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The puncture method for dealing with black holes in the numerical simulation of vacuum space-
times is remarkably successful when combined with the BSSN formulation of the Einstein equations.
We examine a generalized class of formulations modelled along the lines of the Laguna-Shoemaker
system and including BSSN as a special case. The formulation is a two parameter generalization of
the choice of variables used in standard BSSN evolutions. Numerical stability of the standard finite
difference methods is proven for the formulation in the linear regime around flat space, a special case
of which is the numerical stability of BSSN. Numerical evolutions are presented and compared with
a standard BSSN implementation. Surprisingly, a significant portion of the parameter space yields
(long-term) stable simulations, including the standard BSSN formulation as a special case. Fur-
thermore, non-standard parameter choices typically result in smoother behaviour of the evolution
variables close to the puncture.

PACS numbers: 04.20.Cv, 04.25.D-, 04.25.dg

I. INTRODUCTION

Accelerated bodies generate gravitational waves
(GWs) in analogy to the emission of electromagnetic
waves by accelerated charges. The first direct detection
of GWs, expected in the course of the next decade, will
not only provide us with the first strong field tests of
Einstein’s general relativity but also open up an entire
new window to the universe. The strongest source of
GWs are compact binary systems involving neutron stars
and black holes (BHs). Such compact objects have been
known for a long time to represent the natural end prod-
uct of stellar evolution. For instance, stellar-mass BHs
are suspected to be the compact members in X-ray bi-
naries [1]. In addition there is now strong observational
evidence for the existence of supermassive BHs (SMBHs)
at the center of many if not all galaxies [2, 3]. Astrophys-
ical observations in recent decades have thus promoted
BHs from the status of a mathematical curiosity to that
of a key player in many astrophysical processes.

While GW emission from compact objects has been
theoretically predicted for quite a while, the waves’ weak
interaction makes their direct observation a daunting
task, possible only by using modern high precision tech-
nology. In particular, there exists now an international
network of ground-based laser interferometers (LIGO
[4, 5], GEO600 [6, 7], VIRGO [8] and TAMA [9]) op-
erating at or near design sensitivity. A space-borne in-
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terferometer called LISA [10] is scheduled for launch in
about one decade to supplement such observations with
exceptional accuracy in a lower frequency band. Still, the
understanding of the radiated wave patterns is crucial for
the first detection of GWs as well as for the interpreta-
tion of the measured signal. Eventually, the community
will be able to gain information about characteristic pa-
rameters of the BH system observed via GWs such as the
mass ratio and spins.

The modeling of these binary sources of GWs currently
employs a variety of techniques. The inspiraling phase of
a binary black-hole (BBH) prior to merger as well as the
ringdown phase after the merger can be modeled accu-
rately by the approximate post-Newtonian [11] and per-
turbation methods [12], respectively. In order to simulate
the late inspiral and merger of a BBH, however, numer-
ical methods are required to solve the fully non-linear
Einstein equations. A numerical treatment requires us to
cast the Einstein equations into the form of a time evo-
lution system. This is most commonly done by using the
canonical Arnowitt-Deser-Misner “3+1” decomposition
[13] as further developed by York [14]; the 4-dimensional
spacetime is decomposed into a family of 3-dimensional
hypersurfaces labeled by a time coordinate. The geom-
etry of spacetime is determined by the induced 3-metric
γij on the hypersurfaces and their extrinsic curvature
Kij , which describes their embedding. The coordinates
are described by the lapse function α and the shift vec-
tor βi. These gauge functions represent the coordinate
freedom of general relativity (GR).

For a long time, numerical methods based on this ap-
proach faced a variety of problems including the specific
formulation of the evolution equations, suitable coordi-
nate choices and the treatment of singularities inherent in
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the spacetimes. The year 2005 brought about the even-
tual breakthrough, the first complete simulations of a
BBH coalescence [15–17]. The ensuing years have pro-
duced a wealth of results on BBH inspiral pertaining to
BH recoil, spin precession and GW data analysis to name
but a few (see [18–22] for recent reviews).

The current generation of successful numerical codes
can be divided into two categories. The first class uses
the so-called Generalized Harmonic Gauge (GHG) formu-
lation employed in Pretorius’ original breakthrough. The
second type of codes is commonly referred to as Moving

Puncture codes, the method underlying the simulations
of the Goddard and Brownsville groups. In spite of the
remarkable robustness of both methods, it is fair to say
that our understanding of why these techniques work so
well is limited. The Moving Puncture method in par-
ticular has proven robust in even the most demanding
simulations of BBHs involving nearly critical spins and
velocities close to the speed of light [23–26]. Previous
investigations of this method have concentrated on the
structure near the singularity and the impact of gauge
conditions [27–31].

The purpose of the present work is to shed addi-
tional light on which ingredients of the Moving Punc-
ture method make this technique so successful. The par-
ticular focus of our study is on the underlying formula-
tion of the Einstein equations, the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation [32, 33] as well
as a modified version thereof modeled along the lines of
the alternative evolution system proposed by Laguna and
Shoemaker (LaSh) in 2002 [34]. Such a study is beyond
purely academic interest. While the currently employed
techniques appear to work well for 3+1 dimensional sim-
ulations in the framework of Einstein’s general relativity,
there is strong motivation to push numerical relativity
further. A main target of gravitational wave observations
is the testing of GR versus alternative theories of grav-
ity (see [35] for an overview, [36] for solutions of rotating
holes in Chern-Simons modified gravity and [37] for hy-
perbolicity studies of scalar tensor theories of gravity). A
further application of numerical relativity, in the context
of high energy physics, as motivated by so-called TeV
gravity scenarios [38–42], or by the (conjectured) Anti-
de Sitter/Conformal Field theory (AdS/CFT) correspon-
dence [43–45], will be the simulation of BHs in higher
dimensions [46–55] or non-asymptotically flat spacetimes
(see, e.g., [56] for a recent approach). An improved un-
derstanding of the success of the 3+1 GR techniques will
be crucial in extending numerical relativity successfully
along these lines of future research. From a more prac-
tical point of view, alternative schemes might simply be
more efficient and result in reduced computational re-
quirements. Unfortunately, we will see further below that
the LaSh system does not result in faster simulations.

This paper is structured as follows. The formulation
of the LaSh evolution scheme is presented in Sec. II.
In Sec. III well-posedness and numerical stability of the
LaSh system are studied. The LaSh formulation, imple-

mented as an extension to the Lean code [57], is tested
numerically with head-on collision and inspiraling BH bi-
naries. The numerical results are presented in Sec. IV.
Finally Sec. V contains our conclusions.

II. THE LASH FORMULATION

A. The ADM equations

Both the BSSN and LaSh systems are typically pre-
sented as a simultaneous conformal decomposition and
readjustment of the ADM equations [33, 58, 59]. For our
purposes such a presentation will not suffice. Instead,
the addition of definition-differential constraints which
alters the characteristic structure of the system and guar-
antees well-posedness and the conformal decomposition
that changes to a convenient form of the evolved variables
are considered separately.

