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We study the ffects of instrumental systematics on the estimation of mdlilabnon-Gaussianity using the
cosmic microwave background (CMB) bispectrum from bothtémeperature and the polarization anisotropies.
For temperature systematics we consider gain fluctuatidnbaam distortions. For polarization we consider
effects related to known instrumental systematics: calinatpixel rotation, dierential gain, pointing, and
ellipticity of the intrument beam. We consider thesieets at the next to leading order, which we refer to as
non-linear systematicfiects. We find that if the instrumental response is linearbpprtional to the received
CMB intensity, then only the shape of the primordial CMB lgisppum, if there is any, will be distorted. We
show that the nonlinear response of the instrument can iargeresult in spurious non-Gaussian features on
both the CMB temperature and polarization anisotropiesnéithe primordial CMB is completely Gaussian.
We determine the level for both the linear and non-lineatesyatics parameters for which they would cause no
significant degradation of our ability to constrain the pridial non-Gaussianity amplitudi, . We find that
the non-linear systematics are potentially bigger wornryeitracting the primordial non-Gaussianity than the
linear systematics, especially because the current anduteee CMB probes are optimized for CMB power-
spectrum measurements which are not particularly seadiithe non-linear instrument response. We find that
ifinstrumental non-linearities are not controlled by dredéed calibration, theffective local non-Gaussianity can
be as large af. ~ O(10) before the corresponding non-linearities show up énG@MB dipole measurements.
The higher order multipoles are even less sensitive toumgntal non-linearities.

PACS numbers:

I. INTRODUCTION

Characterizing the non-Gaussianity in the primordial ydyations has emerged as a powerful probe of the early ww&iver
Different inflationary models predictfiBrent non-Gaussian signal in both amplitude and shape ¢s@aw[1]). The specific
departures from Gaussianity are highly model-dependehaag detection would rule out the simplest single field iidladry
models. Non-Gaussianity measures the strength of intereaitiring inflation and can be studied and characterized dicetly
by using the #ective theory approach |[2-4]. An optimal statistic thattosgs non-Gaussianity is the three-point correlation
function or bispectrum in Fourier space. The overall amphtof non-Gaussianity constrained from the data is oftereglin
terms of a dimensionless non-linearity paramdigr, and a shape which specifies the configurations of the peatiorts wave
vectors that contain the largest contributions to the namsSian signal. With the assumptions of translational atational
invariance, the various bispectrum shapes can be chaesdes diferent triangle shapes. The three most studied shapes are:
the ‘local shape’ where the non-Gaussian signal is maximamsqueezed configurationls; (< ko, k3), the ‘equilateral shape’
where the bispectrum peaks mostly on equilateral triandes- ko ~ k3), and the ‘orthogonal shape’ which peaks for both
equilateral and flat-triangle configurations (see éld.[[fo6a review).

Different models of inflation predictfirent levels offy., ranging fromO(1) to fy. ~ O(100). Values abovéy. ~ O(100)
have been ruled out by the WMAP data already. Non-Gausgifioitn “classical” inflation models that are based on a slowly
rolling scalar field is very small[7]8]; however, a very larglass of more general models with, e.g., multiple scalé&dsie
features in inflaton potential, non-adiabatic fluctuatjamsn-canonical kinetic terms, deviations from Bunch-Bawacuum,
among others generate significantly higher levels of nonsSianity. Equilateral shapes are generically a signaiunenstan-
dard kinetic terms in the inflaton Lagrangian, as for exarip@BI [9] and ghost inflation[[10].

Detections of any type of primordial non-Gaussianity wdwgle profound implications on our understanding of theyeanii-
verse and itis therefore crucial to estimate all possibigaminations of non-Gaussianity in the CMB. Any physficestrumental
systematics to the non-Gaussian measurement must be vaelisiood and controlled[11]. We have to ascertain that @Ay d
tected non-Gaussian signal haptgsical origin and is not spurious. Potential contaminants include resiftweground con-
tamination and unresolved point sources, non-Gaussiardtyced by second-order anisotropies, such as graviadtiensing,
the Sunyaev-Zel'dovichféect, and non-uniform recombinatidn [12] 13].
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In this paper, a detailed study of the impact of instrumesyatematics on the primordial bispectrum measurement from
CMB temperature and polarization fields is provided. We &rgiw how such systematics change the CMB bispectrum signal
for both temperature and polarization fields. We show thattaipom distorting the primordial bispectrum, non-lingias in
the instrument can also generate spurious bispectrum avbe iabsence of primordial bispectrum. For a reliable arfee of
the level of primordial non-Gaussianity from upcoming CM&al, and thereby probe of the early Universe physics, mrecid
realistic estimation of instrumental systematics are iregu

The remainder of this paper is organized as follows§lliwe introduce the basics of CMB bispectrum calculation §Ii]
we present the parametrization offdrent instrumental systematics and explain the relatioribd real experimentalfects.

In §iVIwe detail the modeling of linear and non-linear caliboatisystematics of CMB temperature anisotropies, and show
that the systematics would generate new bispectrum anardéstisting bispectrum. I§V]we calculate the systematicfects

on bispectrum involving CMBE-mode polarization. Our numerical results and discussiengaven in §VI] where we also
calculate the bias due to the non-linear calibration, theded statistical error ifi,. parameters due to non-Gaussian statistics
of the distorted CMB fields. We compare the systematics requént from bispectrum measurement with the requirement
derived from the CMBB-mode polarization detection i§iVI[] We also discuss our findings in the context of the ongoing
PLANCK, as well as other upcoming CMB experiments. We suniweand draw our conclusions $VTIT] All our instrumental
systematics calculations are carried out within the Jonasixnformalism where in Appendix A we describe the altenet
Stokes-parameters-based, parametrization of beamtibst®r In appendix B we describe CMB bispectra obtained énftit-

sky formalism to supplement our calculations which haventzseried out under the approximation of flat sky.

Il. THE PRIMORDIAL NON-GAUSSIANITY IN THE CMB BISPECTRUM

To characterize the non-Gaussianity one has to considdrigfiner order moments beyond the two-point function, which
contains all the information for Gaussian perturbatiortse B-point function, which identically vanishes for Gaassperturba-
tions, contains information about non-Gaussianity [1),514:17, for details]. Non-Gaussianities from the earlywarse can
be described by the 3-point correlation function of Bardeenrvature perturbation§(k), which can be simplified assuming
translational symmetry to

(D(k)D(k2)D(K3)) = (27)36% (ke + K2 + Ks) fu - F(Ku, ko, ka), 1)

whereF(ky, ko, k3) describes the shape of the bispectrum in Fourier space wiel amplitude of non-Gaussianity is captured
by the dimensionless non-linearity parametgr. The shape functiofr (ki, ko, k3) correlates perturbations with three wave-
vectors and form a triangle in Fourier space. Depending erpttysical mechanism responsible for the bispectrum, tapesh
of the 3-point functionF (ki, ko, ks) can be broadly classified into three classe5[[18, 19]. Ttal |6squeezed,” non-Gaussianity
whereF (ki, ko, k3) is large for configurations whele < k; ~ k. Next, the “equilateral,” non-Gaussianity wheték, ko, k3)

is large for configurations whetlg ~ k, ~ k3. Recently, a new bispectrum template shape, an orthoghapks has been
introduced([20] which characterizes the size of the sigfffﬂh(’) and peaks at both equilateral and flat-triangle configonati

It is easy to show that the shape dependence for the locallntaggks, ko, k3), takes the following form

Fioc. (Ku, ko, ks) = 2A%
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where the normalized power spectrukg is defined in terms of the tilhg and the curvature power spectrum Rg(k) =
Aok=3+(s=D) with Py (k) defined in terms of the Gaussian component al¢he(k1)®g(K2)) = 6‘3)(k12)P¢(k1)

Equilateral forms of non-Gaussianity arise from model$wibn-canonical kinetic terms such as the DBI action [21hsgh
condensatiori [10], or any other single-field models in whiwh scalar field acquires a low speed of sound [2, 22]. Althoug
the shapes predicted byfidirent models are in this case not identical, it has been 23] that they are all very well-
approximated by the function

! 2
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Note thatfeq is defined in such a way that for equilateral configuratidig(k, k, K) = Fioc (K, k, K), i.e. the same value for the
blspectrum g|verfeq = f'°° The local and equilateral forms are nearly orthogonal thedher, which implies that both can be
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measuibd nearly independently. The orthogonal form of @anssianity is nearly orthogonal to both the local and edgiial
forms [20]

3 3 3
Fortho(K1, ko, ks) = 6A3 { - - -
ortho( 1, R2 3) (I){ kifnskg,ns kg,nskg,ns kg,nsk;]ins
8 3 5 4
" (kakoka) 2B | (R 2 + (G perm) .. @

The motivation of this shape is that a certain inflationarydels yield a distinct shape which is orthogonal to both thallo
and equilateral forms. The orthogonal form has a positiaka the equilateral configuration, and a negative vallep@the
elongated configurationls [24].

