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Coincident observations with gravitational wave (GW) detectors and other astronomical instru-
ments are in the focus of the experiments with the network of LIGO, Virgo and GEO detectors.
They will become a necessary part of the future GW astronomy as the next generation of advanced
detectors comes online. The success of such joint observations directly depends on the source lo-
calization capabilities of the GW detectors. In this paper we present studies of the sky localization
of transient GW sources with the future advanced detector networks and describe their fundamen-
tal properties. By reconstructing sky coordinates of ad hoc signals injected into simulated detector
noise we study the accuracy of the source localization and its dependence on the strength of injected
signals, waveforms and network configurations.
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I. INTRODUCTION

There has been a significant sensitivity improvement
of gravitational wave detectors since the Laser Interfer-
ometer Gravitational Wave Observatory (LIGO) [1] and
Virgo observatory [2] started their operation. In 2007
LIGO and Virgo completed the two year run at sensitiv-
ity that allows detection of a merger of two neutron stars
(NS-NS) as far as ∼ 30 Mpc away [3, 4]. In the most re-
cent run (May 2009 - October 2010) the binary neutron
star horizon distance has been increased to ∼ 40 Mpc.
However, even at this impressive sensitivity, the antic-
ipated detection rate with the initial LIGO and Virgo
detectors is quite low. A detection may be possible in
the case of a rare astrophysical transient event such as a
supernova explosion in our Galaxy or a nearby merger of
binary neutron stars. The signal is likely to be weak and
it will be difficult to prove its astrophysical origin un-
less it is confirmed with a coincident observation of the
electromagnetic or neutrino counterpart. For this rea-
son the LIGO and Virgo collaborations are conducting a
wide range of joint observations [5] with other astrophys-
ical experiments including radio [6, 7], optical and x-ray
telescopes [8–11], and neutrino detectors [12, 13].

A more robust detection of gravitational waves from
astrophysical sources is anticipated in the next five years
as Advanced LIGO and Advanced Virgo come online.
Numerous GW signals, expected to be observed by ad-
vanced detectors (likely∼ 40 NS-NS events per year [14]),
will begin our exploration of the gravitational-wave sky
and start the era of the gravitational wave astronomy.
Along with the advanced GW detectors, a new genera-
tion of optical telescopes will come online [15–17], which
will enable a wide and deep survey of the electromagnetic

sky. Joint observations with the advanced gravitational
wave detectors and electromagnetic instruments will not
only increase the confidence of detection but also bring
fundamentally new information about the GW sources.
They will reveal the physics and dynamic of sources, pro-
vide identification of host galaxies and the associated red-
shifts, and in some cases determine luminosity distance
to the source.

One of the major challenges for such joint observations
is to establish unambiguous association between a gravi-
tational wave signal and a possible electromagnetic coun-
terpart. It greatly depends on the ability of the GW net-
works to reconstruct sky coordinates of a detected GW
source. Given an accurate sky location, a correspond-
ing electromagnetic transient may be identified in a list
of events obtained with the all-sky telescope surveys, or
the EM instruments can be guided to take images of a
small area in the sky. In the second case, it is important
that the sky localization is performed by GW detectors
in real time with low latency. The efficiency of the GW-
EM association and the choice of a partner telescope is
affected by the sky localization error which should be
well within the instrument’s field of view (typically less
than few square degrees). Moreover, exploring smaller
area in the sky will decrease the probability of the false
association.

The problem of the source localization with networks
of GW detectors is in focus of research in the gravita-
tional wave data analysis. There are several analytical
studies [18–21] of this problem considering geometrical
reconstruction of source coordinates based on the tri-
angulation, which requires a measurement of the arrival
time of a GW signal at different detectors. However, the
accurate timing of the GW signal is intimately related to
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the reconstruction of the signal waveforms. Due to the
different detector sensitivities to the GW polarizations,
the waveforms recorded by individual detectors may be
different and they may not have a common timing refer-
ence (like a signal peak time) for a direct measurement of
the differences in the arrival time. Therefore, the problem
of the source localization is better addressed in the frame-
work of the coherent network analysis [22–24], which re-
constructs the waveforms and the sky coordinates simul-
taneously. By using both these methods (triangulation
and coherent network analysis), several practical source
localization algorithms [25–27] have been recently devel-
oped and used during the LIGO and Virgo data taking
runs in 2009-2010.

There have been a number of studies addressing ben-
efits of individual detectors [28, 29] and various detector
networks [30, 31]. In this paper we present a simulation
study of the source localization and the reconstruction of
GW waveforms with the networks of advanced detectors.
The study is performed with a coherent network method,
called coherent WaveBurst [25] (cWB), based on the like-
lihood analysis . In cWB the data from all detectors in
the network is processed simultaneously in order to re-
construct a common GW signal which is consistent with
the recorded detector responses. The consistency is mea-
sured by the likelihood ratio, which is a function of the
source parameters (waveforms and sky location). The
most probable source parameters are obtained by maxi-
mizing the likelihood ratio over the signal waveforms and
sky coordinates. The method performs reconstruction of
unmodeled burst signals (arbitrary waveforms) and sig-
nals with a certain polarization state: elliptical, linear
and circular.