In any case one must first introduce the ADM system,
which has the evolution part

∂tγij = −2αKij + Lβγij , (1)

∂tKij = −DiDjα + α[Rij − 2KikKk
j + KijK]

+LβKij . (2)

and the physical Hamiltonian and momentum constraints

H = R + K2 − KijK
ij = 0, (3)

Mi = DjK
j
i − DiK = 0, (4)

where

Rij = Γk
ij,k − Γk

kj,i + Γk
klΓ

l
ij − Γk

ilΓ
l
kj . (5)

When closed with some gauge choice, the ADM system is
typically only weakly hyperbolic and thus does not admit
a well-posed Cauchy problem. The BSSN formulation is
one of many modifications to the ADM system that can
yield a strongly (or even symmetric) hyperbolic problem
when coupled to some gauge [60].

B. BSSN Constraint addition

Definition-differential constraint: We define the dif-
ferential constraint

Gi ≡ fi − γjk
(

γij,k − 1

3
γjk,i

)

= 0 . (6)

Below it will be seen that this choice naturally makes fi

coincide with the relevant BSSN variable.
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Constraint addition: The ADM equations are ad-
justed to

∂tγij = ADM, (7)

∂tKij = ADM + αG(i,j) −
1

3
αγij

(

H + G,k
k

)

, (8)

∂tfi = ∂t

(

γjkγij,k − 1

3
γjkγjk,i

)

ADM

+ 2αMi − 2αGjKtf
ij + LβGi

+ γijG
k∂kβj − 2

3
Gi∂jβ

j . (9)

The principal part, i.e., highest derivatives of variables
added correspond exactly to those added in the NOR
formulation (with a = b = 1, c = d = −1/3 in the
notation of [61]). It is for this reason that Gundlach
and Mart́ın-Garćıa were able to identify the two systems
when analyzing the principal part [61]).

C. Conformal decomposition and densitization

Conformal variables and algebraic constraints: The
LaSh system [34] takes as its evolved variables

γ̃ij = γ− 1
3 γij , (10)

χ = γ− 1
3 , (11)

K̃ = χ− 3
2
nK K, (12)

Ãi
j = χ− 3

2
nK (Ki

j − δi
jK/3), (13)

Γ̃i = γ̃jkΓ̃i
jk = −∂j γ̃

ij . (14)

The key difference between LaSh and BSSN is that inside
LaSh the trace and tracefree parts of the extrinsic curva-
ture are densitized. Notice, that we recover the standard
BSSN equations for vanishing densitization parameter.
Note that the definition of Gi gives

Gi = fi − γjk
(

γij,k − 1

3
γjk,i

)

= γ̃ijΓ̃
j − γ̃jkγ̃ij,k. (15)

Evolution equations and constraints: Taking a time
derivative of the definitions, substituting the evolution
equations and rewriting in terms of the evolved variables
gives the LaSh equations - up to the algebraic constraints
D = ln(det γ̃) = 0, S = γ̃l[iÃ

l
j] = 0, T = γ̃ijÃij = 0,

which are assumed to be satisfied exactly. The unknowns

evolve according to

∂tγ̃ij = −2αχ3nK/2Ãij + βkγ̃ij,k + 2γ̃k(iβ
k
,j)

− 2

3
γ̃ijβ

k
,k (16)

∂tχ = βiχ,i +
2

3
χ(αχ

3
2

nK K̃ − βi
,i), (17)

∂tÃ
i
j = χ−3nK/2[−DiDjα + αRi

j ]
tf

+ (1 − nK)χ3nK/2αK̃Ãi
j + βkÃi

j,k

− Ãk
jβ

i
,k + Ãi

kβk
,j + nKÃi

jβ
k
,k , (18)

∂tK̃ = −χ−3/2nK DiD
iα + βkK̃,k + nKK̃βk

,k

+ χ3nK/2α(ÃijÃij + (1 − 3nK)K̃2/3), (19)

∂tΓ̃
i = −2χ3nK/2Ãijα,j + 2α(χ3nK/2Γ̃i

jkÃjk

− 3

2
χ3nK/2Ãij ln(χ),j −

2

3
γ̃ij(χ3nK/2K̃),j)

+ γ̃jkβi
,jk +

1

3
γ̃ijβk

,kj + βjΓ̃i
,j −

(

Γ̃
)j

d
βi

,j

+
2

3

(

Γ̃
)i

d
βj

,j , (20)

where [ ]tf denotes the trace free part,
( )

d
denotes the

definition of those terms rather than the evolved variable
and Rij is partially rewritten in terms of Γ̃i,

Rij = Rχ
ij + R̃ij , (21)

Rχ
ij =

1

2χ
D̃iD̃jχ +

1

2χ
γ̃ijD̃

lD̃lχ

− 1

4χ2
D̃iχD̃jχ − 3

4χ2
γ̃ijD̃

lχD̃lχ (22)

R̃ij = −1

2
γ̃lmγ̃ij,lm + γ̃k(i|Γ̃

k
|,j) +

(

Γ̃
)k

d
Γ̃(ij)k+

γ̃lm
(

2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj

)

. (23)

D̃i denotes the covariant derivative compatible with the
conformal metric. The physical constraints are rewritten

H = R − χ3nK (Ãj
kÃk

j −
2

3
K̃2) = 0, (24)

Mi = Ãj
i,j −

2

3
K̃,i −

nK

χ
K̃χ,i − Ãj

mΓ̃m
ji

− 3

2χ
(1 − nK)Ãm

iχ,m = 0. (25)

The differential constraints are given by Eq. 15 and alge-
braic constraints by

S ≡ γ̃l[iÃ
l
j] = 0 , T ≡ γ̃ijÃij = 0 , (26)

D ≡ ln(det γ̃) = 0. (27)

Numerical relativity codes use a technique called con-
straint projection to enforce the algebraic constraints.
When operations are performed which may violate the
D, S and T constraints they are enforced explicitly. It is
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for this reason that we need not worry about the algebraic
constraints in the construction of (16-20); the continuum
system they represent is identical to that of (7-9). BSSN

evolves Ãij , so does not have the symmetry constraint S.

D. Gauge conditions

The successful evolution of binary BH systems has
been possible with the now standard 1+log variant of
the Bona-Massó slicing condition,

∂tα = −2αK + βi∂iα. (28)

Stationary data for this gauge has been studied in [27–
31, 62]. In our numerical evolutions the Γ-driver shift
condition

∂tβ
i = µSBi + ξ1β

j∂jβ
i, (29)

∂tB
i = ∂tΓ̃

i − ξ2β
j∂jΓ̃

i − ηBi + ξ1β
j∂jβ

i, (30)

is used with (µS , ξ1, ξ2, η) = (1, 0, 0, 1) unless otherwise
stated. We refer to the combination of the 1+log lapse
and Γ-driver shift as “puncture gauge”. Conditions in
which the lapse and shift are promoted to the status of
evolved variables are often called live gauge conditions.
In analytic studies however it is common to consider a
fixed, densitized lapse

Q = γ−nQ

2 α = χ
3nQ

2 α. (31)

and fixed shift. In contrast to BSSN the LaSh system
takes the densitized lapse Q as a dynamical variable. It
is evolved according to the 1+log condition (28) rewritten
in terms of Q. The original LaSh system [34] is modified
here by the consideration of different densitization pa-
rameters nK and nQ for the extrinsic curvature and the
lapse. When comparing the computational cost of BSSN
and LaSh in section IV we additionally evolve LaSh in
the downstairs form of the conformal extrinsic curvature
Ãij . Whereas in [63] the focus was on changing PDE
properties of the formulation and holding the variables
fixed, here we consider the effect of a change of variables
alone.

