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We present numerical simulations of a rotating black hole distorted by a pulse of ingoing gravita-
tional radiation. For strong pulses, we find up to five concentric marginally outer trapped surfaces.
These trapped surfaces appear and disappear in pairs, so that the total number of such surfaces at
any given time is odd. The world tubes traced out by the marginally outer trapped surfaces are
found to be spacelike during the highly dynamical regime, approaching a null hypersurface at early
and late times. We analyze the structure of these marginally trapped tubes in the context of the
dynamical horizon formalism, computing the expansion of outgoing and incoming null geodesics, as
well as evaluating the dynamical horizon flux law and the angular momentum flux law. Finally, we
compute the event horizon. The event horizon is well-behaved and approaches the apparent horizon
before and after the highly dynamical regime. No new generators enter the event horizon during
the simulation.

I. INTRODUCTION

In the efforts by the numerical relativity community
leading up to the successful simulation of the inspiral
and merger of two black holes, analyses of single black
holes distorted by gravitational radiation have offered a
convenient and simpler setting to understand the non-
linear dynamics during the late stages of binary black
hole coalescence. For this purpose, initial data for a
Schwarzschild black hole plus a Brill wave was presented
in [1], which was both time symmetric and axisymmet-
ric. In highly distorted cases, the apparent horizon could
develop very long, spindlelike geometries. If the event
horizon can show similar behavior, this would raise in-
triguing questions related to the hoop conjecture [2]. The
work of [1] was extended to distorted rotating black holes
in [3], where the apparent horizon served as a useful tool
to examine the quasinormal oscillations of the black hole
geometry as it relaxed in an evolution. Further studies
have extracted the gravitational waves emitted by the
black hole [4], and compared the apparent and event hori-
zons [5].

We continue this line of investigation here, while incor-
porating various modern notions of quasilocal horizons
that have emerged in recent years. Our emphasis is on
horizon properties during the highly dynamical regime,
and no symmetries are present in our initial data and evo-
lutions. The utility of quasilocal horizons can be immedi-
ately appreciated when one wants to perform a numerical
evolution of a black hole spacetime. One must be able
to determine the surface of the black hole at each time,
in order to track the black hole’s motion and compute
its properties, such as its mass and angular momentum.
However, the event horizon, which is the traditional no-
tion of a black hole surface, can only be found after the
entire future history of the spacetime is known.

Quasi-local horizons can be computed locally in time,
and so are used instead to locate a black hole during the
evolution. Of particular interest is a marginally outer
trapped surface (MOTS), which is a spatial surface on
which the expansion of its outgoing null normal van-

ishes [6]. The use of MOTSs is motivated by several
results. When certain positive energy conditions are sat-
isfied, a MOTS is either inside of or coincides with an
event horizon [6, 7]. The presence of a MOTS also im-
plies the existence of a spacetime singularity [8]. In an
evolution, the MOTSs located at successive times foliate
a world tube, called a marginally trapped tube (MTT).
MTTs have been studied in the context of trapping hori-
zons [9, 10], isolated horizons [11–13], and dynamical
horizons [14–16].

Both the event horizon and a MTT react to infalling
matter and radiation, although their behaviors can be
quite different in highly dynamical situations. Being a
null surface, the evolution of the event horizon is gov-
erned by the null Raychaudhuri equation [17], so that
even though its area never decreases, in the presence
of infalling matter and radiation the rate of growth of
its area decreases and can even become very close to
zero [18]. Since a MTT is determined by quasilocal prop-
erties of the spacetime, its reaction to infalling matter
and radiation is often much more intuitive. A MTT is
usually spacelike (e.g. a dynamical horizon) in such situ-
ations, although further scrutiny has revealed that MTTs
can exhibit various intriguing properties of their own. For
example, a MTT may become timelike and decrease in
area [19], or even have sections that are partially space-
like and partially timelike [20]. In a numerical simula-
tion, such behavior is often indicated by the appearance
of a pair of new MTTs at a given time, accompanied by
a discontinuous jump in the world tube of the apparent
horizon, or outermost MOTS.

In this paper, we investigate the behavior of MTTs
and the event horizon in the context of a rotating black
hole distorted by an ingoing pulse of gravitational waves.
First we construct a series of initial data sets in which the
amplitude of the gravitational waves varies from small to
large, which are then evolved. We focus on the evolution
with the largest distortion of the black hole, in which the
mass of the final black hole is more than double its initial
value. During the evolution, the world tube of the appar-
ent horizon jumps discontinuously when the gravitational



2

waves hit the black hole, and as many as five MTTs are
found at the same time. Some of these MTTs decrease
in area with time, although we find that all the MTTs
during the dynamical stages of our evolution are space-
like and dynamical horizons. Moreover, all these MTTs
join together as a single dynamical horizon. Their prop-
erties are further analyzed using the dynamical horizon
flux law [15], which allows one to interpret the growth
of the black hole in terms of separate contributions. We
also evaluate the angular momentum flux law based on
the generalized Damour-Navier-Stokes equation [21]. Fi-
nally, we locate the event horizon and contrast its behav-
ior with that of the MTTs.

The organization of this paper is as follows. Section II
details the construction of the initial data sets and Sec.
III describes the evolutions. Section IV introduces some
definitions about MOTSs, and the methods used to lo-
cate them. Section V discusses the MTTs foliated by
the MOTSs, the determination of their signatures, and
the fluxes of energy and angular momentum across them.
The emphasis is on the case with the largest distortion
of the initial black hole, as is the remainder of the pa-
per. Section VI explains how we find the event horizon,
and contrasts its properties with the MTTs. Section VII
presents some concluding remarks. Finally, the appendix
offers some insight on our results in light of the Vaidya
spacetime.

II. INITIAL DATA

Initial data sets are constructed following the method
of [22], which is based on the extended conformal thin
sandwich formalism. First, the 3+1 decomposition of
the spacetime metric is given by [23, 24]

(4)ds2 = gµνdx
µdxν , (1)

= −N2dt2 + gij

(

dxi + βidt
) (

dxj + βjdt
)

, (2)

where gij is the spatial metric of a t = constant hypersur-
face Σt, N is the lapse function, and βi is the shift vec-
tor. (Here and throughout this paper, Greek indices are
spacetime indices running from 0 to 3, while Latin indices
are spatial indices running from 1 to 3.) Einstein’s equa-
tions (here with vanishing stress-energy tensor Tµν = 0)
then become a set of evolution equations,

(∂t − Lβ)gij = −2NKij, (3)

(∂t − Lβ)Kij = N
(

Rij − 2KikK
k

j +KKij

)

−∇i∇jN,

(4)

and a set of constraint equations,

R +K2 −KijK
ij = 0, (5)

∇j

(

Kij − gijK
)

= 0. (6)

In the above, L is the Lie derivative, ∇i is the covariant
derivative compatible with gij , R = gijRij is the trace of

the Ricci tensor Rij of gij , and K = gijKij is the trace
of the extrinsic curvature Kij of Σt.

Next, a conformal decomposition of various quantities
are introduced. The conformal metric g̃ij and conformal
factor ψ are given by

gij = ψ4g̃ij , (7)

the time derivative of the conformal metric is denoted by

ũij = ∂tg̃ij , (8)

and satisfies ũij g̃
ij = 0, while the conformal lapse is given

by Ñ = ψ−6N . Equations (5), (6), and the trace of (4)
can then be written as

∇̃2ψ − 1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ−7ÃijÃ

ij = 0,

(9)

∇̃j

(

1

2Ñ
(Lβ)

ij

)

− ∇̃j

(

1

2Ñ
ũij

)

− 2

3
ψ6∇̃iK = 0,

(10)

∇̃2
(

Ñψ7
)

−
(

Ñψ7
)

(

1

8
R̃+

5

12
ψ4K2 +

7

8
ψ−8ÃijÃ

ij

)

= −ψ5
(

∂tK − βk∂kK
)

.