The paper is organized as follows. Possible networks
of advanced detectors and their fundamental properties
are descussed in section II. In sections III we describe
the reconstruction algorithm. The simulation framework
for this study is presented in section IV. The results
are reported in section V. In sections VI and VII we
describe main factors limiting the source reconstruction
and discuss the results.

II. DETECTOR NETWORKS

In 2001-2010 the LIGO Scientific Collaboration (LSC)
and the Virgo Collaboration operated a network of in-
terferometric gravitational-wave detectors which are the
most sensitive instruments from the first generation of
the GW interferometers (1G). They consist of power-
recycled Michelson interferometers with kilometer-scale
Fabry-Perot arms designed to detect gravitational waves
with frequencies between tens of Hz and several kHz.
The two LIGO observatories [1] are in Hanford, Wash-
ington (4 km and 2 km detectors) and in Livingston,
Louisiana (4 km detector), and the 3-km Virgo detec-
tor [2] is located in Cascina, Italy. Other gravitational
waves interferometers are the 300 m detector TAMA [32]

detector latitude longitude orientation

A 31◦21′30′′S 115◦42′30′′E 45.0

H 46◦27′18′′N 119◦24′27′′W 126.0

J 36◦15′00′′N 137◦10′48′′E 19.0

L 30◦33′46′′N 90◦46′27′′W 197.7

V 43◦37′53′′N 10◦30′16′′E 70.6

TABLE I: Geographical locations and orientations of the 2G
detectors. The orientation of the detector arms is defined by
the rotation angle (counterclockwise) with respect to the local
coordinate frame with axises due North and East.

in Mitaka, Japan, and the 600 m detector GEO600 [33]
in Hannover, Germany. Currently all 1G interferometers
are decommissioned, except Virgo and GEO600, which
continue to take data.

The second-generation GW detectors (2G) are cur-
rently under construction. They include the advanced
LIGO detectors [34], and the advanced Virgo detector
(V) [35] which will have by an order of magnitude better
sensitivity than the 1G detectors. All advanced LIGO
detectors have 4-km long arms, with one detector in Liv-
ingston (L) and two identical co-aligned detectors in Han-

ford (H and H̃). Also there are plans to build the Large
Cryogenic Gravitational Telescope (LCGT) [36, 37] in

Japan (the J detector) and possibly move the LIGO H̃
detector to a site in Australia [30, 38] (the A detector).
Figure 1 shows the design sensitivity for the listed 2G
detectors. These, hopefully all five interferometers, com-
pose the most advanced GW detector network which will
be in operation after 2015.

FIG. 1: Amplitude spectral density of the design noise for the
second generation detectors.

The network performance greatly depends on the num-
ber of detectors in the network, their location and orien-
tation of the detector arms. Table I shows the geograph-
ical coordinates of the instruments and the orientation
of the detector arms used in this study. For the Aus-
tralian instrument the orientation of the detector arms
is not yet decided, therefore we consider two possible
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configurations: Ã - arms are due north and east, and
A - arms are rotated counterclockwise by 45o with re-
spect to Ã. Depending what instruments are constructed
we consider several network configurations: HLV, HH̃LV,
AHLV, HJLV and AHJLV. Since the sky localization per-
formance is expected to be about the same for the HLV
and HH̃LV networks, only the HLV network was consid-
ered for the coordinate reconstruction studies.

A. Network sensitivity

The sensitivity of the network of K detectors is fully
characterized by its noise-scaled antenna pattern vectors
f+ and f×:

f+(×)[i] =

(
F1+(×)√
S1[i]

, ..,
Fk+(×)√
Sk[i]

, ..,
FK+(×)√
SK [i]

)
, (2.1)

where Sk[i] is the power spectral density (PSD) of the
noise [39] and (Fk+, Fk×) are the antenna patterns of
individual detectors. The Sk[i] is a function of the time-
frequency index i, which is replacing individual time and
frequency indexes and often omitted in the text. Given
time-frequency series xk[i], obtained from a discrete de-
tector output with an appropriate (in our case wavelet)
transformation, the Sk[i] can be calculated for every data
sample. Such time-frequency PSD “maps” are convenient
for characterization of the colored quasi-stationary noise
of real detectors. The power spectral density Snet of the
network noise is defined by the following equation:

Snet =

(
K∑

k=1

S−1k

)−1
. (2.2)

Note, that the Snet decreases as more detectors are added
to the network. A network of K equally sensitive detec-
tors has by a factor

√
K lower noise amplitude than the

individual detectors. The utility of the network power
spectral density is explained later in this section.

