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Abstract

We study the scale and redshift dependence of the power spectra for density perturbations and

peculiar velocities, and the evolution of a coarse grained phase space density for (WDM) particles

that decoupled during the radiation dominated stage. The (WDM) corrections are obtained in a

perturbative expansion valid in the range of redshifts at which N-body simulations set up initial

conditions, and for a wide range of scales. The redshift dependence is determined by the kurtosis

β2 of the distribution function at decoupling. At large redshift there is an enhancement of peculiar

velocities for β2 > 1 that contributes to free streaming and leads to further suppression of the

matter power spectrum and an enhancement of the peculiar velocity autocorrelation function at

scales smaller than the free streaming scale. Statistical fluctuations of peculiar velocities are also

suppressed on these scales by the same effect. In the linearized approximation, the coarse grained

phase space density features redshift dependent (WDM) corrections from gravitational perturba-

tions determined by the power spectrum of density perturbations and β2. For β2 > 25/21 it grows

logarithmically with the scale factor as a consequence of the suppression of statistical fluctuations.

Two specific models for WDM are studied in detail. The (WDM) corrections relax the bounds on

the mass of the (WDM) particle candidate.
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I. INTRODUCTION

The current paradigm of structure formation, the ΛCDM standard cosmological model,

describes large scale structure remarkably well. However, observational evidence has been

accumulating suggesting that the cold dark matter (CDM) scenario of galaxy formation may

have problems at small, galactic, scales.

Large scale simulations seemingly yield an over-prediction of satellite galaxies[1] by almost

an order of magnitude[1–5]. Simulations within the ΛCDM paradigm also yield a density

profile in virialized (DM) halos that increases monotonically towards the center[1, 6–9] and

features a cusp, such as the Navarro-Frenk-White (NFW) profile[6] or more general central

density profiles ρ(r) ∼ r−β with 1 ≤ β . 1.5[3, 6, 9]. These density profiles accurately

describe clusters of galaxies but there is an accumulating body of observational evidence[10–

17] suggesting that the central regions of dark matter (DM)-dominated dwarf spheroidal

satellite (dSphs) galaxies feature smooth cores instead of cusps as predicted by (CDM). Some

observations suggest[19] that the mass distribution of spiral disk galaxies can be best fit by a

cored Burkert-type profile[19]. This difference is known as the core-vs-cusp problem[16, 17].

The case for core-dominated halos has been recently bolstered by the analysis of rotation

curves from the THINGS survey[18].

Warm dark matter (WDM) particles were invoked[20–22] as possible solutions to the

discrepancies both in the over abundance of satellite galaxies and as a mechanism to smooth

out the cusped density profiles predicted by (CDM) simulations into the cored profiles that

fit the observations in (dShps). (WDM) particles feature a range of velocity dispersion

in between the (CDM) and hot dark matter leading to free streaming scales that smooth

out small scale features and could be consistent with core radii of the (dSphs). If the free

streaming scale of these particles is smaller than the scale of galaxy clusters, their large scale

structure properties are indistinguishable from (CDM) but may affect the small scale power

spectrum[23] providing an explanation of the smoother inner profiles of (dSphs) and fewer

satellites.

Furthermore recent numerical results hint to more evidence of possible small scale dis-

crepancies with the ΛCDM scenario: another over-abundance problem, the “emptiness of

voids” [24] and the spectrum of “mini-voids”[25], both of which may be explained by a

WDM candidate. Constraints from the luminosity function of Milky Way satellites[26] sug-
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gest a lower limit for the mass of a WDM particle of a few keV, a result consistent with

Lyman-α[27–29], galaxy power spectrum[30] and lensing observations[31]. More recently,

results from the Millenium-II simulation[32] suggest that the ΛCDM scenario overpredicts

the abundance of massive & 1010M⊙ haloes, which is corrected with a WDM candidate of

m ∼ 1 keV. A model independent analysis suggests that dark matter particles with a mass

in the keV range is a suitable (WDM) candidate[33, 34]. Recent counterarguments[35, 36]

seem to suggest that (WDM) cannot explain cores in (LSB) galaxies, thus the controversy

continues.

In absence of conclusive evidence in favor of or against cusps or cores, and in view of

the ongoing controversy and the body of emerging evidence in favor of (WDM), a deeper

understanding of the small scale clustering properties of (WDM) candidates is warranted.

Motivation and goals:

Redshift dependence of the power spectrum and peculiar velocities: recent N-body simu-

lations of WDM[25, 26] set up initial conditions at z = 40[26] or z = 50[25] with a rescaled

version of the CDM power spectrum from a fit provided in ref.[29] that inputs a cutoff from

free streaming, however, these simulations neglected the velocity dispersion of the WDM

particles in the initial conditions. We seek to understand both the redshift dependence of

the matter and peculiar velocity power spectrum in this range of redshifts for a wide range

of scales.

Phase space density: in a seminal article Tremaine and Gunn[37] provided bounds on

the mass of the DM particle from phase space density considerations: whereas in absence

of self-gravity the fine-grained phase space density (or distribution function) is conserved

after the DM species decouples from the plasma, phase mixing theorems[38] assert that a

coarse grained phase space density always diminishes as a result of phase mixing (violent

relaxation)[38, 39]. Therefore the microscopic phase space density provides an upper bound

from which constraints on the mass can be extracted. These arguments were generalized

in refs.[10, 33, 40–43] to a coarse grained phase space density obtained from moments of

the microscopic distribution function. In ref.[33, 41–43] this coarse grained phase space

density was combined with photometric observations of (dShps) to constrain the mass and

the number of relativistic degrees of freedom at decoupling.

Although the microscopic phase space density, namely the distribution function, obeys
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the collisionless Boltzmann equation, the evolution of the coarse grained phase space density

is not directly obtained from this equation (see discussion in ref.[39]). Although the proxy

phase space density introduced in refs.[10, 40–42] is conserved after decoupling, its evolution

does not include self-gravity. Therefore there remains the unexplored question of precisely

what happens to the microscopic phase space density or its proxy introduced in refs.[10, 40–

42] when gravitational perturbations are included in the Boltzmann equation. One aspect

is clear: the perturbations of the distribution function (microscopic phase space density)

feature two moments that grow under gravitational perturbations: the first moment (density

perturbations) and the second moment (velocity perturbations) which are actually related

via the continuity equation on sub-horizon scales. In this article we study the evolution of

the coarse-grained phase space density introduced in refs.[10, 40–42] as a function of redshift

and scale for (WDM) particles in order to assess how the original arguments are modified

by gravitational perturbations, again in the regime of redshifts at which N-body simulations

set up initial conditions.