(11)

In the above, ∇̃i is the covariant derivative compatible
with g̃ij , R̃ = g̃ijR̃ij is the trace of the Ricci tensor R̃ij

of g̃ij , L̃ is the longitudinal operator,

(

L̃β
)ij

= ∇̃iβj + ∇̃jβi − 2

3
g̃ij∇̃kβ

k, (12)

and Ãij is

Ãij =
1

2Ñ

(

(

L̃β
)ij

− ũij

)

, (13)

which is related to Kij by

Kij = ψ−10Ãij +
1

3
gijK. (14)

For given g̃ij , ũij , K, and ∂tK, Eqs. (9), (10), and (11)
are a coupled set of elliptic equations that can be solved
for ψ, Ñ , and βi. From these solutions, the physical
initial data gij and Kij are obtained from (7) and (14),
respectively.

To construct initial data describing a Kerr black hole
initially in equilibrium, together with an ingoing pulse
of gravitational waves, we make the following choices for
the free data,

g̃ij = gKS
ij +Ahij , (15)

ũij = A∂thij −
1

3
g̃ij g̃

klA∂thkl, (16)

K = KKS, (17)

∂tK = 0. (18)
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FIG. 1: Convergence of the elliptic solver for different ampli-
tudes A. Plotted is the square-sum of the Hamiltonian and
momentum constraints, Eqs. (5) and (6), as a function of nu-
merical resolution, measured here by the number of radial
basis functions in the spherical shell containing the gravita-
tional waves.

In the above, gKS
ij and KKS are the spatial metric and

the trace of the extrinsic curvature in Kerr-Schild coordi-
nates, with mass parameterMKS = 1 and spin parameter
aKS = 0.7MKS along the z-direction. The pulse of gravi-
tational waves is denoted by hij , and is chosen to be an
ingoing, even parity, m = 2, linearized quadrupole wave
in a flat background as given by Teukolsky [25] (see [26]
for the solution for all multipoles). The explicit expres-
sion for the spacetime metric of the waves in spherical
coordinates is

hijdx
idxj =

(

R1 sin2 θ cos 2φ
)

dr2

+ 2R2 sin θ cos θ cos 2φrdrdθ

− 2R2 sin θ sin 2φr sin θdrdφ

+
[

R3

(

1 + cos2 θ
)

cos 2φ−R1 cos 2φ
]

r2d2θ

+ [2 (R1 − 2R3) cos θ sin 2φ] r2 sin θdθdφ

+
[

R3

(

1 + cos2 θ
)

cos 2φ+R1 cos2 θ cos 2φ
]

× r2 sin2 θd2φ,
(19)

where the radial functions are

R1 = 3

[

F (2)

r3
+

3F (1)

r4
+

3F

r5

]

, (20)

R2 = −
[

F (3)

r2
+

3F (2)

r3
+

6F (1)

r4
+

6F

r5

]

, (21)

(22)
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FIG. 2: ADM energy EADM and Christodoulou mass Mi of
the initial data sets, versus the gravitational wave amplitude
A. The inset shows the Ricci scalar R along the x-axis. All
quantities are given in units of the mass of the background
Kerr-Schild metric.

R3 =
1

4

[

F (4)

r
+

2F (3)

r2
+

9F (2)

r3
+

21F (1)

r4
+

21F

r5

]

,

(23)

and the shape of the waves is determined by

F = F (t+ r) = F (x) = e−(x−x0)
2/w2

, (24)

F (n) ≡
[

dnF (x)

dxn

]

x=t+r

. (25)

We choose F to be a Gaussian of width w/MKS = 1.25, at
initial radius x0/MKS = 15. The constant A in Eq. (15)
is the amplitude of the waves. We use the values A = 0.1,
0.2, 0.3, 0.4, and 0.5, each resulting in a separate initial
data set.

Equations (9), (10), and (11) are solved with the pseu-
dospectral elliptic solver described in [27]. The domain
decomposition used in the elliptic solver consists of three
spherical shells with boundaries at radii r/MKS = 1.5, 12,
18, and 109, so that the middle shell is centered on the
initial location of the gravitational wave pulse. The inner
boundary lies inside the apparent horizon and Dirichlet
boundary conditions appropriate for the Kerr black hole
are imposed. It should be noted that these boundary
conditions are only strictly appropriate in the limit of
small A and large x0, when the initial data corresponds
to an ingoing pulse of linearized gravitational waves on an
asymptotically flat background, with a Kerr black hole
at the origin. As A is increased and x0 is reduced, we ex-
pect this property to remain qualitatively true, although
these boundary conditions become physically less well
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motivated. Nonetheless, we show below by explicit evo-
lution that most of the energy in the pulse moves inward
and increases the black hole mass.

At the lowest resolution, the number of radial basis
functions in each shell is (from inner to outer) Nr = 9,
18, and 9, and the number of angular basis functions in
each shell is L = 5. At the highest resolution, the num-
ber of radial basis functions in each shell is (from inner to
outer) Nr = 41, 66, and 41, and the number of angular
basis functions in each shell is L = 21. Figure 1 shows
the convergence of the elliptic solver. The expected expo-
nential convergence is clearly visible. Curves for each A
lie very nearly on top of each other, indicating that con-
vergence is independent of the amplitude of the waves.
We evolve the initial data sets computed at the highest
resolution of the elliptic solver.

We locate the apparent horizon (the outermost
marginally outer trapped surface defined in Sec. IVA)
in each initial data set using the pseudo-spectral flow
method of Gundlach [28] (explained briefly in Sec. IVB),
and compute the black hole’s initial quasilocal angular
momentum Ji and Christodoulou mass Mi (the subscript
“i” denotes initial values). The quasilocal angular mo-
mentum J is defined in Eq. (49), which we calculate
with approximate Killing vectors [29] (see also [30]). The
Christodoulou mass M is given by

M =

√

MH
2 +

J2

4MH
2 , (26)

where MH =
√

AH/16π is the Hawking or irreducible
mass [31], with AH being the area of the marginally outer
trapped surface of interest. The main panel of Fig. 2
shows M and the ADM energy EADM, as a function of
the amplitude A of each initial data set. The difference
between EADM and M is a measure of the energy con-
tained in the ingoing gravitational waves. For A & 0.4,
this energy is comparable to or greater than M , so the
black hole will become strongly distorted in the subse-
quent evolution. The inset of Fig. 2 shows the Ricci
scalar R of gij along the x-axis at the initial location
of the gravitational wave pulse. The sharp features of R
necessitate the use of the higher Nr as labeled in Fig. 1.

III. EVOLUTIONS

Each of the initial data sets are evolved with the Spec-
tral Einstein Code (SpEC) described in [32, 33]. This code
solves a first-order representation [34] of the generalized
harmonic system [35–37]. The gauge freedom in the gen-
eralized harmonic system is fixed via a freely specifiable
gauge source function Hµ that satisfies

Hµ(t, x) = gµν∇λ∇λxν = −Γµ, (27)

where Γµ = gνλΓµνλ is the trace of the Christoffel sym-
bol. In 3+1 form, the above expression gives evolution
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FIG. 3: Constraint violations for the evolution with A = 0.5.
Plotted is the L2 norm of all constraints, normalized by the
L2 norm of the spatial gradients of all dynamical fields.

equations for N and βi [34],

∂tN − βi∂iN = −N
(

Ht − βiHi +NK
)

, (28)

∂tβ
i − βk∂kβ

i = Ngij
[

N
(

Hj + gklΓjkl

)

− ∂jN
]

, (29)

so there is no loss of generality in specifyingHµ instead of
N and βi, as is more commonly done. For our evolutions,
Hµ is held fixed at its initial value.

