition

xG(1) (x, q⊥) = 2

∫
dξ−d

2ξ⊥e
−iq⊥·ξ⊥−ixP+ξ−

(2π)3 P+

〈
Tr
[
F (ξ)U [+]†F (0)U [+]

]〉
, (A1)

with U [+] = Un[0,+∞; 0]Un[+∞, ξ−; ξ⊥]. The definition above is gauge invariant. However,
in order to simplify the calculation, we have chosen to use covariant gauge. Thus, it is then
easy to write it as

xG(1)(x, q⊥) = 2

∫
dξ−d

2ξ⊥e
−iq⊥·ξ⊥−ixP+ξ−

(2π)3 P+

〈
Tr
[
Un[+∞, ξ−; ξ⊥]F (ξ)Un†[+∞, ξ−; ξ⊥]

× Un†[0,+∞; 0]F (0)Un[0,+∞; 0]
]〉

=

∫
dξ−d

2ξ⊥e
−iq⊥·ξ⊥−ixP+ξ−

(2π)3 P+

×
〈[
W n†[+∞, ξ−; ξ⊥]abF

a (ξ)W n†[0,+∞; 0]cbF
c (0)

]〉
, (A2)

where W n†[+∞, ξ−; ξ⊥]ab now is in the adjoint representation. Following Belitsky et al [20],
we can insert a complete set of one particle intermediate states. Notice that for the quark
distribution at small-x, we need to have two particle intermediate states due to the antiquark
spectator. Therefore, the gluon distribution reads

xG(1)(x, q⊥) =

∫
dξ−d

2ξ⊥e
−iq⊥·ξ⊥−ixP+ξ−

(2π)3 P+

∫
d4P ′

(2π)4
(2π)δ(P ′2 −m2)A†

a(0)Aa(ξ), (A3)
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where we introduced the amplitude

Ab(ξ) ≡
〈
P ′|W n†[+∞, ξ−; ξ⊥]abF

a (ξ) |P
〉
. (A4)

This amplitude then takes the form

Aa(ξ) =

∫
d4k

(2π)4
eiξ−k++iξ⊥k⊥(2π)4δ(4) (k + P ′ − P )Aa(k). (A5)

By plugging in everything into the definition, we find

xG(1)(x, q⊥) =
2

(2π)3 (2P+)2
A†

a(x, q⊥)Aa(x, q⊥). (A6)

Let us define Ãa(x
−, R⊥) as the Fourier transform of Aa(x, q⊥). Like what we have done for

the quark distributions [7], we can compute the diagrammatic contributions to Ãa(x−, R⊥)
order by order and resum it in coordinate space which gives

Ãa(x−, R⊥)=Wba (x−, R⊥)F
+i
b (R⊥)=−

∫
d2x⊥ρb (x−, x⊥)Wba (x−, R⊥)∇R⊥

G (R⊥ − x⊥) ,

(A7)
where

W (x−, R⊥) = T exp

[
−ig

∫ +∞

x−

dz−

∫
d2z⊥G (x⊥ − z⊥) ρc (z−, z⊥) t

c

]
, (A8)

with tc being the adjoint color matrix. Eventually, one should be able to write

xG(1)(x, q⊥) =
1

4π3

∫
dz−

∫
d2R⊥

∫
dz′−

∫
d2R′

⊥e
iq⊥·(R⊥−R′

⊥)+ixP+(x−−x′
−)

× Ã†
a(z−, R⊥)Ãa(z

′
−, R

′
⊥). (A9)

In arriving to the expression above, we have put in a normalization factor of 2P+ which
comes from 〈P |· · · |P 〉. In the following, we need to average the above expression with a
gaussian distribution of color charges as proposed in CGC. Therefore

xG(1)(x, q⊥) =
1

4π3

∫
d2R⊥

∫
d2R′

⊥e
iq⊥·(R⊥−R′

⊥)+ixP+(z−−z′−)
∫ +∞

−∞
dz−d

2z⊥

∫ +∞

−∞
dz′−d

2z′⊥

×
〈
ρb
(
z−, z⊥

)
Wba

(
z−, R⊥

)
ρc
(
z′−, z′⊥

)
W †

ca

(
z′−, R′

⊥
)〉

ρ

×∇R⊥
G (R⊥ − z⊥)∇R′

⊥
G (R′

⊥ − z′⊥) . (A10)