Results:

Armed with the results recently obtained in ref.[44] we obtain a perturbative expansion

of the redshift corrections to the matter, peculiar velocity power spectra and evolution of

a coarse-grained phase space density. This expansion is valid in the regime z ≪ zeq for a

wide range of scales and is a distinct feature of (WDM) particles. These corrections depend

on the kurtosis β2 of the unperturbed distribution function. Peculiar velocities contribute

to the velocity dispersion and free streaming and lead to a suppression of the matter power

spectrum for β2 > 1 at scales smaller than the free streaming scale at redshifts z ≃ 30− 50.

The peculiar velocity power spectrum is enhanced at these scales and reshift leading to an

increase of the peculiar velocity autocorrelation function and a suppression of statistical

fluctuations. For (WDM) perturbations in the linearized approximation, it is found that

the coarse grained phase space density introduced in refs.[10, 40–42] grows logarithmically

with the scale factor for β2 > 25/21. Two specific models of (WDM) particles motivated

by particle physics are studied in detail. Implications on the bounds for the mass of the

(WDM) particle are discussed.
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II. PRELIMINARIES

We begin by establishing some notation and conventions that are used in the analysis.

Since we focus on the region of redshift z ≫ 1 we can safely neglect the dark energy

component and we consider a radiation and matter dominated cosmology with

H2 =
ȧ2

a4
= H2

0

[
Ωr

a4
+

Ωm

a3

]
=
H2

0Ωm

a4
[a + aeq] (II.1)

where the dot stands for derivative with respect to conformal time (η), the scale factor is

normalized to a0 = 1 today, and

aeq =
Ωr

Ωm

≃ 1

3229
. (II.2)

Introducing

ã =
a

aeq
, (II.3)

it follows that
d ã

dη
=

[
H2

0Ωm

aeq

] 1

2

[1 + ã]
1

2 . (II.4)

At matter-radiation equality we define

keq ≡ Heq aeq =
√
2

[
H2

0Ωm

aeq

] 1

2

=
9.8× 10−3

Mpc
(II.5)

corresponding to the comoving wavevector that enters the Hubble radius at matter-radiation

equality, where we have used Ωmh
2 = 0.134[45].

We study the evolution of perturbations in the conformal Newtonian gauge

g00 = −a2(η)
[
1 + 2ψ(~x, η)

]
(II.6)

gij = a2(η)
[
1− 2φ(~x, η)

]
δij . (II.7)

The perturbed distribution function is given by

f(p, ~x, η) = f0(p) + F1(p, ~x, η) (II.8)

where f0(p) is the unperturbed distribution function, which after decoupling obeys the colli-

sionless Boltzmann equation in absence of perturbations and ~p, ~x are comoving momentum
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and coordinates respectively. As discussed in ref.[41–43] the unperturbed distribution func-

tion is of the form

f0(p) ≡ f0(y;χ1, χ2, · · · ) (II.9)

where

y =
p

T0,d
(II.10)

where p is the comoving momentum and T0,d is the decoupling temperature today,

T0,d =
( 2

gd

) 1

3

TCMB , (II.11)

with gd being the effective number of relativistic degrees of freedom at decoupling, TCMB =

2.35× 10−4 eV is the temperature of the (CMB) today, and χi are dimensionless couplings

or ratios of mass scales.

We neglect stress anisotropies, in which case φ = ψ and introduce

F̃ (~p,~k, η) =
F1(~p,~k, η)

n0

; f̃(p) =
f0(p)

n0

(II.12)

where

n0 =

∫
d3p

(2π)3
f0(p) , (II.13)

is the background density of (DM) today. Therefore

δ(~k, η) =

∫
d3p

(2π)3
F̃ (~k, η) . (II.14)

becomes δρm/ρm after the DM particle becomes non-relativistic.

Introducing spatial Fourier transforms in terms of comoving momenta ~k (we keep the

same notation for the spatial Fourier transform of perturbations), and neglecting stress

anisotropies the linearized Boltzmann equation for perturbations is given by[46–52]

˙̃
F (~k, ~p ; η) + i

k µ p

ǫ(p, η)
F̃ (~k, ~p ; η) +

(d f̃(p)
dp

)[
p φ̇(~k, η)− ik µ ǫ(p, η) φ(~k, η)

]
= 0 (II.15)

where dots stand for derivatives with respect to conformal time, µ = k̂ · p̂, and ǫ(p, η) =
√
p2 +m2 a2(η) is the conformal energy of the particle of mass m. The gravitational poten-

tial is determined by Einstein’s equation[46, 47].

As discussed in ref.[44] for a (WDM) particle with a mass in the ∼ keV range, there are

three stages of evolution: I) radiation domination and the DM particle is relativistic, II)
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radiation domination and the DM particle is non-relativistic and III) the matter dominated

stage, during which cold and warm DM particles are non-relativistic.

During stages (I) and (II) the gravitational potential is completely determined by the

radiation component and the Boltzmann equation for the distribution function of the WDM

particle is solved by integrating eqn. (II.15) with φ being determined by the radiation

component. During stage (III) the gravitational potential is determined by the matter

component and the Boltzmann equation becomes a self-consistent Vlasov-type equation.

Since the Boltzmann equation is first order in time, the solution during stages (I) and

(II) becomes the initial condition for the evolution during stage (III).

In this article we focus on the evolution of peculiar velocities and phase space density

during the matter dominated stage 10 ≤ z . zeq, corresponding to stage (III) during which

dark energy can be neglected. Typical N-body simulations setup initial conditions which

input the matter power spectrum from linear perturbation theory at z ≃ 30− 50.

In this stage the WDM is non-relativistic, hence p/ǫ(p, η) = p/ma(η), and the Bolzmann

equation simplifies by introducing the variable

s(η) =

∫ η dη′

a(η′)
≡ 2

√
2 u(η)

keqaeq
(II.16)

where the dimensionless variable

u(η) =
1

2
ln

[√
1 + ã(η)− 1√
1 + ã(η) + 1

]
; uNR ≤ u(η) ≤ 0 , (II.17)

is normalized so that u(∞) = 0 and introduced[44]

uNR = ln
[√ãNR

2

]
; ãNR = 〈V 2(teq)〉

1

2 (II.18)

where ãNR corresponds to the time when the particle becomes non-relativistic, and 〈V 2(teq)〉
is the velocity dispersion of the DM particle at matter-radiation equality given by[44]

〈V 2(teq)〉
1

2 ≃ 7.59 × 10−4

√
y2

(keV
m

)( 2

gd

) 1

3

. (II.19)

In this expression gd is the number of relativistic degrees of freedom at decoupling and we

introduced the moments

yn =

∫∞

0
y2+n f0(y) dy∫∞

0
y2 f0(y) dy

. (II.20)
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FIG. 1: u[z] for z ≤ zeq.

