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Abstract

We explore cosmology in the decoupling limit of a non-linear covariant ex-
tension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443.
In this limit the theory is a scalar-tensor model of a unique form defined by
symmetries. We find that it admits a self-accelerated solution, with the Hub-
ble parameter set by the graviton mass. The negative pressure causing the
acceleration is due to a condensate of the helicity-0 component of the massive
graviton, and the background evolution, in the approximation used, is indis-
tinguishable from the ΛCDM model. Fluctuations about the self-accelerated
background are stable for a certain range of parameters involved. Most sur-
prisingly, the fluctuation of the helicity-0 field above its background decouples
from an arbitrary source in the linearized theory.

We also show how massive gravity can remarkably screen an arbitrarily
large cosmological constant in the decoupling limit, while evading issues with
ghosts. The obtained static solution is stable against small perturbations,
suggesting that the degravitation of the vacuum energy is possible in the
full theory. Interestingly, however, this mechanism postpones the Vainshtein
effect to shorter distance scales. Hence, fifth force measurements severely con-
strain the value of the cosmological constant that can be neutralized, making
this scheme phenomenologically not viable for solving the old cosmological
constant problem. We briefly speculate on a possible way out of this issue.



1 Introduction and summary

The observed late-time acceleration of the Universe [1], and the Cosmological Con-
stant problem (see reviews [2, 3]), remain two of the most tantalizing, mutually
connected puzzles at the interface of particle physics and cosmology.

A promising approach to the late-time acceleration enigma is to invoke new
degrees of freedom, belonging to the gravitational field itself (as in massive gravity),
that give rise to the cosmic speed-up. This framework postulates the existence of a
new energy scale – set by the graviton mass – which is very low; nevertheless, this
scale is technically natural in the quantum-field theoretical sense. This approach,
as is known by now, is challenging theoretically (hence, is interesting), and happens
to have robust observational predictions.

Such a scenario was first worked out in a context of the DGP model [4] in Refs.
[5, 6], where the cosmic acceleration is due to the helicity-0 component of a five-
dimensional graviton. Hence, the solution is said to be self-accelerating.

Regretfully, in the context of DGP, the self-accelerating solution is plagued by
negative energy ghost-like states in the perturbative approach [7, 8, 9], and despite
the issue of whether or not the negative energy perturbations could be continued
in the full nonlinear theory [10], the existence of non-perturbative negative-energy
solutions [7, 11, 12] makes the self-accelerating branch unsatisfactory (in spite of the
interesting finding of Ref. [13] that the quasi-classical approach does not seem to
reveal the instabilities of this solution).

Certain generalizations of the DGP model, however, allow for stable self-accele-
rating solutions, either by constructing an explicit braneworld model [14] where the
negative energy ghost disappears, or by extending the decoupling limit of DGP to
the “galilean” invariant interactions, [15].

In this work, we show for the first time that a theory of massive gravity may
produce a self-accelerated geometry while being free of the problems that arise in the
self-accelerating branch of DGP. In particular, we will work in a certain approxima-
tion in which the helicity ±2, ±1, and helicity-0 modes of the massive graviton de-
couple from each other in the linearized theory, while the nonlinear self-interactions,
and interactions between them, are captured by a few leading higher-dimensional
terms in the Lagrangian; this approximation constitutes the decoupling limit.

In this approximation, we will show the existence of the self-accelerated solution,
around which small fluctuations are stable. The acceleration is due to a condensate
of the helicity-0 field, which in the decoupling limit is reparametrization invariant.
On the other hand, since the helicity-0 is not an arbitrary scalar, but descends from
a full-fledged tensor field, it has no potential, but enters the Lagrangian via very
specific derivative terms fixed by symmetries [16]. These terms generate the negative
pressure density which causes the accelerated expansion with stable fluctuations, as
will be discussed below.

From the observational point of view, the obtained self-accelerating background
is indistinguishable, in the approximation used, from that of the ΛCDM model. As
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to the fluctuations, however, the helicity-0 could have introduced some differences.
For instance, at cosmological distance scales it could have given an additional force
leading to, e.g., changes in the growth of structure [17, 18], while at shorter scales still
being strongly screened via the Vainshtein mechanism [19], guaranteeing the recovery
of General Relativity with tiny departures [19, 20], which may also be measurable
[21, 22] in high-precision Laser Ranging experiments [23] (for recent detailed studies
of the Vainshtein mechanism see Refs. [24]). All the above takes place in the DGP
model. However, this is not what happens on the self-accelerated background in
the massive theory: Surprisingly-enough, the fluctuation of the helicity-0 on this
background decouples in the linearized approximation from an arbitrary source!
Thus, the astrophysical sources need not excite this fluctuation, in which case one
recovers exactly the ΛCDM results. It is likely, however, that this similarity of
the self-accelerated solution and its fluctuations to the ΛCDM results will not hold
beyond the decoupling limit (i.e. will not hold for the horizon-size scales).

Furthermore, if we wish to tackle the Cosmological Constant problem (CCP), S.
Weinberg’s no-go theorem makes it impossible to find dynamical solutions within
General Relativity (GR) without involving fine-tuned parameters, [2]. The idea of
infrared (IR) modification of gravity, however addresses this puzzle by accepting a
large vacuum energy and modifying instead the gravitational sector in the IR, so that
vacuum energy gravitates very weakly [25]. Such a source would not manifest itself
as strongly as naively anticipated in GR, i.e. it would be degravitated, while all the
astrophysical sources would exhibit the GR behavior [26]. As shown in Ref. [25, 26],
one can think of degravitation as a promotion of Newton’s constant to a high pass
filter operator thereby modifying the effect of long wavelength sources such as a CC
while recovering GR on shorter wavelengths. In particular, theories of massive and
resonance gravitons exhibiting the high pass filter behavior to degravitate the CC
[25]. Moreover, it was shown in Ref. [27] that any causal theory that can degravitate
the CC is a theory of massive and resonance gravitons.

It is important to emphasize that in theories of massive gravity degravitation is
a causal process (unlike more general theories considered in [26]). The real measure
of whether or not a source is degravitated is given by its time evolution. During
inflation for instance, the vacuum energy driving the acceleration of the Universe will
not be degravitated for a long time. It is only after long enough periods of time that
the IR modification of gravity kicks in and can effectively slow down an accelerated
expansion [25, 26]. Hence, a crucial ingredient for the degravitation mechanism to
work is the existence of a (nearly) static solution in the presence of a cosmological
constant towards which the geometry can relax at late time (or after some long
period of time). Indeed, Ref. [27] studied linearized massive gravity demonstrating
that in this approximation degravitation takes place after a long enough period of
time.

In this paper, we focus on the hard mass case using the generalized Fierz-Pauli
theory of massive gravity, as derived in [16]. We show that this model allows for
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static solutions while evading any ghost issues at least in the decoupling limit. In
this framework an arbitrary vacuum energy can be neutralized by the effective stress-
tensor of the helicity-0 component of the massive graviton. Small fluctuations around
this solution are shown below to be stable, as long as this static solution exists.