All single-field inflation models predict small amplituderfbispectrum in the limit of squeezed configuratiom,g’lCaj =
1%(1—n3), regardless of the form of potential or kinetic term. Gitleat 1-ns ~ 0.04, all single field models predict,tI"Lcaj ~ 0.02.
Hence the detection of local-type non-Gaussianity with lgoge greater tha®(0.1) would essentially rule ol single-field
inflation models. A cosmic varinace limited experiment ofgrax ~ 3000 will have sensitivity of\ fﬁ?f""' ~ 1(10). The scaling
of signal-to-noise as a maximum multipdlg,x for the local non-Gaussianity iS(N) o« In{yax. In principle, one could go
to arbitrary highémax but in reality secondary non-Gaussianities will dominaterahe primordial signal fofyax > 3000.
For a credible non-Gaussianity detection, it would be e#sleio control all éfects which might potentially contaminate the
bispectrum.

Primordial non-Gaussianity in the CMB: The harmonic co@cients of the CMB anisotropaffn for temperature oE-mode
polarization can be related to the primordial Bardeen duregfluctuationd(k) via

3 ~
ety = 4n(-1) [ 755000 809 Vin(R) )

whereg}(r) is the radiation transfer function of temperatuxe=f T) or polarization K = E). One of the most promising way
of measuring non-Gaussianities is to study the CMB angusgedatrum, defined as follows

XYZ — X Y VA
16503, MMpMg = <a€1mla€zmza€3ms> : (6)

Using Eql(b), the angular-averaged bispectrum can beenrits

. by € d3k; d3k, d®ks et v s 0
B = (@mPis Y (mll L nz) G G Yim KV (k)Y (k2
mmmg

xgj (k1)gy (ka)g), (ks) (D(k1)D(k2)D(Ks)) (7)

where(®(k,)®(k,)®(ks)) is the primordial curvature three-point function as defiiredq. (1); the indexp, g,r can be any
combination of temparatur@ § or polarizationE, pgr = {TTT,TTE, TEE, EEE} ; and the matrix is the Wigner 3J symbol
imposing selection rules which make the bispectrum vaniséss

(i) €1 + €2 + €3 =integer

@iym +m+mz=0

(iii) |G- ¢l <t <&+ ¢ fori, jk=1,2,3.

For simplicity, it is customary to define the reduced bispeutby 7,
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B = > (o o o B ®
mnpm
(2l +1)(20+ 1)(263+ 1) ( ty b {3 )bxvz )
- p 0 0 0)Puce

Following convention, we define the radial functiai(s), 5(r), 6(r), andy(r) for a given co-moving distancgor the temperature
andE-mode polarization as

@ (r) = 2 kg (K) je(kr), BY(r) = 2 fAkk gl (k) je(knAe k™,

. . 10
YA(0) = £ Fickgl(0 (kAL KO3, 5(r) = £ fikg() je(kn)aZ K5, (0

In the expressiofj(kr) is the Bessel function of ordér The transfer functiong}(k) andg('?(k) are numerically calculated using
publicly available codes such as CMBfdst|[25] and CAMB [ZBje bispectrum for the local case can be simply written as

bi¥%, =2 fo P |~ (NBY,(rBE,(r) + 2 perm| . (11)



For the equilateral template,
bX¥% =6 f r2dr |- S (BY,(BE,(r) + 2 perm + B (1)y), (67, (r) + 5 perm — 2575 ()6, (1)o7, (1) (12)
Finally, the bispectrum for orthogonal shape can be castaridrm [20]

brv, = 18fr2dr[ ay (NBY(NBE,(r) + 2 perm + 5 (1)y), (167 (r) + 5 perm — —6 NOAGEAGIE

(13)

Flat Sky Limit: For simplicity we adopt the flat sky approximation throughdthe anisotropies can be decomposed in spin-0
and spinx2 plane waves in Fourier space

AT(X) = ok a’ (k)ekx
- J (2
[Q+iU](x) = LS |af(k) + iaB(k)| e?xe (14)
) (202 7 7 '
The Fourier transform of the 3-point function is
a¥(kq)a" (ko)a?(ka)y = (27)2B*Y%(ky, ko, ka)6*(K1 + k2 + K3) (15)
and the bispectrurB(ky, ko, k3) simplifies to
BX"(ky, ko, ka) ~ b7, (16)
wherelki| = ¢.
The bispectrum signal-to-noise is
S 1
N = ¢7l s (17)

where the Fisher matrif is given by [27-30]:

_ dzfl dzfl dzfl v \XX e \YY
7= 2, 2| Gt A C)

O
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. TT TE \"!
The sum oveXYZ indicate permutation of EE andTTE, and Cgl)XY are thexXY elements of the matri gfrE CfsE . We

¢ ¢
assume all the cosmological parameters, ex@ptare known. IndiceXYZ andX’Y’Z’ run over all the eight possible ordered
combinations of temperature and polarization givenTdyT, TTE, TET, ETT, TEE, ETE, EET andEEE. The overlap
between any two bispectrum shape templates can be repeddgna 2-d cosine als [28]

B:- By
cos(By, By) = 19
61.B) (By - B1)Y2(B2 - By)/2 (19)
where the dot product is defined as
d?¢, d?¢, d?e
Bi-B; = & 2 S B((1, (2. (3)Ba(l1. L2, £3) /(C.,Cr,Coy). (20)

(2)? (2n)? (27)?

The maximum magnitude of 2d-cosine, 1, correspond to a cetegverlap between the two templates. Two completely
orthogonal shapes will give rise to zero 2d-cosine.

1. INSTRUMENTAL SYSTEMATICS

The detection and measurement of CMB temperature anigoltraye already provided compelling evidence that the primor
dial perturbations have been generated during an inflatygrexiod in the very early Universe. The next challenge istiostrain
inflationary models by means of precise measurement of CMipégature and polarization anisotropies. As we have noted,
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the bispectrum of CMB is a powerful probe of the early unieerslowever, the instrumental systematiteets on the CMB
bispectrum are relatively unexplored.