The function u[z] as function of redshift is displayed in fig. (1) and

ã(u) =
1

sinh2[u]
. (II.21)

The solution of the Boltzmann equation during stage (III) is given in ref.([44])

F̃ (~k, ~p; s) = −φ(~k, s)
(
p
df̃(p)

dp

)
+ im

∫ s

sNR

ds′ a2(s′)φ(~k, s′)
(
~k · ~∇pf̃(p)

)
e−i

~k·~p
m

(s−s′)

+ e−i
~k·~p
m

(s−sNR)
[
F̃ (~k, ~p; ηNR) + φ(~k, ηNR)

(
p
df̃

dp

)]
. (II.22)

The term F̃ (~k, ~p; ηNR) in the bracket in eqn. (II.22) is the solution of the Boltzmann

equation at the beginning of stage (III) (end of stage (II)) its form is given in detail in

ref.[44] but is not necessary in the discussion that follows.

After radiation-matter equality when the WDM particle is non-relativistic and (DM) per-

turbations dominate the gravitational potential and for k ≫ keq, the gravitational potential

φ is determined by Poisson’s equation[47]

φ(k, η) = −3

4

k2eq
k2 ã

δ(~k, s) (II.23)

For s > seq, the integral in s′ in (II.22) is split from sNR up to seq and from seq up to s. In

the first integral the gravitational potential is determined by perturbations in the radiation

fluid and in the second integral the gravitational potential is replaced by Poisson’s equation

(II.23), leading to the result (valid for s > seq)[44]

F̃ (~k, ~p; s) =
3

4

k2eq
k2 ã

δ(~k, s)
(
p
df̃(p)

dp

)
− i

3mk2eqa
2
eq

4k

∫ s

seq

ds′ ã(s′) δ(k, s′)µ
(df̃(p)

dp

)
e−iµQ

+ F [~k, ~p; s] . (II.24)
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where

Q =
kp

m
(s− s′) ; µ = k̂ · p̂ , (II.25)

and F [~k, ~p; s] is given by the second line in (II.22) plus the contribution from the integral

between sNR and seq (for details see ref.[44]).

We are interested in the corrections to the power spectra in the regime of redshift 1 <

z ≪ zeq corresponding to ã≫ 1.

In the asymptotic limit ã≫ 1 when density perturbations grow as in an Einstein-DeSitter

cosmology, δ ∝ ã, therefore in this limit and for k ≫ keq we can neglect the first term in

(II.24). Since in this limit δ(k, s′) ∝ ã(s′) ∝ (1/s′)2 the integral in eqn. (II.24) is ∝ 1/s3

and dominates all other terms in eqn. (II.24) since the last term remains finite in the limit

s→ 0[44].

Therefore in the asymptotic limit ã≫ 1 and for small scales k ≫ keq the leading contri-

bution to the perturbation in the distribution function is given by

F̃ (~k, ~p; s) ≃ −i
3mk2eqa

2
eq

4k

∫ s

seq

ds′ ã(s′) δ(~k, s′)µ
(df̃(p)

dp

)
e−iµQ (II.26)

With this form for the distribution function we can obtain any expectation value once δ(k, s)

is determined from the solution of the Boltzmann equation.

In ref.[44] it is shown that in terms of the variable u defined by eqns. (II.16,II.17) δ obeys

the fluid-like integro-differential equation

d2

du2
δ(k, u)− 6 ã(u)δ(k, u) + κ2δ(k, u)− 6α

∫ u

uNR

ã(u′) Π̃
[
α(u− u′)

]
δ(k, u′) du′

= J [k, u] (II.27)

where the inhomogeneity J [k, u] is given explicitly in ref.[44], and

Π̃
[
α(u− u′)

]
=

1

N

∫ ∞

0

yf0(y)(y2 − y2) sin
[
y α (u− u′)

]
dy ; N =

∫ ∞

0

y2f0(y) dy . (II.28)

In the above expressions we introduced

α = 2
√
2

k T0,d
mkeqaeq

≃ 2.15× 10−3
( k

keq

)( 2

gd

) 1

3

(keV
m

)
≃ 0.22 k

( 2

gd

) 1

3

(keV
m

)
×

(
Mpc

)
,

(II.29)

and

κ ≡
√
y2 α . (II.30)
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In terms of the free streaming wavevector[44]

kfs =

√
3

2

keq

〈~V 2(teq)〉
1

2

=
11.17√
y2

( m

keV

)(gd
2

) 1

3

(Mpc)−1 , (II.31)

it follows that

κ =

√
6k

kfs
=

√
6 λfs
λ

(II.32)

where λfs is the free streaming length and λ the wavelength of the perturbation. The (CDM)

limit corresponds to λfs → 0, namely κ→ 0, therefore all the WDM corrections are in terms

of κ.

In the (CDM) limit eqn.(II.27) reduces to Meszaro’s equation[53–55] for (CDM) pertur-

bations in a radiation and matter dominated cosmology[44].

The power spectrum of density perturbations is given by

Pδ(k) = AknsT 2(k) (II.33)

where where ns = 0.963[45] is the index of primordial scalar perturbations, A is the am-

plitude and T (k) is the transfer function. It is convenient to normalize the WDM power

spectrum and transfer function to CDM, namely

Pwdm(k) = Pcdm(k) T
2
(k) ; T (k) =

Twdm(k; κ)

Tcdm(k)
(II.34)

where

Pcdm(k) = AknsT 2
cdm(k) (II.35)

is the (CDM) power spectrum and the dependence on WDM is encoded in the κ dependence

of Twdm(k; κ) so that Twdm(k; κ = 0) = Tcdm(k). The dependence on κ describes the velocity

dispersion and non-vanishing free streaming length of the WDM particle.

In ref.[44] it is shown that eqn. (II.27) can be solved in a systematic Fredholm expansion,

from which the transfer function of density perturbations at z = 0 is extracted. The leading

order term is a Born-type approximation which provides a remarkably accurate approxima-

tion to the transfer function and reproduces numerical results available in the literature in

several cases (for discussion and comparison see[44]). The definition of the power spectrum

and transfer function above are at z = 0. We seek to study the redshift dependence for

z . 30− 40 at which N-body simulations set up initial conditions.