Assuming a Gaussian distribution of sources, it is easy to prove that
〈
ρb (z−, z⊥)Wba (z−, R⊥) ρc

(
z′−, z

′
⊥
)
W †

ca

(
z′−, R

′
⊥
)〉

ρ

=
〈
ρb (z−, z⊥) ρc

(
z′−, z

′
⊥
)〉 〈

Wba (z−, R⊥)W
†
ca

(
z′−, R

′
⊥
)〉

ρ
(A11)

= δbcδ
(
z− − z′−

)
µ2 (z−, z⊥ − z′⊥)

〈
Wba (z−, R⊥)W

†
ca

(
z′−, R

′
⊥
)〉

ρ
, (A12)

by using the fact that tcab = −ifabc(Note that fabc is anti-symmetric. See [42] for more
details). Therefore, we have

xG(1)(x, q⊥) =
g2

4π3

∫
d2R⊥

∫
d2R′

⊥e
iq⊥·(R⊥−R′

⊥)
∫ +∞

−∞
dz−d

2z⊥d
2z′⊥µ

2 (z−, z⊥ − z′⊥)

×Tr
〈
W (z−, R⊥)W

† (z−, R
′
⊥)
〉
∇R⊥

G (R⊥ − z⊥)∇R′
⊥
G (R′

⊥ − z′⊥) . (A13)
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The different factors in the integral above can all be written in terms of a single function
when a Gaussian distribution of sources is used. Let

Γ(R⊥ − R′
⊥) = g4

∫
d2z⊥d

2z′⊥dz−µ
2(z−, z⊥ − z′⊥)

× [G(R⊥ − z⊥)−G(R′
⊥ − z⊥)] [G(z

′
⊥ −R⊥)−G(z′⊥ −R′

⊥)] . (A14)

In terms of Γ, Eq. (A13) takes the form

xG(1)(x, q⊥) =
S⊥

16π4αs

N2
c − 1

Nc

∫
d2r⊥e

iq⊥·r⊥∇2Γ(r⊥)

Γ(r⊥)

[
1− exp

(
−Nc

2
Γ(r⊥)

)]
. (A15)

In particular, for the McLerran-Venugopalan model, the function Γ can be evaluated explic-
itly giving the well-known result

xG(1)(x, q⊥) =
S⊥

4π4αs

N2
c − 1

Nc

∫
d2r⊥e

iq⊥·r⊥ 1

r2⊥

[
1− exp

(
−1

4
r2⊥Q

2
s

)]
, (A16)

where Q2
s is the gluon saturation scale.

2. The dipole gluon distribution

According to its definition

xG(2)(x, q⊥) = 2

∫
dξ−d

2ξ⊥e
−iq⊥·ξ⊥−ixP+ξ−

(2π)3 P+

〈
Tr
[
F (ξ)U [−]†F (0)U [+]

]〉
, (A17)

with U [+] = Un[0,+∞; 0]Un[+∞, ξ−; ξ⊥] and U [−] = Un[0,−∞; 0]Un[−∞, ξ−; ξ⊥]. Here we
have chosen the covariant gauge to do the calculation. Thus, one gets

xG(2)(x, q⊥) = 2

∫
dξ−d

2ξ⊥e
−iq⊥·ξ⊥−ixP+ξ−

(2π)3 P+

×
〈
Tr
[
Un[+∞, ξ−; ξ⊥]F (ξ)Un†[−∞, ξ−; ξ⊥]

Un†[0,−∞; 0]F (0)Un[0,+∞; 0]
]〉
. (A18)

By inserting the intermediate state and replacing the 〈P |· · · |P 〉 by the ensemble average
〈· · · 〉ρ, we get

xG(2)(x, q⊥) =
1

2π3

〈
Tr
[
B†(x, q⊥)B(x, q⊥)

]〉
ρ
, (A19)

with
B(ξ) ≡

〈
P ′|Un[+∞, ξ−; ξ⊥]F (ξ)Un†[−∞, ξ−; ξ⊥]|P

〉
. (A20)

and

B(ξ) =
∫

d4k

(2π)4
eiξ−k++iξ⊥k⊥(2π)4δ(4) (k + P ′ − P )B(k) (A21)

In CGC, we can find that, in covariant gauge, the only non-trivial field strength is F+i
a (x⊥) =