III. WELL-POSEDNESS AND NUMERICAL

STABILITY

The well-posedness of the LaSh system with either the
puncture gauge or a fixed densitized lapse and shift (as-
suming that the D,S and T constraints are satisfied) was
previously studied in [58, 61], so verifying these prop-
erties for the system linearized around flat space is in
its own right uninteresting. However we wish to demon-
strate the numerical stability of the LaSh system around
flat-space. The approach for the semi-discrete scheme
is analogous to that for the continuum system, so we

first tackle that problem. In Sec. III A we briefly recap
the theoretical background. Next, in Sec. III B we use
characteristic variables to demonstrate well-posedness for
the continuum system. The analysis is then extended to
the semi-discrete case, and follows closely the method of
[64, 65]. Finally, we deal with the algebraic constraints
in the fully-discrete system by demonstrating that the
natural semi-discrete limit of the standard implementa-
tion (with constraint projection) is given by the systems
considered in Sec III B.

A. Theoretical background

Continuum system: The linear, constant coefficient,
first order in time and second order in space time evolu-
tion problem

∂tu = P [∂x]u, u(t = 0, x) = f(x) (32)

is called well-posed with respect to a norm || · || if for
every smooth, periodic f(x) there exists a unique smooth
spatially periodic solution and there are constants C, K
such that for t ≥ 0

||u(t, ·)|| ≤ KeCt||u(0, ·)||. (33)

A hermitian matrix Ĥ(ω) is called a symmetrizer of the

system if the energy û∗Ĥû is conserved by the principal
part of the Fourier transformed system, with

K−1Iω ≤ Ĥ ≤ KIω, Iω ≡
(

ω2 0
0 I

)

, (34)

for some K > 0 constant, for every frequency ω in Fourier
space (û denotes the Fourier transformed function.) We
say that the Hermitian matrices A, B satisfy the inequal-
ity A ≤ B if y†Ay ≤ y†By for every y. Well-posedness is
equivalent to the existence of a symmetrizer [66], which
is in turn equivalent to the existence of a complete set of
characteristic variables.

Discrete system: We introduce a grid

xj = (xj1 , yj2 , zj3) = (j1h, j2h, j3h), (35)

with ji = 0, . . .Nr−1 and h = 2π
N is the spatial resolution.

We denote

D+vi =
1

h
(vi+1 − vi), D−vi =

1

h
(vi − vi−1), (36)

D0vi =
1

2h
(vj+1 − vj−1). (37)

The standard second order accurate discretization is writ-
ten

∂i → D0i, (38)

∂i∂j → D
(2)
ij =

{

D0iD0j i 6= j
D+iD−i i = j

(39)
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For brevity, we do not consider higher order discretiza-
tion. Fourier transforming reveals

D̂
(1)
i =

i

h
si, (40)

D̂
(2)
ij =

{

− 1
h2 sisj i 6= j

− 4
h2 t2i t

2
j i = j

(41)

We abbreviate si = sin ξi and ti = sin ξi/2, and write

ξr = ωrh = −π +
2π

N
,−π +

4π

N
, ..., π. (42)

where ωr = −N
2 + 1, ..., N

2 and r = 1, 2, 3. The time
step k is related to the spatial resolution h through the
Courant factor k = λch. Finally, we use the notation

ω2 = −ηijD̂0iD̂0j, Ω2 = −ηijD̂
(2)
ij , (43)

where ηij is just the identity matrix, so that Ω2 =
∑3

i=1 |D̂+i|2. The results for numerical stability with
a polynomial method of lines time-integrator are anal-
ogous to the result at the continuum: if there exists
a hermitian Ĥ(ξ) for every grid frequency ξ such that

the energy û∗Ĥû is conserved by the Fourier-transformed
semi-discrete principal system and satisfies

K−1IΩ ≤ Ĥ ≤ KIΩ, IΩ ≡
(

Ω2 0
0 I

)

, (44)

with K as above, then it is possible to construct a discrete
symmetrizer for the semi-discrete problem without lower
order terms. If the spectral radius of the product of the
time-step and the semi-discrete symbol is bounded by
a value that depends on the time-integrator, then the
system is stable with respect to the norm

||u||2h,D+
≡ ||us||2h + ||uf ||2h +

3
∑

i=1

||D+ius||2h, (45)

where the subscript distinguishes between variables that
appear as second derivatives in the continuum system.
The estimate

||un∆t||h,D+
≤ KeCn∆t||u0||h,D+

, (46)

then holds. For details we refer the reader to [64].
Discussion: A straightforward way to construct char-

acteristic variables for the continuum system is to per-
form a 2 + 1 decomposition. One then ends up with de-
coupled scalar, vector and tensor sectors which are hope-
fully straightforward to diagonalize. Diagonalisability of

a system guarantees the existence of a complete set of
eigenvectors, which in turn guarantees well-posedness in
some norm. For the discrete system, a similar approach
is not possible with the standard discretization because
the various blocks of the system remain coupled. This
complication is caused by the fact that under the stan-
dard discretization the second derivative is not equivalent
to a repeated application of the first derivative. We will
see in the following sections that this forces us to con-
sider significantly larger matrices, and that for the main
case of interest, the stability of the LaSh formulation
with puncture gauge, the calculation is impractical. One
may also consider the numerical stability of systems with
the D2

0 discretization, in which second derivatives are ap-
proximated by repeated application of the centered dif-
ference operator D0. In this case it is possible to make a
2 + 1 decomposition of the semi-discrete system. Unfor-
tunately, the discretization suffers from the problem that
the highest frequency mode on the grid is not captured
by the scheme. For the Fourier transformed system this
property implies that the transformed spatial derivatives
vanish, which typically prevents one from building an
estimate on the highest frequency mode. Although arti-
ficial dissipation may restore stability, we do not consider
the D2

0 discretization further.

