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We study two large classes of alternative theories, modifying the action through algebraic,
quadratic curvature invariants coupled to scalar fields. We find one class that admits solutions
that solve the vacuum Einstein equations and another that does not. In the latter, we find a de-
formation to the Schwarzschild metric that solves the modified field equations in the small coupling
approximation. We calculate the event horizon shift, the innermost stable circular orbit shift, and
corrections to gravitational waves, mapping them to the parametrized post-Einsteinian framework.
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I. INTRODUCTION

Although black holes (BHs) are one of the most strik-
ing predictions of General Relativity (GR), they remain
one of its least tested concepts. Electromagnetic ob-
servations have allowed us to infer their existence, but
direct evidence of their non-linear gravitational struc-
ture remains elusive. In the next decade, data from
very long-baseline interferometry [1, 2] and gravitational
wave (GW) detectors [3–20] should allow us to image
and study BHs in detail. Such observations will test GR
in the dynamical, non-linear or strong-field regime, pre-
cisely where tests are currently lacking.

Testing strong-field gravity features of GR is of utmost
importance to physics and astrophysics as a whole. This
is because the particular form of BH solutions, such as
the Schwarzschild and Kerr metrics, enter many calcu-
lations, including accretion disk structure, gravitational
lensing, cosmology and GW theory. The discovery that
these metric solutions do not accurately represent real
BHs could indicate a strong-field departure from GR with
deep implications to fundamental theory.

Such tests require parametrizing deviations from
Schwarzschild or Kerr. One such parameterization at the
level of the metric is that of bumpy BHs [21–23], while
another at the level of the GW observable is the param-

eterized post-Einsteinian (ppE) framework [24, 25]. In
both cases, such parameterizations are greatly benefited
from knowledge of specific non-GR solutions, but few,
4D, analytic ones are known that represent regular BHs
(except perhaps in dynamical Chern-Simons (CS) grav-
ity [26, 27] and Einstein-Dilaton-Gauss-Bonnet (EDGB)
gravity [28–32]).

Most non-GR BH solutions are known through numer-
ical studies. In this approach, one chooses a particular al-
ternative theory, constructs the modified field equations
and then postulates a metric ansatz with arbitrary func-
tions. One then derives differential equations for such
arbitrary functions that are then solved and studied nu-
merically. Such an approach was used, for example, to
study BHs in EDGB gravity [28–32].

Another approach is to find non-GR BH solutions
analytically through approximation methods. In this

scheme, one follows the same route as in the numeri-
cal approach, except that the differential equations for
the arbitrary functions are solved analytically through
the aid of approximation methods, for example by ex-
panding in (a dimensionless function of) the coupling
constants of the theory. Such a small-coupling approx-

imation [26, 33, 34] treats the alternative theory as an
effective and approximate model that allows for small GR
deformations. This approach has been used to find an
analytic, slowly-rotating BH solution in dynamical CS
modified gravity [26, 27].

But not all BH solutions outside of GR must nec-
essarily be different from standard GR ones. In fact,
there exists many modified gravity theories where the
Kerr metric remains a solution. This was the topic stud-
ied in [35], where it was explicitly shown that the Kerr
metric is also a solution of certain f(R) theories, non-
dynamical quadratic gravity theories, and certain vector-
tensor gravity theories. Based on these fairly generic ex-
amples, it was then inferred that the astrophysical obser-
vational verification of the Kerr metric could not distin-
guish between GR and alternative theories of gravity.

Such an inference, however, is not valid, as it was later
explicitly shown in [26]. Indeed, there are alternative
gravity theories, such as dynamical CS modified gravity,
where the Kerr metric is not a solution. This prompted
us to study what class of modified gravity theories admit
Kerr and which do not. We begin by considering the
most general quadratic gravity theory with dynamical
couplings, as this is strongly motivated by low-energy
effective string actions [36–40]. When the couplings are
static, we recover the results of [35], while when they are
dynamic we find that the Kerr metric is not a solution.
In the latter case, we find how the Schwarzschild metric
must be modified to satisfy the corrected field equations.
We explicitly compute the shift in the location of the
event horizon and innermost stable circular orbit.