Moreover, we find that the energy scale at which the interactions of the helicity-
0 modes become nonlinear is affected by the scale of the degravitated cosmological
constant – the interaction scale being higher for larger values of the CC1.

On the one hand, it is intriguing that the interactions of the helicity-0 can be
kept linear up to the energy scale which is significantly higher than what it would
have been in a theory without the CC. However, this very same phenomenon also
creates a problem by postponing Vainshtein’s recovery of GR to shorter and shorter
distance scales. As a result, the tests of gravity impose a stringent upper bound on
the vacuum energy that can be degravitated in this framework without conflicting
measurements of gravity. Disappointingly, this upper bound turns out to be of the
order the critical energy density of the present-day Universe, (10−3 eV)4 – the value
that does not need to be degravitated.

A possible way out of this difficulty may be to envisage a cosmological scenario
in which degravitation of the vacuum energy takes place before the Universe enters
the radiation dominated epoch – say during the inflationary period, or even earlier.
By the end of that epoch then the cosmology should reset itself to continue evolution
along the other branch of the solutions that exhibits the standard early behavior
followed by the self-acceleration, found in the present work. The existence of such a
transition would depend on properties of the degravitating solution in the full theory.
Since we have no detailed knowledge of this solution at the time of this writing, we
have no concrete mechanism to substantiate the above scenario. Therefore, in what
follows we will not rely on it. Instead, we emphasize that there still are two important
virtues of the degravitating solution with the low value of the degravitated CC: (I) It
is a concrete example of how degravitation could work in four-dimensional theories
of massive gravity without giving rise to ghost-like instabilities. (II) As we will
show, the degravitated solution with small values of CC can be combined with the
self-accelerated solution discussed above, to give a satisfactory solution that is in
agreement with the existing cosmological and astrophysical data.

Last but not least, the solutions found in the decoupling limit do not necessarily
imply the existence of the solutions with identical properties in the full theory. Nev-
ertheless, the decoupling limit solutions should capture the local dynamics at scales
well within the present-day Hubble four-volume, as argued in [15]. On the other
hand, at larger scales the full solutions may be very different from our ones. These
differences would kick in at scales comparable to the graviton Compton wavelength.
Therefore, our solutions should manifest themselves at least as transients lasting
long cosmological times.

Organization of the paper is as follows. In section 2, we review the generalized

1In this work we will use interchangeably the notions of vacuum energy and CC, although there
could be a big difference between the two when it comes to IR modified gravity [25].
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Fierz-Pauli theory of massive gravity and discuss its ghostless decoupling limit. We
then start by focusing on self-accelerating solutions in section 3, first deriving the
background solutions, then testing their stability, and finally studying the implica-
tions for late-time cosmology. We then explore the cosmology in the presence of
a cosmological constant in section 4, proving the existence of a stable degravitat-
ing branch of solutions, and analyzing the stability of the de Sitter branch. Brief
discussions of the degravitating solution are given at the end of section 4.

2 The Formalism

Search for a consistent theory of a massive spin-2 field goes back to the original
work of Fierz and Pauli [28]. Whereas any massive gravity should reduce to the
Fierz-Pauli (FP) theory at the quadratic level [29], a generic nonlinear extension
exhibits the sixth degree of freedom – the so-called Boulware-Deser (BD) ghost [30].
This sixth mode produces severe instabilities on cosmological backgrounds [31], as
well as on locally nontrivial asymptotically flat backgrounds (such as that of a point
source, for instance) [32, 33, 34].

This problem is usually related to the helicity-0 sector of massive theories [32].
The latter can efficiently be studied in the decoupling limit, where the sixth mode is
hidden in higher-derivative nonlinear terms for the helicity-0 [32, 33, 34]. Such terms
make the Cauchy problem ill-defined, unless additional initial data are supplied.
This corresponds to an additional, sixth, degree of freedom which shows up as a
ghost-like linear mode on various backgrounds mentioned above.

Up until recently it was thought that the cancellation of the higher-derivative
nonlinear terms for the helicity-0 was not possible [33]. However, recently an explicit
construction was given in Ref. [16] in which all the nonlinear terms for the helicity-0
with more that two time derivatives cancel. Below we briefly review these results
and recast them in a more convenient form. We refer to Ref. [16] for more detailed
discussions.

Consider a 4D covariant theory of a spin-2 field [32], which, once expanded on
Minkowski space-time gives a graviton of mass m:

L = M2
Pl

√
−gR − M2

Plm
2

4

√
−g (U2(g, H) + U3(g, H) + U4(g, H) + U5(g, H) · · · ) . (1)

Here Ui’s denote the mass and potential terms of ith order in Hµν

U2(g, H) = H2
µν − H2 , (2)

U3(g, H) = c1H
3
µν + c2HH2

µν + c3H
3 , (3)

U4(g, H) = d1H
4
µν + d2HH3

µν + d3H
2
µνH

2
αβ + d4H

2H2
µν + d5H

4 , (4)

U5(g, H) = f1H
5
µν + f2HH4

µν + f3H
2H3

µν + f4H
2
αβH3

µν

+ f5H(H2
µν)

2 + f6H
3H2

µν + f7H
5 . (5)

4



Index contractions are performed using the inverse metric gµν ; the coefficients ci, di

and fi are a priori arbitrary. The tensor Hµν is not an independent entity; it is
related to the metric tensor as Hµν = gµν − ηab∂µϕ

a∂νϕ
b , where a, b = 0, 1, 2, 3,

ηab = diag(−1, 1, 1, 1), and Hµν is a covariant tensor as long as the four fields ϕa

transform as scalars under a change of coordinates [32]. Hence, the potential terms
in (1) can be rewritten as functions of the metric g and the specific combination of
the four scalars ϕa, as U(g, Σ), where Σµν = ηab∂µϕ

a∂νϕ
b. However, we will not be

exploiting the latter representation in the present work. Instead, following [32] we
expand ϕa in terms of the coordinates xα, and the field πα, as ϕa = (xα − πα) δa

α ,
and using the convention, gµν = ηµν + hµν/MPl, we obtain

Hµν =
hµν

MPl

+ ∂µπν + ∂νπµ − ηαβ∂µπ
α∂νπ

β . (6)

The πα’s represent the Stückelberg fields that transform under reparametrization
to guarantee that the tensor H in (6) transforms covariantly. In particular un-
der linearized diffeomorphism, xµ → xµ + ξµ

MPl

, the metric perturbations and the
Stückelberg transform respectively as

hµν → hµν − ∂(µ ξν) and πµ → πµ +
ξµ

MPl
. (7)

It is therefore worth pointing out that in the decoupling limit MPl → ∞, the
Stückelberg field πµ ends up being gauge invariant under linearized diffeomorphism.