B. Continuum system

Fixed densitized lapse and shift: We begin by lineariz-
ing the LaSh system around flat-space. Following [64, 66]
we Fourier transform in space, and make a pseudo-
differential reduction to first order. Spatial derivatives
transform according to ∂i → ıwi. The system has a
complete set of characteristic variables with character-
istic speeds (0,±ω,±√

nQω). A conserved quantity for
the system may be trivially constructed from the char-
acteristic variables. It is straightforward but tedious to
demonstrate that the conserved quantity is equivalent to
the norm

||u||2fd = ||γij ||2 + ||Kij ||2 + ||fi||2 +

3
∑

k=1

||γij,k||2 (47)

Puncture gauge: For simplicity we consider the time-
integrated Γ-driver shift condition

∂tβi = fi. (48)

The transformed vector of evolved variables is û =
(γ̂ij , α̂, f̂k, K̂lm, β̂n). The principal symbol is
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P̂µ
ν =













0 0 0 −2δl
iδ

m
j 2ıwω̂(iδ

n
j)

0 0 0 −2ηlm 0
0 0 0 − 4

3 ıηlmwω̂k −w2
(

δn
k + 1

3 ω̂nω̂k

)

1
2w2[δi

lδ
j
m + 1

3ηijω̂lω̂m]tf w2ω̂lω̂m ıw[ω̂(lδ
k
m)]

tf 0 0

0 0 δk
n 0 0













. (49)

We denote wi = wŵi, with w = |w|. Here “trace-free”
denotes that the trace is removed in downstairs indices.

The characteristic variables can be constructed from the
matrix

T−1 =















− 1
3
ıwηij − 1

3
ıw ω̂k 0 0

0 ± 1√
2
ıw 0 ηlm 0

0 −ıw ω̂k ±
q

2
3
ηlm ±

q

2
3
ıwω̂n

0 0 −ω̂(iδ
k
j) + ω̂iω̂jω̂

k 0 ±ıw[ω̂(iδ
n
j) − ω̂iω̂jω̂

n]
1
2
ıw[δi

pδj
q + 1

3
ω̂pω̂qη

ij ]tf − 8
3
ıw[ω̂pω̂q]

tf −[δk
(pω̂q) − 2ω̂pω̂qω̂

k]tf ±[δl
pδm

q − 11
3

ηlmω̂pω̂q]
tf ±2ıw[ω̂pω̂q]

tfω̂n















(50)

through Uc = T−1u. The characteristic speeds corre-
sponding to each row are (0,±

√
2w,±

√

2/3w,±w,±w).
The conserved quantity is given by

(

−4a

ǫ1
+ f

(

1 − 1

ǫ3
− 4

ǫ5
− 8

3ǫ7

))

w2

4
|γ̂ij |2

+
(a

9
+

c

2
+ d

)

w2|α̂|2 + ew2|β̂i|2 + f |K̂ij |2

+

(

e − aǫ1 − f

(

ǫ3 + ǫ5 +
2ǫ7
3

))

|f̂i|2

≤ EC ≤ (51)
(

4a

(

1

3
+

1

ǫ2

)

+ f

(

28

9
+

1

ǫ4
+

4

ǫ6
+

8

3ǫ8

))

w2

4
|γ̂ij |2

+

(

a

9
+

c

2
+ d +

256

27
f

)

w2|α̂|2

+ (2d + 4e + 16f)w2|β̂i|2 +

(

3c + 2d +
436

9
f

)

|K̂ij |2

+

(

a(3 + ǫ2) + 3d + 4e + f

(

14 + ǫ4 + ǫ6 +
2ǫ8
3

))

|f̂i|2.

By choosing a = 1
24 , c = d = f = 1, e = 26 and ǫ1 = 2,

ǫ2 = ǫ4 = ǫ6 = ǫ8 = 1, ǫ3 = 4, ǫ5 = 16, ǫ7 = 8 we obtain

K−1||û||2pg ≤ EC ≤ K||û||2pg (52)

where K = 125, and have demonstrated that the con-
served quantity is equivalent to the norm

||û||2pg = w2||γ̂ij ||2+w2||α̂||2+w2||β̂i||2+||K̂ij ||2+||f̂i||2 .

(53)

Parseval’s relation implies equivalence with

||u||2pg = ||γij ||2 + ||α||2 + ||βi||2 + ||Kij ||2 + ||fi||2

+

3
∑

k=1

(||γij,k||2 + ||α,k||2 + ||βi,k||2) (54)

in physical space.

C. Discrete system

Fixed densitized lapse and shift: We now consider
the semi-discrete system with fixed densitized lapse and
shift. As in the continuum case we linearize around flat-
space. The difference operators transform as described
in Sec. III A. We consider only the case nQ = 1. We
define

τ̂ = ηij γ̂ij , Γ̂i = f̂i −
2

3
D0iτ̂ . (55)

Decomposing the system into trace, off-diagonal, and di-
agonal terms adjusted by the weighting t4i γ̂ii = γ̃ii and

t4i Γ̂i = Γ̃i various sectors of the system decouple. In the
following γij explicitly means i 6= j. The principal sym-
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bol is

(0) Γ̂i, (56)
(

0 −2
1
2Ω2 0

) (

τ̂

K̂

)

, (57)





0 0 −2
0 0 0

1
2Ω2 1 0









γ̂ij

D̂0(iΓ̂j)

K̂ij



 , (58)





0 0 −2
0 0 0

1
2Ω2 1 0











γ̃tf
ii

(D̂0iΓ̃i)
tf

K̃tf
ii






. (59)

The characteristic variables are

Γ̂i, (60)

K ± ıΩ

2
τ, (61)

Kij ±
ıΩ

2
γij ±

ı

Ω
D0(iΓj), (62)

(

K̃ii ±
ıΩ

2
γ̃ii ±

ı

Ω
D0iΓ̃i

)tf

, (63)

and have speeds (0,±ıΩ,±ıΩ,±ıΩ). The system has a
pseudo-discrete reduction to first order that admits a
symmetrizer for every grid-frequency. One must treat the
lowest frequency separately, but in that case the prin-
cipal symbol vanishes and so admits the identity as a
symmetrizer. By the equivalence of norms in finite di-
mensional vector spaces we then have numerical stability
in the pseudo-discrete norm

||û||2h,fd = Ω2||γ̂ij ||2h + ||K̂ij ||2h + ||f̂i||2h + ||γ̂ij ||2h, (64)

provided that the von-Neumann condition given by

λC ≤ C0

2χ2
, (65)

where C0 = 2 and C0 =
√

8 for iterated Crank-Nicholson
or fourth-order Runge-Kutta and 2χ2 = Ωh, is satisfied.

Parseval’s relation guarantees equivalence with the dis-
crete norm

||u||2h,D+,fd = ||γij ||2h + ||Kij ||2h + ||fi||2h+

3
∑

k=1

||D+kγij ||2h (66)

in physical space.