Such modifications to the BH nature of the spacetime
induce corrections to the waveforms generated by binary
inspirals. We compute such modifications and show that
they are of so-called second post-Newtonian (PN) order,
i.e. they correct the GR result at O(v4) relative to the
leading-order Newtonian term, where v is the orbital ve-
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locity. We further show that one can map such correc-
tions to the parameterized post-Einsteinian (ppE) frame-
work [12], which proposes a model-independent, wave-
form family that interpolates between GR and non-GR
waveform predictions. This result supports the sugges-
tion that the ppE scheme can handle a large class of
modified gravity models.

The remainder of this paper is organized as follows.
Sec II defines the set of theories we will investigate and
computes the modified field equations. Sec. III solves
for BH solutions in this class of theories. Sec. IV dis-
cusses properties of the solution and Sec. V studies the
impact that such BH modifications will have on the GW
observable. Sec. VI concludes by pointing to future pos-
sible research directions. For the remainder of this pa-
per, we use the following conventions: latin letters in
index lists stand for spacetime indices; parentheses and
brackets in index lists stand for symmetrization and an-
tisymmetrization respectively, i.e. A(ab) = (Aab + Aba)/2
and A[ab] = (Aab − Aba)/2; we use geometric units with
G = c = 1.

II. QUADRATIC GRAVITY

Consider the wide class of alternative theories of grav-
ity in 4-dimensions defined by modifying the Einstein-
Hilbert action through all possible quadratic, algebraic
curvature scalars, multiplied by constant or non-constant
couplings:

S ≡
∫

d4x
√−g

{

κR + α1f1(ϑ)R2 + α2f2(ϑ)RabR
ab

+ α3f3(ϑ)RabcdR
abcd + α4f4(ϑ)Rabcd

∗Rabcd

− β

2
[∇aϑ∇aϑ + 2V (ϑ)] + Lmat

}

, (1)

where g is the determinant of the metric gab,
(R, Rab, Rabcd,

∗Rabcd) are the Ricci scalar and tensor,
the Riemann tensor and its dual [27] respectively, Lmat

is the Lagrangian density for other matter, ϑ is a scalar
field, (αi, β) are coupling constants and κ = (16πG)−1.
All other quadratic curvature terms are linearly depen-
dent, e.g. the Weyl tensor squared. Theories of this type
are motivated from fundamental physics, such as in low-
energy expansions of string theory [37–40].

Let us distinguish between two different types of the-
ories: non-dynamical and dynamical. In the former, all
the couplings are constant (f ′

i(ϑ) = 0) and there is no
scalar field (β = 0). Varying Eq. (1) with respect to the
metric and setting fi(ϑ) = 1, we find the modified field
equations

Gab +
α1

κ
Hab +

α2

κ
Iab +

α3

κ
Jab =

1

2κ
T mat

ab , (2)

where T mat

ab is the stress-energy of matter and

Hab ≡ 2RabR − 1

2
gabR

2 − 2∇abR + 2gab�R , (3a)

Iab ≡ �Rab + 2RacbdR
cd − 1

2
gabRcdR

cd

+
1

2
gab�R −∇abR , (3b)

Jab ≡ 8RcdRacbd − 2gabR
cdRcd + 4�Rab

− 2R Rab +
1

2
gabR

2 − 2∇abR , (3c)

with ∇a, ∇ab = ∇a∇b and � = ∇a∇a the first and
second covariant derivatives and the d’Alembertian, and
using the Weyl identity 4Ca

cdeCbcde = gabCcdefCcdef ,
with Cabcd the Weyl tensor.