10



Asymptotically during the matter dominated era as ã → ∞ (u → 0) it is found[44]

that δ(k, u) → ã(u) δ(k, 0) + · · · where the dots stand for subleading terms. The leading

and subleading asymptotic behavior in the u → 0 (ã → ∞) limit can be obtained from

eqn. (II.27). In this limit the inhomogeneity J [k, 0] is a finite constant (see expressions in

ref.[44]), the integral term receives the largest contribution for u′ ∼ u ∼ 0 and in this region

we find

−6αΠ̃
[
α(u− u′)

]
≃ κ4(u− u′)3

(
1− β2

)
+ · · · . (II.36)

where

β2 =
y4

(
y2
)2 (II.37)

is the kurtosis of the distribution function of the decoupled particle, with the moments

defined by eqn. (II.20), and the dots stand for terms that yield subleading corrections (see

below).

Since

ã(u) =
1

sinh2[u]
∼ 1

u2
− 1

3
+O(u2) , (II.38)

we propose the asymptotic expansion

δ(k, u) =
δ(k, 0)

u2
+ δ1(k) + δ2(k) u

2 ln[−u] + · · · (II.39)

Introducing this expansion in eqn. (II.27) we find

δ1(k) =
δ(k, 0)

6

[
κ2 + 2

]
; δ2(k) = −δ(k, 0) κ

4

4

(
1− β2

)
, (II.40)

where δ(~k, 0) is obtained from the asymptotic solution of the full eqn. (II.27). Therefore

δ(~k, u) = δ(~k, 0)D[k, u] (II.41)

where the wavevector dependent growth factor is found to be

D[k, u] = Dcdm[u] D[k, u] (II.42)

with Dcdm[u] being the CDM growth factor (for κ = 0)

Dcdm =
1

u2

[
1 +

u2

3
+ · · ·

]
(II.43)

and

D[k, u] =

[
1 +

(κ u)2

6
+

(κ u)4

4
(− ln[−u])

(
1− β2

)
+ · · ·

]
. (II.44)
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contains the WDM corrections as is manifest in the κ dependence.

For u→ 0 we find

Dcdm[u] =
1

u2
+

1

3
≃ ã+

2

3

which is recognized as the growing solution of Meszaros equation for CDM[53–55]. Further-

more from (II.16) we recognize that

−κ u = k lfs
[√〈p2〉

m
, η0, η

]
(II.45)

where lfs
[√〈p2〉

m
, η0, η

]
is the comoving free streaming distance that a particle with (comov-

ing) velocity
√

〈p2〉/m travels between conformal time η and today η0 ≫ 1. We see that

up to logarithms, the expansion in powers of κ u is valid at late times for wavelengths much

larger than the free streaming distance that the particle would travel between that time and

today.

The identification (II.45) leads to a simple physical interpretation of the first term in

D[k, u]: free streaming of collisionless particles suppresses the gravitational collapse of den-

sity perturbations, the longer the time scale, the farther the free streaming particles can

travel away from the collapsing region erasing the perturbations. Therefore the first term

reflects that at earlier times (larger values of u) density perturbations are larger. The sec-

ond term, however, has a more interesting interpretation. As it will be discussed below,

it represents the peculiar velocity contribution to free streaming induced by gravitational

self-interaction (see discussion on peculiar velocity below). When β2 > 1 the peculiar ve-

locity contribution increases the free streaming velocity leading to a suppression of power,

which counterbalances the enhancement by the first term. Which term dominates depends

on the scale k, the free streaming wavevector, a characteristic of the WDM particle, and the

redshift. This will be analyzed in two specific models below.

We emphasize that the expansion in (II.39) is valid at long time, in particular for κ u < 1.

At higher orders in the expansion, the terms that feature the ln(−u) only appear linearly

in the logarithm but multiplied by higher powers of κ u, therefore for |κ u| < 1 the third

term in D is the leading logarithmic contribution, with higher contributions being of the

form (κ u)n ln(−u) ; n = 6, 8 · · · . This is an important observation: in particular within the

regime of validity of the perturbative expansion |κu| < 1 it is still possible that |κu ln(−u)| ∼
1 and the second term in (II.44) can balance the first term within the region of validity of

the approximation.
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An estimate of the range of validity is obtained from

0.098 ≤ −u[z] ≤ 0.125 for 30 ≤ z ≤ 50 , (II.46)

for example in the region of redshifts where initial conditions for N-body simulations are

set up, the WDM corrections to the growth factor are of O(10 − 15%) for k & (1 − 2) kfs

which for a species with m ∼ keV decoupled with gd ∼ 30 − 100 with y2 ∼ 10 corresponds

to k & 10− 30 (Mpc)−1.

There is a caveat in this analysis of the reliability of the expansion, since it applies only in

the linear regime where the linearized Boltzmann equation describes the transfer function.

It is conceivable that non-linear effects restrict further the regime of validity, but of course

this cannot be assessed in the linear theory which is the focus of this discussion.

Using Poisson’s equation (II.23), the asymptotic behavior δ(~k, u) → δ(~k, 0) ã(u) and the

definition of the transfer function[47] T (k)

φ(k, ã≫ 1) =
9

10
φi(k)T (k) (II.47)

where φi(k) is the primordial value of gravitational perturbations seeded by inflation. It

then follows that

δ(~k, 0) = −φi(~k)
6 k2

5 k2eq
T (k) . (II.48)

We emphasize that there are two different averages: i) the statistical average of a quantity

O with the perturbed distribution function f0+F1 to which we refer as 〈O〉, ii) average over
the initial gravitational potential φi which is a stochastic Gaussian field (we neglect possible

non-Gaussianity) whose power spectrum is determined during the inflationary era

φi(~k)φi(−~k′) = (2π)3 δ(3)(~k − ~k′)Pφ(k) (II.49)

where the AB refers to averages with the primordial Gaussian distribution function for the

gravitational potential1. Therefore full expectation values correspond to averages both with

the perturbed distribution function and the Gaussian distribution function for the primordial

gravitational potential, these are given by 〈O〉, with the power spectrum of matter density

fluctuations

δ(~k, 0)δ(−~k′, 0) = (2π)3 δ(3)(~k − ~k′)Pδ(k) , (II.50)

1 This definition should not be confused with that of the moments in eqn. (II.20) which refer to averages

with the unperturbed distribution function. The meaning of averages is unambiguously inferred from the

context.
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where Pδ(k) is given by eqn. (II.33).