In the unitary gauge one could put πα = 0 (or, ϕa = xαδa
α), in which case

(1) reduces to the standard FP theory extended by a potential for the field hµν .
However, this is not a convenient way of dealing with these degrees of freedom.
Instead, it is more instructive to retain πα and fix a gauge for hµν .

The theory (1) was studied in detail in [16, 35], and a two-parameter family of
the coefficients was identified for which no sixth (ghost) degree of freedom arises
in the decoupling limit2. In these theories the higher derivative nonlinear terms
either cancel out, or organize themselves into total derivatives. For these ghostless
theories, the decoupling limit is defined as follows3

m → 0, MPl → ∞, Λ3 = (MPlm
2)1/3 fixed. (8)

In what follows, we will focus on the helicity-2 and helicity-0 modes, and ignore the
helicity-1 modes as they do not couple to a conserved stress-tensor at the linearized
level, and, therefore, can be set to zero self-consistently (see, however, important
comments on this at the end of section 3.2).

2Interestingly, a recently proposed extension of General Relativity by an extra auxiliary di-
mension [36, 37], automatically generates the coefficients from this family at least up to the cubic
order.

3By “ghostless” we mean a theory with no ghost at least in the decoupling limit, implying that
even if the BD ghost exists in the full theory, it must have a mass larger than the scale Λ3, [16].
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We therefore use the following decomposition for Hµν in terms of the canonically
normalized helicity-2 and helicity-0 fields after setting πa = ∂aπ/Λ3

3

Hµν =
hµν

MPl

+
2∂µ∂νπ

Λ3
3

− ∂µ∂απ∂ν∂απ

Λ6
3

. (9)

Then, one can show by direct calculations [16] that the Lagrangian (1) reduces in
the decoupling limit to the following expression

L = −1

2
hµνEαβ

µν hαβ + hµν
3
∑

n=1

an

Λ
3(n−1)
3

X(n)
µν [Π], (10)

where the first term represents the usual kinetic term for the graviton, a1 = −1/2,
and a2,3 are two arbitrary constants, related to the two parameters from the set
{ci, di} which characterize a given ghostless theory of massive gravity. The ex-
pression (Eh)µν denotes the linearized Einstein operator acting on hµν defined in the

standard way: Eαβ
µν hαβ = −1

2
(�hµν−∂µ∂αhα

ν−∂ν∂αhα
µ+∂µ∂νh−ηµν�h+ηµν∂α∂βhαβ).

The three symmetric tensors X
(n)
µν [Π] are composed of the second derivative of

the helicity-0 field Πµν ≡ ∂µ∂νπ. In order to maintain reparametrization invariance

of the full Lagrangian the tensors X
(n)
µν [Π] should be identically conserved. These

properties uniquely determine the expressions for X
(n)
µν at each order of non-linearity.

The obtained expressions agree with the results of the direct calculations of Ref. [16].

A convenient parametrization for the tensors X
(n)
µν which we adopt in this work is

as follows:

X(1)
µν [Π] = εµ

αρσεν
β

ρσΠαβ,

X(2)
µν [Π] = εµ

αργεν
βσ

γΠαβΠρσ,

X(3)
µν [Π] = εµ

αργεν
βσδΠαβΠρσΠγδ . (11)

The remarkable property of (10) is that it represents the exact Lagrangian (excluding
the helicity-1 part) in the decoupling limit: All the higher than quartic terms vanish
in this limit, making (10) a unique theory to which any nonlinear, ghostless extension
of massive gravity should reduce in the decoupling limit [16].

If external sources are introduced, their stress-tensors then couple to the physical
metric hµν . In the basis used in (10) there is no direct coupling of π to the stress-
tensors. Hence, the Lagrangian (10) is invariant w.r.t. the shifts, and the “galilean”
transformations in the internal space of the π field, ∂µπ → ∂µπ + vµ, where vµ is
a constant four-vector. The latter invariance guarantees that there is no mass nor
potential terms generated for π by the loop corrections.

The tree-level coupling of π to the sources arises only after diagonalization: The
quadratic mixing hµνX

(1)
µν , and the cubic interaction hµνX

(2)
µν , can be diagonalized

by a nonlinear transformation of hµν , that generates the following coupling of π [16]

1

MPl

(

−2a1ηµνπ +
2a2∂µπ∂νπ

Λ3
3

)

T µν . (12)
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Moreover, the above transformation also generates all the Galileon terms for the
helicity-0 field, introduced in a different context in Ref. [15]4.

Since the Galileon terms are known to exhibit the Vainshtein recovery of GR
at least for static sources [15], so does the above theory with a3 = 0. The quartic

interaction hµνX
(3)
µν , however, cannot be absorbed by any local redefinition of hµν .

It is still expected though to admit the Vainshtein mechanism.
However, as we will show in the next section, on the self-accelerated background

the fluctuation of the helicity-0 field decouples from an arbitrary source, making the
predictions of the theory consistent with GR already in the linearized approximation.
This decoupling is a direct consequence of the self-accelerated background and the
specific form of the coupling (12).

3 The Self-Accelerated Solution

The universality of the decoupling limit Lagrangian (10) for the class of ghostless
massive gravities, suggests the possibility of a fairly model-independent phenomenol-
ogy of the massive theories that should be captured by the limiting Lagrangian
(10). In the present section, we will be interested in the cosmological solutions in
these theories. We will directly work in the decoupling limit, which implies scales
much smaller than the Compton wavelength of the graviton. In the case of the
self-accelerated de Sitter solution for instance, this corresponds to probing physics
within the Hubble scale, which as one would expect, is set by the value of the
graviton mass.

3.1 The solution in the decoupling limit

Below we look for homogeneous and isotropic solutions of the equations of motion
that follow from the Lagrangian (10). The helicity-0 equation of motion reads as
follows:

∂α∂βh
µν

(

a1εµ
αρσεν

β
ρσ + 2

a2

Λ3
3

εµ
αρσεν

βγ
σΠργ + 3

a3

Λ6
3

εµ
αρσεν

βγδΠργΠσδ

)

= 0 , (13)

while variation of the Lagrangian w.r.t. the helicity-2 field gives

−Eαβ
µν hαβ +

3
∑

n=1

an

Λ
3(n−1)
3

X(n)
µν [Π] = 0. (14)

We are primarily interested in the self-accelerated solutions of the system (13)-(14).
This solution is obtained by choosing the configuration for π such that the second
factor in (13) vanishes. This has for consequence to kill the first order mixing

4In this model the coupling of the Galileon field to matter is not only given by πT as considered
in the original Galileon theory [15], but also includes more generic mixing of the form ∂µπ∂νπT µν .
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between hµν and π and hence the coupling of π to matter at leading order (which
arises after diagonalization of the mixing term). As a consequence the perturbations
around the self-accelerated solution we obtain here do not couple to matter. This
will be presented in more details in what follows.