The antenna patterns depend upon the source coor-
dinates (θ, φ) and the polarization angle Ψ, which de-
fines the wave frame of the two-component GW signal
h[i] = (h+[i], h×[i]). It is convenient to define vectors f+,
f× and h in the dominant polarization wave frame [24]
where (f+ · f×) = 0 and |f+| ≥ |f×|. The vectors f+ and
f× define a vector of the noise-scaled detector responses
to the wave h

ξh[i] = f+[i]h+[i] + f×[i]h×[i] . (2.3)

The inner product (ξh|ξh) calculated over the sampled
detector responses gives the estimator of the network
signal-to-noise ratio (SNR):

ρnet = (ξh|ξh)
1/2

. (2.4)

The inner product of two sets of vectors a and b with ar-
bitrary number of components is defined via their scalar

products

(a|b) =
∑
i

(a[i] · b∗[i]) (2.5)

where b∗ is the complex conjugate of b and the sum is
taken over the data samples i containing the signal [40].

The norms of the antenna pattern vectors |f+| and |f×|
characterize the network sensitivity to the GW polariza-
tions. To illustrate this and other network properties,
we assume below that in the signal frequency band the
vectors f+ and f× do not vary much. In this case

ρnet ≈
√
|f+|2(h+|h+) + |f×|2(h×|h×) (2.6)

where the inner product (h|h) = (h+|h+) + (h×|h×) de-
termines the root-sum-square amplitude of the GW po-
larizations:

hrss = (h|h)1/2 . (2.7)

As it follows from Equation 2.6, the network alignment
factor [25]

α = |f×|/|f+| (2.8)

characterizes the relative network sensitivity to the two
GW polarizations. It determines the ratio of the SNRs
from each GW component, assuming that in average
their sum-square energies are the same: (h+|h+) =

(h×|h×). Closely aligned networks (like HH̃L) have poor
sensitivity to the second polarization (α � 1) making
reconstruction of the full GW signal difficult.

The overall network sensitivity is characterized by the
effective power spectral density of the network noise

Nnet =
(
|f+|2 + |f×|2

)−1
(2.9)

which depends on the sky coordinates. It is convenient
to factorize the sky-dependent part of the effective power
spectral density as

Nnet = F−2Snet , (2.10)

where F is the network antenna factor distributed be-
tween 0 (low sensitivity) and 1 (high sensitivity). The
Snet characterizes the sky-independent sensitivity of the
network. These network parameters determine the aver-
age network SNR for a population of GW signals with
the average amplitude hrss/

√
2 per polarization:

ρnet ≈
hrss√
2Nnet

=
Fhrss√
2Snet

. (2.11)

The network PSD Snet defines the baseline noise and the
antenna factor F defines the fraction of the hrss ampli-
tude utilized by the network.

Figure 2 shows the antenna and the alignment factors
for different networks as a function of the latitude and
longitude of the source (skymaps). Since these network
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HLV HH̃LV AHLV HJLV AHJLV

100 Hz 1 1.66 1.65 1.39 2.09

300 Hz 1 1.65 1.63 1.15 1.80

TABLE II: Expected difference in detection rates with respect
to the HLV network.

parameters are noise dependent, the skymaps are calcu-
lated at the frequency 100 Hz where the advanced detec-
tor sensitivities are about the same. The F distribution
shows the network efficiency to capture the signal and its
uniformity across the sky. The values of α close to unity
indicate the same sensitivity to the two GW components.
Respectively, the values of α close to zero indicate that
the second GW component is not measurable for a weak
GW signal. As Figure 2 shows, several non-aligned de-
tectors (preferably five) are required for elimination of
these blind spots in the sky.

One of the main characteristics of a detector network
is its search volume. Given an isotropic distribution of
transient sources with the root-square-sum amplitude ho
at the fiducial distance ro, the search volume is defined
as [41]

Vnet = 4π(horo)3
∫ ∞
0

dhh−4ε(h) . (2.12)

where ε is the detection efficiency. Assuming the same
SNR thresholds ρnet(h) (see Equation 2.11), the Vnet can
be calculated with respect to the volume V0 of the refer-
ence network

Vnet = V0
< N

3/2
0 >

< N
3/2
net >

(2.13)

where < N
3/2
net > and < N

3/2
0 > are the averages over

the sky. The ratio Vnet/V0 is quite independent on the
search algorithm and the GW source model. Table II
shows the volume (and detection rate) ratios calculated
with respect to the HLV network (V0 = VHLV). As more
detectors are added to the network the detection rates
increase. Being beneficial this increase, however, is not
critical for the first direct observation of gravitational
waves. More important, the networks with more detec-
tors are likely to be less affected by non-Gaussian and
non-stationary noise than the networks with fewer de-
tectors. They are expected to have lower false alarm
rates and higher detection confidence for the same ρnet
threshold. Also, re-location of the LIGO H̃ detector to
Australia does not affect the detection rates for both A
and Ã configurations. But, as shown in Figure 2, the
AHLV detector configuration would be more preferable
for the reconstruction of the GW polarizations than the
HH̃LV or the ÃHLV network.