The decomposition of the computational domain con-
sists of eight concentric spherical shells surrounding the
black hole. The inner boundary of the domain is at
r/MKS = 1.55, inside the apparent horizon of the ini-
tial black hole, while the outer boundary is at r/MKS =
50. The outer boundary conditions [34, 38, 39] are de-
signed to prevent the influx of unphysical constraint vio-
lations [40–46] and undesired incoming gravitational ra-
diation [47, 48], while allowing the outgoing gravitational
radiation to pass freely through the boundary. Interdo-
main boundary conditions are enforced with a penalty
method [49, 50]. The evolutions were run on up to three
different resolutions – low, medium, and high. For the
low resolution, the number of radial basis functions in
each shell is Nr = 23, and the number of angular basis
functions in each shell is L = 15. For the high resolution,
Nr = 33 and L = 21 in each shell.

We will be mainly interested in the case where the
gravitational waves have an amplitude A = 0.5. As a
measure of the accuracy of this evolution, the constraints
of the first-order generalized harmonic system are plotted
in Fig. 3. Plotted is the L2 norm of all constraint fields,
normalized by the L2 norm of the spatial gradients of the
dynamical fields (see Eq. (71) of [34]). The L2 norms
are taken over the entire computational volume. The
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constraints increase at first, as the black hole is distorted
by the gravitational waves. As the black hole settles down
to equilibrium, the constraints decay and level off. The
results presented in the following sections use data from
the high resolution run only.

IV. MARGINALLY TRAPPED SURFACES

A. Basic Definitions and Concepts

Let S be a closed, orientable spacelike 2-surface in Σt.
There are two linearly independent and future-directed
outgoing and ingoing null vectors lµ and kµ normal to
S. We write these vectors in terms of the future-directed
timelike unit normal nµ to Σt and the outward-directed
spacelike unit normal sµ to S as

lµ =
1√
2

(nµ + sµ) and kµ =
1√
2

(nµ − sµ) , (30)

normalized so that gµν l
µkν = −1. Then the induced

metric q̄µν on S is

q̄µν = gµν + lµkν + lνkµ, (31)

= gµν + nµnν − sµsν . (32)

The extrinsic curvatures of S as embedded in the full
4-dimensional spacetime are

K̄(l)
µν = q̄λ

µ q̄
ρ
ν∇λlρ and K̄(k)

µν = q̄λ
µ q̄

ρ
ν∇λkρ. (33)

The null vectors lµ and kµ are tangent to a congruence
of outgoing and ingoing null geodesics, respectively. The
traces of the extrinsic curvatures give the congruences’
expansions

θ(l) = q̄µν∇µlν and θ(k) = q̄µν∇µkν , (34)

and the shears are the trace-free parts,

σ(l)
µν = q̄λ

µ q̄
ρ
ν∇λlρ − 1

2
q̄µνθ(l) and (35)

σ(k)
µν = q̄λ

µ q̄
ρ
ν∇λkρ − 1

2
q̄µνθ(k). (36)

The geometrical interpretation of the expansion is
the fractional rate of change of the congruence’s
cross-sectional area [17]. We will mainly be inter-
ested in 2-surfaces S on which θ(l) = 0, called
marginally outer trapped surfaces (MOTSs) following the
terminology in [20]. If θ(l) < 0 on S, then outgoing null
normals will be converging towards each other, as one
expects to happen inside a black hole. If θ(l) > 0 the
situation is reversed, so the condition θ(l) = 0 provides a
reasonable quasilocal prescription for identifying the sur-
face of a black hole. In practice, a MOTS will generally lie
inside the event horizon, unless the black hole is station-
ary. The outermost MOTS is called the apparent horizon,
and is used to represent the surface of a black hole in nu-
merical simulations. In the next subsection, we briefly
describe how we locate MOTSs.

B. MOTS Finders

We use two different algorithms to locate MOTSs in
Σt. Both algorithms expand a MOTS “height function”
in spherical harmonics

rMOTS(θ, φ) =

LMOTS
∑

l=0

l
∑

m=−l

AlmYlm(θ, φ). (37)

Our standard algorithm is the pseudo-spectral fast flow
method developed by Gundlach [28], which we use dur-
ing the evolution. This method utilizes the fact that the
MOTS condition θ(l) = 0 results in an elliptic equation
for rMOTS(θ, φ). The elliptic equation is solved using a
fixed-point iteration with the flat-space Laplacian on S2

on the left-hand side, which is computationally inexpen-
sive to invert given the expansion Eq. (37). The fixed-
point iteration is coupled to parameterized modifications
which allow for tuning of the method to achieve fast,
but still reasonably robust convergence. In Gundlach’s
nomenclature, we use the N flow method, and have found
the parameters α = 1 and β = 0.5 satisfactory (see [28]
for definitions).

Gundlach’s algorithm (as well as MOTS finders based
on flow methods in general [51, 52]) incorporates a sign
assumption on the surfaces near the MOTS, namely that
θ(l) is positive for a surface which lies somewhat outside of
the MOTS. This assumption is satisfied for the apparent
horizon. However, this sign assumption is not satisfied
for some inner MOTSs in Σt that we discover below.
Therefore, these inner MOTSs are unstable fixed-points
for Gundlach’s algorithm, so that this algorithm cannot
locate these MOTSs.

To find these inner MOTSs, we employ an older algo-
rithm that is based on a minimization technique [53–55]:
The coefficients Alm in Eq. (37) are determined by min-
imizing the functional

Θ ≡
∫

S

θ2(l)
√
q̄d2x (38)

where the surface integral is over the current trial surface
with area element

√
q̄. This technique is insensitive to

the sign assumption in Gundlach’s method. However, it
is much slower, especially for large LMOTS.

When multiple MOTSs are present in Σt, the choice of
an initial surface determines the final surface the MOTS
finder converges to. Therefore, both MOTS finders re-
quire judicious choices of these initial surfaces. We typi-
cally track MOTSs from time step to time step, and use
the MOTS at the previous time step as an initial guess
for the MOTS finder at the current time.
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V. MARGINALLY TRAPPED TUBES

A. Basic Definitions and Concepts

During an evolution, the MOTSs found at successive
times foliate a world tube, or a marginally trapped tube

(MTT). The type of MTT that is foliated by a series
of MOTSs depends on the physical situation. A null
MTT is an isolated horizon [11–13, 56, 57] if −Rµν l

ν is
future causal, and certain quantities are time indepen-
dent on it. An isolated horizon describes a black hole in
equilibrium. On the other hand, a dynamical horizon

describes a black hole that is absorbing matter or
gravitational radiation [14, 15], and is physically the
most relevant. A dynamical horizon is a spacelike
MTT foliated by MOTSs on which θ(k) < 0, called
future marginally outer trapped surfaces. For a given
slicing of spacetime by spatial hypersurfaces Σt, the foli-
ation of a dynamical horizon by future marginally outer
trapped surfaces on Σt is unique [16]. Since the location
of a MOTS is a property of Σt, different spacetime slic-
ings will in general give different MTTs. Also, a timelike
MTT is called a timelike membrane [58]. Since causal
curves can traverse it in both inward and outward direc-
tions, it cannot represent the surface of a black hole.

An additional characterization of MTTs is based on
trapping horizons [9]. A future outer trapping horizon

is a MTT foliated by MOTSs that have θ(k) < 0 and
Lkθ(l) < 0 for some scaling of lµ and kµ. Such a MOTS
is called a future outer trapping surface. If the null en-
ergy condition holds, a future outer trapping horizon is
either completely null or completely timelike. It was
shown in [59] that if Lkθ(l) 6= 0 for at least one point
on these future outer trapping surfaces, then the future
outer trapping horizon is spacelike, or a dynamical hori-
zon, in a neighborhood of the future outer trapping sur-
faces. Otherwise the future outer trapping horizon is
null.

Interestingly, a MTT may not fall into either of the cat-
egories described above, but can have sections of mixed
signatures as demonstrated in the head-on collision of
two black holes [20]. At merger, a common apparent
horizon appears in Σt that surrounds the MOTSs of the
individual black holes. This common horizon then bifur-
cates into outer and inner common horizons. The outer
common horizon grows in area and is spacelike. However,
the inner common horizon decreases in area and foliates a
MTT that is briefly partly spacelike and partly timelike,
before becoming a timelike membrane later on.