For an observer at the origin of the coordinate system, the de Sitter metric can
locally (i.e., for times t, and physical distances |~x|, much smaller than the Hubble
scale H−1) be written as a small perturbation over Minkowski space-time [15]

ds2 = [1 − 1

2
H2xαxα]ηµνdxµdxν . (15)

The linearized Einstein tensor for the (dimensionless) metric (15) is given by

Glin
µν =

1

MPl
Eαβ

µν hαβ = −3H2ηµν . (16)

For the helicity-0 field we look for the solution of the following isotropic form

π =
1

2
qΛ3

3x
αxα + bΛ2

3t + cΛ3 , (17)

where q, b and c are three dimensionless constants.
The equations of motion for the helicity-0 and helicity-2 fields (13)-(14), there-

fore, can be recast in the following form

H2

(

−1

2
+ 2a2q + 3a3q

2

)

= 0, (18)

MPlH
2 = 2qΛ3

3

[

−1

2
+ a2q + a3q

2

]

. (19)

Solving the quadratic equation (18) for q (for H 6= 0), we obtain the Hubble constant
of the self-accelerated solution from (19). Its magnitude, H2 ∼ Λ3

3/MPl = m2, is
set by the graviton mass, as expected (positivity of H2 is one of the conditions that
we will be demanding below). It is not hard to convince oneself that there exists
a whole set of self-accelerated solutions, parametrized by a2 and a3. This range,
however, will be restricted further by the requirement of stability of the solution,
which is the focus of the next section.

Before doing so, let us briefly analyze the four scalars ϕa. Using the ansatz, (17),
their expression is given by

ϕa = (1 − q)xαδa
α , (20)

if we set b = 0. Thus the four scalars vanish in the special case of q = 1, and
the metric is gµν = Hµν , so that the Lagrangian considered in (10) reduces to
standard GR plus a CC (at least at the background level). This happens only if the
parameters of our theory are such that a3 = 1

6
− 2

3
a2, which is not the regime we

will be interested in – we will indeed show in what follow that the stability of the
self-accelerated background implies q 6= 1.
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3.2 Small perturbations and stability

Here we investigate the constraints that the requirement of stability imposes on a
possible background. Let us adopt a particular solution of the system (18)-(19) and
consider perturbations on the corresponding de Sitter background

hµν = hb
µν + χµν , π = πb + φ, (21)

where the superscript b denotes the corresponding background values. The La-
grangian for the perturbations (up to a total derivative) reads as follows

L = −1

2
χµνEαβ

µν χαβ + 6(a2 + 3a3q)
H2MPl

Λ3
3

φ�φ − 3a3
H2MPl

Λ6
3

(∂µφ)2�φ

+
a2 + 3a3q

Λ3
3

χµνX(2)
µν [Φ] +

a3

Λ6
3

χµνX(3)
µν [Φ] +

χµνTµν

MPl
, (22)

where Φ denotes the four-by-four matrix with the elements Φµν ≡ ∂µ∂νφ. The first
term in the first line of the above expression is the Einstein term for χµν , the second
term is a kinetic term for the scalar, and the third one is the cubic Galileon. The
second line contains cubic and quartic interactions between χµν and φ, which are
identical in form to the corresponding terms in the decoupling limit on Minkowski
space-time (10). None of these interactions therefore lead to ghost-like instabilities
[16], as long as the φ kinetic term is positive definite.

Most interestingly, however, there is no quadratic mixing term between χ and φ
in (22). Since it is only χµν that couples to external sources Tµν in the quadratic
approximation, then there will not be a quadratic coupling of φ to the sources
generated in the absence of the quadratic χ − φ mixing. Therefore, for arbitrary
external sources, there exist consistent solutions for which the fluctuation of the
helicity-0 is not excited, φ = 0. On these solutions one exactly recovers the results
of the linearized GR. The above phenomenon provides a mechanism of decoupling
the helicity-0 mode from arbitrary external sources! This mechanism is a universal
property of the self-accelerating solution in ghostless massive gravity.

Hence, there are no instabilities in (22), as long as a2 + 3a3q > 0. The latter
condition, along with the requirement of positivity of H2, and the equations of
motion (18), requires that the following system be satisfied:

−1

2
+ 2a2q + 3a3q

2 = 0,

MPlH
2 = 2qΛ3

3

[

a2q + a3q
2 − 1

2

]

> 0, a2 + 3a3q > 0,

for the self-accelerating solution to be physically meaningful. The above system can
be solved. The solution is given as follows

a2 < 0, − 2a2
2

3
< a3 < −a2

2

2
, (23)
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while the Hubble constant and q are given by the following expressions

H2 = m2[2a2q
2 + 2a3q

3 − q] > 0, q = − a2

3a3

+
(2a2

2 + 3a3)
1/2

3
√

2a3

. (24)

It is clear from (23), that the undiagonalizable interaction hµνX
(3)
µν plays a crucial

role for the stability of this class of solutions: All theories without this term (i.e.
the ones with a3 = 0) would have ghost-like instabilities on the self-accelerated
background. Notice as well that in the regime (23) none of the scalars ϕa vanish,
and our model therefore differs from GR with a CC.

We therefore conclude that there exists a well-defined class of massive theories
with the parameters satisfying the conditions (23), which propagate no ghosts on
asymptotically flat backgrounds, and also admit stable self-accelerated solutions in
the decoupling limit.

As we mentioned before, the helicity-1 field enters only quadratically, or in higher
order terms in the Lagrangian, and hence, can consistently be set to be zero (i.e. it
does not need to be excited by any other fields). Nevertheless, once a background
configuration for the helicity-0 field is switched on, the higher-dimensional mixed
terms of the helicity-0 and helicity-1 could in principle flip the sign of the Maxwell
kinetic term, giving rise to a vector ghost that would only enter the Lagrangian
quadratically or in higher powers; this field would couple to other fields at the
nonlinear level. This certainly would not be a satisfactory state of affairs.

By restoring back the helicity-1 field in our expressions, and performing direct
calculations we have found that in the nth order in nonlinearities, where n ≤ 6, the
coefficient of the Maxwell term on the self-accelerated background is proportional
to (−1

2
+ 2a2q + 3a3q

2), up to corrections that are of order (n + 1), [38]. Hence, up
to these corrections, the Maxwell term vanishes on the self-accelerated background!

If this were the full story we would get a theory of a helicity-1 coupled infinitely
strongly to the fluctuations of the helicity-0 in the decoupling limit. However, quan-
tum loop corrections will necessarily generate a nonzero Maxwell term, as it is not
protected by any symmetries. In these loops propagate the helicity-0 mode, as well
as the matter fields to which the helicity-1 couples nonlinearly (for instance, one of
the couplings being, ∂µAα∂νAαT µν). It is worth emphasizing that, in the decoupling
limit the theory of tensor, vector and π field represents a theory with independent
gauge invariances for the tensor and vector U(1) transformations. One could there-
fore already consider quantum loops within this theory, which will generate the
Maxwell term. Notice that the Maxwell term does not have to be written in terms
of the original variables Hµν since in the decoupling limit the original Stückelberg
symmetry is split into independent symmetries for hµν and Aµ.