For temperature systematics we can introduce the linearatibn (gain fluctuation) parameter of receive)). The non-
linear response of the detectors to observed CMB fields petean®s parametrized blp(f). Effects associated with optical
imperfections, i.e. beam shape, are collectively capthyeithe parameter

O%5(A) = [1 + a(A)]O(A) + b(A)O(A)? + [c® O](A) + ..., (21)

where®%s(A) = AT(R)/T is observed CMB temperature fluctuation at directioimcluding detector noise. We will see the
effect of these systematics on the temperature bispectrumvandually onfy, in the next section. The last term accounts for
effects associated with beam systematics (or more generafigiact that can be described as a convolution with the underlyin
sky inreal space). Here® denotes 2D real-space convolution. One immediate consegus# this is that by the convolution
theorem this will correspond to a product in multipole spdbe last term then reads$lJ®(I) which implies naol — | coupling

in multipole space. Note that this argument neglects ffeceof scanning strategy, which we assume is small througftis

is well-motivated for temperature anisotropy measuresddbwever, this is not necessarily the case when the (veakg
mode polarization is considered and beam imperfectioreh(as diferential pointing or dterential beamwidth) leak the much
larger temperature anisotropy Bsmode polarization via a scanning-strategy-depenideat weight which enters thB-mode
map-making process (as well as mapsTaind E-mode) and generally varies across the sky and dependy soléhe non-
uniform scanning strategy. Since only little informatisrcontained in th&-mode polarization on primordial non-Gaussianity
we will ignore this dfect here. In principle, leakage of temperature anisotrody-tnode polarization cannot be ignored and
indeed we give a special attention to these terms below. Mexvee ignore the impact of the coupling of non-uniform stag
strategy to beam distortions on the spuri@imode polarization and its propagationfig bias as this is a higher ordeffect
and highly depends on the details of scanning strategy.

Polarization systematics. The measurement of CMB polarization is complicated by itgllevel signal, galactic foregrounds,
and various systematidfects. In particular, precise control of systematics is ireqgl) especially for polarization measurements.
Measuring the polarization using Polarization Sensitis®Beter (PSB) pairs inside a feedhorn, each measuringtéedity of
one direction of the polarization, is used by several greand balloon-based CMB experiments suclBasmerang?, Planck?,
BICEP?, andPOLARBEAR* etc. The diference of the received intensity from the two PSB gives a ¢oation of Q or U
in the frame of the focal plane. Polarization measuremémiefore involve taking the fierence of received intensity at two
orthogonal polarizers. Any fferences between the two PSBs might generate spufi@mlU signals. Furthermore, the beams
of the horns generally have some degree of ellipticity. Wpéctl differential ellipticity of a pair is around few percent, while
for a single horn is usually at sub-percent leved.5% [%3/._1]. When several detectors are combined to ob@aandU maps, it
is important to match the responses of these detectorsphean terms of cross-calibration, beam shape, specspbrese, etc.
Below we discuss the parametrization of CMB polarizatiostsgnatics.

The polarization systematics fall into two categories, asgociated with the detector system which distorts therigatéon
state of the incoming polarized signal (Type | hereaftemy another associated with systematics of the CMB signaltdue
the beam anisotropy (Type Il hereafter). Each type of syatesmcontamination can be further classified into lineat aon-
linear efects. We parametrize the linear instrumental systematic€¥B polarization measurements followirlg [32] (HHZ
from hereafter), and introduce corresponding analogouslinear systematics parametrization. In Appendix A westlyi
discuss an alternative parametrization employing a Stpkeameter-based formalism and show the equivalence dfmbhe
parametrizations.

The instrumental response to incoming CMB radiation is Uguigscribed by the Jones transfer matrix. Bias inducetién t
matrix determination will mix the corresponding Stokesgmaeters. To first order, thdfect of Type | systematics on the Stokes
parameters can be written as|[32]

o[Q+iUJ(A) = [a+i2w](A)[Q = iU](A) + [f1 + if2](A)[Q + iUJ(A) + [y1 + iy2](MO(A), (22)

wherea(f) is a scalar field which describes the miss-calibration efghlarization measurements(f) is another scalar field
that describes the rotation miss-alignment of the instntn{é; + i f,)(A) are spint4 fields that describe the coupling between
two spin+2 states (spin-flip), and/{ + iy2)(H) are spin+2 fields that describe monopole leakage, i.e. leakage fromeeature
anisotropy to polarization.

Similar to the Type | systematics, th&ect of Type Il systematics on the Stokes parameters can btemas|[32]

S[Q=iU](A; o) = op(A) - VIQ +iU](A; ) + ofch + id](A)[01 + i8] O(R; o) + o?q(R)[01 % 192]°O(R; o), (23)

1 http://cmb.phys.cwru.edu/boomerang/
2http://www.rssd.esa.int/index.php?project=Planck
3 http://bicep.caltech.edu/

4 http://bolo.berkeley.edu/polarbear/



where the systematic fields are smoothed over the averagedeathe experiment. Therefore, the type Il systematic fields a
sensitive to the imperfection of the beam on the beam seal€he spint1 fields, (p1+ip2) and @, +idy), describe pointing errors
and dipole leakage from temperature to polarization, retspy, andg is a scalar field that represents quadrupole leakage [32],
e.g. beam ellipticity.

We parametrize the non-linearities of the instrument as

S[Q £ 1UI(A) = [31 = i72](A)OA)? + o[di + id:](A)[01 + i32]O2(R; &) + 2G(A)[D1 + i92]2O%(R; o) + ..., (24)

wherey; andy> are spin+2 non-linear parameters which describe the second-ordkade from temperature to polarization
statesd; andd; are spint1 parameters which describe the dipole leakage from secwied tmperature to polarization states.
g is a scalar field that represents quadrupole leakage froondearder temperature. In general, we $stor systematics of
non-linear response to distinguish the same gpi@ear systematics. Note that in principle there can be $guroportional to
(Q +iU)2(N), etc, which we have dropped as &) terms provide the dominant non-linear contribution.

IV. SYSTEMATICSINDUCED CMB TEMPERATURE BISPECTRUM

In this section, we discuss the impact of instrumental syatees on themeasured bispectrum. We show that the linear
calibration systematics of detectors can only distort thim@rdial CMB bispectrum; any detection with only the pnese
of linear systematics implies the detection of primordiahrGaussianity. However, non-linear systematics canrgéa@ew
spurious bispectrum even in the absence of vanishing widgrbispectrum, i.e. the primordial CMB is purely Gaussi&s
discussed befordgeam shape effects will only modify the ¢-dependence of an already existing bispectrum, i.e. in teste
fne = O these beamfBects are irrelevant.

With both lineara(f) and non-lineab(f) systematics included, as in Ef.{21), the CMB 3-point fiorcof the temperature
can be written as

(O@3(A1) () 0% (Az))emp s = (O(A1)O(R2)O(Mz))cme + (A1) 5ys(O(1)O(M2)O(Rz))ems + perm
+(b(M1))5yst(O (1) O(R2) (M) )cmp + perm
+(@a(fh1)a(nz))sy=(O(N1)O(N2)O(M3))cms + perm
+(@(f1)b(M2)) 5yt (O(M1)O?(M2)O(f3))ems + perm
+(a(fr)a(nz)a(fz))sys(O(N1)O(A2)O(M3))cms
+(b(A1)b(A2))sys(®?(11)O?(12)O(A3))cmp + perm, (25)

where(...)cug means averaging over CMB realizations, andsys stands for averaging over systematics field realizations.
In principle, there can be higher order terms proportioo@?(i). For 3-point correlation functions, we are only interéste
in terms up to second order in CMB fields. However, for tifiees on trispectrum estimations, 3rd order terms should be
considered. The first term on the right hand side of Egl (25éscosmological 3-point correlation function, i.e. thegtt
signal. The second term is proportional to linear systesadield, e.g. first order gain response. If there is non-zeynapole
gain systematics;a(n))s,s, then this term will induce a linear bias proportional to firénordial bispectrum. For the third
term, if there is any non-zer(N))s,«, then this term will introduce @ew bispectrum even if there is no primordial non-
Gaussianity. The forth term contains self correlationsinédr distortion field parameter and is capable of only distg
existing non-Gaussianity. In contrast, the fifth term cagrfiom cross-correlation between linear and non-lineatesyatics,
can generates new bispectrum. If the systematics field isGarssian then the term containing three distortion patenméhe
term proportional toa(fi;)a(fiz)a(Ns))sys) can also contaminaté,. measurements. We do not consider this term and terms
involving (b(f1)b(A2))s« in this paper.