Including the wavevector dependent growth factor D[k, u] (II.44) but keeping only the

(WDM) (κ 6= 0) corrections with redshift, the effective (WDM) power spectrum at z ≪ zeq

is given by

Pδ[k, z] = Pwdm(k)D
2
[k, z] (II.51)

where the scale and redshift dependent correction is given by (see eqn. (II.44))

D[k, z] = 1 +
κ2

6

[
1 + z

1 + zeq

]
− κ4

8

[
1 + z

1 + zeq

]2

ln

[
1 + zeq
1 + z

](
β2 − 1

)
+ · · · (II.52)

For β2 > 1 the third term is negative and competes with the second term, dominating

the corrections for scales

k > kfs

[
2 (1 + zeq)

9 (1 + z)(β2 − 1) ln
[
(1+zeq)

(1+z)

]
] 1

2

(II.53)

for β2 − 1 ∼ O(1) and z ≃ 30− 50 one finds that the third term dominates over the second

for k ∼ (1 − 2) kfs. These are the scales beyond which the contribution from the peculiar

velocities to free streaming leads to a suppression of the power spectrum. Coincidentally this

is the scale at which the power spectrum displays (WDM) acoustic oscillations which arise

from the competition between free streaming and gravitational collapse in the collisionless

regime as described in ref.[44].

III. PECULIAR VELOCITY AND PHASE SPACE DENSITY:

Statistical averages of observables with the perturbed distribution function (II.8) in the

linearized theory (in terms of their spatial Fourier transform) are given by

Õ(~k; η) ≡ 〈O(~p,~k, η)〉 =
∫

d3p

(2π)3

[
f0(p) + F1(~p,~k; η)

]
O(~p,~k; η)

∫
d3p

(2π)3

[
f0(p) + F1(~p,~k; η)

] =
Õ0(~k; η) + ∆Õ(~k; η)[

1 + δ(~k, η)
]

(III.1)

where

Õ0(~k; η) =

∫
d3p

(2π)3
f̃(p)O(~p,~k; η) , (III.2)

∆Õ(~k; η) =

∫
d3p

(2π)3
F̃ (~p,~k; η)O(~p,~k; η) . (III.3)
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where F̃ , f̃ are defined in eqn. (II.12). In the linearized approximation

Õ(~k; η) ≃ Õ0(~k; η) +
(
∆Õ(~k; η)− Õ0(~k; η) δ(~k, η)

)
. (III.4)

With F̃ (~k, ~p; s) given by (II.26) and δ(k, η) given by (II.39,II.40) we can now obtain any

statistical average by expanding O(~p,~k; η) ≡ O(p, k, µ; η) in Legendre polynomials in µ

and carrying out the integrals in p, µ leading to an expansion in spherical Bessel functions.

However, here we focus on obtaining the leading asymptotic expansion of these averages for

z ≪ zeq, namely for u ≪ 1. This is readily achieved by using the asymptotic expansion

(II.39) with the coefficients given by (II.40), expanding

exp[−iµQ] ≃ 1− iµQ− 1

2
µ2Q2 +

i

6
µ3Q3 + · · ·

and integrating over µ and p term by term in the expansion.

A. Peculiar velocity

Writing the comoving peculiar velocity in terms of the longitudinal and transverse com-

ponents

~v(~k, η) = 〈 ~p
m
〉 ≡ ~vT + k̂ vL , ~k · ~vT = 0 (III.5)

where

vL =
p

m
µ ; µ = k̂ · p̂ (III.6)

and p is the comoving momentum. In the linearized approximation, the expectation value

of k vL is given by

k vL(~k, η) =

∫
d3p

(2π)3
F̃ (~p,~k; η)

~k · ~p
m

. (III.7)

Furthermore, F̃ (~p,~k; η) is a function of k and ~k · ~p leading to ~vT = 0 in the linearized

approximation. Since the gravitational potential is only a function of k, the first term on

the right hand side of (II.22) does not contribute and we find

k vL(~k, η) = i
d

ds

∫
d3p

(2π)3

[
F̃ (~p,~k; s) + φ(k, s)

(
p
df̃(p)

dp

)]
= i

d

ds

[
δ(~k, s)− 3φ(k, s)

]
(III.8)

Using d/ds = ad/dη equation (III.8) becomes

dδ

dη
− 3

dφ

dη
+ i

k

a
vL = 0 (III.9)
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which is recognized as the continuity equation in presence of the gravitational potential[47]2

for the comoving longitudinal velocity. For ã ≫ 1 and k ≫ keq the second term in the

continuity eqn. (III.9) can be safely neglected, leading to

vL(~k, u) = i
keqaeq

2
√
2 k

dδ(~k, u)

du
. (III.10)

As a function of redshift we find

vL(~k, z) = i
keqaeq√

2 k

δ(k, 0)

(−u[z])3 Vwdm[k, z] (III.11)

where we used the asymptotic expansion (II.39,II.40) and introduced

Vwdm[k, z] =

[
1 +

κ4

8

[ 1 + z

1 + zeq

]2
ln
[1 + zeq
1 + z

] (
β2 − 1

)
+ · · ·

]
. (III.12)

In the CDM limit κ → 0 the growth factor u−3 ≃ ã
3

2 which is recognized as the growth

of comoving peculiar velocity in a matter dominated cosmology, in this limit T (k) → 1[44]

and Vwdm[k, u] → 1. The function Vwdm[k, u] encodes the corrections to the peculiar velocity

at small scales. It is clear that as compared to the CDM case, when the kurtosis β2 > 1 the

peculiar velocity at small scales κ & 1 is larger at higher redshift. Comparing eqn. (III.12)

with the third term in eqn. (II.52) confirms the interpretation of the suppression of the

power spectrum at small scales and high redshift as a consequence of the peculiar velocity

contribution to free streaming.

B. Statistical fluctuations and correlation functions:

In the linearized approximation (and with adiabatic perturbations only), the perturbation

in the distribution function F̃ (~k, ~p; u) is linear in the primordial gravitational potential φi(k)

which is a Gaussian variable determined by the power spectrum of perturbations during the

inflationary stage (here we neglect possible non-gaussianities). Therefore as discussed in the

previous section there are two different averages, i) a statistical average with the perturbed

distribution function f0 + F1, ii) with the initial Gaussian probability distribution of Pφ(k)

in eqn. (II.49).

2 Note that the Newtonian potential in eqn. (II.7) features a minus sign with respect to the definition in

[47].
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Statistical fluctuations are contained in the variance of the various quantities calculated

with the perturbed distribution F̃ . These are linear in δ(k, 0), namely linear in φi, therefore

they feature Gaussian fluctuations with the probability distribution function Pφ(k), but with

non-gaussian statistical variances.