Then, interpreting the value of the tree-level coefficient of the Maxwell term
(which is zero) as an infinite value of the inverse of the running U(1) coupling at
some UV scale ΛUV ≥ Λ3, we obtain that at lower scales the coupling constant has
a positive value as long as the theory is not asymptotically free (in other words,
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the U(1) coupling would have a Landau pole at some high scale ΛUV )5. Hence, the
helicity-1 sector would not have a ghost, but the scale at which it would become
nonlinearly interacting (the Vainshtein scale) would be parametrically (logarithmi-
cally) smaller than Λ3. Since the helicity-1 field does not have to be excited by any
source, this will not be a concern for us.

3.3 Late-time cosmology

In this subsection we discuss the relevance of the results obtained above for the
late-time local cosmological evolution of the Universe. As seen from the decoupling
limit Lagrangian (10), the helicity-0 mode π provides an effective stress-tensor that
is “felt” by the helicity-2 field:

T π
µν = MPl

3
∑

n=1

an

Λ
3(n−1)
3

X(n)
µν [Π] = −6qMPlΛ

3
3

[

−1

2
+ a2q + a3q

2

]

ηµν . (25)

It is this stress-tensor that provides the negative pressure density required to drive
the acceleration of the Universe. Supplemented by the matter density contribu-
tion, it leads to the usual ΛCDM - like cosmological expansion of the background
in the sub-horizon approximation used here. This is clear form the fact that the
stress-tensor (25) gives rise to a de Sitter background as was shown in the previous
subsection. Hence, in the comoving coordinate system – which differs from the one
used above – the invariant de Sitter space will be the self-accelerating solution.

All this can be reiterated by performing an explicit coordinate transformation
to the comoving coordinates. This will be done in two steps. In the so-called Fermi
normal coordinates, the FRW metric can be locally written in space and for all

times, as a small perturbation over Minkowski space-time:

ds2 = −[1 − (Ḣ + H2)x2]dt2 +

[

1 − 1

2
H2x2

]

dx2 =
(

ηµν + hFRW
µν

)

dxµdxν , (26)

where the corrections to the above expression are suppressed by higher powers of
H2x2. The Fermi normal coordinates, on the other hand, are related to those used in
(15) (in which the FRW metric is a small conformal deformation of Minkowski space-
time), by an infinitesimal gauge transformation [15]. The latter does not change the
expression (25), since T π

µν is invariant under infinitesimal gauge transformations in
the decoupling limit. On the other hand, the Fermi normal coordinates can be
transformed into the standard comoving coordinates (tc,xc) as follows [15]

tc = t − 1

2
H(t)x2, xc =

x

a(t)

[

1 +
1

4
H2(t)x2

]

. (27)

5Alternatively, if the particle content is such that the theory has a negative beta function, then
the infinite value of the coupling constant should be attributed to some far IR scale, ΛIR ≪ Λ3,
and at any scale greater than ΛIR the helicity-1 theory would have a finite positive coupling square.
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The stress-tensor of a perfect fluid, Tµν = diag(ρ(tc), a
2(tc)p(tc)δij), transforms under

this change of coordinates (at the leading order in H2x2) into the following expression

Tµν =

(

ρ −H(ρ + p)xi

−H(ρ + p)xi pδij

)

,

where all quantities in the latter expression are evaluated at time t. Note that the
off-diagonal entries of the stress-tensor for the cosmological constant vanish in the
Fermi normal coordinates, the same is true for T π

µν as well. Hence, in all coordinate
systems used the expressions for the stress-tensor on the self-accelerated solution is
given by (25).

Not surprisingly, the corresponding cosmological equations coincide with the
conventional ones for the ΛCDM model, with the cosmological constant set by the
mass of the graviton

H2 =
ρ

3M2
Pl

+
C2m2

3
, (28)

Ḣ + H2 =
ä

a
= − 1

6M2
Pl

(ρ + 3p) +
C2m2

3
. (29)

Here ρ and p denote the energy and pressure densities of matter and/or radiation,
and C2 ≡ 6q

[

−1
2

+ a2q + a3q
2
]

is a constant that appears in (25).
As already mentioned, irrespective of the completion (beyond the Hubble scale)

of the self-accelerated solution, it is locally indistinguishable from the ΛCDM model.
At the horizon scales, however, it is likely that these two scenarios will depart
from each other: As emphasized in the first section, the solutions found in the
decoupling limit do not necessarily imply the existence of full solutions with identical
properties. Moreover, the decoupling limit Lagrangian (10) is derived from the
full theory by dropping certain total derivative terms (see [16]), implying solutions
that decay fast-enough at infinity. On the other hand, the solutions that we found
in this section are given in the coordinate system where the fields grow at large
distance/time scales. If these solutions are to be continued into the full theory, the
latter should have an appropriate large scale behavior in this coordinate system. A
given solution in the decoupling limit can just be a transient state of the full solution.
Significant deviations of the latter from the former should kick in at distance/time
scales comparable to the graviton Compton wavelength.

4 Screening the Cosmological Constant

4.1 Degravitation in generic theories of massive gravity

One explicit realization of degravitation is expected to occur in massive gravity,
where gravity is weaker in the IR, and the graviton mass could play the role of a high-
pass filter [25]. In the approach of [25], the original theory was formulated as a higher
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dimensional model, the 4D reduction of which can be thought as massive/resonance
gravity with the mass term promoted into a specific differential operators determined
by the underlying higher-dimensional construction.