B. Multiple MTTs

We now discuss the MOTSs that occur during the five
evolutions of the distorted black hole, with amplitude
A = 0.1, 0.2, 0.3, 0.4, or 0.5 for the ingoing gravitational
wave pulse. The MOTSs we find are indicated in Fig. 4
by their Christodoulou masses M . Early in each simula-
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FIG. 4: The solid curves are the Christodoulou masses M(t)
divided by their initial values Mi for the five evolutions with
different amplitudes A = 0.1, 0.2, 0.3, 0.4, and 0.5 for the
ingoing pulse of gravitational waves. The horizontal dotted
lines denote the ADM energy of each data set, EADM/Mi.

tion, M is approximately constant, and begins to increase
when the gravitational wave hits the black hole around
t ≈ 12Mi. The effect is more pronounced for larger A.
The horizontal dotted lines in Fig. 4 indicate the ADM
energy of the initial data. Although we do not explicitly
calculate the energy carried away by gravitational waves,
we can still see that the final Christodoulou mass is close
to EADM, indicating that the energy in the gravitational
wave pulse predominantly falls into the black hole, and
only a small fraction of this energy propagates to null
infinity. Even for the highest amplitude case of A = 0.5,
the final value of M is about 99.1% of the ADM energy.
These results are as expected. However, for both A = 0.4
and A = 0.5, a very interesting new feature arises: multi-

ple concentric MOTSs are present at the same coordinate
time.

The evolution with A = 0.5 shows the multiple MOTSs
more distinctly, hence we will focus on it in the remain-
der of this paper. Figure 5 presents a closer look at the
irreducible masses MH for this case. Locating all MOTSs
shown in Fig. 5 requires considerable care. The start-
ing point was the output of the MOTS finder that was
run during the evolution, using Gundlach’s fast flow al-
gorithm [28]. Because of the computational expense in-
volved, the MOTS finder was not run very frequently,
resulting in the solid circles in Fig. 5. The MOTS at the
previous time was used as the initial guess for the current
time, resulting in a series of MOTSs which is as continu-
ous as possible. The curve traced out by these points has
sharp jumps, which was the first indication of the pres-
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FIG. 5: Irreducible mass MH divided by its initial value MH,i

for the evolution with A = 0.5. The solid circles are the values
of MH for MOTSs found during the evolution. The completed
curve is traced out by open circles. The vertical shaded region
indicates when five MOTSs exist at the same time.

ence of multiple MOTSs at these times. Then to find the
remainder of MTT3 and MTT5, a MOTS corresponding
to one of these solid circles on MTT3 or MTT5 was used
as an initial guess and the MOTS finder was also run
more frequently. At this stage, we had completely traced
out MTT1, MTT3, and MTT5. Next we found MTT2
and MTT4 to be unstable fixed points for Gundlach’s
algorithm, so it was necessary to use our older MOTS
finder based on a minimization technique [53–55] to find
these MTTs. As an initial guess for finding a MOTS on
MTT2 for instance, a sphere with radius equal to the av-
erage radii of MTT1 and MTT3 sufficed. Once a MOTS
on MTT2 was located, it was used as an initial guess
for the MOTS finder to locate the MOTS on neighboring
time slices (both later and earlier). The same procedure
was used to locate MTT4.

After finding all the MTTs in Fig. 5, a clearer pic-
ture of their structures in relation to each other emerged.
MTT1 corresponds to the surface of the initial black hole.
Shortly after t = 14Mi, a new MOTS with MH/MH,i ≈
1.525 appears and bifurcates into two MTTs. MH de-
creases along MTT2, which promptly annihilates with
MTT1, while MTT3 persists slightly longer. A similar
process then takes place again, and MTT5 is left over as
the surface of the final black hole, with MH more than
double its initial value. The vertical shaded region indi-
cates the time interval when five MTTs exist simultane-
ously. Notice that MH of the apparent horizon jumps dis-
continuously in time from the curve of MTT1 to MTT3,
and then to MTT5. This indicates that the apparent
horizon itself is discontinuous across these times.

13.9 14 14.1 14.2 14.3 14.4 14.5 14.6
t/M

i
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1.25
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2

2.25

M
H

(t
)/

M
H

,i

apparent horizon

erroneously 
identified "AH"

(A = 0.5)

FIG. 6: The solid red line denotes the apparent horizon for the
evolution with A = 0.5. The blue circles denote an erroneous
“apparent horizon,” which is found when the apparent horizon
finder is run during the evolution in larger time intervals. The
black dashed lines denotes all five MTTs as shown in Fig. 5.

The apparent horizon is the outermost MOTS, and
when only one MOTS is present in a black hole evolution,
the MOTS and apparent horizon are identical. Here this
is not the case, and Fig. 6 shows the apparent horizon in
relation to the various MTTs. This figure also highlights
another potential pitfall when locating MOTSs. MOTS
finders are typically run during the evolution fairly in-
frequently, using the MOTS from the last MOTS com-
putation as an initial guess (to minimize computational
cost). If this had been done for the A = 0.5 case shown
in Figs. 5 and 6, the solid blue circles would have been
obtained. Because the previously found MOTS is used
as an initial guess, newly appearing MOTSs are gener-
ally missed. For instance, the blue circles follow MTT1
until it disappears, instead of jumping to MTT3. There-
fore, the output of the “apparent horizon finder” (the
more widely used name, but technically less precise than
“MOTS finder”), is sometimes not the apparent horizon.

A measure of the distortion of the black hole is pro-
vided by the intrinsic scalar curvature R̄ of the MOTSs.
The extrema of R̄ is shown in Fig. 7, along with those of
the initial apparent horizon. It is interesting to point out
that around t = 14.25Mi, the distortion caused by the
gravitational waves with A = 0.5 is sufficiently strong to
produce regions of negative R̄.

C. Dynamical Horizons

We determine the signatures of the multiple MTTs
during the highly dynamical period. First we compute
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FIG. 7: Extrema of the intrinsic scalar curvature R̄ of MOTSs
during the evolution with A = 0.5. The horizontal dotted
lines are the values for the apparent horizon in the initial data.
Around t = 14.25Mi, the MOTSs have regions of negative R̄.

θ(k) and Lkθ(l) using the null normals in Eq. (30), and
find that both quantities are negative. So our MTTs
are future outer trapping horizons, which must be either
spacelike or null, and we can immediately rule out the
possibility of there being sections of mixed signatures.
Figure 8 shows the extrema of θ(k) along each MTT. The
quantity Lkθ(l) is evaluated from the expression [59]

Lkθ(l) = −R̄/2 + ωµω
µ − dµω

µ + 8πTµν l
µkν , (39)

where

ωµ = −q̄ν
µkλ∇ν l

λ (40)

is the normal fundamental form, and dµ is the covariant
derivative compatible with q̄µν . Figure 9 shows the ex-
trema of Lkθ(l) < 0 along each MTT.

Next we compute Llθ(l) to determine whether the
MTTs are spacelike or null. We evaluate this using the
null Raychaudhuri equation [17],

Llθ(l) = −σ(l)µνσ(l)
µν − 8πTµν l

µlν . (41)

Figure 10 shows that during the times when there are
multiple MTTs, Llθ(l) 6= 0 somewhere on each MOTS.
Thus all of the MTTs are dynamical horizons at these
times.

Here we also mention the extremality parameter e of a
MTT introduced in [60]. In vacuum, it is given by

e =
1

4π

∫

S

ωµω
µ √

q̄d2x, (42)

= 1 +
1

4π

∫

S

Lkθ(l)
√
q̄d2x, (43)

where the integral is over a MOTS S that foliates the
MTT. When S is axisymmetric, this can be regarded as
the sum of the squares of all angular momentum multi-
poles. Because a future outer trapping horizon, which
is either spacelike or null, has Lkθ(l) < 0, it is always
sub-extremal. So a timelike membrane foliated by future
MOTSs (with θ(k) < 0) must have Lkθ(l) > 0, and is
super-extremal. Therefore, it was suggested in [60] that
a MTT’s transition from being spacelike to timelike can
be detected when e→ 1.