As an example of a statistical fluctuation consider

∆v2L = 6〈 p
2

m2
〉0

∫ u

du′ã(u′)δ(k, u′)

[
(u− u′)− κ2

6
β2 (u− u′)3 · · ·

]
du′ (III.13)

Using the asymptotic expansions (II.38,II.39),II.40) we find up to leading logarithmic order

∫ u

ã(u′) δ(k, u′)(u− u′) du′ =
δ(k, 0)

6 u2

[
1− κ2 u2 ln[−u]

]
+ · · · (III.14)

∫ u

ã(u′) δ(k, u′)(u− u′)3 du′ = −δ(k, 0) ln[−u] + · · · (III.15)

leading to similar statistical fluctuations for the total velocity dispersion 〈p2/m2〉 and the

transverse component ~vT , namely (all quantities are comoving)

∆〈v2L〉 =
〈p2〉0
m2

δ(k, 0)

u2

[
1− κ2 u2 ln[−u]

(
1− β2

)]
+ · · · (III.16)

∆〈 p
2

m2
〉 = 5

3
〈 p

2

m2
〉0
δ(k, 0)

u2

[
1− κ2 u2 ln[−u]

(
1− 21

25
β2

)]
+ · · · (III.17)

∆〈v2T 〉 =
2

3

〈p2〉0
m2

δ(k, 0)

u2

[
1− κ2 u2 ln[−u]

(
1− 3

5
β2

)]
+ · · · (III.18)

Restoring units, writing 〈p2〉0 = y2 T 2
0,d and expressing these expressions in terms of redshift,

we find the following statistical fluctuations

∆〈v2L〉 ≃ 16.33
(km
sec

)2 (keV
m

)2

y2 δ(k, 0)
[1 + zeq
1 + z

] [
1−κ2

[ 1 + z

1 + zeq

]
ln
[1 + zeq
1 + z

](
β2−1

)]
+· · ·

(III.19)

∆〈 p
2

m2
〉 ≃ 27.22

(km
sec

)2 (keV
m

)2

y2 δ(k, 0)
[1 + zeq
1 + z

] [
1−21

25
κ2

[ 1 + z

1 + zeq

]
ln
[1 + zeq
1 + z

](
β2−

25

21

)]
+· · ·

(III.20)
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∆〈v2T 〉 ≃ 10.89
(km
sec

)2 (keV
m

)2

y2 δ(k, 0)
[1 + zeq
1 + z

] [
1−3

5
κ2

[ 1 + z

1 + zeq

]
ln
[1 + zeq
1 + z

](
β2−

5

3

)]
+· · ·

(III.21)

These expressions also show that the WDM corrections (proportional to κ2) suppress the

statistical fluctuations at small scales k & kfs where the peculiar velocity contribution to

free streaming becomes important (we will see below that at least for the (WDM) candidates

considered here β2 > 2).

The peculiar velocity autocorrelation function is given by

ξij(~x, ~x′; u) =

∫
d3k

(2π)3
ei
~k·~x

∫
d3k′

(2π)3
e−i~k′·~x′

vi(~k, u) v∗j (−~k′, u) (III.22)

using (II.50) and (III.10) we find

ξij(~r; z) =
k2eqa

2
eq

2 u6

∫
d3k

(2π)3
ei
~k·~r k̂ik̂j

Pδ(k)

k2
Vwdm[k, z] ; ~r = ~x− ~x′ . (III.23)

Since there is only one vector ~r we write

ξij(~r, z) = P⊥
ij (r̂) ξ

⊥(r; z) + P‖
ij(r̂) ξ

‖(r; z) (III.24)

where

P⊥
ij (r̂) = δij − r̂i r̂j ; P‖

ij(r̂) = r̂i r̂j . (III.25)

are the projectors on directions parallel and perpendicular to r.

We find

ξ‖(r; z) =
k2eqa

2
eq

12 π2 (u[z])6

∫
dk Pδ(k)Vwdm[k, z]

[
j0(kr)− 2 j2(kr)

]
(III.26)

ξ⊥(r; z) =
k2eqa

2
eq

6 π2 (u[z])6

∫
dk Pδ(k)Vwdm[k, z]

[
j0(kr) + j2(kr)

]
(III.27)

where j0,2 are spherical Bessel functions.

Thus we see that the effective (WDM) power spectrum for peculiar velocities is

Pδ(k)Vwdm[k, z].

From expression (III.12) it is clear that for β2 > 1 (WDM) perturbations enhance the

peculiar velocity autocorrelation function for z ≃ 30−50. This enhancement of the velocity

correlation function is in concordance with the suppression of the power spectrum, since the

larger velocity dispersion induced by self-gravity leads to a larger free streaming velocity

and a further suppression of the power spectrum.
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C. Phase space density:

In their seminal article Tremaine and Gunn [37] argued that the coarse grained phase

space density is always smaller than or equal to the maximum of the (fine grained) micro-

scopic phase space density, namely, the distribution function, allowing to establish bounds

on the mass of the DM particle.

Such argument relies on a theorem [38, 39] that states that collisionless phase mixing

or violent relaxation by gravitational dynamics (mergers or accretion) can only diminish

the coarse grained phase space density. A similar argument was presented in refs. [10, 33,

40–42] where a proxy for a coarse-grained phase space density in absence of gravitational

perturbations was introduced.

However, whereas the distribution function obeys the collisionless Boltzmann equation,

Dehnen[39] clarifies that the coarse grained phase space density does not necessarily evolve

with the collisionless Boltzmann equation, and introduces an excess mass function which is

argued to always diminish upon gravitational phase space mixing.

Numerical simulations confirm the evolution of a coarse grained phase space density

towards smaller values during violent relaxation events such as encounters, mergers and

accretion of haloes[56, 57]. In the simulations in ref.[56] a phase space density Q is obtained

by averaging ρ, σ over a determined volume, and its evolution with redshift is followed from

z = 10 until z = 0 diminishing by a factor ≃ 40 during this interval.

However, to the best of our knowledge, a consistent study of the evolution of the micro-

scopic phase space density including gravitational effects even in the linearized approxima-

tion has not yet been provided.

In linearized theory, the corrections to the distribution function F1, or rather the nor-

malized perturbation F̃ (~p,~k, η) defined by eqn. (II.12) obeys the collisionless Boltzmann

equation (II.15), whose solution in the regime when the DM is non-relativistic is given by

eqn. (II.22). Thus the time evolution of the microscopic phase space density is completely

determined. Two aspects of this solution invite further scrutiny: i) density perturbations

grow from self-gravity effects, ii) peculiar velocities also grow, a direct consequence of the

continuity equation (III.9) and explicitly shown by eqn. (III.11). That both quantities grow

upon gravitational collapse suggests an examination of the phase space evolution in the

linearized regime.
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In principle one could perform the Fourier transform back to (comoving) spatial co-

ordinates and obtain F̃ (~p, ~r; η), however, δ(~k, η) is a stochastic variable with a Gaussian

probability distribution determined by the power spectrum of the primordial gravitational

potential. Therefore, the linear correction to the microscopic phase space density itself

becomes a stochastic variable as discussed above.