In case that a dficiently small sky patch is considered, spherical harmorodes can be replaced by Fourier modes. Gener-
alization from the flat-sky to the full sky is straightforvdeaind is given in Appendix B. If we consider the non-lineartwalion
up to second order, the Fourier transform of the Taylor-adpd observed temperature anisotropy (including caltmaton-
tamination) could be written as

o d2l’ d3l”
obs _ A @SRy ail-h _ _ ’ _r ” v
o™ = fdn@ (Ae™"" =06() f(z;r)ZG)(l Na( =1") + (zﬂ)2®(| ol =1 =1")y+...]. (26)
Using the flat-sky approximation, we can define the angulgrdstrum as
(O(11)0(12)0(l3)) = (21)%5(11 + 15 + I3)BE?§’|2,3) . (27)

The dfect of systematics on bispectrum can be obtained by Foudersforming Eq.[{(25). For simplicity we will classify
the dfects from systematics into two categories; one where themsyics create new bispectrum even if the underlying CMB



Linear Systematics S WE(1,12)
Calibrationa cos[26, — ¢L)]
Rotationw -25sin[26, — ¢1)]
Pointing pa o(l2- 1) sin[2@, - ¢1)]
Pointing p, —o(lzx1y) - 2sin[2(p1, — @)]
Flip fa cos[2(2, — 1, — )]
Flip f, —sin[2(2p1, — @1, —¢1)]
Monopoley, cos[2¢1, — ¢L)]
Monopoley, = sin[2(g, — ¢1)
Dipole d, (Iz0) sinfy, + ¢, — 2]
Dipoled, (I20) coslpy, + @1, — 20, ]
Quadrupole —(l,0)? cos[2(p1, — ¢1)]

TABLE I: Window functions for all the 11 linear response sysatic parameters. First column indicates the type of Byatie parameter in
consideration. Second and third columns show the windowtioms needed to calculate systemati@ets on bispectrum measurement and
appear in Eq[{33). We note thiat= l;11, I, = L — 1, andl, = I,l, andg; = cos*( - 1).

is purely Gaussian, referred to as a ‘bias term’, and seawhdre the shape of the underlying bispectrum is distortedtdu
systematics. The first contribution can be written as

. 217
Bffﬁiig’;as =|C¥Cc®+5 perm] + [b(O)C?l@C?Z@ +5 perm] + f —(gﬂl)z [Cf’l"’_ ,CEOCPO + 5 perm|. (28)

The first term is zero since one does not expect systematibe worrelated with the CMB. This term is analogous to the
integrated Sachs-Wolfe (ISWjfect which cross correlate the lensing potential with CMBifidlhe second term is proportional
to b(0) which is the bispectrum generated from the monopole oflivear systematics field. The terms involving the cross
correlation between tha(l) andb(l) fields can induce a bispectrum as well. We note that with neszcorrelation between the
lineara(l) and non-lineab(l) field, only the monopole of the non-linear paramdif) would bias the bispectrum detection.
The term describing the systematic distortion of primdridispectrum can be written as

' d2r
000,dist _ 000 000 000 000
5B(|1,|2,|3; =a(0)B, 1,1, + f (Zﬂ)z'c?a[B(|1,|zf|',|3+|') + B parig T B(|1+|/,|2,|37|r)]~ (29)

The total observed bispectruﬁﬁﬁ?igg’s would then be

000,0bs _ ®OO,primordial 000,dist OO0 ,bias
(ul2ls) = S(ulzls) + 0By 1in + Byl (30)

V. SYSTEMATICSINDUCED CMB POLARIZATION BISPECTRUM

At present, the best CMB constraints on the three paramgféts £, £ come from the WMAP temperature anisotropy
data [20] 33-36]. By also having the polarization informafione can improve sensitivity to primordial fluctuatiog,[28,
[29,[37]. The ongoing Planck experiment and futuristic CMBemments such as CMBPol will characterize the polarizatio
anisotropy to high accuracy. In this section we discuss risguimental polarization systematics which can contataitize
primordial non-Gaussian signal.

Impact of linear response on polarization bispectrum

Here we show the calculation for spurious bispectrum distbby linear instrumental systematics involving polaiaa
field. Performing the harmonic transformation of Hq.l(22)l &v. [23), we get the distorted polarizatiBamode from linear
instrumental systematics

B = [ dn[G*(@) cos(an) - TR sin@@a)le "
(31)



Non-linear Systematics S WE(l,1,17)
Monopole leakage,” 2¢os[2(r-1 — @)
Monopole leakagey™ =2sin[2@-1-1n = @1)]
Dipole leakage, all”sinfer + @iir = 291) + 17 sinlgr + @i = 201)]
Dipole leakage, oll’ costor + @r_y_ir — 2¢1) + 1”7 coSoyr + @iy — 2¢1)]
Quadrupole leakage ~ —202{1"2 cos[26pr — ¢)] + 1”2 cos[2¢ — ¢)]}

TABLE II: Window functions for 5 non-linear response systdin parameters. Hete = I, I, =L =1y, andl, = 1,0, andg, = cost(n -T).

We can easily calculate the bispectrum involving obsefzadode to find out the changes induced bifefient types of linear
instrumental systematics

(XP()YP(12)Z%(13)) = (27)%8(11 + 12 + 13)BYE ) (32)

E.dist

I2.12) describing the distor-

whereX, Y, Z is temperature oE-mode polarization field of CMB. For example, the bispectﬁBﬁf
tion of primordial polarization bispectrum due to instrumed systematics can be written as

i d2r d2l” , ,
EEEdist _ SS EEE S ’ S ”
(5B(|1,|2,|3|) = Z f —(271')2 f —(271')2C[/ [B(|1’|27|/’|3+|r)WE (ll, _l )WE’ (|27 _l )
Y

+BIE 1ty WE (11, —1)WE (13, —17) + BG4, WE (13, —1)WE (I3, —|")] . (33)
Summations are over 11 systematics contributi8ns,a, w, fa, fo, Pa, Pb» Ya» ¥b> da, db, 9. Window functionswg(ll, [,) are given
in Tablell.

Impact of non-linear response on polarization bispectrum

As for the linear response systematics, we can calculat®liserved CMBE-polarization in the presence of non-linear
systematic fields. We focus on the non-linear leakage frarorsg order temperature #®-polarization, as this is the dominant
systematics which could potentially bias bispectrum deac We will show that the monopole of the non-linear resgon
systematics/1, 2, di, dp, anddfields can generate new bispectrum. To second order, any-cooeelation between linear and
non-linear systematics could also generate non-zerodtispe. TheE(l) field in the presence of the non-linear systemafics
can be simplified as follows

d2|/ d2|//
(2n)? (2n)?
Unlike the temperature bispectrum case, for polarizatienet are many terms containing cross-correlation betwearlinear

systematicsy,d, or §) and linear systematics S (11 systematics as given in Thbleé spurious bispectrum contribution for
EEE, TTE, and theT EE bispectrum can be written as

EPS(l) = ES(1) + S -1 —1yTe)yTawsa.r17y.