−∂i
∫
d2y⊥G (x⊥ − y⊥) ρa (x−, y⊥). Therefore, if we write

B(q) =
∫

dx−d
2R⊥e

iR⊥q⊥B̃(x−, R⊥) (A22)

=

∫
dx−d

2R⊥e
iR⊥q⊥Un[+∞, x−;R⊥]F (R⊥)U

n†[−∞, x−;R⊥], (A23)
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we can easily see that B(q) ∝ ∂iUn†[−∞,+∞;R⊥]. In the above derivation, we have to

assume that eix
−k+ ≃ 1. This can be justified by noting that x− is integrated from −L to

+L with L being the longitudinal width of the nucleus. For small k+ = xP+ with small x,
we have k+L≪ 1.

Eventually, one gets

xG(2)(x, q⊥) =
Nc

2π3

∫
d2R⊥

∫
d2R′

⊥e
iq⊥·(R⊥−R′

⊥)
∇R⊥

· ∇R′
⊥

g2
1

Nc

Tr
[
〈U (R⊥)U

† (R′
⊥)〉ρ

]

=
q2⊥Nc

2π2αs

S⊥F
g
xg
(q2⊥) (A24)

with F g
xg
(q2⊥) =

∫
d2r⊥

(2π)2
eiq⊥·r⊥ 1

Nc

Tr〈U (r⊥)U
† (0)〉ρ ≃

1

πQ2
sq

exp

[
− q2⊥
Q2

sq

]
, (A25)

where Q2
sq = µ2

s

2π
ln 1

r2
⊥
λ2 and µ2

s = g2

2
CF

∫
dx−µ2 (x−). Here the saturation scale Q2

sq is

obtained from the fundamental representation and it is usually called quark saturation
momentum.

Appendix B: Evaluations of Correlators

Here in this section, we summarize the evaluation of the correlators in CGC used above
in the main context of the paper.

1. The evaluation of two point functions and 〈TrU [�]〉

First of all, as derived in Ref. [30], for an arbitrary single Wilson line (start at a− and
end at b−) , one can get

〈U
(
a−, b−|x⊥

)
〉 = exp

[
−g

4CF

2

∫ b−

a−
dz−µ2(z−)

∫
d2z⊥G

2(x⊥ − z⊥)

]
. (B1)

Using this result, it is easy to derive that

〈U
(
a−, b−|x⊥

)
U
(
b−, c−|x⊥

)
〉 = 〈U

(
a−, c−|x⊥

)
〉. (B2)

The derivation is based on time ordering of z− and pairing of two adjacent operators.
Furthermore, for two infinite Wilson lines of different transverse position, one gets

〈U (x⊥)U
† (y⊥)〉 = exp

[
−g

4CF

2

∫ +∞

−∞
dz−µ2(z−)

∫
d2z⊥ (G(x⊥ − z⊥)−G(y⊥ − z⊥))

2

]
,

≃ exp

[
−g

4CF

16π
(x⊥ − y⊥)

2 ln
1

λ2 (x⊥ − y⊥)
2

∫ +∞

−∞
dz−µ2(z−)

]
, (B3)

where 1/λ stands for the cut-off in the integral. Thus, usually one writes 〈U (x⊥)U
† (y⊥)〉 ≃

exp
[
−Q2

s(x⊥−y⊥)2

4

]
with Q2

s =
g4CF

4π
ln 1

λ2(x⊥−y⊥)2

∫ +∞
−∞ dz−µ2(z−).
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Now we are ready to evaluate 〈TrU [�]〉 and show that it is the same as the correlator of
two infinite Wilson lines. According to the definition, one can easily find that

〈TrU [�]〉 = 〈Tr
[
U (0,+∞|0⊥)U

(
+∞, ξ−|ξ⊥

)
U
(
ξ−,−∞|ξ⊥

)
U (−∞, 0|0⊥)

]
〉 (B4)

= 〈Tr
[
U (0⊥)U

† (ξ⊥)
]
〉 (B5)

where we have used Eq. (B2). Therefore, one can easily relate 1
Nc
〈TrU [�]〉 to Fx (q

2
⊥) through

Fourier transform.