Rather than pursuing the Fourier transform, which in the linearized approximation can

be performed at any state in the calculation, we follow refs.[10, 33, 40–43] and define the

coarse grained (dimensionless) primordial phase space density

D ≡ n(t)
〈
~P 2
f

〉 3

2

, (III.28)

where ~P 2
f = ~p/a(t) is the physical momentum. In absence of gravitational perturbations, the

(unperturbed) distribution function of the decoupled species is frozen and n(t) = n0/a
3(t),

therefore it is clear that D is a constant, namely a Liouville invariant. In absence of self-

gravity it is given by

D0 =
g

2π2

[
∫∞

0
y2f0(y)dy

]5

2

[
∫∞

0
y4f0(y)dy

]3

2

, (III.29)

where f0(y) is the decoupled distribution function, and g the number of internal degrees of

freedom of the WDM particle.

When the particle becomes non-relativistic ρ(t) = m n(t) and
〈
~V 2

〉
=

〈 ~P 2

f

m2

〉
, therefore,

D =
ρ

m4
〈
~V 2

〉 3

2

=
QDH

m4
(III.30)

where QDH = ρ/
〈
~V 2

〉 3

2 is the phase-space density introduced in refs. [10, 40].

In the non-relativistic regime D is related to the coarse grained phase space density QTG

introduced by Tremaine and Gunn [37]

QTG =
ρ

m4 (2 π σ2)
3

2

=

(
3

2 π

) 3

2

D . (III.31)

where σ is the one-dimensional velocity dispersion. The observationally accessible quantity

is the phase space density ρ/σ3, therefore, using ρ = mn for a decoupled particle that is
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non-relativistic today and eq.(III.30), we define the primordial phase space density3

ρDM

σ3
DM

= 3
3

2 m4 D ≡ 6.611× 108 D
[ m

keV

]4 M⊙/kpc
3

(
km/s

)3 . (III.32)

In refs.[33, 41–43] the phase mixing theorem was invoked to argue that the observed phase

space density is smaller than the primordial value (III.32) with D replaced by D0 given by

eqn. (III.29), leading to lower bound on the mass of the (WDM) particle. However, as

emphasized in ref.[39] the phase mixing theorem[38] does not directly address the evolution

of D, nor has there yet been an analysis of its evolution in the linearized regime.

The results obtained above allow us to directly calculate the corrections to D from self-

gravity in the linearized theory. Using the identity (III.3) for linearized statistical averages,

it is given by

D =
n0

[
1 + δ(k, u)

] 5

2

[
〈p2〉0 +∆〈p2〉

] 3

2

≃ D0

[
1 +

21

20
δ(~k, 0) κ2 ln

[1 + zeq
1 + z

] (
β2 −

25

21

)]
. (III.33)

were we have used eqns.(II.39,II.40) and (III.17). In the (CDM) limit κ → 0 this coarse

grained phase space density remains constant at least up to linear order in gravitational

perturbations. However, for (WDM) eqn. (III.33) clearly indicates that in the regions

where matter density perturbations are positive the phase space density increases with the

logarithm of the scale factor when β2 > 1.19. We will see below that this the case at least

for two examples of (WDM) candidates supported by particle physics models. The reason

for the increase in the coarse grained phase space density can be tracked to the suppression

of statistical fluctuations: the leading term in δ(~k, u) = δ(~k, 0)/u2 + · · · cancels against

the leading term proportional to δ(~k, 0)/u2 in the statistical fluctuation (III.17), these are

the only contributions that remain in the (CDM) limit, however the (WDM) contribution

suppresses the statistical fluctuation of the velocity dispersion leading to an increase of the

coarse grained phase space density as a consequence of the suppression of the statistical

fluctuations (statistical variance) of the velocity dispersion in the (WDM) case.

3 keV4
(
km/s

)3
= 1.2723 108 M⊙

kpc3
.
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IV. TWO SPECIFIC EXAMPLES.

We now focus on two specific examples of WDM candidates: sterile neutrinos produced

via the Dodelson Widrow (DW) mechanism[58] for which

fdw(y) =
ξ

ey + 1
(IV.1)

where the constant ξ is a function of the active-sterile mixing angle[58], and sterile neutri-

nos produced near the electroweak scale via the decay of scalar or vector bosons (BD) for

which[43, 59]

fbd(y) =
λ√
y

∞∑

n=1

e−ny

n
5

2

(IV.2)

where λ ∼ 10−2.

We implement the Born approximation to the matter power spectrum presented in ref.[44]

to obtain the corrected power spectrum normalized to (CDM) [T (k)D[k, z]]2. As discussed

in ref.[44] the Born approximation yields excellent agreement with the power spectrum

obtained in ref.[29] for (DW) sterile neutrinos.

(DW) sterile neutrinos:

For the distribution function (IV.1) we find:

y2 = 12.939 ; β2 = 2.367 ; kfs = 5.44
( m

keV

)( gd
10.75

) 1

3

(
Mpc

)−1

(IV.3)

The (DW) case is displayed in fig.(2): the fig. for [D[k, z]]2 for the “standard” value

gd = 10.75[58] clearly shows the crossover from an early enhancement to a later suppression

of the power spectrum as a consequence of the contribution from peculiar velocity at small

scales. For m = 1 keV (the value used in the figure) kfs = 5.44 (Mpc)−1, and the figure

clearly shows that the crossover from enhancement to suppression occurs at k ≈ 1 − 2 kfs

for 30 ≤ z ≤ 50 . The corrections from D[k, z] are not resolved in the log-log scale, however

a linear-linear display of the region k & 2 kfs reveals the 10− 15% suppression of the power

spectrum. This range of small scales is where the power spectrum develops the oscillatory

behavior associated with the (WDM) acoustic oscillations discussed in ref.[44].