Puncture gauge: The principal symbol is a 19x19 ma-
trix which contains several parameters. We are able to
compute characteristic speeds for the system, but they
are complicated, so we do not display them here. The
lowest freqency mode is again trivial to analyze. In that
case the pseudo-discrete reduction to first order has a
vanishing principal symbol, and thus admits the iden-
tity as a symmetrizer. For the non-maximal modes the
principal symbol is complicated. As previously stated,
performing a 2 + 1 decomposition on the semi-discrete
symbol is not helpful, since the various sectors of the sys-
tem remain coupled. We were therefore unable to find
the eigenvectors of the matrix. We considered various
subsectors of the full system. Since the (α,K) subsector
is exactly the second order in space wave equation, it is
trivial to demonstrate numerical stability. We considered
also the subsector (fi,βj) with the other variables frozen,
and find characteristic speeds and variables. Once the
two blocks are coupled to give the (α,fi,K,βj) subsec-
tor, we did not manage to compute eigenvectors in finite
time. It is possible to find a complete set of characteristic
variables for the highest frequency grid-mode, since the
principal symbol in that case takes a simpler form. In
Sec. IV we present robust stability tests of the numerical
implementation, which provide evidence that the system
is formally numerically stable.

Puncture gauge with non-standard spatial discretiza-

tion: We are able to find a complete set of characteris-
tic variables for a slightly altered spatial discretization.
If one insists on using the D2

0 operator for the divergence
terms ∂i∂jβ

j in the evolution of fi the principal symbol

becomes, with û = (γ̂ij , α̂, f̂k, K̂lm, β̂n),

P̂µ
ν =















0 0 0 −2δl
iδ

m
j 2D̂(0iδ

n
j)

0 0 0 −2ηlm 0

0 0 0 − 4
3ηlmD̂0k −Ω2δn

k + 1
3D̂n

0 D̂0k
1
2 [Ω2δi

lδ
j
m − 1

3ηijD̂
(2)
lm ]tf −D̂

(2)
lm [D̂0(lδ

k
m)]

tf 0 0

0 0 δk
n 0 0















. (67)

As before, one has to consider the lowest and high-
est frequency grid modes seperately, because in those
cases the principal symbol of the system takes a dif-

ferent form. For the lowest frequency mode the prin-
cipal symbol of the pseudo-discrete reduction to first
order again vanishes, and can be dealt with as before.
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For the sub-maximal frequencies the characteristic vari-
ables can be constructed and have characteristic speeds
(0,±ı

√
2Ω,±ı

√

(3Ω2 + ω2)/3,±ıΩ,±ıΩ). The 0-speed
characteristic variable is

U0 = D̂0if̂
i +

1

2
(ω2 − Ω2)α̂ +

1

6
(3Ω2 + ω2)τ. (68)

The lapse characteristic variable is

U±
√

2 =
√

2K̂ ± ıΩα̂, (69)

The longitudinal shift characteristic variable is

U±2/
√

3 = ıD̂0iβ
i − 4ı

ω2 − Ω2
K̂ ±

√
3

3Ω2 + ω2
D̂0if

i

∓ 4
√

3√
3Ω2 + ω2(ω2 − 3Ω2)

α̂, (70)

and the transverse shift modes are

Ui±1 = Ω(D̂0iD̂
k
0 + ω2δk

i)βk

± (D̂0iD̂
k
0 + ω2δk

i)fk. (71)

To see that there are only two characteristic variables
here one must contract with the vector si. Finally the
remaining characteristic variables are

Uij±1 = [D̂
(2)
ij + ω2D̂0(iδ

k
j)]

tfβ̂k ∓ ı

Ω
[D̂

(2)
ij D̂k

0 ]tff̂k

+ ω2[δk
(iδ

l
j) + ηklD̂

(2)
ij ]K̂kl

± 1

2
ıω2Ω[δl

(iδ
m

j) −
1

3Ω2
ηlmD̂

(2)
ij ]tfγ̂lm (72)

where [ ]tf denotes that the object is trace-free in down-
stairs indices. For the highest frequency mode the D0

operator in the principal symbol vanishes. However, the
symbol still has a complete set of characteristic variables.
The conserved quantity may then be constructed as be-
fore with a sum over the grid-modes. The conserved
quantity is obviously a norm since it contains every grid-
mode, and is therefore equivalent to the standard

||u||2h,D+,pg = ||γij ||2h + ||α||2h + ||βi||2h + ||Kij ||2h

+ ||fi||2h +

3
∑

k=1

(||D+kγij ||2h + ||D+kα||2h

+ ||D+kβi||2h) (73)

in physical space.
As the calculation does not rely in any significant way

on the flat background, it should be simple to extend
to the case in which one linearizes around an arbitrary,
constant in space background. It may then be possible
to extend to the case with variable coefficients in space
following [66]. We also anticipate no problems in extend-
ing the calculation to higher order finite difference (FD)
approximations. In our numerical tests in Sec. IV we do
not perform evolutions with this discretization.

D. The algebraic constraints

In this section we demonstrate that the numerical sta-
bility of standard numerical implementation of the lin-
earized LaSh (and BSSN) systems, which includes the
conformal decomposition of the evolved variables, de-
pends only upon the analysis of the previous section. In
order to do so, we show that there is a one-one correspon-
dence between solutions of the original and decomposed
systems.

In the linear regime the conformal decomposition is
simply a linear combination of the undecomposed vari-
ables subject to linear constraints. Consider the semi-
discrete system under such a decomposition. Start by
defining the decomposed state vector on time slice by
v = Tu. Here and in what follows we suppress spatial
indices. Assume that u has m elements. Then T is an
l × m matrix, v has l elements. We denote the pseudo-
inverse of T by S, a matrix which maps from the image
of T in Rl back to Rm such that

ST = Im. (74)

If the evolution equations for u are given by Pu and
those for the decomposed variables are P̄ v then the two
are related as P̄ = TPS. Denote by ⊥ the projection
operator which maps to the m dimensional hypersurface
in Rl on which the algebraic constraints are satisfied.
The algebraic constraints are

C = v− ⊥ v. (75)

Consider first the semi-discrete system. Suppose that
at a given time the constraints are satisfied. Then we
find

∂tC = P̄ v− ⊥ P̄ v = TPu− ⊥ TPu = 0, (76)

where the last equality holds because directly after the
application of T the algebraic constraints are satis-
fied, and therefore the projection operator does nothing.
Therefore in the semi-discrete system if the constraints
are satisfied initially they remain so, and there is a one-
one correspondence between solutions of the decomposed
and undecomposed systems.

For the fully discrete system we take an explicit poly-
nomial time-integrator Q for the undecomposed variables
and the modified time integrator⊥ Q for the decomposed
system. Now consider the difference between constraint
satisfying data un and vn = Tun integrated with the two
methods. For brevity we subsume the timestep ∆t into
P and P̄ . One finds that

vn+1 − Tun+1 =⊥ Q[P̄ ][vn] − TQ[P ][un]

=⊥ Q[TPS][Tun] − TQ[P ][un]

=⊥ TQ[P ][un] − TQ[P ][un]

= TQ[P ][un] − TQ[P ][un] = 0, (77)

where we have used linearity of the system, polynomiality
of the time-integrator and the fact that directly after the
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application of T the algebraic constraints are automati-
cally satisfied, so the projection operator does nothing.
Thus the two integration methods are equivalent as de-
sired. Note that in these calculations the modified time
integrator ⊥ Q could be replaced by Q since the unpro-
jected time-step introduces no constraint violation. We
have verified these calculations by explicitly comparing
evolutions of the linearized conformal LaSh system with
and without constraint projection. We prefer to discuss
the natural linearization of the non-linear method, which
includes the projection. In the non-linear case the unpro-
jected timestep can introduce algebraic constraint viola-
tions.