Figure 11 shows e along each MTT, and we see that
nowhere does e → 1, confirming that our MTTs do not
become timelike. The value of e shows a substantial
decrease after the distortion has left, which is not due
to a loss of quasilocal angular momentum J (defined in
Eq. (49)), but to the large gain in irreducible mass MH.
It may seem that e in Fig. 11 is already rather small to
start out with, but one must recall that e depends on
the scaling of the null normals lµ and kµ. That is, we
can define new null normals l̄µ = flµ and k̄µ = kµ/f ,
rescaled by some function f such that the normalization
l̄µk̄µ = −1 is preserved. Then e will change as

ē = e+
1

4π

∫

S

[2ωµdµlnf + (dµlnf)(dµlnf)]
√
q̄d2x. (44)

Nevertheless, the extremality classification of the MTTs
is invariant.

It is known that the irreducible mass MH of a MOTS
must increase along a dynamical horizon [15], so at first
it may seem surprising that MTT2 and MTT4, with de-
creasing MH during the evolution, are also dynamical
horizons. However, all these MTTs can be viewed as
sections of a single dynamical horizon H that weaves for-
wards and backwards in time. Then it is clear that the
tangent vector to H along MTT2 and MTT4 points back-
wards in time, so that MH is actually increasing along
H as expected. Our simple choice of holding the gauge
source function Hµ equal to its initial value lead to a
spacetime foliation that interweaves H. This could be
avoided by an alternative choice of Hµ that results in a
single dynamical horizon that only grows in time.

The situation here resembles an example of a Tolman-
Bondi spacetime considered in [19], where multiple spher-
ically symmetric dust shells fall into a black hole. For
their chosen matter distribution, multiple MTTs also
formed (up to three at the same time), which were ei-
ther completely spacelike, or null when the matter den-
sity vanished between successive dust shells. In our case

the role of the matter density is replaced by the shear σ
(l)
µν

due to the gravitational waves. Since this is always non-
vanishing somewhere on the multiple MTTs that form,
we only have dynamical horizons.

In [16], it was shown that for a regular dynamical hori-
zon (which is achronal and also a future outer trapping
horizon), no weakly trapped surface (on which θ(l) ≤ 0
and θ(k) ≤ 0) can exist in its past domain of dependence.
This helps to explain the difficulty in locating MOTSs
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FIG. 8: Extrema of θ(k) on each MOTS along the MTTs
during the evolution with A = 0.5. For the time shown, θ(k) <
0.

along MTT2 and MTT4 using flow methods. For exam-
ple, consider locating a MOTS on MTT2 at t = 14.1Mi

shown in Fig. 5. If we use a trial surface S located be-
tween the MOTSs on MTT1 and MTT2, it must have
θ(l) > 0 because it lies in the past domain of dependence
of H. This means that S will be moved inwards when
using flow methods, away from MTT2. If we switch to
having S lie between the MOTSs on MTT2 and MTT3,
then having θ(l) > 0 is desired. Unfortunately, now S lies
in the future domain of dependence of H, and we are no
longer guaranteed that S is not a weakly trapped surface.

D. Dynamical Horizon Flux Law

The growth of a black hole in full, nonlinear general
relativity can be described by the dynamical horizon flux
law of Ashtekar and Krishnan [14, 15], which relates the
increase in area or mass along a dynamical horizon to
fluxes of matter and gravitational energy across it. Here
we will evaluate this flux law for the dynamical horizon
H that consists of the multiple MTT sections we found
earlier, using the form given in [59].

To state the dynamical horizon flux law, let us specif-
ically consider the change in the irreducible mass MH

along H. Denote a MOTS that foliates H by Sv, which
is labeled by a foliation parameter v that is constant on
Sv. Then choose a tangent vector V µ to H that is normal
to each Sv, and such that

LV v = 1. (45)
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FIG. 9: Extrema of Lkθ(l) on each MOTS along the MTTs
during the evolution with A = 0.5. For the time shown,
Lkθ(l) < 0.

This vector V µ can be written as

V µ = B̄l̄µ − C̄k̄µ, (46)

in terms of coefficients B̄ and C̄, and null normals l̄µ =
flµ and k̄µ = kµ/f that are rescaled by a function f (but
still having l̄µk̄µ = −1) so that

C̄ = 2
dMH

dv
. (47)

The dynamical horizon flux law is then

dMH

dv
=

∫

Sv

[

Tµν l̄
µτν +

B̄

8π
σ(l̄)

µνσ
(l̄)µν +

C̄

8π
ω̄µω̄

µ

] √
q̄d2x,

(48)

where σ
(l̄)
µν and ω̄µ are given by Eqs. (35) and (40) but in

terms of l̄µ and k̄µ, and τµ = B̄l̄µ + C̄k̄µ is the normal
vector to H.

The first term in Eq. (48) involving Tµν is the energy
flux of matter across Sv, and the second term involv-

ing σ
(l̄)
µν is a flux of gravitational energy [15]. The last

term has been interpreted differently by various authors.
The normal fundamental form ωµ (or ω̄µ) enters into the
definition of the quasilocal angular momentum J of a
black hole mentioned at the end of Sec. II, which is given
by [15],

J = − 1

8π

∫

Sv

φµωµ

√
q̄d2x, (49)

for any choice of rotation vector field φµ on Sv. Because
of this relation, this term has been interpreted as a flux of
rotational energy [15, 20]. However, it has been pointed
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FIG. 10: Extrema of −Llθ(l) on each MOTS along the MTTs
during the evolution with A = 0.5. Near t = 14Mi, Llθ(l) 6= 0
somewhere on Sv.

out in [59] that this is unlikely, as ωµ is related to J itself
and not its flux. Indeed, this may be illustrated by con-
sidering a Kerr black hole that is distorted by an ingoing
spherically symmetric dust shell (which carries no angu-
lar momentum). So even though there will be no flux of
rotational energy, the last term in Eq. (48) will still be
non-zero whenever C̄ 6= 0, which is necessarily true on a
dynamical horizon. This last term also closely resembles
the extremality parameter e mentioned in Sec. VC.

Another interpretation of the last term in Eq. (48)
has been given by Hayward [61] as a flux of longitudinal
gravitational radiation, by examining the components of
an effective gravitational-radiation energy tensor in spin-
coefficient form. At future null infinity, the outgoing lon-
gitudinal gravitational radiation is negligible relative to
the outgoing transverse radiation, but near the black hole
this is generally not so.

To evaluate the dynamical horizon flux law, we first
construct a tangent vector Xµ to H that connects Sv in
Σt to Sv′>v in Σt′ as

Xµ = ±
(

1,
∂xi

v

∂t

)

, (50)

where xi
v are the coordinates of Sv, and the plus sign is

for t′ > t while the minus sign is for t′ < t. The latter
occurs along MTT2 and MTT4. The spatial components
of the tangent vectorXµ diverge when two MTT sections
meet. This may be avoided by a different choice of Xµ,
but here we employ the simple one described above. For
this reason, we also consider the corresponding foliation
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FIG. 11: Extremality parameter e along the MTTs during
the evolution with A = 0.5. For the time shown, the MTTs
are sub-extremal with e < 1, indicating that the MTTs have
no timelike sections.

parameter v along each section of H separately. Since

LXv = ±∂v
∂t
, (51)

and we would like this to be unity, it follows that v = ±t+
v0, where v0 is some constant along each MTT section.
We choose v = t along MTT1. Along the other MTT
sections, we choose v0 so that v = 0 on the first Sv we
find on those sections.