III. RECONSTRUCTION ALGORITHM

A. Coherent network analysis

One possible approach to the coherent network analy-
sis is based on the Neyman-Pearson criterion which de-
fines the likelihood ratio

Λ(x,Ω) =
p(x|h(Ω))

p(x|0)
, (3.1)

where x is the network data, the p(x|0) is the joint proba-
bility that the data is only instrumental noise and p(x|h)
is the joint probability that a GW signal h is present in
the data. In general the likelihood ratio is a functional
which depends upon the source parameters Ω. One gen-
eralization of the Neyman-Pearson criterion is to maxi-
mize Λ(x,Ω) over Ω. The obtained maximum likelihood
ratio statistic reaches its maximum for the best match
of the corresponding waveform to the data. If the source
model allows calculation of the GW waveforms as a func-
tion of a small number of source parameters (for example,
for binary black holes), then a template bank can be gen-
erated. In this case the variation is performed over the
template bank and the likelihood approach is equivalent
to a matched filter. The cWB algorithm searches for un-
modeled burst signals. In contrast to the binary black
hole sources, where the number of parameters is rela-
tively small, the parameters characterizing the unmod-
eled bursts are essentially the signal amplitudes them-
selves at each instance of time. It is not possible to gen-
erate a template bank for such a large parameter space.
Instead, the best matching waveform is found by varia-
tion of Λ over unknown GW waveforms h.

B. GW waveforms

For stationary Gaussian noise the coherent WaveBurst
algorithm defines the likelihood L as twice the logarithm
of the likelihood ratio Λ

L[h] = 2(w|ξh)− (ξh|ξh) , (3.2)

where the vector w represents whitened data from K
detectors with uncorrelated noise

w[i] =

(
x1[i, τ1]√
S1[i]

, ..,
xk[i, τk]√
Sk[i]

, ..,
xK [i, τK ]√

SK [i]

)
. (3.3)

The sampled detector amplitudes (where i is a sample
index) xk[i, τk] take into account the time-of-flight delays
τk, which in turn depend upon the source coordinates θ
and φ. The solutions for the GW waveforms h, defined
in the dominant polarization frame, are found by the
variation of the likelihood functional (Eq. (3.2)):

H+[i] = (w[i] · f+[i])/|f+[i]|2 , (3.4)

H×[i] = (w[i] · f×[i])/|f×[i]|2 . (3.5)
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FIG. 2: The distributions of the network antenna factor F (left plots) and the network alignment factor α (right plots) at the

frequency of 100 Hz as a function of latitude (θ) and longitude (φ) for the networks HH̃LV, ÃHLV, AHLV, HJLV, AHJLV
(from top to bottom).

The maximum likelihood ratio statistic is calculated by
substituting the solutions into L[h]. The result can be

written as

Lmax =
∑
i

w[i]P [i]wT [i] , (3.6)
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where the matrix P is the projection constructed from
the components of the unit vectors e+ and e× along the
directions of the f+ and f× respectively:

Pnm[i] = e+n[i]e+m[i] + e×n[i]e×m[i] . (3.7)

The kernel of the projection P is the signal plane defined
by these two vectors. The null space of the projection P
defines the reconstructed detector noise which is referred
to as the null stream.

The projection matrix is invariant with respect to the
rotation in the signal plane where any two orthogonal
unit vectors can be used for construction of the Pnm.
Therefore one can select the two orthogonal unit vectors
u and v such that w · v = 0 and then

Pnm[i] = un[i]um[i] . (3.8)

The unit vector u defines the vector

ξ[i] = (w[i] · u[i])u[i] (3.9)

whose components are the standard likelihood estimators
of the noise-scaled detector responses ξkh [i].

C. Source coordinates

The maximum likelihood ratio statistic Lmax is a func-
tion of the sky coordinates θ and φ. If no information
regarding the source coordinates is available then the
variation over the sky should be also performed. It is ex-
pected that Lmax takes maximum close to a true source
location, however, it is not necessarily the optimal statis-
tic for the coordinate reconstruction. The coherent part
of the likelihood quadratic form

Ec =
∑
i

∑
n,m

wn[i]wm[i]Pnm[i], n 6= m (3.10)

has a strong dependence on the time delays between the
detectors and therefore the coherent energy Ec is ex-
pected to be a better statistics for the source localization.
On the other hand the Ec is a biased estimator: for an
arbitrary GW signal it may take maximum value away
from the true source location. To minimize the bias, the
sky statistic is constructed in the following way

Lsky =
LmaxEc

E(E − Lmax + |Ec|)
(3.11)

where E = (w|w) is the total normalized energy in the
network data stream. This statistic penalizes the sky
locations with low values of Ec and large values of the
residual (null) energy E − Lmax. The Lsky reduces to
the maximum likelihood statistic Lmax/E when the ratio
(E−Lmax)/Ec is close to unity, which is expected at the
true source location. The Lsky is used to rank different
sky locations and calculate the probability distribution
of the estimated source coordinates in the sky.