IV. NUMERICAL EXPERIMENTS

The LaSh system is implemented inside the Lean

code [57] which is based on the Cactus computational
toolkit [67] and the mesh refinement package Carpet

[68, 69]. Initial data is constructed by solving the
constraint equations with the TwoPunctures spectral
solver provided by [70].

We perform the following set of numerical evolutions:

Robust stability tests We perform a subset of the so-
called apples with apples tests [71] to demonstrate
numerically that the evolution system is formally
stable with various choices of the densitization pa-
rameters;

Puncture stability We evolve a single BH with differ-
ent choices of the densitization parameters to estab-
lish what restriction is placed on them by insisting
on long-term stable puncture simulations;

Head-on collisions We compare BSSN evolutions of
the head on collision of two BHs with those per-
formed with LaSh. We focus on consistency of the
extracted physics at finite resolution;

Binary black hole inspiral We compare BSSN evolu-
tions of inspiraling BHs (Goddard R1 [72]) with
those performed with LaSh. We consider the com-
putational costs of simulations with the two sys-
tems as well as consistency of the results.

A. Robust stability

In Sec. III C we did not succeed in demonstrating
numerical stability of the LaSh system with the punc-
ture gauge using standard discretization. We there-
fore perform robust stability tests following the method
in Ref. [71]. The numerical domain is given by
−0.5 < x < 0.5, −0.06/∆ < y < 0.06/∆ and
−0.06/∆ < z < 0.06/∆ with periodic boundary con-
ditions. We use three different resolutions h = 0.02/∆,
where ∆c = 1, ∆m = 2 and ∆f = 4. The expansion in

the y- and z- direction incorporates the three grid points
required for fourth order FD stencils. The initial data are
given by small perturbations of the Minkowski spacetime

γij = ηij + ǫij . (78)

The ǫij are independent random numbers in the range
(−10−10/∆, 10−10/∆), so that terms of the order O(ǫ2)
are below round-off accuracy. This means that the evo-
lution remains in the linear regime unless instabilities
occur.

We monitor the performance of each simulation by
calculating the maximum norm of the Hamiltonian con-
straint as a function of time. For this study we focus on
three choices of the densitization parameters (nQ, nK) =
{(0, 0), (0.5,−0.5), (−0.5, 0.5)}. The results of the robust
stability test are plotted in Fig. 1. For all choices of
(nQ, nK), including the BSSN scaling (0, 0), we obtain
stable evolutions.

B. Puncture stability

We next perform evolutions of a single puncture,
studying a wide range of non-trivial densitization pa-
rameters. The hyperbolicity analysis of the continuum
LaSh scheme presented in Sec. III C is not affected by
the choice of densitization parameters provided that the
algebraic constraints are enforced. In the previous sec-
tion we have seen that various choices of the densitization
parameters yield evolution systems that are numerically
stable. Here we demonstrate that those parameters must
be chosen more carefully in order to achieve long-term
evolutions of puncture data. We evolve a single, non-
rotating BH until t = 500M . The BH is initially given
by two punctures with mass parameter m1,2 = 0.5M lo-
cated at z = ±10−5M . Using the notation of Sec. II E
of Ref. [57], the grid setup is given in units of M by

{(96, 48, 24, 12, 6, 2, 1, 0.5), 1/32} .

We vary both nQ and nK in the interval [−1, 1] in steps
of ∆n = 0.1. The lifetimes Tl of the simulations are
determined as functions of the densitization parameters.
The first occurrence of “nans” in the right-hand side of
the densitized lapse Q is used as a measure of the lifetime
whenever the simulations did not survive for the entire
evolution. In Fig. 2 we show the results of this parameter
study as a contour plot. In particular, a single puncture
can be evolved for at least t = 500 M using the LaSh
system with parameters indicated by the light blue area
in the figure. Negative values of the lapse densitization
parameter nQ < −0.3 combined with positive values of
the curvature densitization parameter nK > 0 let the
simulations crash after a short time. In contrast, long
term stable evolutions are obtained for the parameter
range nQ ∈ [−0.3, 0.9], nK ∈ [−1, 0], including the BSSN
scaling nQ = nK = 0.

We can partially understand this behaviour by consid-
ering single puncture initial data and their influence on
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FIG. 1: (Color online) Apples with apples stability test using a low (50 grid points, black solid lines), medium (100 grid
points, red dashed lines) and high (200 grid points, green dashed-dotted lines) resolution. The tests were performed with the
densitization parameters (nQ, nK) = {(0, 0), (0.5,−0.5), (−0.5, 0.5)} from left to right, respectively.
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FIG. 2: (Color online) Contourplot of the lifetime Tl as func-
tion of the densitization parameter nQ and nK . Areas colored
in dark blue indicate a short lifetime whereas light blue col-
oring stands for a lifetime of at least Tl = 500M .

the evolution equations (16-20). On the initial slice the
densitized lapse Q is given by

Q0 = χ
3nQ

2 α0 = χ
3
2
(nQ+1/3), (79)

corresponding to a pre collapsed lapse α. Since χ vanishes
at the puncture we require nQ > − 1

3 to obtain a regular
densitized lapse Q0 on the initial timeslice, in agreement
with the findings of our parameter study; simulations
with nQ < −0.3 crash immediately. Next consider the
evolution equations on the initial timeslice. For our ini-

tial data they reduce to

∂tγ̃ij = 0, ∂tχ = 0 , (80)

∂tÃ
i
j =χ−3nK/2[DiDjα + αRi

j ]
TF , (81)

∂tK̃ = − χ−3nK/2DiDiα , (82)

∂tΓ̃
i =0 . (83)

Insisting on initially regular evolved variables at the
puncture, Eqs. (80-83) require nK ≤ 0, also in agree-
ment with our study; numerical experiments violating
this condition immediately fail.

For further illustration we plot in Fig. 3 the time
derivatives of the densitized lapse Q and the trace of
the extrinsic curvature K̃ after an evolution time of
t = 100 M . As we simoultaneously increase nQ and
decrease nK , we obtain smoother profiles. Note that the
BSSN case nQ = 0 = nK produces the steepest gradients
in this comparison. A systematic study of the excep-
tionally benign behaviour of a non-trivial densitization
on the accuracy of 10-15 orbit simulations, especially of
spinning, precessing binaries, is beyond the scope of this
paper. Our results may, however, point at fertile ground
for future research of the LaSh system.