Next we makeXµ orthogonal to Sv to obtain V µ (while
leaving the time component unchanged, so Eq. (45) is
still satisfied with the choice of v described above). To
achieve this, we use the unit tangent vectors to Sv,

pµ = Np

(

0,
∂xi

v

∂θ

)

and qµ = Nq

(

0,
1

sin θ

∂xi
v

∂φ

)

. (52)

Here, xi
v(θ, φ) = ciMOTS + rMOTS(θ, φ)di(θ, φ) where

rMOTS(θ, φ) is given in Eq. (37) and di is the coordi-
nate unit vector pointing from the origin ciMOTS of the
expansion along the (θ, φ)-directions. Also, Np and Nq

are normalization factors such that p2 = q2 = 1. Orthog-
onalizing qµ against pµ gives the vector

Qµ = NQ (qµ − pνqνp
µ) , (53)

where NQ is again a normalization factor such that Q2 =
1. Then we obtain the desired tangent vector to H as

V µ = Xµ − (pνXν) pµ − (QνXν)Qµ. (54)

This can be also be expressed in terms of our standard
null normals of Eq. (30) as

V µ = Blµ − Ckµ, (55)
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plotted against the foliation parameter v along each section
of Sv. Along MTT1, we choose v = t. Along the other MTT
sections, we choose v = 0 on the first Sv we find.

with coefficients B = −V µkµ and C = V µlµ.
Now we determine the rescaled null normals l̄µ and k̄µ

appearing in Eq. (46). Since V µ must be the same vector
whether it is written in terms of lµ and kµ, or l̄µ and k̄µ,
we have the relations

B̄ = B/f and C̄ = fC, (56)

which together with Eq. (47) gives

f =
B

B̄
=
C̄

C
=

2

C

dMH

dv
. (57)

Evaluating the scale factor f requires knowledge of
dMH/dv. It is straightforward to show that the area
element

√
q̄ of Sv changes along H as

LV

√
q̄ = −Cθ(k)

√
q̄, (58)

so the change in cross-sectional area AH along H is

dAH

dv
= −

∫

Sv

Cθ(k)

√
q̄d2x. (59)

From the definitionMH =
√

AH/16π, it then follows that

dMH

dv
=

1√
64πAH

dAH

dv
. (60)

The terms in the dynamical horizon flux law (48) are
calculated by noting that under the rescaling of the null
normals lµ and kµ,

σ(l̄)
µν = fσ(l)

µν and ω̄µ = ωµ + dµ ln f. (61)

The results are shown in Fig. 12 from t = 10Mi to
t = 20Mi. The energy flux of matter is neglected since

we have Tµν = 0. The flux associated with B̄σ
(l̄)
µνσ(l̄)µν

is always the larger contribution to the growth of MH,
which is expected from the interpretation of this term as
a flux of gravitational energy. This is most pronounced
along MTT2 and MTT4, with decreasing MH during the
evolution, and clearly indicates that their appearance is a
consequence of the sufficiently high gravitational energy
flux across them. We have seen in Sec. VB that for weak
gravitational waves and with the same gauge condition
for the evolution, no such MTTs appear. The maximum
number of MTTs that can exist at the same time may
also be linked to the structure of the gravitational waves,
as shown in the inset of Fig. 2, although we have not
explored this aspect further.

The fluxes increase rapidly near each bifurcation point.
This is because of our choice of normalization for Xµ in
Eq. (50), which propagates into V µ. To understand this,
let us write as xµ

c the spacetime coordinates of Sc that
bifurcates, with foliation parameter v = c say. Then on
a nearby Sv, we can approximate ∂xi

v/∂t by

∂xi
v

∂t
≈ ∂

∂t

(

xi
c ± λ

√

|t− tc|
)

= ±λ
2

1
√

|t− tc|
, (62)

where λ is some function. As t → tc, this quantity di-
verges as does the norm of V µ, and leads to the higher
values of the fluxes measured along V µ. This singular
behavior could be absorbed into a redefined foliation pa-
rameter v′ = v′(v). Also, any visible discontinuities in
the fluxes across different sections of H in Fig. 12 are
due to the difficulty in finding Sc exactly (as indicated
by the data points in Fig. 5, even searching for MOTSs
at every ∆t = 0.01 is insufficient for this purpose).

E. Angular Momentum Flux Law

The angular momentum J defined in Eq. (49) depends
on a choice of rotation vector φµ on Sv. If Sv is ax-
isymmetric, the natural choice of φµ is the axial Killing
vector. In general spacetimes no such Killing vector ex-
ists, but one can nevertheless define a suitable φµ [62] by
requiring it to have closed orbits, and be divergence free

dµφ
µ = 0. (63)

This notion has been further refined to calculate approx-
imate Killing vectors [29, 30] in black hole simulations,
and we will make use of this choice here. They were also
used to compute J of the initial data sets in Sec. II.

Gourgoulhon has generalized the Damour-Navier-
Stokes equation for null hypersurfaces to trapping hori-
zons and used it to derive a flux law for the change in
J along a hypersurface H foliated by 2-surfaces Sv (not
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necessarily MOTSs) with foliation parameter v [21],

dJ

dv
= −

∫

Sv

Tµνφ
µτν √q̄d2x (64)

− 1

16π

∫

Sv

σ(τ)µνLφq̄µν

√
q̄d2x

+

∫

Sv

1

8π

[

θ(k)φ
µdµC − ωµLV φ

µ
] √

q̄d2x

= −
∫

Sv

Tµνφ
µτν √q̄d2x (65)

−
∫

Sv

1

8π

[

Bσ(l)
µνσ

(φ)µν + Cσ(k)
µν σ

(φ)µν
] √

q̄d2x

+

∫

Sv

1

8π

[

θ(k)φ
µdµC − ωµLV φ

µ
] √

q̄d2x,

where the vectors V µ = Blµ − Ckµ and τµ = Blµ +
Ckµ are tangent and normal to H, respectively. The
first integral in Eq. (65) is the angular momentum flux
due to matter. The second integral can be thought of as
the flux due to gravitational radiation and vanishes if Sv

is axisymmetric. In addition, it is usually required that
φµ be Lie transported along the dynamical horizon,

LV φ
µ = 0, (66)

so that the last integral in Eq. (65) vanishes when Sv is
a MOTS [21]. This requirement ensures that in the ab-
sence of matter and gravitational radiation, the angular
momentum flux will be zero along a MTT as expected,
instead of there being some physically unmeaningful flux
simply due to measuring J about different axes.

Here we evaluate the angular momentum flux law for
the dynamical horizon H found in Sec. VC for A = 0.5.
Because we calculate J with φµ being an approximate
Killing vector, Eq. (66) is not satisfied in general, and so
we must keep the last integral in Eq. (65). We use the
same tangent vector V µ and foliation parameter v along
each section of H as in Sec. VD, and the null normals to
Sv given in Eq. (30). The values of the terms in Eq. (65)
are shown in Fig. 13 from t = 10Mi to t = 20Mi. The
first integral is neglected since Tµν = 0. The two terms

in the second integral are labeled as “Bσ(l)σ(φ) flux” and
“Cσ(k)σ(φ) flux”. The last integral is labeled as “LV φ

µ

flux”. The angular momentum flux dJ/dv is dominated

by the flux associated with Bσ
(l)
µνσ(φ)µν , due to the large

σ
(l)
µν produced by the gravitational waves. The magni-

tude of dJ/dv vanishes initially, becomes largest along
the end of MTT1 and the beginning of MTT2 when the
gravitational waves reach the black hole, and settles back
down to zero again along the successive MTT sections.
Because dJ/dv alternates sign along H, the net change
in J turns out to be small. The terms in the angular
momentum flux law also diverge near each Sv that bifur-
cates into two MTTs, just like the terms in the dynamical
horizon flux law in Fig. 12, and again is a consequence of
our choice of V µ as discussed at the end of Sec. VD.
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FIG. 13: Terms in the angular momentum flux law of Eq. (65)
plotted against the foliation parameter v along each section
of H. Along MTT1, we choose v = t. Along the other MTT
sections, we choose v = 0 on the first Sv we find.