The dynamical theory is specified through the action
in Eq. (1) with fi(ϑ) some function of the dynamical
scalar field ϑ, with potential V (ϑ). For simplicity, we re-
strict attention here to functions that admit the Taylor
expansion fi(ϑ) = fi(0) + f ′

i(0)ϑ +O(ϑ2) about small ϑ,
where fi(0) and f ′

i(0) are constants. The ϑ-independent
terms, proportional to fi(0), lead to the non-dynamical
theory, and we thus ignore them henceforth. Let us then
concentrate on fi(ϑ) = ciϑ, where we reabsorb the con-
stants ci = f ′

i into αi, such that αifi(ϑ) → αiϑ. The
field equations are then

Gab +
α1

κ
H(ϑ)

ab +
α2

κ
I(ϑ)

ab (4)

+
α3

κ
J (ϑ)

ab +
α4

κ
K(ϑ)

ab =
1

2κ

(

T mat

ab + T
(ϑ)
ab

)

,

where T
(ϑ)
ab = β

2

[

∇aϑ∇bϑ − 1
2gab (∇cϑ∇cϑ − 2V (ϑ))

]

is
the scalar field stress-energy tensor and

H(ϑ)
ab ≡ −4v(a∇b)R − 2R∇(avb) + gab (2R∇cvc + 4vc∇cR)

+ ϑ

[

2RabR − 2∇abR − 1

2
gab

(

R2 − 4�R
)

]

, (5a)

I(ϑ)
ab ≡ −v(a∇b)R − 2vc

(

∇(aRb)c −∇cRab

)

+ Rab∇cv
c

− 2Rc(a∇cvb) + gab

(

vc∇cR + Rcd∇cvd

)

+ ϑ
[

2RcdRacbd −∇abR + �Rab

+ 1
2gab

(

�R − RcdR
cd

)]

, (5b)

J (ϑ)
ab ≡ −8vc

(

∇(aRb)c −∇cRab

)

+ 4Racbd∇cvd

− ϑ
[

2
(

RabR − 4RcdRacbd + ∇abR − 2�Rab

)

− 1
2gab

(

R2 − 4RcdR
cd

)]

,

K(ϑ)
ab ≡ 4vcǫc

d
e(a∇eRb)d + 4∇dvc

∗R(a
c
b)

d , (5c)

with va ≡ ∇aϑ and ǫabcd the Levi-Civita tensor. Notice
that α4Kab = αCSCab, where αCS and Cab are the CS cou-
pling constant and the CS C-tensor [27]. The dynamical
quadratic theory includes dynamical CS gravity as a spe-
cial case. Variation of the action with respect to ϑ yields
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the scalar field equation of motion

β�ϑ − β
dV

dϑ
= −α1R

2 − α2RabR
ab

− α3RabcdR
abcd − α4Rabcd

∗Rabcd . (6)

Both the non-dynamical and dynamical theories arise
from a diffeomorphism invariant action, and thus, they
lead to field equations that are covariantly conserved,
i.e. the covariant divergence of Eq. (2) identically van-
ishes, while that of Eq. (5) vanishes upon imposition of
Eq. (6), unlike in non-dynamical CS gravity [27].

III. NON-SPINNING BLACK HOLE SOLUTION

A. Non-dynamical Theories

The modified field equations of the non-dynamical the-
ory have the interesting property that metrics for which
the Ricci tensor vanishes are automatically solutions.
One can see that if Rab = 0, then Eqs. (3a)-(3c) van-
ish exactly, thus satisfying the modified field equations
in Eq. (2). This generalizes the result in [35], as we here
considered a more general action.

The reason for this simplification is the Gauss-Bonnet
and Pontryagin identities. The integral of the Gauss-
Bonnet term G ≡ R2 − 4RabR

ab + RabcdR
abcd is propor-

tional to the Euler characteristic E , while that of the Pon-
tryagin density Rabcd

∗Rabcd is proportional to the Chern
number C. Thus, the RabcdR

abcd and the Rabcd
∗Rabcd

terms can be removed from the action in Eq. (1) in favor
of E and C. Since the variation of these constants van-
ishes identically, the field equations can be rewritten to
depend only on the Ricci tensor and its trace.

This feature has a natural generalization for a wider
class of alternative theories of gravity. If an action for
an alternative theory contains the Riemann tensor or
its dual only in a form that can be rewritten in terms
of topological invariants (with no dynamical couplings),
then the field equations will be free of Riemann, and
thus, all vacuum GR solutions will also be solutions of
such modified theories. Therefore, any action built from
powers of the Ricci scalar or products of the Ricci tensor,
possibly coupled to dynamical fields, and with Riemann
tensors entering only as above, admits all vacuum GR
solutions.