A more general approach was adopted in Ref. [27], where the graviton mass was
also promoted to an operator parameterized by a continuous parameter α

m2(�) = m
2(1−α)
0 �α , (30)

the inverse graviton propagator is typically of the form

G−1 ∼ � − m
2(1−α)
0 �α , (31)

so that for α < 1, gravity is weaker beyond wavelengths comparable to the graviton
Compton wavelength m−1

0 .
To take this mechanism a step further, the reliability of this argument within

the non-linear regime is hence crucial. A trick to manifest the key interactions that
arise in massive gravity is to work in the decoupling limit, where the usual GR
interactions are suppressed, while the interactions of the new degrees of freedom
are emphasized. This approach was first derived in Ref. [27], which we discuss first
before turning to our considerations. As mentioned above, this limit is obtained
by taking MPl → ∞ and m → 0. However unlike in the decoupling limit of the
theory discussed in the previous section, the nonlinear dynamics in a generic model
of massive gravity is governed by the scale

Λ5−4α
⋆ = MPlm

4(1−α) . (32)

In such models, it has been shown [27] that the helicity-0 (π) and -2 (h̄µν) modes
satisfy the following equations in the decoupling limit,

−Eαβ
µν h̄αβ = − 1

MPl
Tµν , (33)

3�π − 18

Λ5−4α
⋆

(

3�(�1−απ)2 + · · ·
)

= − T

MPl
, (34)

where the physical metric is given by gµν = ηµν +(h̄µν +πηµν)/MPl. In the presence
of a cosmological constant, Tµν = −ληµν , the solution for the helicity-2 mode is

h̄µν = − λ

6MPl
xβxβ ηµν , (35)

which is the usual GR solution. One can now check the condition for the existence of
a (nearly) static solution towards which the geometry can relax at late times. In the
language of the decoupling limit, this would happen if the helicity-0 mode compen-
sates the helicity-2 mode contribution πηµν = −h̄µν to maintain the geometry flat
gµν = ηµν . However the configuration π = λx2/6MPl is precisely the solution of (34)
when the higher interactions vanish, i.e. 6MPl�π = −T = 8λ. As shown in [27],
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such interactions cancel for π ∼ x2 only if α < 1/2, hence implying that a generic
theory of massive gravity amended with a nonzero CC can only have a static solu-
tion when α < 1/2. In particular, in this language the DGP model [4] corresponds
to α = 1/2 (see Ref. [7], but also [39]) hence explaining why this model does not
bear static solutions with a brane tension, while promoting it to higher dimensions
corresponds to a theory with α → 0 for which the usual codimension-two conical
solutions can accommodate a tension without acceleration, [40, 41, 42, 43, 44].

The above results hold true for a generic theory of massive gravity. We now
focus the analysis of the ghostless theory [16] reviewed in section 2, which strictly
speaking are not captured by the above α parametrization. The key difference in
the ghostless case is that interactions for the helicity-0 mode are governed by the
larger coupling scale Λ3 > Λ⋆. The form of these interactions in the ghostless theory,
as well as the specific couplings to matter, play a crucial role in accommodating a
degravitating branch of solutions, and this without being plagued by any instability
at least in the decoupling limit.

4.2 Degravitation in ghostless massive gravity

For convenience we start by recalling the decoupling limit Lagrangian of (10) coupled
to an external source

L = −1

2
hµνEαβ

µν hαβ + hµν
3
∑

n=1

an

Λ
3(n−1)
3

X(n)
µν [Π] +

1

MPl

hµνTµν . (36)

The equations of motion for the helicity-0 and 2 modes are then

−Eαβ
µν hαβ +

3
∑

n=1

an

Λ
3(n−1)
3

X(n)
µν [Π] = − 1

MPl
Tµν , (37)

and

(

a1 +
a2

Λ3
3

�π +
3a3

2Λ6
3

(

[Π]2 − [Π2]
) )

[

�h − ∂α∂βhαβ
]

+
1

Λ3
3

(

a2Πµν − 3
a3

Λ3
3

(

Π2
µν − �πΠµν

) )

[

2∂µ∂αhαν − �hµν − ∂µ∂νh
]

−3a3

Λ6
3

(ΠµαΠνβ − ΠµνΠαβ) ∂α∂βhµν = 0 . (38)

We now focus on a pure cosmological constant source, Tµν = −ληµν , and make use
of a similar ansatz as previously,

hµν = −1

2
H2x2MPl ηµν , (39)

π =
1

2
q x2Λ3

3 . (40)
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The equations of motion then simplify to

(

−1

2
MPlH

2 +
3
∑

n=1

an qnΛ3
3

)

ηµν = − λ

6MPl

ηµν , (41)

H2
(

a1 + 2a2q + 3a3q
2
)

= 0 . (42)

As we will see below, this system of equations admits two branches of solutions, a
“degravitating” one, for which the geometry remains flat (mimicking the late-time
part of the relaxation process), and a “de Sitter” branch which is closely related
to the standard GR de Sitter solution. We start with the degravitating branch
before exploring the more usual de Sitter solution and show that the stability of
these branches depends on the free parameters a2,3, as well as the magnitude of the
cosmological constant.

4.2.1 The degravitating branch

In this formalism, it is easy to check that the geometry can remain flat i.e. H = 0
and gµν ≡ ηµν , despite the presence of the cosmological constant. Such solutions are
possible due to the presence of the extra helicity-0 mode that “carries” the source
instead of the usual metric. With H = 0, equation (42) is trivially satisfied, while
the modified Einstein equation (41) determines the coefficient (which we denote by
q0 here) for the helicity-0 field in (40),

a1q0 + a2q
2
0 + a3q

3
0 = − λ̃

6
, (43)

in terms of the dimensionless quantity λ̃ = λ/Λ3
3MPl. Notice that as long as the

parameter a3 is present, Eq. (43) has always at least one real root. There is therefore
a flat solution for arbitrarily large cosmological constant.

Let us now briefly comment on the stability of the flat solution, as this has
important consequences for the relaxation mechanism behind degravitation. We
consider the field fluctuations above the static solution,

π =
1

2
q0Λ

3
3 x2 − φ/κ , (44)

Tµν = −ληµν + τµν , (45)

where q0 is related to λ via (43) and the coupling κ is determined by

κ = 2(a1 + 2a2q0 + 3a3q
2
0) . (46)

To the leading order, the action for these fluctuations is then simply given by

L(2) = −1

2
hµνEαβ

µν hαβ − 1

2
hµνX(1)

µν [Φ] +
1

MPl
hµντµν , (47)
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with Φµν = ∂µ∂νφ. The stability of this theory is better understood when working
in the Einstein frame where the helicity-0 and -2 modes decouple. This is achieved
by performing the change of variable,

hµν = h̄µν + φηµν , (48)

which brings the action to the following form

L(2) = −1

2
h̄µνEαβ

µν h̄αβ +
3

2
φ�φ +

1

MPl

(

h̄µν + φ ηµν
)

τµν . (49)

Stability of the static solution is therefore manifest for any region of the parameter
space for which κ is real and does not vanish. As already mentioned, if a3 6= 0 there
is always a real solution to (43), which is therefore stable for κ 6= 0. Furthermore,
direct calculations to the 6th order show that the helicity-1 fluctuations will have a
positive kinetic term as long as κ/(q0 − 1) > 0. This suggests the presence of a flat
late-time attractor solution for degravitation. The special case a3 = 0 is discussed
separately below.