VI. THE EVENT HORIZON

A. Basic Definitions and Concepts

The standard definition of the surface of a black hole
is the event horizon, the boundary of the set of all points
that are not in the causal past of future null infinity [7].
It is a null hypersurface, generated by null geodesics that
have no future endpoints. As defined, the event horizon
is a 3-surface, but it is common to refer to the intersec-
tion of this surface with Σt as the event horizon as well.
In contrast to a MOTS, the event horizon can only be
found after the entire future history of the spacetime is
known. Due to its teleological nature, the event horizon
can behave non-intuitively. For instance, before a grav-
itational collapse has occurred an event horizon already
forms, even though there is no flux of energy or angu-
lar momentum across it yet. In this section we describe
our method of finding the event horizon, and contrast its
properties with those of the MTTs found in Sec. V.

B. Event Horizon Finder

The event horizon is located in a spacetime by follow-
ing geodesics backwards in time. It is well known [5, 63]
that null outgoing geodesics in the vicinity of the event
horizon, when followed backwards in time, will converge
onto the event horizon exponentially. Therefore, given a
well-chosen congruence of geodesics, one can trace the
event horizon of the spacetime with exponentially (in
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FIG. 14: Irreducible masses of the event horizon MEH and the
MOTSs MH during the evolution with A = 0.5. At the very
beginning of the evolution MEH is already increasing, while
MH is still fairly constant. As the inset shows, MEH grows
very slightly when MH changes the most.

time) improving accuracy.
Our event horizon finder [64] tracks a set of geodesics

backwards in time. The initial guess for the event hori-
zon is chosen at some late time when the black hole is in
a quasi-stationary state. At this time, the apparent hori-
zon and event horizon coincide closely, and the apparent
horizon is used as the initial guess. The initial direction
of the geodesics is chosen to be normal to the apparent
horizon surface, and the geodesics are integrated back-
wards in time. The geodesic equation requires values for
the metric and its derivatives for each geodesic at each
point in time. These values are obtained by interpolation
from the values computed during the evolution. With an
appropriate form of the geodesic equation, we can follow
a geodesic as a function of coordinate time t, rather than
the affine parameter along the geodesic.

C. Contrasting the Event Horizon with MTTs

We find the event horizon for the evolution in which
the ingoing gravitational waves have the largest ampli-
tude A = 0.5. The surface area AEH of the event horizon
is computed by integrating the metric induced on its sur-
face by the spatial metric gij . The irreducible mass of the

event horizon is then given as MEH =
√

AEH/16π. This
is shown in Fig. 14, together with the irreducible mass
MH along the MTTs. An obvious difference is that MEH

always increases in time, and the event horizon does not
bifurcate like the MTTs shortly after t = 14Mi. The
event horizon is also already growing at the very begin-

FIG. 15: Spacetime diagram of the event horizon and dynami-
cal horizons for A = 0.5. The red lines are the null generators
of the event horizon, while the grey surface represents the
dynamical horizons.

ning of the evolution, before the gravitational waves have
hit the black hole. By t = 14Mi, the value of MEH has
almost doubled while MH is still fairly close to its ini-
tial value. In fact, during the time when when multiple
MTTs are present and one would intuitively expect the
black hole to be the most distorted, the event horizon
shows very little growth.

This peculiar behavior of the event horizon was also
illustrated in [18] for the gravitational collapse of spheri-
cal dust shells, and explained with the null Raychaudhuri
equation [17],

dθ(l)
dλ

= −1

2
θ2(l) − σ(l)

µνσ
(l)µν − 8πTµν l

µlν , (67)

where λ is an affine parameter along the congruence of
null geodesics that generate the event horizon, with tan-
gent vector lµ. The area element

√
h of the event horizon

is related to the expansion θ(l) by d
√
h/dλ = θ(l)

√
h, and

substituting this into Eq. (67) gives

d2
√
h

dλ2
=

(

1

2
θ2(l) − σ(l)

µνσ
(l)µν − 8πTµν l

µlν
)√

h. (68)

In dynamical situations we will generally have θ(l) 6= 0 on
the event horizon, and this accounts for its accelerated
growth, which is evident even at early times in our evolu-

tion when the shear σ
(l)
µν is negligible. When the pulse of

gravitational waves hits the black hole, σ
(l)
µν on the event

horizon becomes large, and according to Eq. (68) this will
decelerate its growth, even causing the growth to become
very small in our case.

At late times, the event and apparent horizons even-

tually coincide as both σ
(l)
µν and θ(l) go to zero on the
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event horizon while the apparent horizon becomes null.
Finally, Fig. 15 shows a spacetime diagram of the event
horizon and the dynamical horizon H, with the spatial
dimension along the z−direction suppressed. The null
generators of the event horizon are shown in red, and lie
outside the grey surface of H, except when they coincide
at late times. In Fig. 15 the event horizon’s cross section
appears to be shrinking at late times. The constancy of
the area of the event horizon (cf. Fig. 14) shows that this
is merely a coordinate effect.

VII. DISCUSSION

In this paper, we investigate marginally trapped tubes
and event horizons for rotating black holes distorted by
a pulse of ingoing gravitational waves. For small distor-
tions (low amplitude A), the simulations do not exhibit
any unexpected behavior: the area of the apparent hori-
zon is initially approximately constant, it grows when the
gravitational radiation reaches the black hole, and then
settles down to a constant value after the highly dynam-
ical regime is over. However, for strong distortions, we
find much more interesting behaviors of the MOTSs. A
new pair of MOTSs appears outside the original MOTS.
These new surfaces are initially close together and move
rapidly away from each other, indicating that at the crit-
ical time when they first appear they are coincident (al-
though this particular event cannot be resolved in an evo-
lution with finite time step). The inner surface of such a
pair shrinks, eventually approaches the original MOTS,
and then these two surfaces annihilate each other. For
amplitude A = 0.4 this process happens once, for A = 0.5
this happens twice, and there is a short time interval dur-
ing which five MOTSs are present in the simulation.

The MTTs traced out by the MOTSs are smooth,
and appear to combine into one smooth hypersurface
(although the critical points where different marginally
trapped tubes combine with each other cannot be re-
solved). When the black hole is distorted, we find that
this hypersurface is everywhere spacelike and a dynami-
cal horizon. We investigate how the black hole grows by
evaluating the dynamical horizon flux law of Ashtekar
and Krishnan [15, 59], and find that the gravitational
energy flux is largest across the sections of the dynami-
cal horizon that decrease in cross-sectional area with in-
creasing time. We also evaluate the angular momentum
flux law of Gourgoulhon [21] along the dynamical hori-
zon, but instead of using a rotation vector φµ that is
Lie transported along the dynamical horizon, we use an
approximate Killing vector [29], since we prefer to cal-
culate the angular momentum itself in this way. The
angular momentum flux law is based on the general-
ized Damour-Navier-Stokes equation, which treats the
black hole as a viscous fluid. Evaluating the generalized
Damour-Navier-Stokes equation itself could aid in devel-
oping physical intuition about black holes in numerical
spacetimes.

In illustrating the procedure for finding multiple
MOTSs, caution must be taken to locate the apparent
horizon with MOTS finders when the MOTS found at a
previous time is used as an initial guess. If the MOTS
finder is not run frequently enough, new MOTSs will be
missed and an erroneous apparent horizon will be iden-
tified. This raises the issue of whether the true appar-
ent horizon was indeed located in similar work involving
highly distorted black holes in the past (e.g. [3]). A better
understanding of the slicing dependence of the MOTSs
in our simulations would also be helpful in choosing a
more natural slicing condition that gives a single dynam-
ical horizon that only grows in cross-sectional area with
time in highly dynamical situations.