These results have important consequences for at-
tempts to test GR in the strong field. Electromagnetic
GR tests that aim at probing the Kerr nature of BHs
would be insensitive to such modified theories. On the
other hand, observations that probe the dynamics of the
background, such as GW observations [4–20], would be
able to constrain them.

B. Dynamical Theories

The modified field equations in the dynamical the-
ory, however, are not as simple, as clearly they are

not satisfied when Rab = 0. This is because J (ϑ)
ab de-

pends on ∇cvdRabcd and K(ϑ)
ab depends on ∇dvc

∗R(a
c
b)

d.
Let us search for small deformations away from the
GR Schwarzschild metric that preserve stationarity and
spherical symmetry. The only relevant term here then is

J (ϑ)
ab , as K(ϑ)

ab vanishes in spherical symmetry, as already
analyzed in [26].

We thus pose the ansatz

ds2 = −f0 [1 + ǫh0(r)] dt2 +f−1
0 [1 + ǫk0(r)] dr2 +r2dΩ2 ,

(7)

and ϑ = ϑ̄ + ǫϑ̃, where f0 ≡ 1 − 2M0/r, with M0 the
“bare” or GR BH mass and (t, r, θ, φ) are Schwarzschild
coordinates, while dΩ2 is the line element on the 2-sphere.
The free functions (h0, k0) are small deformations from
the Schwarzschild metric, controlled by a function of the
coupling constants (αi, β) that we define below; ǫ is a
book-keeping parameter.

Before we solve the field equations, let us discuss
the scalar field potential V (ϑ). There are two distinct
choices for this potential: a flat (V ′(ϑ) = 0) or non-flat
(V ′(ϑ) 6= 0) potential. For the non-flat case, the poten-
tial must be bounded from below for the theory to be
globally stable, and thus it will contain one or more min-
ima. The scalar field would tend towards the minimum
of the potential, where the latter could be expanded as a
quadratic function about the minimum (assumed here to
be at zero): V ≈ 1

2m2
ϑϑ2. One might treat the flat poten-

tial as the limit mϑ → 0 of the above non-flat potential,
but this limit is not continuous at the point mϑ = 0.
The massive case must thus be treated generically and it
turns out to be sufficiently complicated that we restrict
our attention only to the massless (flat) case[41].

With this ansatz, we can solve the modified field equa-
tions and the scalar field’s equation of motion order by
order in ǫ. Through the small-coupling approximation,
we treat α = O(ǫ) and β = O(ǫ). To zeroth-order in
ǫ, the field equations are automatically satisfied because
the Schwarzschild metric has vanishing Ricci tensor. To
this order, the scalar field equation can be solved to find

ϑ̄ =
α3

β

2

M0r

(

1 +
M0

r
+

4

3

M2
0

r2

)

. (8)

This is the same solution found in [36] for dilaton hair
sourced in EDGB gravity. The scalar field depends only
on α3, since the term proportional to α4 vanishes identi-
cally in a spherically symmetric background.

We can use this scalar field solution to solve the mod-
ified field equations to O(ǫ). Requiring that the metric
be asymptotically flat and regular at r = 2 M0, we find
the unique solution h0 ≡ F(1+ h̃0) and k0 ≡ −F(1+ k̃0),
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where F ≡ −(49/40) ζ (M0/r) and

h̃0 =
2M0

r
+

548

147

M2
0

r2
+

8

21

M3
0

r3
− 416

147

M4
0

r4
− 1600

147

M5
0

r5
,(9)

k̃0 =
58

49

M0

r
+

76

49

M2
0

r2
− 232

21

M3
0

r3
− 3488

147

M4
0

r4
− 7360

147

M5
0

r5
,

and where we have defined the dimensionless coupling
function ζ ≡ α2

3/(βκM4
0 ) = O(ǫ). This solution is the

same as that found in EDGB gravity [42]. Our anal-
ysis shows that such a solution is the most general for
all dynamical, algebraic, quadratic gravity theories, in
spherical symmetry.