D. Model-dependent constraints

The likelihood method offers a convenient framework
for introduction of constraints arising from the source
models. Unlike for template searches where accurate
waveforms are required, in principle, any useful informa-
tion about sources can be used to constraint the likeli-
hood functional. This allows customization of the generic
burst algorithms in order to search for specific, but not
very well modeled sources. One obvious class of con-
straints is related to the different polarization states of
the GW signals. For example, some of the core collapse
models predict waveforms with a linear polarization [43]
or random polarization [44]. Merging binary neutron
stars or black holes are expected to produce elliptically
polarized gravitational wave signals [46]. Also the neu-
tron star mergers can be the source of the short GRB
signals [47] where relativistic jets are emitted along the
rotation axis of the binary system and in this case the as-
sociated gravitational waves should have the circular po-
larization. The cWB algorithm allows searches with sev-
eral types of the polarization constraints: circular, linear,
elliptical and random (or unmodeled search). All these
searches are used in the study to estimate possible im-
provement of the source localization if the reconstruction
is constrained by the source model.

IV. SIMULATIONS

A. Injected signals

Several types of “ad hoc” waveforms were used to study
the performance of the detector networks for different
signal frequencies and polarization states. They were in-
jected into the simulated detector data streams in a wide
range of signal-to-noise ratios with the coordinates uni-
formly distributed in the sky. The Gaussian detector
noise was simulated with the amplitude spectral density
presented in Figure 1. The injected signals were band-
limited white-noise waveforms (WNB) with the random
polarizations and sine-Gaussian waveforms (SG) with the
linear and circular polarizations. The WNB waveforms
were bursts of white Gaussian noise in a frequency band
(f1, f2) which have a Gaussian time profile with the stan-
dard deviation τ (see Table III). The random polariza-
tion waveforms h+ and h× were selected to have the same
square-sum energy: (h+|h+) = (h×|h×)

Waveform τ (s) f1 (Hz) f2 (Hz)

WNB LF 0.1 250 350

WNB HF 0.1 1000 2000

TABLE III: Simulated White Noise Bursts with low (LF) and
high (HF) frequencies.
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The SG waveforms were simulated as follows

h+(t) = ho sin(2πtf0) exp(−t2/τ2) , (4.1)

h×(t) = h1 cos(2πtf0) exp(−t2/τ2) , (4.2)

where f0 is the waveform central frequency, ho and h1 are
the waveform amplitudes, and τ is related to the wave-
form quality factor Q =

√
2πf0τ (see Table IV). The

amplitude parameters were h1 = 0 for linear polarization
and h1 = ho for circular polarization. During the anal-
ysis the amplitude of injected events varied to simulate
events with different signal-to-noise ratios.

Waveform f0 (Hz) Q Polarization

SGQ3 LF/HF 235/1053 3 Linear

SGQ9 LF/HF 235/1053 9 Linear

SGCQ9 LF/HF 235/1053 9 Circular

TABLE IV: Simulated sine-Gaussian waveforms with quality
factors Q=3 and Q=9, low (235Hz or LF) and high (1053Hz
or HF) frequencies, and two polarization types - linear and
circular.

B. Error regions

The injected signals are used for estimation of the accu-
racy of the coordinate reconstruction. For each injected
event the Lsky skymaps is calculated with the angular
resolution of dΩ = 0.4 × 0.4 square degrees: ∼ 200, 000
sky locations (pixels) total. Figure 3 shows an exam-
ple of such a skymap for one of the SGQ9 LF injec-
tions. For such events it is typical to see a pattern of
fringes with large value of Lsky corresponding to a good
match between responses due to a common GW signal
reconstructed in different detectors. Such sky points are
the most probable as the source location. Depending on
many factors, such as the signal strength, waveform mor-
phology, etc, the Lsky statistic can be well localized in a
single small cluster in the sky or distributed over a large
area which can be also split into several disjoint clusters.
This type of ambiguity is typical for the least constrained
unmodeled search and networks with only three spatially
separated detectors.

To characterize the accuracy of the coordinate recon-
struction for a single injection we define an error region:
total area of all pixels in the sky which satisfy the condi-
tion Lsky(θ, φ) ≥ Lsky(θi, φi), where (θi, φi) is the injec-
tion sky location. Given a population of injected signals
uniform in the sky, the 50 CL and 90 CL error regions,
containing 50% and 90% of injections respectively, can
be calculated. The median error angle is defined as the
square root of the 50% error area. Although the error
area may be split in several disjoint areas, we often use
the error angle as a convenient measure of the coordinate
resolution.