4.2.2 de Sitter branch

In the presence of a cosmological constant, the field equations (41) and (42) also
admit a second branch of solutions; these connect with the self-accelerating branch
presented in section 3, and we refer to them as the de Sitter solutions. The param-
eters for these solutions should satisfy

a1 + 2a2qdS + 3a3q
2
dS = 0 , (50)

H2
dS =

λ

3M2
Pl

+
2Λ3

3

MPl

(

a1qdS + a2q
2
dS + a3q

3
dS

)

. (51)

This solution is closer to the usual GR de Sitter configuration and only exists if
a2

2 ≥ 3a1a3. The stability of this solution can be analyzed as previously by looking
at fluctuations around this background configuration,

π =
1

2
qdS Λ3

3 x2 + φ , (52)

hµν = −1

2
H2

dS x2 ηµν + χµν , (53)

Tµν = −ληµν + τµν . (54)

To second order in fluctuations, the resulting action is then of the form

L(2) = −1

2
χµνEαβ

µν χαβ +
6H2

dSMPl

Λ3
3

(a2 + 3a3qdS)φ�φ +
1

MPl
χµντµν . (55)

It is interesting to point out again that the helicity-0 fluctuation φ then decouples
from matter sources at quadratic order (however the coupling reappears at the cubic
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order). Stability of this solution is therefore ensured if the parameters satisfy one of
the following three constrains, (setting a1 = −1/2 and λ̃ > 0)

a2 < 0 and − 2a2
2

3
≤ a3 <

1 − 3a2λ̃ − (1 − 2a2λ̃)3/2

3λ̃2
, (56)

or

a2 <
1

2λ̃
and a3 >

1 − 3a2λ̃ + (1 − 2a2λ̃)3/2

3λ̃2
, (57)

or

a2 ≥
1

2λ̃
and a3 > −2

3
a2

2 . (58)

These are consistent with the results (23) found for the self-accelerating solution in
the absence of a cosmological constant. Moreover, the requirement of stability of
helicity-1 fluctuations does not impose further bounds on the parameters (see, dis-
cussions at the end of section 3.2). Notice here that in the presence of a cosmological
constant, the accelerating solution can be stable even when a3 = 0. This branch of
solutions therefore connects with the usual de Sitter one of GR.

4.2.3 Diagonalizable action

In section 3 we have emphasized the importance of the contribution of X
(3)
µν for

the stability of the self-accelerating solution. However, in the presence of a nonzero
cosmological constant, this contribution is not a priori essential for stability of either
the degravitating or the de Sitter branches. Furthermore, since the helicity-0 and
-2 modes can be diagonalized at the nonlinear level when a3 = 0, as was explicitly
shown in [16], we will study this special case separately below. In particular, we will
show that it leads to certain special bounds both in the degravitating and de Sitter
branches of solution.

Stability: To start with, when a3 = 0, the degravitating solution only exists if

2a2λ̃ < 3a2
1 . (59)

This bound, along with the stability condition for the helicity-1 4a2q0−1
q0−1

> 0, then
also ensures the absence of ghost-like instabilities around the degravitating solution.
Assuming that the parameters a1,2 = O(1) take some natural values then the situa-
tion a2 > 0 implies a severe constraint on the value of the vacuum energy that can
be degravitated. This is similar to the bound in the non-linear realization of massive
gravity [37], as well as in codimension-two deficit angle solutions, λ . m2M2

Pl. The
situation a2 < 0 on the other hand allows for an arbitrarily large CC.

On the other hand, the bound a2
2 ≥ 3a1a3 for the existence of the de Sitter

solution is always satisfied if a3 = 0. However, the constraints on the parameters
(56) - (58) which guarantee the absence of ghosts on the de Sitter branch imply that

2a2λ̃ > 3a2
1 . (60)
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In this specific case then, we infer that when the Sitter solution is stable, the de-
gravitating branch does not exist, and when the degravitating branch exists the de
Sitter solution is unstable. Therefore, at each point in the parameter space there
is only one, out of these two solutions, that makes sense. In the more general case
where a3 6= 0 the situation is however much more subtle and it might be possible to
find parameters for which both branches exist and are stable simultaneously.

Einstein’s frame: Finally, to understand how this degravitating branch connects
with the arguments in [27] and how it relates with Galileon theories, let us now work
instead in the Einstein frame, where the helicity-2 and -0 modes are diagonalized
(which is possible as long as a3 = 0). The transition to Einstein’s frame is performed
by the change of variable [16, 45]

hµν = h̄µν − 2a1πηµν +
2a2

Λ3
3

∂µπ∂νπ , (61)

such that the action takes the form

L = −1

2
h̄µν(E h̄)µν + 6a2

1π�π − 6a2a1

Λ3
3

(∂π)2[Π] +
2a2

2

Λ6
3

(∂π)2
(

[Π2] − [Π]2
)

+
1

MPl

(

h̄µν − 2a1πηµν +
2a2

Λ3
3

∂µπ∂νπ

)

T µν , (62)

and the structure of the Galileon becomes manifest. Notice however, that the co-
efficients of the different Galileon interactions are not arbitrary. Furthermore, the
coupling to matter includes terms of the form ∂µπ∂νπT µν , absent in the original
Galileon formalism [15]. Both of these distinctions play a crucial role in screening
the cosmological constant – the task which was thought impossible in the original
Galileon theory. Here, however, as long as the bound (59) is satisfied, the solution
for π reads

π =
1

2
q0 Λ3

3 x2 with a1q0 + a2q
2
0 = − λ̃

6
, (63)

while the helicity-2 mode h̄µν now takes the form

h̄µν =

(

ξ

2
− λ

6MPl

)

x2ηµν + ξ xµxν , (64)

with ξ being an arbitrary gauge freedom parameter. Fixing ξ = −2a2q
2
0Λ

3
3, the

physical metric is then manifestly flat:

gµν = ηµν +
1

MPl

(

h̄µν − 2a1πηµν +
2a2

Λ3
3

∂µπ∂νπ

)

= ηµν −
λ3

3

MPl

(

a1q0 + a2q
2
0 +

λ̃

6

)

x2ηµν +
1

MPl

(

ξ + 2a2q
2
0Λ

3
3

)

xµxν

≡ ηµν . (65)
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To reiterate, the specific nonlinear coupling to matter that naturally arises in the
ghostless theory of massive gravity is essential for the screening mechanism to work.
This allows us to understand why neither DGP nor an ordinary Galileon theory are
capable of achieving degravitation.

4.3 Phenomenology

Let us now focus on the phenomenology of the degravitating solution. This mecha-
nism relies crucially on the extra helicity-0 mode in the massive graviton. However
tests of gravity severely constrain the presence of additional scalar degrees of free-
dom. As is well known in theories of massive gravity, the helicity-0 mode can evade
fifth force constrains in the vicinity of matter if the helicity-0 mode interactions are
important enough to freeze out the field fluctuations, [19].