BiE P = S(0)CIECTEWE (I3, —11, —12) + perm

Bl o™ = S(0)C;CTWE (I, —l1,—1) + perm

By = S(0)C.CLEWE(Is, —l1, 1) + S(0)CT CLEWE (12, 11, ~Is) + perm (34)
whereWé are given in Tabl€JIl. The total observed bispectrB| 1&‘,’55 including both the systematics induced and distorted
contribution is

XYZobs _ pXYZprimordial XYZ,dist XYZbias
Bioiat) = Budaly T ;5B(h,lz,l3) + ) Bl (35)
S

VI. NUMERICAL RESULTS

In order to numerically calculate the systematiteets on bispectrum, one needs to choose specific model @nsgsts
field, i.e. the power spectrultfi?S of the systematics fiel®. So far we have not made any assumption about the systematic
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FIG. 1: Upper left panel: Spurious bispectrum generated from the cross correlafi@aldoration parametea(L) and non-linear response
parameteb(L). For reference the solid red curve shows the primordigddggum of local type with non-linearity parametigr = 1. Upper
right panel: Distortions on temperature local type bispectrum fromdmmstrumental gain fluctuations. For reference the sdiilime
shows the CMB bispectrum from local type model with = 1. Lower left panel: Similar for upper right panel but for equilateral type
of bispectrum.Lower right panel: Similar for upper right panel but for orthogonal type of bispectrum. In all the panels Weehassumed
systematics model as defined in Hg.](37) and choosenthef systematics field\, = A, = 0.5, while varying coherence length starting from
os = 10 toos = 120. Note that the spurious signals scale’3ds

field. In reality the power spectra of the systematics fieldsdepend on the experimental design and scan strategycaud

be inhomogeneous, anisotropic and complicated. Howewehare employ a model which, although not exact, can be used to
assess the level of contamination, independent of therpoiginese systematics fields. As a simple model we assuméhihat
contamination fields are statistically isotropic and Gamsshus their statistical properties can be fully desxiby their power
spectral[32],

(SMS'(1) = (20)%(1 +1C* (36)

whereS stands for any of the systematic fields. We assume the powetrgmf the form

2 2 2
oss A2 exp(l(l + 1)o2) -

[ & expl(l + 1)oF)

i.e. white noise above certain coherence saglewhich is a key quantity that sets the level of contaminatibeach systematics
effect together withAs, which describes thams of the contamination fiel&. Note thato- without the subscrip® refers to the
instrumental bearf WHM.

In Fig (@) we show the systematics-induced temperatureebtspm B(TllT,T2 ’,S;) whose analytic result are given by Ef.1(28)
and [29). In the upper right and lower panels we show tfeceof linear systematics which distort the CMB bispectrum of
local, equilateral, and orthogonal templates. In eachwassonsider several choices of coherence length varyimydro= 10
to os = 120. In the upper left panel we also show the systematic-indixiggkctrum from the cross terﬁ’ﬁb of Eq. (28).
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FIG. 2: Upper panels. The requirement on non-linear systematics parantetdrlo level as a function oFWHM for various choices of
instrumental sensitivity and for local (left), equilatefmiddle), and orthogonal (right) templates. The requieetwere derived by demanding
that the spurious Ioca‘l,\?f" generated by systematics are detectableratel. by solving Eq.[{400) Lower panels. The minimum detectable
effective fﬁf" from non-linear systematics far = 1 as a function oFWHM and for 3 choices of instrumental sensitivity, for localftle
equilateral (middle), and orthogonal (right) templates.

The systematics-induced bispectrum scaledZsin all the these panels thens amplitude &, = A, = 0.5) was set to high
values for illustration purposes. For experiments withieysticsrms fluctuationsAs ~ 10%, the linear distortion is not the
dominant &ect for{ < 2000 if coherences > 10. For experiments which probe much smaller scales 2000), the extracted
non-Gaussianity might be contaminated by linear systesahiote that for large coherence lengths both distortispdstrum

and bispectrum induced due(tl?b have a similar shape as the primordial bispectrum. Howéyesmall coherence length the
convolution transfers power from large to small scales aedésulting distorted bispectrum is much flatter than thagnmial
bispectrum. For large coherence length the systematiceipspectrum drops rapidly and does not have power over broad
enough¢ range to transfer power around.

We want to quantify the maximum tolerable systematics (igivan experiment) below which they would cause no significan
degradation of our ability to constrain primordial non-Gsianity. We again focus on three templates, local, equdhtind
orthogonal. The confusion of non—Gaussian‘iﬁf‘ from systematics with the primordial non-Gaussianity cambantified by
solving

. d?l, d?ts XYZ,sya( ~_1)XX’(~_1)YY’(~_1)ZZ’ XY'Z prim

G ) (@7 (@ (2npp atate 1) ) ) Bt
a0, d?t, d?¢ e XK VY NZZ' s o
syst 1 2 3 XYZ,prim{ R-1 -1 -1 X'Y'Z,prim
fL XZYZ K, (27)2 (2n)? (27)2 Bflfzf3 (Cfl ) (sz ) (Cfs ) Bflfzfs ’ (38)
(39)

Where(fjfx' is the observed CMB power spectrum with noise. H&ig is an dfective amplitude of non-Gaussianity generated
for a given template shape. We calculate the requiremenbaorlinear systematics errors by demanding that thectve f,\?’ft

is not detectable atol using the optimal CMB estimator as developed in Refl. [23[389.38], i.e. f/® < (fu )Y/, giving the
requirement

(Bshapeprim)2
de|1 @, &y \Bate
pshape (2n? (21 (21> C;,C(,Cry
< ghias primshape *
2l d?ly d2l3 Prlptz St
(2n)? (21)? (21)?  Cy; Cp,Cry

(40)

In Fig. (2) upper panels we show the maximum allowed noralinemperature systematiosis a function of instrumental beam
FWHM for local, equilateral and orthogonal shapes and for varithoices of experimental noise sensitivity. For a cosmic-
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bispectrum.

variance-limited experiment up-fax = 2000, the requirement for local, equilateral and orthogjshapes ard < 22 (2r),
b < 41 (2r) andb < 44 (2r) respectively. We will see in the next section that theseliregnents from bispectrum are more
stringent than the requirements for non-linear systersétton theB-mode power spectrum.

In Fig. (2) lower panels we show thdfective f,\?’fr' from the non-linear systematics for local, equilateral antthogonal
templates as a function of instrumental beBMWHM and for several choices of experimental noise sensitivitypte that
systematics-inducetf,’{s' is only weakly sensitive to the instrument beam and detesgtnsitivity. Also since‘,?ft' is of order
unity for b = 1, the requirement oh is comparable to minimum detectabig_ i.e. fy. ~ b for given CMB experiments. As
expected, the requirement on the systematic control getkevas th&WHM andor instrumental noise is increased. Also note
that since the maximum multipole used in the analysis wadl fig€ax = 2000, all experiments with low enough instrument
noise andFWHM give similar requirement because they all are cosmic vaedimited up-tofmax = 2000, as indicated in
Fig. ().

To quantify the correlation between the systematics-ieduzispectrum and primordial bispectrum template, one akoue
late the 2-d cosine as defined in Eg.](19). Hig. (3) shows thdsc@sine, between the systematics and local, equilatachl a
orthogonal templates. Systematics have comparable pugila all the three templates, and overlap is relatively [bmigh 2-d
cosine of order O(0.2) for equilateral and orthogonal shapeaty ~ 2000, and of order O(0.4) for local shape. Since we
modeled the temperature non-linear respons®(@ = O(fA) + b@(M)?, one might expect a large overlap with local template.
However, this is not the case because (1) the local temdadefined for three dimensionk&lspace of primordial curvature
perturbations, while we show the overlap with the projedtead dimensional—space bispectrum; (2) at highthere are os-
cillatory features in both the template and systematicgdmisum which after summation ovércancels out. Because of the
week overlap between systematics and primordial templayssematics generate comparable amount of non-Gaugdiani
the three templates considered.

Given the systematics contaminatiq?f" for a given shape, one can get a rough estimate for the Ievl?jﬁ‘)'ffor another
shape by using the 2d-cosine between the two shapes. Fopkxahwe start from systematics contamination for egeilat
shape for a cosmic variance limited experimdﬁ{?’e“”" ~ 2.6 (see Fig. (2) lower middle panel). We can convert it to the

effective localf ™' by using a fudge factor 6 between the two shapes to g&*'** ~ 2.6/6 = 0.44. This agrees nicely
(see Fig. 2 lower left panel) with what we get with the fulla@ahtion. The fudge factor 6 comes from 2D cosine which gives
a factor of 2 and the normalization which gives a factor 3 [TBje reason we get highdy. in the equilateral model is that
we normalize the maximum of this shape to the minimum of tlvallshape. The normalization factor 3 compensates for this
effecf (see Ref.[[18] for details).