FIG. 3: Example of the likelihood sky map Lsky for an injected
signal in the HLV network at θ = −30◦ and φ = 144◦: Lsky

as a function of θ and φ (top), Lsky distribution around the
reconstructed location (bottom).

The Lsky skymap can be also converted into the prob-
ability skymap which is normalized to unity if integrated
over the entire sky. In this case the 50 CL and 90 CL
error regions are represented by the most probable pixels
with the cumulative probability of 50% and 90% respec-
tively. Such probability skymaps are not relevant for the
simulation studies we perform, but they are important
for the analysis of real data.

V. RESULTS

A. Coordinate Reconstruction

The accuracy of the coordinate reconstruction strongly
depends on the strength of detected signals which can be
conveniently characterized by the average (per detector)
signal-to-noise ratio

ρdet = ρnet/
√
K . (5.1)

For example, Figure 4 shows the dependence of the me-
dian error angle α50% on ρdet for all injected signals,
which is well approximated by a function

α50% = A+B

(
10

ρdet

)
+ C

(
10

ρdet

)2

. (5.2)
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The parameter A is the median error angle for events
with very large SNR: it may not be zero due to various
factors limiting resolution (see section VI). The sum of
the fit parameters A+B+C is the median error angle for
events with ρdet = 10. Figure 4 also shows a dependence

FIG. 4: Median error angle vs average detector SNR ob-
tained with the unmodeled algorithm for all types of injections
and different network configurations: HLV, AHLV, HJLV,
AHJLV.

of the coordinate resolution on the number of detector
sites in the network. There is a significant improvement
of the resolution when more sites are added to the net-
work. This is particularly noticeable at low SNR, which
is very important because the anticipated GW signals are
likely to be weak.

Because of several limiting factors (see section VI)
the reconstruction is not uniform in the sky. Figure 5
shows the distribution of the median error angle across
the sky for different network configurations. There is a
dramatic improvement of the coordinate reconstruction
for the AHLV, HJLV and AHJLV networks. However for
the 4-site networks there remain areas where the source
localization is poor. Figure 6 compares the pointing ca-
pabilities of the network consisting of three, four and five
sites by presenting the fraction of the sky where the re-
construction is performed with a given error area. This
figure also shows a significant improvement of the source
localization (particularly for the 90% error area) as more
sites are used for the reconstruction. The best coordi-
nate resolution is obtained with the 5-site network and it
is compatible with the field-of-view of most optical tele-
scopes.

The coordinate resolution depends also on the wave-
form morphology and the polarization content of GW
signals (see for details Section VI B). If reconstructed
with the least constrained unmodeled algorithm, the SG
waves with linear and circular polarization have less accu-
rate source localization (see Figure 7). However, the co-
ordinate resolution can be significantly improved if recon-

FIG. 5: Median error angle for HLV, AHLV, HJLV and
AHJLV networks (from top to bottom) as a function of source
coordinates (θ - latitude, φ - longitude) for injections with the
network SNR< 30.

struction is constrained by the source polarization model.
In general, the reconstruction improves as more accurate
models, with fewer free parameters, are used [21, 31, 45].
We expect, for example, that the template analysis of
waves from the coalescence of binary neutron stars and
black holes [48] should result in a better sky localization
than for the unmodeled burst search.

Tables V-VIII summarize the results of the analysis for
different injection signals, source polarization models and
networks by showing the fit parameters A and A+B+C,
which correspond to the median error angle for events
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FIG. 6: Fraction of the sky (vertical axis) for 3-site (LHH̃V),
4-site (AHLV and HJLV) and 5-site (AHJLV) networks where
sources (all waveform types with ρnet < 30) are reconstructed
with a given 50% (top) and 90% (bottom) error region (hori-
zontal axis).

with the high and low SNR, respectively.

unmodeled HLV AHLV HJLV AHJLV

WNB LF 4.8◦/0.7◦ 1.1◦/0.4◦ 1.8◦/0.4◦ 0.8◦/0.4◦

WNB HF 4.5◦/0.4◦ 0.6◦/0.4◦ 0.8◦/0.4◦ 0.4◦/0.4◦

SGQ9 LF 6.4◦/0.7◦ 1.4◦/0.4◦ 1.6◦/0.4◦ 1.0◦/0.4◦

SGQ9 HF 4.1◦/0.9◦ 1.0◦/0.4◦ 1.0◦/0.4◦ 0.5◦/0.4◦

SGQ3 LF 9.4◦/0.5◦ 1.1◦/0.5◦ 1.5◦/0.4◦ 0.9◦/0.4◦

SGQ3 HF 6.3◦/0.4◦ 0.9◦/0.4◦ 1.0◦/0.4◦ 0.5◦/0.4◦

SGCQ9 LF 9.3◦/0.8◦ 1.7◦/0.4◦ 2.0◦/0.4◦ 0.9◦/0.4◦

SGCQ9 HF 5.5◦/1.1◦ 1.4◦/0.4◦ 1.7◦/0.4◦ 0.9◦/0.4◦

TABLE V: Pointing accuracy for unmodeled search: fit pa-
rameters A+B+C / A representing the median error angle
for events with low/high SNR.