Around the degravitating solution, the scale for helicity-0 interactions are no
longer governed by the parameter Λ3, but rather by the scale determined by the
cosmological constant Λ̃3 ∼ (λ/MPl)

1/3. To see this, let us pursue the analysis of
the fluctuations around the degravitating branch (44) and keep the higher order
interactions. The resulting Lagrangian is then

L(2) = −1

2
hµνEαβ

µν hαβ − 1

2
hµν

(

X(1)
µν [Φ] +

ã2

Λ̃3
X(2)

µν [Φ] +
ã3

Λ̃6
X(3)

µν [Φ]

)

+
1

MPl
hµντµν ,(66)

with

ã2

Λ̃3
= −2

a2 + 3a3q0

Λ3
3κ

2
, and

ã3

Λ̃6
= − 2a3

Λ6
3κ

3
. (67)

Assuming a2,3 ∼ O(1), a large cosmological constant λ̃ ≫ 1, implies q0 ≫ 1, so that
a3q

2
0 ≫ a2q0 ≫ a1 and κ ∼ a3q0 such that

ã2

Λ̃3
∼ 1

Λ3
3a3q3

0

∼ 1

Λ3
3λ̃

∼ MPl

λ
(68)

(notice that this results is maintained even if a3 = 0), and similarly

ã3

Λ̃6
∼
(

MPl

λ

)2

. (69)

To evade fifth force constrains within the solar system, the scale Λ̃ should there-
fore be small enough to allow for the nonlinear interactions to dominate over the
quadratic contribution and enable the Vainshtein mechanism. In the DGP model
this typically imposes the constraint, Λ̃3/MPl . (10−33 eV)2, while this value can
be pushed by a few orders of magnitude in the presence of Galileon interactions,
[15, 46]. Therefore, the allowed value of vacuum energy that can be screened with-
out being in conflict with observations is fairly low, of the order of (10−3 eV)4 or
so.

19



Notice that this maximal cosmological constant is at least of the same order of
magnitude, if not better, than the tension that can be carried by a codimension-2
brane embedded in six dimension with a Planck scale M6. In this scenario, the
maximal tension is of the order of λ < 2πM4

6 . From a four-dimensional point of
view, this model with the brane-induced Einstein-Hilbert term looks like a theory
of massive gravity with a graviton mass m2 ∼ M4

6 /M2
Pl. Phenomenology imposes

the graviton mass to be m . 10−33eV, which therefore implies the upper bound of
the brane tension, λ . (10−3 eV)4.

An alternative would be to impose a hierarchy between the dimensionless coeffi-
cients ai. Since the Galilean interactions satisfy a non-renormalization theorem [47],
such a tuning would remain technically natural6. To explore this avenue in a simple
way, let us set a3 = 0. In that case, the effective strong coupling scale is given by

Λ̃3 = Λ3
3

3
4
− 2a2λ̃

a2
. (70)

The strong coupling scale can then be tuned to small values by adjusting the pa-
rameter a2 within the very small window

|a2λ̃ − 3

8
| .

(10−33eV)2MPl

Λ3
3

. (71)

Therefore even when allowing a hierarchy between the parameters, once they are
fixed only very restricted values of the degravitated cosmological constant would
be compatible with solar system tests. The previous argument would have been
unaffected if we had set a3 6= 0.

The above constraint on the vacuum energy that can be degravitated makes the
present framework not viable phenomenologically for solving the old cosmological
constant problem. There may be a way out of this setback though: As mentioned in
the first section, one may envisage a cosmological scenario in which the neutralization
of vacuum energy takes place before the Universe enters the epoch for which the
Vainshtein mechanism is absolutely necessary to suppress the helicity-0 fluctuations.
Such an epoch should certainly be before the radiation domination. During that
epoch, however, the cosmological evolution should reset itself –perhaps via some sort
of phase transition – to continue subsequent evolution along the other branch of the
solutions that exhibits the standard early behavior followed by the self-acceleration,
found in the present work. This scheme would have to address the cosmological
instabilities discussed in Refs. [48, 49]. Moreover, the viability of such a scenario
would depend on properties of the degravitating solution in the full theory –which
are not known. Therefore, we do not rely on this possibility.

Nevertheless, there are certain important virtues to the degravitating solution
with the low value of the degravitated CC. This is an example of high importance
in understanding how S. Weinberg’s no-go theorem can be evaded in principle. As

6We thank the referee for this suggestion.
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already emphasized in [41, 42, 43, 44], such mechanisms evade the no-go theorem
by employing a field which explicitly breaks Poincaré invariance in its vacuum con-
figuration π ∼ x2, while keeping the physics insensitive to this breaking. Indeed,
physical observables are only sensitive to Πµν = ∂µ∂νπ which is clearly Poincaré
invariant, while the configuration of the π field itself has no direct physical bearing.
This is built in the specific Galileon symmetry of the theory, and is a consequence of
the fact that π is not an arbitrary scalar field but rather descends as the helicity-0
mode of the massive graviton. More precisely, under a Poincaré transformation,
xµ → Λµ

νx
ν + aµ, the configuration for π transforms as x2 → x2 + vµx

µ + c, with
vµ = 2aνΛ

ν
µ and c = a2 which is precisely the Galileon transformation for π under

which the action is invariant. In other words the Poincaré symmetry is still realized
up to a Galilean transformation (or, there is a diagonal subgroup of Poincaré and
internal “galilean” groups that remains unbroken by the VEV of the π field).

Thus, we have presented here the crucial steps towards a non-linear realization
of degravitation within the context of massive gravity, and this, without introducing
any ghosts (at least in the decoupling limit). The arguments presented here only
rely on the decoupling limit and it is reasonable to doubt their validity beyond that
regime. Fortunately, non-linear theories of massive gravity have been explicitly for-
mulated in [36, 37], and static solutions in the fully non-linear regime have been
presented in [37]. The absence of the ghost in theories of massive gravity requires
the presence of additional symmetry projecting out the usual Boulware-Deser ghost,
which can typically be thought as inherited from a higher dimensional fundamen-
tal theory. It is therefore only natural to investigate massive gravity as arising in
braneworld models embedded in (spurious) extra dimensions. The static solutions
presented so far then embrace a much more physical meaning, where the quantity
Πµν plays the role of the extrinsic curvature on the brane, describing the brane posi-
tion along the extra dimension(s). The fact that our model allows for flat solutions
while carrying the cosmological constant with Πµν suggests that such models could
be understood as flat branes embedded in extra dimensions, similarly as in [36, 37],
[40, 41] and [42].

Some interesting work in Refs. [44] appeared during the completion of this
manuscript. These have certain overlaps with the ideas of section 4 of the present
work. In particular, Refs. [44] emphasize the role of Galileon fields in the context of
degravitation. These works differ, however, in several aspects from the present one.
In particular, Ref. [44] relies on the existence of two Galileon fields, as would arise in
models with two extra dimensions, [41], whilst our model explores the degravitating
solutions with a unique extra helicity-0 mode which naturally arises in the 4D theory
of massive gravity. Our mechanism is possible thanks to the very specific coupling
to matter that arises in a ghostless theory of massive gravity, and differ from the
standard Galileon coupling.
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