For polarization, many of the instrumental systematicslmremoved or suppressed by carefully designing the scaegit
Instrumental rotation is potentially a powerful way to méte instrumental systematicffexts if the systematics field has
different spin-dependence than the CMB polarizatipa iU. Ideally, if every pixel can be covered by infinite number of
different rotation angles with respect to the real polarizadioection on the sky, systematics fieldsg ,(y2, di, d2, w, 1, f2, p1,
and py) which have diferent spin fromQ + iU can be completely removed. However the quadrupole leakagkage from
temperature to polarization, stemming from beam elliptjchas the same spin dependence as the polarization paamet
Q + iU and hence can not be averaged over, even with the perfeatagvef rotation angles [39]. For this reason we mainly
focus on quadrupole leakage As with the temperature systematlgswe find that only the monopole of systematics field can

5 The local and equilateral shapes are normalized to the salue at equilateral configuration, i.Bjocal (k. k, k) = Fequil (K, K, k)
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limited experiment. The spikes in the plots correspondda-$iip in the cross-correlation of systematics and prindroispectrum.

generate new bispectrum. Fluctuations can only distorétisting bispectrum without generating spurious signals.

In Fig (4) we show the fective non-linearity parameté,ﬁyf' generated by quadrupole leakap®rthe local, equilateral and
orthogonal templates. We show thﬁs" as function ofFWHM (upper panels) and as a function of maximum multipole used
in the analysigmax. Since the quadrupole leakage come from the beffietts, larger the beafWHM, larger the spurious
non—Gaussianit)f,?l’_g‘. The spikes in thefy. Vs £max plots correspond to sign-flip in the cross-correlation afteynatics and
primordial bispectrum.

In (B we show requirements on non-linear polarizationesysttics parameter Using separately thETE, TEE and TEE
bispectrum. As for the temperature case, the requiremestis eerived by demanding that the spurious Io‘ﬁ{iﬁ‘ generated by
systematics are detectable at. INote that from the definition of systematics leakage theiregnents for quadrupole leakage
g are expressed in the units of square of bédaWiHM. In comparison to the temperature systematics the reqeinefrom
polarization is much weaker. Since the polarization syat&s bispectrum contains sines and cosines, the dot prbdtween
the template bispectrum and polarization bispectrumlased, resulting in weakeffective fh?l’_g‘. Since the quadrupole leakage

scales ag~ ¢, the dfective f@f‘ shown in Fig[(#) also has the same scaling.

VIl. IMPLICATIONSFOR CMB EXPERIMENTS

How well can non-linear systematics be controlled? Theesgatics requirements on the linear response pararadtar
CMB experiments aimed &-mode observations is well discussed in the literatfurel4@p,

a < 0.06(&5)1/2 for coherencer, = 10

r
0.00

To estimate the level of non-linear respoibsghich can be detected at the power-spectrum level, we sitirt w

a < 0.05( 5)1/2 for coherencer, = 120 (41)

2
5O() = (1+ a)o@%Y(R) + b(6OY(A))", (42)
and note that the non-linear term is negligible for the lanithens®%Y — 0 and contributes the most Whé®% = 5@ ay.
Therefore, given the maximum allowed linear response pairama, one can obtain a requirement bas

Amax

b<a

(43)
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wherex is a fudge factor of order unity. Primary CMB anisotropy waitbvide an upper bound of~ ax 10° from Eq. [42) [32].
The requirements caare more stringent frorB-modes than from bispectrum systematics. Using the numieget

ro\12
b < 600((WS) for coherencer, = 10
ro\12
b < SOOC(WS) for coherencer, = 120 . (44)

However, we can go beyond this rough estimate; one can usgighke of the CMB to set more stringent requirementton
With @gipole ~ 0.001 one obtains a requirement which«sL00 times more stringent than provided by KEql (44). Fer0.005,
this require$ < 50, which is still less stringent than the requirement fraspectrum. Therefore, if instrumental non-linearities
are not controlled, theffective non-Gaussianity can be as largefas ~ 30 (see figure 2) before the corresponding non-
linearities show up in CMB dipole. The higher multipoles b&tCMB power-spectrum are even less sensitive to experahent
non-linearities. For more detailed analysis of non-lineaponse fects on power spectrum, see Apperidix C.

Non-linear response of the Low Frequency Instrument of the PLANCK satellite

Low Frequency Instrument (LFI) of the PLANCK satellite ietthird generation space radiometer, following the COBEFOM
and WMAP instruments, and is currently collecting data friti@ Lagrangian point L2. PLANCK is expected to significantly
improve our knowledge on non-Gaussianity of the CMB. Hereliseuss the the non-linear response of the Planck LFI detect
following Ref. [41--4B]. Two state-of-the-art and complentey instruments are integrated in the focal plane of th&NCK
1.5-meter dual reflector telescope. The LFI instrument &gtan coherent receivers, observes the sky in three bantseg
at 30, 44 and 70 GHz. The HFI, using bolometers cooled downiti&Qcovers six channels between 100 and 850 GHz. The
LFI is an array of 22 cryogenic coherenti@rential radiometers based on indium phosphide HEMT (higbtien mobility
transistor) low noise amplifiers. The receiver array istspto a front-end unit (cooled down to 20 K to optimize semgit)
and a back-end unit (operating @800 K). The instrumental properties of the LFI and HFI haverbealibrated and tested
at different integration levels by detectors, individual recesyand the whole receiver array during ground calibratio ia
flight calibration. For LFI, the response of 30 and 40 GHz oatkters show slight output compression, whiffleets the noise
properties. Theféect on noise temperature, white noise sensitivity, andengiective bandwidth has been studied extensively.
Here we focus on the implications on bispectrum measurement
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The non-linearity of microwave receiver can be introducgddrious sources, e.g. radio-frequency (RF) amplifierieater
diode, and back-end analog electronlic$ [41]. The back-&naRplifiers and detector diodes might cause the non-liesponse
of 30 and 40 GHz receivers on LFI. For the LFI pseudo-corni@aeceivers, assuming the sky signal and the referendeciaa
be perfectly isolated after the hybration

Vout = G(Tin, Troise) X (Tin + Thoise) » (45)

whereTi, refers to any input signal, could be eithiBygiy or Trer, Vout is the corresponding voltage outpliise is the corre-
sponding noise temperature aB(Ti,, Thoisd) IS the photometric calibration constant (detector gaihjcv may depend on the
input and noise temperatures (non-linear response) inrgkenghe parametrization of the non-linear response modglkeen

provided in [41]

Vout = Got (Tin + Thoise
1+ kGo (Tin + Thoise) ’

(46)

k is the photometric calibration constant, and have beemattd with various sky-load temperature for the 30 and 44 GHz
receivers. Itk = 0 the response parameter (receiver gaByy, reduces to the constaBh, andk = co corresponds to infinite
compression of the input signal. In this mod@l, is proportional to gains of front-end module, band-end niedand the
bandwidth.

The linearity of the receiver response is important for thdlight calibration. For example, photometric calibratiis per-
formed by exploiting the dipole anisotropy and for the beasasurements through observations of bright point souecgs,
Jupiter and Saturn.

The variation orG, §G/G, caused by a variation of the input temperaiifecan be calculated as

G ksT Go @7)

For dipole anisotropyT ~ +3 mK, and for bright point source like JupitéfT ~ +50 mK. The estimation of the receiver
parameter&y, Thoise@ndk can be found ir@l]. The non-linearity or the relative chang the detector gain has been estimated
to be

G < 6x10° for 6T ~+3mK
(48)
6 <103 for 6T ~ +50mK

With the above limits on the gain, we can now calculate thelirgar response of temperature fiddaf our parametrization
by noting thatéG/G = bT/(1+ a+ bT). ForT ~ =3 mK this givesb < 0.1. We can see that during nominal operation
with small input signal, the performance of the receiveut$isiently linear as not to contaminate the bispectrum measen
For bolometer detectors like HFI, the dynamic range is muchlker. This is usually not a problem if low temperatures are
considered, but for the simultaneous measurement of galastyhe CMB the non-linearity parameter O(10) might pose a
problem. To our knowledge, there is no available literatuinéeh characterizes the non-linearities of the HFI instemtr{44--48].
Since HFI will be the driving instrument for primordial bisgtrum measurements, it is essential that instrumentalinearities
satisfy our benchmark criteria.