B. Waveform Reconstruction

The signal waveforms are obtained from the solution
of the likelihood functional. Those are the reconstructed
detector response as defined by Eq. 3.9. To characterize
the algorithm performances on waveform reconstruction

FIG. 7: Median error angle vs SNR for HLV network com-
paring different constrain searches. Top: SGQ9 LF wave-
form with unmodeled (black) and linear (grey) searches. Bot-
tom: SGCQ9 LF with unmodeled (black) and circular (grey)
searches.

elliptical HLV AHLV HJLV AHJLV

SGQ9 LF 5.3◦/0.9◦ 1.2◦/0.4◦ 1.4◦/0.5◦ 0.9◦/0.4◦

SGQ9 HF 4.5◦/0.8◦ 0.8◦/0.4◦ 0.9◦/0.6◦ 0.5◦/0.4◦

SGQ3 LF 3.6◦/0.6◦ 1.3◦/0.4◦ 1.1◦/0.4◦ 0.9◦/0.4◦

SGQ3 HF 4.4◦/0.7◦ 0.9◦/0.4◦ 0.8◦/0.4◦ 0.5◦/0.4◦

SGCQ9 LF 8.2◦/0.7◦ 1.9◦/0.4◦ 1.5◦/0.4◦ 0.9◦/0.4◦

SGCQ9 HF 7.2◦/0.8◦ 1.4◦/0.4◦ 1.1◦/0.4◦ 0.9◦/0.4◦

TABLE VI: Pointing accuracy for elliptical search: fit param-
eters A+B+C / A representing the median error angle for
events with low/high SNR.

we consider the normalized residual energy ∆:

∆ =
(ξh − ξ|ξh − ξ)

(ξh|ξh)
, (5.3)
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linear HLV AHLV HJLV AHJLV

SGQ9 LF 3.6◦/0.5◦ 1.1◦/0.4◦ 1.1◦/0.4◦ 0.7◦/0.4◦

SGQ9 HF 4.5◦/0.6◦ 0.8◦/0.4◦ 0.9◦/0.4◦ 0.5◦/0.4◦

SGQ3 LF 2.7◦/0.5◦ 1.1◦/0.4◦ 0.9◦/0.4◦ 0.7◦/0.4◦

SGQ3 HF 4.5◦/0.5◦ 0.8◦/0.4◦ 0.9◦/0.4◦ 0.5◦/0.4◦

TABLE VII: Pointing accuracy for linear search: fit param-
eters A+B+C / A representing the median error angle for
events with low/high SNR.

circular HLV AHLV HJLV AHJLV

SGCQ9 LF 2.3◦/0.6◦ 0.8◦/0.4◦ 1.0◦/0.4◦ 0.7◦/0.4◦

SGCQ9 HF 1.7◦/0.6◦ 0.8◦/0.4◦ 0.6◦/0.4◦ 0.6◦/0.4◦

TABLE VIII: Pointing accuracy for circular search: fit pa-
rameters A+B+C / A representing the median error angle
for events with low/high SNR.

where the inner products are defined by Equation 2.5.
The same as for the coordinate reconstruction, the accu-
racy of the waveform reconstruction strongly depends on
the strength of detected signal and the waveform mor-
phology. At low SNR, the reconstruction is affected by
the detector noise, however it improves with the increas-
ing value of SNR (see Figure 8). At high SNR, the recon-
struction accuracy reaches a limit due to the finite preci-
sion of the algorithm. In this paper we do not present a
detailed study of the waveform reconstruction. However,
such work is planned in the future.

FIG. 8: Normalized residual energy ∆ vs network SNR ob-
tained with the unmodeled algorithm and the HLV network
for all types of injections

VI. FACTORS LIMITING RECONSTRUCTION

In this section we describe the factors which limit the
accuracy of the coordinate reconstruction including: a)
angular and strain sensitivity of the detectors, b) polar-
ization content of the signals, c) calibration uncertainties
and d) limitations of the reconstruction algorithm.

A. Antenna patterns and detector noise

The angular and the strain sensitivity of the network
is fully characterized by its noise-scaled antenna pattern
vectors (see Eq. 2.1). Due to unfortunate sky location or
elevated detector noise, the components of these vectors
corresponding to an individual detector may be small
with respect to the other detectors, effectively exclud-
ing this detector from the detection and reconstruction
of a marginal GW signal. For example, for a source at
(θ = −40o, φ = 50o) the angular sensitivity of the V1

detector is too low (
√
|F+|2 + |F×|2 ∼ 0) and it can not

contribute to the reconstruction unless the GW signal is
very strong. For the HLV network it means that for a
significant fraction of the sky the triangulation is per-
formed with only two detectors, which is not sufficient
for the accurate source localization. For this reasons it
is very desirable to have four or more detectors in the
network operating in coincidence.