The demand that the metric deformation be regu-
lar everywhere outside the horizon has led to a term
that changes the Schwarzschild BH mass, i.e. there is
a correction to gtt and grr that decays as 1/r at spa-
tial infinity. We can then define the physical mass M ≡
M0[1+(49/80)ζ], such that the only modified metric com-
ponents become gtt = −f(1 + h) and grr = f−1(1 + k)

where h = ζ/(3f)(M/r)3h̃ and k = −(ζ/f)(M/r)2k̃, and

h̃ = 1 +
26M

r
+

66

5

M2

r2
+

96

5

M3

r3
− 80M4

r4
, (10)

k̃ = 1 +
M

r
+

52

3

M2

r2
+

2M3

r3
+

16

5

M4

r4
− 368

3

M5

r5
,(11)

and where f ≡ 1 − 2M/r. Physical observables are re-
lated on the renormalized mass, not the bare mass. This
renormalization was not performed by [42].

In fact, one need not fix the single constant of integra-
tion which appears in finding this solution. Any value
of the integration constant, after renormalization, is ab-
sorbed into the renormalized mass. Rather than a family
of spacetimes, there is a unique spacetime after renor-
malization.

The sign of the coupling constant can be determined
by computing the energy carried by the scalar field in

Eq. (8). The energy is E(ϑ) ≡
∫

Σ
T

(ϑ)
ab tatbγ1/2d3x, where

Σ is a t = const. hypersurface outside of the horizon (so
that it is spacelike everywhere), ta = (∂/∂t)a and γ is the
determinant of the metric intrinsic to Σ. We find that
E(ϑ) = (9/7)ζκπM . For stability reasons, we require

that E(ϑ) ≥ 0, which then implies ζ ≥ 0 and α2
3/β ≥ 0.

Although we here considered non-spinning BHs, our
analysis can be generalized to spinning ones, by sepa-
rating the theory and its solutions into parity-even and
parity-odd sectors. A parity transformation consists of
the reflection xi → −xi, which for a spinning BH metric
implies a → −a, where |Si| = M |a| is the magnitude
of the spin angular momentum. Expanding the spinning
BH solution as a power series in a/M , we see that the
Kretschmann scalar RabcdR

abcd has only even powers of
a/M (even parity sector), while the Pontryagin density
∗R R has only odd powers of a/M (odd parity sector).
These quantities source the ϑ equation of motion, there-
fore driving even and odd metric perturbations respec-
tively. The solution found here is of even parity and cor-
responds to the O(a0) part of the metric expansion for a

slowly-spinning BH in dynamical quadratic gravity. The
next order, O(a1), is parity odd and is sourced only by
the Pontryagin density, since R2, RabR

ab, and RabcdR
abcd

are all even under parity. The solution sourced by just
the Pontryagin density is identical to that in dynamical
Chern-Simons gravity (all αi = 0 except for α4) and was
found in [26]. From the parity arguments presented here,
we see that the exact same modification arises at O(a1) in
the more general dynamical quadratic gravity considered
here. Therefore, to O(a1), the modification in dynamical
quadratic gravity is simply the linear combination of the
O(a0) solution found here and the O(a1) solution found
in [26].

IV. PROPERTIES OF THE SOLUTION

The solution found is spherically symmetric, station-
ary, asymptotically flat, and regular everywhere except
at r = 0. It represents a non-spinning BH with a
real singularity at the origin, as evidenced by calculat-
ing the Kretschmann scalar expanded to O(ζ): K ≡
RabcdR

abcd = K̄ − 32ζM3/r7K̃, where K̄ = 48M2/r6

and

K̃ = 1 +
M

2r
+

72M2

r2
+

7M3

r3
+

64

5

M4

r4
− 840M5

r5
.(12)

The location of the event horizon, i.e. the surface of infi-
nite redshift, can be computed by solving gtt = 0 to find
rEH/M = 2 − (49/40)ζ. The metric remains Lorentzian
(i.e. sgn(g) < 0) everywhere outside rEH provided ζ is
sufficiently small (specifically, 0 < ζ < (120/361)).