VIll. SUMMARY

Future CMB experiments will reach the raw sensitivity toadttiocal shapdy. ~ 5(10) using CMB temperature anisotropy
information, andfx. ~ 2(10) using combined the temperature dhgbolarization informatior [47, 28, 84]. However to reacisth
Fisher limit and reliably infer the level of primordial ndBaussianity, precise and realistic calculations of tieotinstrumental
systematics on bispectrum are required. Although the impamstrumental systematics have been extensively siuitie
the CMB power-spectrum, thdfect on bispectrum have not been extensively explored. We &@adied, in a fairly general
manner, the scientific impact of the instrumental systerreitects on the primordial non-Gaussianity measurement fran th
CMB. For the first time, we introduce parametrization for Amearities of the instrument for both temperature andynétion
systematics. We have shown that although linear systesnfiiltls can distort existing primordial bispectrum, theyru
generate new spurious bispectrum. Perhaps more impontarshiow that certain types of second order non-linear systes
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generate spurious bispectrum even if the primordial CMB is perfedgussian. Quantitatively, we propagate tlfiee of
systematics errors to the CMB bispectrum and then to eviyptugsess their impacts on the non-Gaussianity paranfigter

We consider dterent bispectrum configurations which are predicted byousrivell-motivated inflation models: local, equi-
lateral, and orthogonal shape of non-Gaussianity. For &gmh of non-Gaussianity, we calculate thiéeet of instrumental
systematics on the temperature bispectiiT, and bispectrum involving polarization fieldSEE, TEE, andTTE. We dis-
cuss that by optimally designing the scan strategy, thd &vgeveral polarization systematics can be reduced. Heryélve
qguadrupole leakage can not be averaged out even with pedieetage of rotation angles. Therefore, for polarizatimtematics
we primarily focus on non-linear quadrupole leakage ~

We calculate the tolerance limits on the systematics paemsiso that spurioufﬁﬂ' does not degrade our ability to con-
strain primordial nhon-Gaussianity. We discussed the ioapilon of our findings to future CMB experiments in particulae
space-based PLANCK mission. We find that the non-linearesyatics does not significantlyffacts CMB power spectrum
measurement. Thefective Iocalf,\?f" could reachD(10) before systematidiects show up in the CMB dipole measurement.
As a result, if the non-linear systematics is not controligdedicated calibration, the measured bispectrum couldased. The
effect of linear systematics on the primordial bispectrum islsnfror linear systematics control ofis ~ 10%, measurements
at¢ < 2000 do not sfier significant degradation, however for experiments p@bigx = 2000, even linear systematics could
alter the cosmological bispectrum. Since secondary aoisiets start to dominate at aroufid- 2000, we conclude that linear
systematics is much smaller worry than the nonlinear syaties
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Appendix A: Discussion on Polarization Systematics

In the paper we mostly focused on the Jones parametrizatiorefism and generalized the formalism presented in[Réf [32
However for the PSB itis convenient to parametrize systematarting from Stokes parameters [49D andU (V = 0 for CMB
polarization) as opposed to the Jones matrix formalism hvisiparticularly useful for describing coherent polariars{32[ 39].
Systematics parameters in this formalism are: the gaimfaytthe diferential beam-width of the beams the diferential
pointing p, the beam ellipticitye and the beam rotation. These parameters are derived frorffatiences in intensity in the
Gaussian 2-D polarized beam response function for eachipatian. Although throughout this paper we employed thee3o
formalism, it is constructive to compare it to the Stokesrfalism [40]. This will shed light on the similarities andigirences
between the two. Table Ill summarizes the correspondertegekea the parameters of the two formalism.

Our starting point is the Fourier-space analysis|of [40]. &pand the leading terms to first order and identify each éne o
them with the corresponding term of the Jones Formalism . [S&jce in real space the temperature and polarizationrpatte
are convolved with the beams, these expressions are sitmplyroduct of their Fourier transforms in Fourier space. ggtrict
the discussion to an elliptical Gaussian beam (with majdrraimor axesry andoy)

_ 1 (x—px)? (Y- loy)2
B0 = 2noyoy eXp( 202 203 (AL)
and its Fourier transform is
~ 262 1202
B(l) = exp[—er _ XY il (A2)
2 2
The pointing error merely shifts the phase of the beam reptation in Fourier-space.
From Eq. (12) of [[40] the beam function with ellipticieyand pointingo in I-space reads
é(l) - gV Z Z i2m+n|m(Z)Jn(|p) % ei(2m+n)a//—in0ei(2rmn)(¢|—a) (A3)
N=—00 M=—0c0
where
N
y = Z(O-x + O_y)
— |2 2 2 Ad
zZ= Z(O-x - O_y) ( )
ande = Zx;g and the pointing is defined Iy = p cosd andpy = p sind. The anglex is scanning strategy- and time-dependent

and is shown in Figure 6.
The observed CMB polarization obtained as in Eq. (18) of [40]

QiU = %<B+>(Q +iU) + %(B_eﬁia)T + %<B+e¢4ia>(Q FiU)
1 i . 2 i i 1 . . .
- 5<B+><€4'“>(Q FiU) - 5<B_e¢2'a><e¢4'a>T - 5<B+e+4'a><er+“'“>(Q +iU) (A5)

where angular brackets.) represent averaging over ‘hits’ at the given sky-pixel. Arsting strategy is said ‘ideal’ (™) = 0
for anyn # 0 and is ‘uniform’ if (¢5") does not vanish, yet it is constant across the sky. The sygBhatand for%(Bl + By)
whereB; andB; are the first and second beams in the beam pair. The map iondstomes singular whéh= 1— (e¥*)(e %)
vanishes. This implies that a good scanning strategy shminimize (¢**) and(e %), terms responsible for spin-flip, i.e.
Q+iU — Q=FiU, since(e®) are spin+4 fields. We therefore neglect the second line of[Eg.(A5)ingahat these terms need
not vanish in general and approxim&te- 1 to first order in scanning strategy quantities. Note alabwle ignore pixel-rotation
for the sake of simplicity since at the leading order it dggles from other beam systematics and can be accounted fanpiys
setting

Q iU’ = e24(Q+iU). (AB)
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FIG. 6: Angles layout: The X-Y system is fixed to the focal @awhich is itself rotating with an angfewith respect to the fixed N-S system
on the sky. The X'-Y’ frame coincides with the ellipse pripal axes and the anglerepresents the angle that the polarization-sensitive-axi
makes with the ellipse major axes. In the presence of a hak pkate (HWP) the anglg varies, otherwise it should be fixed. The pointing is

represented by the 2D vectomwhich makes an angkewith the positive X-axis. The angle represents the tilt of the ellipse major axis with
respect tg.

The analog of EQ.(A5) in thel [82] formalism reads (Eq. 17 & 1982])

QiU = QziU+o(p-V)(Q=xiU)+o(dy +id2)(01 £192)T
+ 02Q(01 +£102)°T + (a+ 2iw)(Q £ iU) + (f1 + i f)(Q = iU) + (y1 £ iy2)T. (A7)
Note, in particular, that since is a spin-0 field it must couple to spi@ to generat&’ + iU’. Now, sinced; + id; is a spint1,
d; + id2 must be a spinl field which can come from a non-vanishing dipole-momenhefd¢canning strategg™). Similarly,
01 ¥ 10, is a spirr1 field and therefore must couple to a sp&field, such as the octupole moment of the scanning stratiegy,
form the required spin2 field for temperature leakage to polarization. ExpandigdAS) at leading order we can identify the
[32] with the corresponding_[40] terms. This is summarizedable I11.