C. Head-On Collisions

In this section we study in depth the stability proper-
ties of numerical simulations of equal-mass head-on col-
lisions performed with the LaSh system. For this pur-
pose we evolve model BL2 of Table II in [57], i.e. two
non-spinning holes with irreducible mass Mirr,i = 0.5 M
starting from rest at z1,2 = ±5.12 M . The computational
grid consists of a set of nested refinement levels given in
units of M by

{(256, 128, 72, 32, 16)× (4, 2, 1), h} ,

where we have usually chosen h = M/48, unless denoted
otherwise. We consider the densitization parameters
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FIG. 3: (Color online) Right hand sides of the densitized lapse Q (left panel) and of the trace of the extrin-

sic curvature K̃ (right panel) after an evolution time of t = 100M . We take parameter pairs (nQ, nK) =
{(0, 0), (0.2,−0.2), (0.4,−0.4), (0.6,−0.6), (0.8,−0.8), (1,−1)}.

Run Grid Setup d/M nQ nK 104Erad/M

HD1c {(256, 128, 72, 32, 16) × (4, 2, 1), h = 1/40} 10.24 0.0 0.0 5.51

HD1m {(256, 128, 72, 32, 16) × (4, 2, 1), h = 1/44} 10.24 0.0 0.0 5.52

HD1f {(256, 128, 72, 32, 16) × (4, 2, 1), h = 1/48} 10.24 0.0 0.0 5.53

HD2 {(256, 128, 72, 32, 16) × (4, 2, 1), h = 1/48} 10.24 0.2 −0.2 5.53

HD3c {(256, 128, 72, 32, 16) × (4, 2, 1), h = 1/40} 10.24 0.4 −0.4 5.51

HD3m {(256, 128, 72, 32, 16) × (4, 2, 1), h = 1/44} 10.24 0.4 −0.4 5.52

HD3f {(256, 128, 72, 32, 16) × (4, 2, 1), h = 1/48} 10.24 0.4 −0.4 5.53

HD4 {(256, 128, 72, 32, 16) × (4, 2, 1), h = 1/48} 10.24 0.6 −0.6 5.53

TABLE I: Grid structure and physical initial parameters of the simulations of a head-on collsion of an equal mass BH binary.
The grid setup is given in terms of the radii of the individual refinement levels as well as the resolution near the punctures h
(see Sec. II E in [57] for details). The table further shows the initial coordinate separation d/M of the two punctures. Erad/M
is the fraction of the total BH mass that is radiated as gravitational waves. All parameters are given in units of the total BH
mass M = M1 + M2.

(nQ, nK) = {(0, 0), (0.2,−0.2), (0.4,−0.4), (0.6,−0.6)},
denoted as models HD1 - HD4 in Table I. For mod-
els HD1 - HD3 we have chosen the Γ-driver shift con-
ditions (30) with (µS , ξ1, ξ2, η) = (1, 0, 0, 1), whereas in
case of model HD4 the Γ-driver shift conditions (30) have
been taken with (µs, ξ1, ξ2, η) = (3/4, 1, 1, 1) [73]. In-
formation about gravitational waves emitted during the
plunge has been obtained by the Newman-Penrose scalar
Ψ4. In Fig. 4 we present the real part of the dominant
mode Ψ20, rescaled by the extraction radius rex = 60M ,
for models HD1-HD4. Note, that the imaginary part of
Ψ4 vanishes due to symmetry. We find that the wave-
forms generated by the different models agree well. We
study the convergence of models HD1 and HD3 by us-
ing three different resolutions hc = M/40, hm = M/44
and hf = M/48 referred to as coarse, medium and high

resolution. The differences of the ℓ = 2, m = 0 mode
of the resulting gravitational radiation are displayed in
Fig. 5 and demonstrate overall fourth order convergence
for both models. We estimate the discretization error at
high resolution in the waveforms Ψ20 to be 0.4%, similar

to the error reported in [57] for the corresponding BSSN
evolutions.

The amount of energy that is radiated throughout
the head-on collision computed from, e.g., Eq. (22) in
Ref. [56] (see also [19]) is Erad/M = 0.0553% for models
HD1f , HD2, HD3f and HD4, again in excellent agree-
ment with Ref. [57]. We estimate the discretization error
in the radiated energy to be 0.4% and the error due to
finite extraction radius to be 1.6%.

As for single BH evolutions, we observe smoother time
derivatives of Q and K̃ for non-vanishing choices of nQ

and nK . We illustrate this behaviour in Fig. 6 which
shows the time derivatives along the z axis obtained for
different values of nQ and nK at t = 10 M .

D. Inspiraling Black-Holes

In this section we will demonstrate how BBHs can be
evolved successfully using the LaSh formulation of the
3+1 Einstein equation in combination with the moving
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Run
Evolution
Scheme

Grid Setup nQ nK 102Erad/M

BSSN BSSN {(256, 128, 64, 24, 12, 6) × (1.5, 0.75), 1/48} - - -

LaSh0 LaSh {(256, 128, 64, 24, 12, 6) × (1.5, 0.75), 1/48} 0.4 −0.4 -

LaShc LaSh {(256, 128, 64, 24, 12, 6) × (1.5, 0.75), 1/52} 0.4 −0.4 3.69

LaShm LaSh {(256, 128, 64, 24, 12, 6) × (1.5, 0.75), 1/56} 0.4 −0.4 3.68

LaShf LaSh {(256, 128, 64, 24, 12, 6) × (1.5, 0.75), 1/60} 0.4 −0.4 3.67

TABLE II: Grid structure, evolution system and initial parameters of the simulations of quasi-circular inspirals. The grid setup
is given in terms of the radii in units of M of the individual refinement levels as well as the resolution near the punctures h
(see Sec. II E in [57] for details). In case of the LaSh scheme we also specify the densitization parameters nQ and nK . The
final column lists the radiated energy Erad extracted at rex = 60 M for models LaShc-LaShf . Models BSSN and LaSh0 have
only been run until t = 50M in order to compare their computational cost.
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FIG. 4: (Color online) Real part of rexMΨ20, the dimension-
less Newman-Penrose scalar, where rex = 60M , for model
HD1f (black solid line), HD2 (red dashed line), HD3f (green
dashed-dotted line) and HD4 (blue dotted line).

puncture approach. For this purpose we consider the ini-
tial configuration labeled R1 in Table I of Ref. [72]. This
configuration represents a non-spinning, equal-mass bi-
nary with a total ADM mass of M = 0.9957 in code units.
The bare-mass parameters are m1,2 = 0.483 and the BHs
start at position x1,2 = ±3.257 with linear momentum
P1,2 = ±0.133 in the y-direction. The specifications of
the grid setup, in the notation of Sec. II E of Ref. [57],
are given in Table II. For this model we have used
the Γ-driver shift condition (30) with (µs, ξ1, ξ2, η) =
(3/4, 1, 1, 1) as suggested in Ref. [73]. As before, we study
the convergence properties by performing simulations of
model LaSh with resolutions hc = 1/52, hm = 1/56 and
hf = 1/60. In the left panel of Fig. 7 we present the
real part of the ℓ = 2, m = 2 mode of Ψ4, extracted
at rex = 40M , obtained by models LaShc, LaShm and
LaShc. The right panel of Fig. 7 shows the differences be-
tween the coarse and medium and medium and high res-
olutions of the amplitude (upper panel) and phase (bot-
tom panel). The latter differences have been rescaled by
the factor Q4 = 1.43 corresponding to fourth order con-

vergence. The resulting discretization error in amplitude
and phase are ∆A/A ≤ 1% and ∆φ ≤ 0.1 rad.