When computing the event horizon, we find it to be
smooth, and enveloping the complicated structure of the
MOTSs. As can be seen in Figs. 14 and 15, the event
horizon is very close to the apparent horizon at late times,
as one would expect. The motion of the event horizon is
restricted by the fact that it is foliated by null geodesics.
Therefore, in order to encompass the MOTSs, the event
horizon begins to grow much earlier, and even at the start
of our simulation the event horizon is already consider-
ably larger than the apparent horizon. At early times,
t . 10Mi, the event horizon approaches the apparent
horizon exponentially. The rate of approach should be
given by the surface gravity of the initial black hole, but
we have not verified this in detail, as our simulation does
not reach sufficiently far into the past. This could be
checked by placing the initial pulse of gravitational radi-
ation at a larger distance from the black hole. The growth
of the event horizon is described by the Hawking-Hartle
formula [65], which may also be evaluated to give a more
complete comparison of MTTs and the event horizon.

Our findings are analogous to the behavior of MOTSs
and event horizons in the Vaidya spacetime, as worked
out in detail in the appendix. In particular, for strong
accretion, the Vaidya spacetime can also exhibit multiple
MOTSs at the same time, all of which foliate dynamical
horizons. Both in the Vaidya spacetime and our distorted
Kerr spacetimes, the event horizon begins to grow much
earlier before multiple MOTSs appear. By choosing a
mass functions m(v) that has two strong pulses of ac-
cretion, the Vaidya example in the appendix would also
produce five concentric MOTSs similar to that seen in
Fig. 5.
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Appendix: Multiple Horizons in the Vaidya

Spacetime

The ingoing Vaidya spacetime is a spherically sym-
metric spacetime describing a black hole that accretes
null dust [66]. It shares similar features to the distorted
Kerr spacetimes presented in this paper, which we men-
tion here briefly. The ingoing Vaidya metric in ingoing
Eddington-Finkelstein coordinates (v, r, θ, φ) is

ds2 = −
(

1 − 2m(v)

r

)

dv2 + 2dvdr + r2dΩ2, (A.1)

where v = t + r is advanced time (not to be confused
with the foliation parameter v of dynamical horizon in
the main text). From the Einstein equations, the stress-
energy tensor is

Tµν =
dm/dv

4πr2
(∂µv)(∂νv). (A.2)

With the choice of radial outgoing and ingoing null vec-
tors

lµ =

[

1,
1

2

(

1 − 2m(v)

r

)

, 0, 0

]

and kµ = (0,−1, 0, 0),

(A.3)
normalized so that lµkµ = −1, the expansions of the null
normals are

θ(l) =
1

r

(

1 − 2m(v)

r

)

and θ(k) = −2

r
. (A.4)

From this, we see that MOTSs are located at r =
2m(v), or

m(v) =
1

2
(v − t). (A.5)

The number of solutions to Eq. (A.5), i.e. the number of
MOTSs, can be conveniently discussed with the diagram
shown in Fig. 16. The thick solid lines represent three
different mass functions m(v) plotted vs. v. The right-
hand-side of Eq. (A.5) is a family of straight lines (one for
each t) represented by the thin diagonal lines in Fig. 16.
For a given t, the number of intersections between the
(v−t)/2 and the m(v) curve gives the number of MOTSs
at that particular t. The straight line 1

2 (v − t) has slope
1/2, so if dm/dv < 1/2 for all v, then there will be exactly

0 1 2 3
v

1

2

m
(v

)

(v 
- t

) /
 2 A = 1

A = 0.5

A = 0.25

FIG. 16: Mass functions m(v) of the Vaidya spacetime for
three amplitudes A = 0.25, 0.5, and 1, along with the straight
lines (v−t)/2. MOTSs exist at the intersections of these func-
tions. For A = 0.5 and 1, there are up to three intersections,
as illustrated by the dashed black line which intersects the
A = 1 mass curve three times.

one intersection1 for every t. If

dm

dv
>

1

2
for some v, (A.6)

then the m(v) curve will have regions that are steeper
than the straight line. By adjusting the vertical inter-
cept of the straight line, equivalent to choosing a suit-
able t, the straight line will pass through a point with
dm/dv > 1/2. At this point, m(v) passes from below to
above the straight line, so there must be an additional
intersection at both smaller and larger v, for a total of
three MOTSs. Thus, sufficiently rapid mass accretion
(large dm/dv) results in multiple MOTSs.

The signature of a spherically symmetric MTT de-
pends on the sign of [19]

C =
Tµν l

µlν

1/(2AH) − Tµν lµkν
, (A.7)

where AH is the cross-sectional area of the MTT. The
MTT is spacelike if C > 0, null if C = 0, and timelike if
C < 0. From Eq. (A.2) and Eq. (A.3),

Tµν l
µlν =

dm/dv

4πr2
and Tµν l

µkν = 0, (A.8)

1 Assuming m(v) is non-decreasing, and has finite bounds for v →

±∞.
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FIG. 17: Locations of MOTSs (solid lines) and event horizons
(dashed lines) in the Vaidya spacetime. For A = 0.25 there
is one MOTS at all times. For A = 0.5 and 1, up to three
MOTSs exist at a time t. The event horizons approach the
MTTs at very early and late times, and start growing much
earlier than the MTTs. The inset shows a larger interval in t.

so we see that C > 0 for the Vaidya spacetime as long
as dm/dv > 0. Furthermore, since θ(k) < 0, these MTTs
will also be dynamical horizons.

The event horizon is generated by radial outgoing null
geodesics satisfying

dr

dv
=

1

2

(

1 − 2m(v)

r

)

. (A.9)

Integrating this differential equation requires knowledge
of the event horizon location at some point. This is usu-
ally supplied by the final state of the black hole, when

accretion has ended.

To close, we illustrate these considerations with a con-
crete example. We choose the mass function

m(v) =







m0, v ≤ 0

m0 +
Am0v

2

v2 +W 2
, v > 0

(A.10)

similar to that presented in [67] (Am0 is the mass ac-
creted by the black hole, and W determines the time-
scale of accretion). We set m0 = 1, W = 0.5, and
consider three different amplitudes A = 0.25, 0.5, and 1.
Figure 16 shows the respective mass functions, and we
see that A = 0.25 never leads to multiple MOTSs, while
A = 1 clearly exhibits three MOTSs for certain t. It is
easy to show that Eq. (A.6) implies Am0 > 4W/(3

√
3).

The locations of the MOTSs in (r, t) coordinates are
shown in Fig. 17. For A = 0.25, there is only one MOTS
at all times. For A = 0.5, there are up to three MOTSs
at a single time. A new MOTS appears at r = 2.5 im-
mediately after t = −2, and bifurcates into two MTTs.
One of these MTTs shrinks and annihilates with the in-
nermost MTT at t = −1.93256, while only the outermost
MTT remains at late times and grows towards r = 3. For
A = 1, there are again up to three MOTSs at a single
time, but a new MOTS appears earlier at t = −2.63822.
After t = −1.96824, only one MOTS remains and grows
towards r = 4. Also shown in Fig. 17 are lines of constant
v indicating when accretion begins (v = 0), when m(v)
has increased by 50% and 80%, respectively (v = W and
v = 2W ).

The event horizons for the three cases are computed
by integrating Eq. (A.9) backwards in time, starting with
rEH(v → ∞) = 2(1 + A)m0. The resulting surfaces are
shown as the dashed curves in Fig. 17. The event horizon
is located at r = 2 in the far past, starts growing long
beforem(v) increases, and asymptotically approaches the
MTT of the final black hole for all amplitudes A.
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[63] J. Libson, J. Massó, , E. Seidel, W.-M. Suen, and

P. Walker, Phys. Rev. D53, 4335 (1996).
[64] M. Cohen, H. P. Pfeiffer, and M. A. Scheel, Class. Quant.

Grav. 26, 035005 (2009), arXiv:0809.2628.
[65] S. W. Hawking and J. B. Hartle, Commun. Math. Phys.

27, 283 (1972).
[66] P. C. Vaidya, Phys. Rev. 83, 10 (1951).
[67] E. Schnetter and B. Krishnan, Phys. Rev. D 73,

021502(R) (2006), gr-qc/0511017.