2. Evaluation of the 4-point function with a Gaussian distribution of sources

The derivation presented here follows closely the method presented in [40] and used also
in [31] where other 4-point functions have been calculated. For the sake of completeness and
to make the presentation self-contained we will briefly review how to calculate the 4-point

function S
(4)
xg (x1, x2; x

′
2, x

′
1) =

1
Nc

〈
TrU(x1)U

†(x′1)U(x
′
2)U

†(x2)
〉
xg

for a Gaussian distribution

of charges. Details of the general procedure are given in [40].
The nuclear average of a function of the gauge field is defined by

〈f [A]〉xg
=

∫
Dρ exp

{
−
∫
d2x d2y dz+

ρc(z
+, x)ρc(z

+, y)

2µ2
xg
(z+)

}
f [A], (B6)

where the color charge ρ and the gauge field are related by

−∇2
⊥A

−
c (z

+, x) = gSρc(z
+, x) , (B7)

and µ2
xg
(z+) is the density of color charges at a given z+. This Gaussian distribution allows

us to express any correlator in terms of the elementary correlator of two color charges

〈ρc(z+, x)ρd(z′+, y)〉xg
= δcdδ(z

+ − z′+)δ(2)(x− y)µ2
xg
(z+). (B8)

In order to do this, the Wilson lines must be expanded in terms of gSρ and then apply
Wick’s theorem. The Wilson lines are naturally expanded in terms of the gauge field and
not the color charge density, therefore it is useful to express the elementary correlator (B8)
in terms of the gauge field.

g2S〈A−
c (z

+, x)A−
d (z

′+, y)〉xg
= δcdδ(z

+ − z′+)µ2
xg
(z+)Lxy, (B9)

with L given in terms of the two-dimensional massless propagator G0,

Lxy = g4S

∫
d2z G0(x− z)G0(y − z), G0(x) =

∫
d2k

(2π)2
eik·x

k2
. (B10)

This correlation between two fields has the color structure of a gluon link. This, together
with the locality of the correlator in the z+ variable, allows for a graphical representation
of each of the terms of the expansion of the Wilson lines. For the particular color structure
of the 4-point function we are interested in diagrams which look like the left hand side
of Fig. 13. One kind of contribution from these diagrams that is easy to evaluate is the
contribution from links with both ends attached to the same line. For a Wilson line at a
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n links

x1

x2

x
′

2

x
′

1

= an + bn

FIG. 13. Graphical representation of the terms in the series expansion of the 4-point function.

transverse coordinate x this kind of link gives a factor of −CFµ
2Lxx/2, it has a color singlet

structure and therefore factors out in the evaluation of any specific diagram. When multiple
insertions of these particular links are taken into account they can be resummed into the
factor

T = e
−CF

2
µ2(Lx1x1+Lx2x2+Lx′1x

′
1
+Lx′2x

′
2
)
, (B11)

where the contributions from the four Wilson lines involved in the correlator have been
included. After factoring out the so-called tadpole contributions we are left with diagrams
in which all gluon links connect different Wilson lines. The strategy to evaluate this diagrams
is to include the proper L factors for each of the gluon links and to resolve the color structure
by means of the Fierz identity T a

ijT
a
kl =

1
2
δilδjk − 1

2Nc
δijδkl. The resummation then is not a

trivial task since each diagram will end up being written as a linear combination of the two
topologies shown in the right hand side of Fig. 13. As shown in [40] this difficulty can be
overcome by grouping diagrams according to the number of gluon links and then using an
inductive procedure to find the value of the nth term in the series. By explicitly resolving
the nth link and using the notation in Fig. 13 we have,

(
an
bn

)
= µ2

xg
(z+n )M

(
an−1

bn−1

)
, (B12)

where the matrix M is given by all the different ways in which the nth link can be attached,

M =

(
CF (Lx1x2 + Lx′

2x
′
1
) + 1

2Nc
F (x1, x2; x

′
2, x

′
1) −1

2
F (x1, x

′
1; x

′
2, x2)

−1
2
F (x1, x2; x

′
2, x

′
1) CF (Lx1x

′
1
+ Lx′

2x2
) + 1

2Nc
F (x1, x

′
1; x

′
2, x2)

)
,

(B13)
with F (x1, x2; x

′
2, x

′
1) = Lx1x

′
2
−Lx1x

′
1
+Lx2x

′
1
−Lx2x

′
2
. It is easy to solve this recursion relation

taking into account the initial condition a0 = 1, b0 = 0. Formally, the solution reads