One can also study point-particle motion in this back-
ground. Neglecting internal structure and spins, test-
particle motion remains geodesic [43] and the equation
of motion reduces to ṙ2/2 = V GR

eff
+ δVeff, where the over-

head dot stands for differentiation with respect to proper
time and

V GR

eff
=

E2

2
− L2

2r2
f − f

2
, δVeff = −1

2
E2h − 1

2
V GR

eff
k ,

(13)
where (E, L) are the conserved quantities induced by the
timelike and azimuthal Killing vectors, i.e. the particle’s
energy and angular momentum per unit mass.

One can solve for the energy and angular momentum
for circular orbits [44] through the conditions ṙ = 0 and
V ′

eff
= 0 to find E = EGR + δE and L = LGR + δL, where

EGR = f(1 − 3M/r)−1/2, LGR = (Mr)1/2EGR/f and

δE = − ζ

12

M3

r3

(

1 − 3M

r

)

−3/2 (

1 +
54M

r
+

198

5

M2

r2

+
252

5

M3

r3
− 2384

5

M4

r4
+

480M5

r5

)

, (14)

δL = −ζM

4

M3/2

r3/2

(

1 − 3M

r

)

−3/2 (

1 +
100

3

M

r

− 30M2

r2
+

16

5

M3

r3
− 752

3

M4

r4
+

320M5

r5

)

. (15)
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From this expression, we can find the modified Kepler
law by expanding ω ≡ L/r2 in the far field limit:

ω2 = ω2
GR

[

1 − ζ

2

(

M

r

)2
]

(16)

where ω2
GR

= M/r3[1 + O(M/r)]. If in addition to
the above circular orbit conditions one evaluates the
marginal stability condition V ′′

eff
= 0, one finds that the

shift in the ISCO location is

rISCO

M
= 6 − 16297

9720
ζ . (17)

V. IMPACT ON BINARY INSPIRAL GWS

As evidenced above, such a modified theory will intro-
duce corrections to the binding energy of binary systems.
Consider a binary with component masses m1,2 and to-
tal mass m = m1 + m2. The binding energy, to leading
O(m/r, ζ), can be obtained from EGR and δE in Eq. (14)
by the transformation m1m2 → m2η and expanding in
M/r ≪ 1. This trick works to leading order in ζ and in
m/r only and it leads to

Eb(r) = −m2η

2r

[

1 +
ζ

6

(m

r

)2
]

. (18)

Using the modified Keplerian relation of the previous Sec-
tion, this becomes

Eb(F ) = −1

2
(2πmF )

2/3 − 1

6
mηζ (2πmF )

2
, (19)

to leading O(mF, ζ), where F is the orbital frequency
and η = m1m2/m2 is the symmetric mass ratio. Such a
modification to the binding energy will introduce correc-
tions to the binary’s orbital phase evolution at leading,
Newtonian order.

A calculation of the phase and amplitude waveform
correction that accounts only for the leading-order bind-
ing energy modification is incomplete. First, higher
O(m/r) terms in Eb are necessary for detailed GW tests.
These terms, however, are not necessary to find the
leading-order, functional form of the waveform correc-
tion; this is all one needs to map these modifications to
the ppE scheme.

To be consistent, we must also consider the energy flux
carried by the scalar field. This program involves solv-
ing for the perturbation on top of the background solu-
tion given in Eq. (8). The solution can be found using
post-Newtonian integration techniques and is in prepa-
ration [45]. The modification to radiation reaction due
to the scalar field is subdominant (of much higher post-
Newtonian order) compared to the modification to the
binding energy calculated here, as will be shown in a
forthcoming paper [45].

Let us now compute the orbital phase correction due
to modifications to the binding energy. The orbital phase
for a binary in a circular orbit is simply

φ(F ) =

∫ F

(E′) (Ė)−1ω dω , (20)

where ω = 2πF is the orbital angular frequency, E′ ≡
dE/dω and Ė = −(32/5)η2m2r4ω6 is the loss of binding

energy due to radiation. This expression for Ė is the GR
quadrupole form, which was shown [17] to be valid in
the small-coupling limit in asymptotically flat spacetimes
when the action is of the form we use. Neglecting Ė(ϑ)

and to leading O(mω, ζ), the orbital phase

φ = φGR

[

1 +
25

3
ζ (2πmF )4/3

]

, (21)

where the GR phase is φGR = −1/(32η)(2πmF )−5/3.
The leading order correction is of so-called 2PN order,
as it scales with (m F )4/3 (down by 1/c4) relative to the
leading-order GR result.