(BD) sterile neutrinos:

Sterile neutrinos produced by the decay of scalar or vector bosons at the electroweak

scale[43, 59] are colder for two reasons, i) their decoupling occurs when gd ∼ 100 and they
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FIG. 2: DW, m = 1 keV, gd = 10.75: upper left panel D[k, z] and [T (k)D(k, z)]2, lower panel:

small scale region of [T (k)D(k, z)]2 and Vwdm[k, z] all for z = 30, 40, 50.

do not reheat when the entropy from other degrees of freedom is given off to the thermal

plasma, ii) their distribution function (IV.2) is more enhanced at small momentum thereby

yielding smaller velocity dispersion. For this species

y2 = 8.509 ; β2 = 2.890 ; kfs = 14.107
( m

keV

)( gd
100

) 1

3

(
Mpc

)−1

(IV.4)

This case is displayed in fig.(3): the fig. for [D[k, z]]2 for gd = 100 (corresponding to

freeze-out at the electroweak scale) also shows the crossover from an early enhancement as a

consequence of free streaming to a later suppression of the power spectrum as a consequence

of the extra contribution to free streaming from peculiar velocity at small scales. For m =

1 keV (the value used in the figure) kfs = 14.107 (Mpc)−1, and the figure clearly shows

that, again, the crossover from enhancement to suppression occurs at k ≈ 1 − 2 kfs for
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30 ≤ z ≤ 50 . The corrections from D[k, z] are not resolved in the log-log scale of the

power spectrum, however a linear-linear display of the region k & 2 kfs reveals the 10−15%

suppression of the power spectrum. In this region the figure displays a hint of the (WDM)

acoustic oscillations discussed in ref.[44]. As discussed in ref.[44] the smaller amplitude of

the (WDM) acoustic oscillations as compared to the (DW) case are a reflection of the fact

that (BD) sterile neutrinos are colder as explained above.
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FIG. 3: BD, m = 1 keV, gd = 100: upper left panel D[k, z] and [T (k)D(k, z)]2, lower panel: small

scale region of [T (k)D(k, z)]2 and Vwdm[k, z] all for z = 30, 40, 50.

In both these cases, we see that there is a suppression of the power spectrum for z ∼ 30−50

in the small scale region k ≃ (1− 2) kfs and an enhancement of the peculiar velocity in the

same region, both effects are at the 10−15% level and clearly correlated: the larger peculiar

velocity adds to free streaming depressing the power spectrum. Although these effects are

at the level of few percent, it is conceivable that they may be magnified by the inherent non-
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linearities in the process of gravitational collapse, perhaps leading to important consequences

for galaxy formation in N-body simulations.

V. CONCLUSIONS

Motivated by recent and forthcoming N-body simulations of galaxy formation in (WDM)

scenarios, we set out to study the redshift corrections to the matter and peculiar velocity

power spectra and corrections to the phase space density from gravitational perturbations

in the region 30 ≤ z ≤ 50. This is the region in redshift where N-body simulations set up

initial conditions and the dark energy component can be safely neglected.

Drawing from results in ref.[44], we implemented a perturbative expansion for the redshift

and scale dependence of the distribution function, matter density perturbations and coarse

grained phase space density valid for z/zeq ≪ 1 and a wide range of scales, up to leading

logarithmic order in the scale factor.

We find that for (WDM) the redshift dependence is determined by β2, the kurtosis of the

unperturbed distribution function after freeze-out, with an enhancement of of the peculiar

velocity power spectrum and autocorrelation function at larger redshift for β2 > 1. This en-

hancement in the peculiar velocity hastens free streaming and leads to a further suppression

of the matter power spectrum for k > (1−2) kfs, where kfs is the free streaming wavevector.

For (WDM) gravitational perturbations lead to a suppression of the statistical fluctuations

of velocities when β2 > 5/3.

We also study the linear corrections to the coarse grained phase space density introduced

in refs.[10, 33, 40–43] resulting from gravitational perturbations. We find that whereas these

vanish for (CDM) resulting in a constant (coarse grained) phase space density, (WDM) per-

turbations lead to a logarithmic growth with scale factor as a consequence of the suppression

of statistical fluctuations if β2 > 1.19.

Two specific examples of (WDM) candidates are studied in detail: sterile neutrinos pro-

duced non-resonantly either via the Dodelson-Widrow mechanism[58] or via the decay of

scalar or vector bosons at the electroweak scale[43, 59]. In these cases we find that the

corrections to the power spectra of matter and peculiar velocities are of order 10− 15% for

scales k ≃ (1− 2) kfs and redshifts z ≃ 30− 50.

Impact on the bounds on the mass: The scale and redshift dependence of
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the power spectra are encoded in the effective matter and velocity power spectra

Pδ(k)D
2
[k, z] ; Pδ(k)V[k, z] with D[k, z] ; V[k, z] given by eqns. (II.52,III.12) respectively.

To assess the impact of the above results on the bounds on the mass of the (WDM)

particle consider two N-body simulations with a particle of the same mass both setting up

initial conditions at the same z ≃ 30− 50, one with the matter and peculiar velocity power

spectra at z ∼ 1 and the other with the spectra corrected by the scale and redshift dependent

factors obtained above. If β2 > 1 the corrected matter power spectrum features the (WDM)

suppression and the peculiar velocity power spectrum features the (WDM) enhancement

for k & kfs found above. These effects at small scales are akin to the suppression of density

fluctuations and enhancement of velocity dispersion associated with a lighter particle for

the un-corrected power spectra. This is because a lighter particle features a smaller kfs

and a larger velocity dispersion. Therefore these corrections allow larger masses to describe

the same large scale structure output from the N-body simulations as compared to the

un-corrected power spectra. Thus one aspect of the corrections is to allow larger mass

(WDM) particles, thereby relaxing the bound on the mass, at least for those models for

which β2 > 1. However, this is not all there is to the corrections, because the coarse-grained

phase space density increases, which would correspond to a colder particle with smaller

velocity dispersion. Thus the net effect of the corrections cannot be simply characterized as

being described by an increase or decrease of the mass of the particle and ultimately must

be understood via a full N-body simulation.

Although these corrections are relatively small, non-linearities arising from gravitational

collapse may result in a substantial amplification of these effects, if this is the case, and only

large scale N-body simulations with the corrected power spectra can assess this possibility,

then it is conceivable (and expected) that the bounds on the mass of the (WDM) particle

may need substantial revision.

The results obtained here suggest a breakdown of perturbation theory either at large

redshift and or small scales k ≫ kfs, this is clearly an artifact of the expansion, the integral

in (II.27) which yields the logarithmic contribution is bounded and well behaved both in

the small scale and u → uNR limits[44]. However a systematic study of smaller scales and

or larger redshifts would require a full numerical solution of the integro-differential equation

(II.27). If future N-body simulations find that the corrections obtained here do modify the

dynamics of large scale structure formation in (WDM) models substantially, such a study
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may be worthy of consideration.
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