The energy radiated in gravitational waves is
Erad/M = 3.67 ± 0.13% for the high resolution run
LaShf in Table II which is in good agreement with the
BSSN results of Ref. [57].

Run
mem.

[GByte]
tr

[CPUhours]
v̄

[M/hour]

BSSN 55 290 4.2

LaSh0 70 430 2.9

modLaSh 55 335 3.7

TABLE III: The required memory mem., the total runtime tr

in CPUhours and the average speed v̄ in units of physical time
M per real time hour of the test simulations using the BSSN
(model BSSN in Table II), the original LaSh (model LaSh0

in Table II) and the modified LaSh scheme. The simulations
have been run for t = 50M using 24 processors.

Finally, we compare the computational performance of
both, the BSSN and LaSh evolution scheme. For this pur-
pose we have evolved models LaSh0 and BSSN until t =
50M on the Magerit cluster [74] in Madrid which is part
of the Spanish Supercomputing Network [75]. Magerit
uses PowerPC-970FC processors running at 2.2GHz.
The required memory, runtime and average speed ob-
tained for 24 processors are shown in Table III. The orig-
inal LaSh system requires about 30 % more memory than
the BSSN system and is about a factor 1.4 slower. The
overhead of the LaSh system is not unexpected. First,
the LaSh system involves a larger number of grid func-
tions; the tracefree part of the extrinsic curvature Âi

j

is not symmetric and thus requires 9 independent com-
ponents instead of 6 for the BSSN variable Ãij . Second,
the densitization of variables requires extra variables and
involved more complicated expressions on the right hand
sides of the corresponding evolution equations. These ef-
fects can be partly eliminated, however, without loosing
the appealing properties of the LaSh system. For this
purpose, we have tested a modified version of the origi-
nal LaSh system, denoted as modLaSh in Table III. Here
we evolve Ãij instead of the trace-free part of the extrin-

sic curvature with mixed indices Ãi
j . As expected, this



13

0 50 100 150 200 250 300
t / M

-1e-04

-5e-05

0e+00

5e-05

1e-04
r 

M
 ∆

R
e[

Ψ
20

]
r M(Ψ20,hc

 - Ψ20,hm
)  

1.58 r M(Ψ20,hm
 - Ψ20,hf

)

0 50 100 150 200 250 300
t / M

-1e-04

-5e-05

0e+00

5e-05

1e-04

r 
M

 ∆
R

e[
Ψ

20
]

r M (Ψ20,hc
 - Ψ20,hm

)

1.58 r M (Ψ20,hm
 - Ψ20,hf

) 

FIG. 5: (Color online) Convergence analysis of the real part of Ψ20 of the Newman Penrose scalar Ψ4, re-scaled by the extraction
radius rex = 40M , for models HD1 (left panel) and HD3 (right panel) in Table I. We show the difference between the low
and medium resolution (black solid line) and the medium and high resolution (red dashed line). The latter has been amplified
by a factor of Q = 1.58 expected for fourth order convergence
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modification equals the BSSN system in memory require-
ments and also significantly reduces the computational
costs relative to the original LaSh system. At the same
time, however, modLaSh preserves the flexibility that
has enabled us to obtain smoother behaviour of the vari-
ables close to the puncture as compared with the BSSN
scheme.

V. CONCLUSIONS

Motivated by a desire to better understand which
are the important ingredients of the moving puncture
method, we have studied the LaSh formulation of the

Einstein equations. Provided that the algebraic con-
straints of the system are imposed the formulation is
equivalent to BSSN. Therefore we have investigated how
the choice of evolved variables effects the success of nu-
merical simulations of puncture initial data. The change
of variable is parametrized by the densitization parame-
ters (nQ, nK).

We started by demonstrating that LaSh is formally
numerically stable when linearized around flat space for
arbitrary densitization parameters, with fixed shift and
densitized lapse. A special case of this calculation is the
numerical stability of BSSN. We attempted to show nu-
merical stability of the system coupled to the puncture
gauge, but find that the required calculations are too
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FIG. 7: (Color online) Left: Real part of the dominant ℓ = 2, m = 2 mode of the dimensionless Newman-Penrose scalar
rMℜ(Ψ4), where the extraction radius is rex = 40M . The waveforms are shown for models LaShc (black solid line), LaShm

(red dashed line) and LaShf (green dash-dotted line). Right: Convergence analysis of the Amplitude (upper panel) and phase
(bottom panel) of the dominant ℓ = 2, m = 2 mode of the Newman Penrose scalar Ψ4. We show the differences between the
coarse and medium resolution (black solid line) and medium and high resolution (red dashed line). The latter difference has
been amplified by Q4 = 1.43, indicating fourth order convergence.

complicated even for computer algebra unless we move
away from the standard discretization.

We performed four types of numerical tests. The first
class of tests includes robust stability test, specifically the
so-called apples with apples tests. We find that the LaSh
formulation is numerically stable for various choices of
the densitization parameters. Next, we found that long
term stable evolutions of single BH spacetimes requires a
more careful choice of the densitization parameters. It is
interesting to note that the parameter choice correspond-
ing to the BSSN system is located near the edge of the
permissible range. Moreover, we have identified parame-
ter choices which result in smoother profiles of the time
derivatives of the evolution variables near the puncture
as compared with the BSSN case. It will be interesting to
investigate the impact of this behaviour on the accuracy
of inspiral simulations lasting 10− 15 orbits. While such
a study is beyond the scope of this paper, it may pro-
vide fertile ground for direct application of the results
presented in this work. Furthermore, preliminary tests
of higher dimensional BH spacetime evolutions indicate
that the generalized BSSN formulation helps overcoming
stability problems that have been encountered in D ≥ 6
[49]. A more detailed analysis of this application will be
presented elsewhere [76].

We have further evolved head-on collisions as well as
quasi-circular inspirals of binary BHs. For both cases,
we have achieved long-term stable evolutions for a wide
range of non-trivial parameter choices (nQ, nK). The
evolutions produce convergent waveforms consistent with
the BSSN results and comparable accuracy. As men-
tioned above, we plan to compare the accuracy of both
systems for more demanding inspiral simulations in fu-

ture work. In any case, the binary simulations confirm
the above finding that non vanishing values of nQ and nK

facilitate evolutions with smoother profiles of the evolu-
tion variables in the neighborhood of each puncture.

In summary, our results highlight the importance of
the choice of variables for numerical calculations aside
from any continuum PDE considerations. This opens up
the possibility of significantly reducing errors in simula-
tions of astrophysical binaries with large spins or mass ra-
tios and also overcome stability issues reported for higher
dimensional BH simulations [49].
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