Note also that the scanning strategy functions, écgs 4r), can be space-dependent and very much like CMB lensing this
may induce higher-order correlations. However, since ttasing strategy is completely uncorrelated with the ulytey
temperature and polarization this will show up only at theptectra level and is therefore irrelevant for the curreatkw As
mentioned above, the mainfiirence between the formalisms stems from tlfedknt treatment of the polarization direction
¥ + x with respect to the pointing (Fig. 6). A good example wheiis thfference can show up is the inclusion of a HWP in
the experimental setup. Averaging over the amghey employing a fast rotating HWP will result in no polarizatiin the [40]
formalism while the parametrization adopted [32] fixes y to 0, i.e. the polarization sensitive directions are al@yngth
one of the ellipse principal axes. As has been shownlby [49]ehel of systemati®-mode (for a given beam ellipticity)
depends oy + y and it maximizes foiy + y = 45°. In general, these two formalisms agree upon making theogpiate
identifications of the model parameters.

Although we have considered a pretty general class of im&nial systematics, there are sevefié@s one may want to
include to extend our analysis: leakage of galactic tempegaignal to the polarization maps due to bandpass misniagam
side-lobes and variations in instrumental response wéhuency. In our instrumental systematics model, we hauenass
monochromatic response of the detector. Another conceyrbméhat our toy systematic model does not capture all tHistiea
effects. For example, pointing errors would generally inticedpiolarization leakage regardless of the shape of the begwood
model for the pointing error depends on the scanning styateggthe pointing fiset could be, in principle, strongly correlated
for which the error keeps constant over a period of time. Taietpng error would cause the misplacement of time-ordetath
samples into wrong pixels during map-making. In other wptbe error increases thétective size of the pixels with extra
smoothing fect (related to the rms of the pointing error), making evexgipon the produced CMB map have its owfiextive
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HHZ SKPH

Calibration a ||Gain g

Rotation  w ||Pixel rotation &

Pointing  pa||Pointing £ ({cosq)) + 2U(sm(a)}
Pointing  py||Pointing £x(sin(@)) — <cos(1)>
Flip fa || Flip (cos 4r)

Flip fo || Flip (sin 4a)

Monopole v, || Diff. gain g(cos 2r)
Monopole 4 || Diff. gain g(sin 2x)
Dipole da || Diff. pointing  2(€*)
Dipole d, || Diff. pointing ——(é")
Quadrupoleq || Diff. ellipticity e- e

TABLE IIl: Comparison between the_[B2] and_[40] formalisntise various parameters used in the two formalisms are fikhtit is shown
that most of beam systematics vanish in case of ideal sagqustiategy (pointing, spin-flip, monopole, dipole). Thepestive names and
parameters are those used in thel [32] dnd [40] papers.

beam.

If the bias of bispectrum introduced by instrumental systiées is noticeable, it is possible to correct for the instemtal
systematic ffects by estimating the bias induced by the systematics ifave b precise enough knowledge of them. One way to
do this is to use the recovered temperature Brmdode maps as input sky and simulate the instrument usinnthven beams.
The output of this simulation contains some non-Gausgiaait). certain type of bispectrum, not present initialljrieh is an
estimate of the observed spurious bispectrum. Theiency of this correction obviously depends on how well th&tamatics
are known and modeled.

Appendix B: Full-sky Treatment

In this section, we focus on the derivation of the systersatistortedgenerated CMB bispectrum under the more appropriate
spherical sky treatment. The full-sky formalism can be igd by simply replacing the Fourier components with spi@ri
harmonic multipole moments. We follow the mathematicaktion and structure presented|inl[50, 51]

O ~ O+ f dAY™a(R)e(A) + f dAY™b(R)O(R)O(R)
= O+ Z > v [64 ™ oy I ™ @ | (B1)
oy 1 my 17y

note that the integrals over the spherical harmonics ataaeg by the geometrical factors defined in the following

- [ e 2
g = [ 9

The CMB temperature bispectrum with systematics contatioingi.can then be expressed as
i Iz |
BObS — ( 1 12 13 )(G)Obs ®Ob5 ®Ob5 > (B4)
111213 m;h:n‘g my M Mg limy = lomp = l3mg
where the average is over the CMB and systematics field eglizs. leading to
1 1 y
BE = ) (ml 2 I3 ][(@hmpw@mnz D 2 Ot Ot Oram Oty by I l”ﬁ"é +2 Perm
mymem, M M2 T8 fomg gme 1 my

+ Z Z Z Z<®I1ml®|”m2®l ;g alzmlza|3m§> 12515 mlzné IIZ]IST%% +2 Perm]. (BS)
o iy o,
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Here the first term is the desired primordial bispectrumpsdcterms is the bispectrum due to non-linear response of the
instrument and the last term is the distorted bispectrumtduamear systematica. We should the details for the linear-
systematics, but can similarly be applied to the non-limesponse. Noting that the Wignej-8ymbol obeys the identity

Z('l B |3)(|1 l> ls)zm (B6)
m m mg){my my my (213 +1)

My

we can re-write the distorted bispectrum as

Be,. = BY,. + Z By, Z Ci#R+2 Perm, (B7)
|//|//
where
B T PR T I O T A 4 memomy | ey
" na%mg m%:ms(ml m, ms](ml my g ) >t %

In order to evaluat®, we first re-expresgl"™ as

n | |I |II
| — s B9
||| 11’1 (m m m,,) ( )
where
f —(' ’ '"] (B10)
" “loo o)

Then the expression fét can be re-written as

R P Y P L Y A U A T R T v [T 12 1s
R = f i flar [ ][ 2, 3/][ 2 2,)( ]f|||~ f|||~( 1) S (0
2l5ly 323%%:%%;% m My Mg mln'ErT% mzm’zn‘g mgI’T'Err% 2 3 |2 |3 |2
(B11)

where, in the last step, we have introduced the Wigrjesynbol. The values of the Wigneii-&ymbol can be computed
numerically with a fast andficient recursive algorithm.

Finally, substituting the expressions feiand including all permutations in a single expression, wewste the systematics
distorted bispectrum as

I o | 1 121 1 121

Ipg
(B12)

wheren = (I + p+ Q).

Appendix C: Comparison with requirementsfrom B mode

We Taylor expand the observed polarization assuming tlealigtortions are small, keeping terms only to leading oirtére
non-linear distortion field. The changes in the CMB-fields (we call it8 in order to distinguish from the notation of CMB
bispectrum) due to the non-linear respogsspin-flip (d1, d,) and deflection¥s, 7,) take the following form

d2|/ d2|// , ’” ’” ARV
B(I)zf(zﬂ)z (Zﬂ)ZS(I—I —IFIYTawWEQ 117,
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WS = sin[2(ei-r-1r — ¢1)]

WS = cos[2_i—im — ¢1)]

W(’i = o(' +1”")coslpr + @ + @11 — 2]

WS = o' +17)sinfer + ¢ + o - 201]

WZ = —?(I”7 +1"%)sin[2(er + g1 — @)] (C1)

We want to calculate the spurious B-mode generated by maadiresponse of the instruments, and have simply assumeed ze
primordial B-modes for our fiducial model.

It is clear from Eq.[(Cll) that the non-linear systematicsifimixes the polarization modes. The B-mode power spectrum ca
be written as

21/ 217
(B(1)B(12)emps = (20)7%6(11 +12) f (d_I z

o7 (Zﬂ)zcléé(f,T,TélT,,ng(l,l’,I”)W‘SE‘(I,I’,I”) S = temperature leakage (C2)

wherel = 1;-1"—1"” and we have assumed zero primordial B-modes for our fiduaiaeh Note tha{...)cg s means an average
over CMB realizations and systematics fields.
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