(
an
bn

)
=

[
n∏

i=1

µ2
xg
(z+i )

]
Mn

(
1

0

)
. (B14)

In order to find an explicit solution we have to find the eigenvalues λ± and eigenvectors of
M . The solution then takes the form

(
an
bn

)
=

[
n∏

i=1

µ2
xg
(z+i )

](
a+λ

n
+ + a−λ

n
−

b+λ
n
+ + b−λ

n
−

)
, (B15)
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with

λ± =

(
Nc

4
− 1

2Nc

)
(Lx1x2 + Lx′

2x
′
1
) +

Nc

4
(Lx1x

′
1
+ Lx′

2x2
) +

1

Nc

F (x1, x2; x
′
2, x

′
1)±

Nc

4

√
∆ ,

(B16)

a± =

√
∆± F (x1, x

′
2; x2, x

′
1)

2
√
∆

, b± = ∓F (x1, x2; x
′
2, x

′
1)

Nc

√
∆

, (B17)

∆ = F 2(x1, x
′
2; x2, x

′
1) +

4

N2
c

F (x1, x2; x
′
2, x

′
1)F (x1, x

′
1; x

′
2, x2). (B18)

With this result we can now easily resum the contribution from all the diagrams. The
4-point function is then given by

S(4)
xg

(x1, x2; x
′
2, x

′
1) =

T

Nc

∞∑

n=0

∫

z+1 <···<z+n

[
Ncan(z

+
1 , . . . , z

+
n ) +N2

c bn(z
+
1 , . . . , z

+
n )
]
. (B19)

When written in terms of the eigenvalues above this expression can be resummed into

S(4)
xg

(x1, x2; x
′
2, x

′
1) =

T

Nc

[
Nc

(
a+e

µ2λ+ + a−e
µ2λ−

)
+N2

c

(
b+e

µ2λ+ + b−e
µ2λ−

)]
. (B20)

Using the explicit values shown above, this expression takes the form

S(4)
xg

(x1, x2; x
′
2, x

′
1) = e−

CF
2

[Γ(x1−x2)+Γ(x′
2−x′

1)]

×
[(√

∆+ F (x1, x
′
2; x2, x

′
1)

2
√
∆

− F (x1, x2; x
′
2, x

′
1)√

∆

)
e

Nc
4
µ2

√
∆

+

(√
∆− F (x1, x

′
2; x2, x

′
1)

2
√
∆

+
F (x1, x2; x

′
2, x

′
1)√

∆

)
e−

Nc
4
µ2

√
∆

]

× e−
Nc
4
µ2F (x1,x

′
2;x2,x

′
1)+

1
2Nc

µ2F (x1,x2;x′
2,x

′
1), (B21)

with Γ(x− y) = µ2(Lxx + Lyy − 2Lxy).
Taking the large-Nc limit of this result we find a much simpler expression,

S(4)
xg

(x1, x2; x
′
2, x

′
1)≃e−

CF
2

[Γ(x1−x2)+Γ(x′
2−x′

1)]

−F (x1, x2; x
′
2, x

′
1)

F (x1, x′2; x2, x
′
1)

(
e−

CF
2

[Γ(x1−x2)+Γ(x′
2−x′

1)] − e−
CF
2

[Γ(x1−x′
1)+Γ(x′

2−x2)]
)
.

(B22)

Note that even this large-Nc result can not be expressed as a product of 2-point functions.
The two terms appearing above have a simple interpretation in terms of multiple scatter-
ings that allows us to label the first term as the elastic part and the second term as the
inelastic part (see [35] where the same scattering factor appears in the context of two-gluon
production). Taking into account that the Gaussian distribution of sources is equivalent
to the two gluon exchange approximation with independent scattering centers, it is easy to
see that the first term is what you would expect if only interactions that don’t break up
nucleons in the nucleus were allowed. In that scenario the quark-antiquark pair is always
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on a singlet state and the interaction factor can be written as the product of the interaction
term for a dipole in the amplitude times an interaction term for the dipole in the conjugate
amplitude. The inelastic part takes into account all the interactions were at least one of the
nucleons is broken apart, in which case the quark-antiquark pair goes from a singlet state to
an octet state. In the large-Nc limit transitions from the octet state to the singlet state are
suppressed and therefore the pair remains in the octet state for the rest of the interaction
with the nucleus.
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