Similarly, we can compute the correction to the
frequency-domain GW phase in the SPA, by assuming
that its rate of change is much more rapid than the GW
amplitude’s. This phase is (see e.g. [46])

ΨGW = 2φ(t0) − 2πft0 , (22)

where t0 satisfies the stationary phase condition F (t0) =

f/2, with f the GW frequency. Neglecting Ė(ϑ) and to
leading O(mω, ζ), we find that

ΨGW = ΨGR

GW

[

1 +
50

3
ζη−4/5u4/3

]

, (23)

where u ≡ πMf is the reduced frequency and M =
η3/5m is the chirp mass. Similarly, the Fourier-domain
amplitude scales as |h̃| ∝ Ḟ (t0)

−1/2, which then leads to

|h̃| = |h̃|GR

[

1 +
5

6
ζu4/3η−4/5

]

, (24)

where |h̃GR| is the GW amplitude in GR. In principle,
there could be additional corrections to |h| from modi-
fications to the first order equations of motion, but [17]
has shown that these vanish in the small coupling ap-
proximation.

The modifications introduced to the inspiral waveforms
can be mapped to parametrized waveform models that fa-
cilitate GR tests. In the ppE framework [24], the simplest
parameterization is

h̃ = |h̃|GR(1 + αηcua) exp[iΨGR

GW
(1 + βηdub)] , (25)

where (α, a, β, b, c, d) are ppE parameters. Our results
clearly map to this parameterization with α = (5/6)ζ,
β = (50/3)ζ, a = 4/3 = b and c = −4/5 = d. Since
the radiation carried by the scalar field is of higher post-
Newtonian order, including it will not change these ppE
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parameters. Future GW constraint on these parameters
could be translated into a bound on the class of alterna-
tive theories considered here.

Preliminary studies suggest that GW detectors, such
as LIGO, could place interesting constraints on the pa-
rameter β. Given a signal-to-noise ratio of 20 for a com-
parable mass binary inspiral signal, one might be able
to constrain β . 10−1 when b = 4/3 [47]. This bound
would translate to a ζ-constraint of ζ . 10−2, which
should be compared to the current double binary pul-
sar constraint ζ . 107 [25]. Since the effect calculated
here occurs at 2PN order, systems with strong gravity
are required to probe it. 2PN effects are unimportant in
describing the spacetime of the solar system and known
binary pulsars. GWs sourced in the strong field could
place much stronger constraints on non-linear strong field
deviations from GR relative to current solar system and
binary pulsar bounds.

VI. FUTURE WORK

The study presented here shows that there is a wide
class of modified gravity theories where Schwarzschild
and Kerr are not solutions, yet their waveform modifi-
cations can be mapped to the ppE scheme. This study
could be extended by investigating higher-order in v, PN
corrections to the waveform modifications. Such a calcu-
lation would require one to solve for the two-body metric
in this specific class of theories. Although this can in
principle be done within the PN scheme, in practice the
calculation will be analytically quite difficult, due to the
non-linear terms introduced by the modified theory.

Another possible extension is to investigate the effect

of different potential terms to the results presented here.
For example, one could postulate a cosine potential and
see how this modifies the solutions found. Such cosine
potentials arise naturally due to non-linear interactions in
effective string actions. The inclusion of such a potential
will probably render the problem non-analytic, forcing
us to solve the equations of motion for the scalar field
numerically.

One other avenue of future research is to find analytic,
closed form solutions for BHs rotating arbitrarily fast
in dynamical quadratic gravity. The analysis presented
here applies only to non-rotating BHs, and we have dis-
cussed how it would be modified when considering slowly
rotating BHs. Exact, closed form solutions for rapidly
rotating BHs, however, remain elusive. One might have
to integrate the equations numerically to find such solu-
tions. One possible line of attack is to evolve the field
equations in a 3+1 decomposition, starting with a dense
and rotating scalar field configuration. Upon evolution,
this scalar field will collapse into a rapidly rotating BH,
yielding a numerical representation of the solution one
seeks.
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