B. Waveforms and polarization

For a given direction to the source, the reconstruc-
tion accuracy may be very different depending on the
signal polarization. For example, a linearly polarized
signal (h+, 0) may not be measured by one of the de-
tectors for some values of the polarization angle when
|F+| is almost null. As a result, with the 3-site networks
the source localization for such signals is expected to be
poor (see Figure 9). On contrary, signals with two polar-
ization components can be localized well via their cross
component even at the minimum of F+.

C. Calibration uncertainties

The coordinate reconstruction may be affected by the
calibration uncertainties of recorded data streams. Typi-
cally the calibration uncertainties are of the order of 10%
in the amplitude and few degrees in the phase [42]. These
systematic distortions of the GW signal may result in a
systematic shift of the reconstructed sky location away
from a true source location.

To estimate this effect we introduce a variation of the
amplitude and phase of the injected detector responses.
The amplitude variation is selected randomly between
±10% or 0% and the random time shifts of ±32 µs or
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FIG. 9: Dependence of F+ (top plot, at θ = −30◦ and
φ = 72◦) and the reconstruction accuracy on the polariza-
tion angle ψ for two types of waveforms: linearly polarized
SGQ9 LF waveforms (middle) and randomly polarized WNB
LF waveforms (bottom).

0 µs are introduced. The non-zero time shifts correspond
to a phase shift of ±2.5◦ and ±11.5◦ at the low and high
frequencies respectively. Such “misscalibration” is ap-
plied to all detectors in the network. The results are
reported in table IX for the HLV network. They show
that depending on the signal morphology and bandwidth
the calibration uncertainties may affect the coordinate
reconstruction. The effect of calibration uncertainties is
particularly visible at high SNR where the angular resolu-
tion is less affected by the detector noise. Similar studies
for the AHJLV network do not show, even at high SNR,
any significant impact of the calibration errors used in
the analysis. This is an expected result, because a better
constrained AHJLV network provides more robust source
localization than the HLV network.

D. Reconstruction algorithm

There are several factors limiting the accuracy of the
coordinate and waveform reconstruction due to the cWB
algorithm. For high SNR events the coordinate resolu-
tion is limited by the cWB sky segmentation which is
0.4 × 0.4 degrees. Therefore the error angle can not be
less than 0.4 degrees. Also for the high frequency events
the coordinate resolution is limited by the discrete time
delays τk (see section III) with the step of 1/16384 sec-
onds and by the accuracy of the time delay filter (few
percent) used in the analysis. Also in the analysis we
did not use any unmodeled constraint specific for indi-

Waveform - Amplitude Phase

WNB LF 0.7◦ 1.0◦ 0.9◦

WNB HF 0.4◦ 0.6◦ 0.8◦

SGQ9 LF 0.7◦ 2.8◦ 1.2◦

SGQ9 HF 0.9◦ 1.6◦ 1.4◦

SGQ3 LF 0.5◦ 2.1◦ 1.0◦

SGQ3 HF 0.4◦ 1.1◦ 1.0◦

SGCQ9 LF 0.8◦ 2.5◦ 1.1◦

SGCQ9 HF 1.1◦ 1.9◦ 2.0◦

TABLE IX: Pointing accuracy (fit parameter A) for the
HLV network and different signals (column 1): no calibra-
tion errors (column 2), amplitude and phase mis-calibration
(columns 3 and 4 respectively).

vidual networks, which, in principle, may improve recon-
struction. These limitations are not fundamental and the
algorithm performance can be improved in the future.

VII. CONCLUSION

In the paper we present the results of the source lo-
calization and reconstruction of GW waveforms with the
networks of GW interferometers. For a general character-
ization of the detector networks we introduce few funda-
mental network parameters, including the effective noise,
and the network antenna and alignment factors. The ef-
fective power spectral density of the network noise deter-
mines the average network SNR for a given population
of GW signals. For each direction in the sky the network
performance is characterized by its antenna and align-
ment factors. The antenna factor describes how uniform
is the network response across the sky. The alignment
factor, which strongly depends on the number of detec-
tors and the orientation of their arms, determines the
relative contribution of the two GW polarizations into
the total network SNR.

It requires several non-aligned detectors (preferably
more than three) for a robust detection and reconstruc-
tion of both GW components. The coordinate recon-
struction strongly depends on the signal waveforms, net-
work SNR and the number of detector sites in the net-
work. The reconstruction can be significantly improved
when it is constrained by the signal model. Although a
crude coordinate reconstruction (ring in the sky) is pos-
sible with the networks of two spatially separated sites,
at least three detector sites are required to perform the
source localization. The accuracy of the localization dra-
matically increases for networks with more than three
sites, particularly for the low SNR events. For exam-
ple, the HH̃LV and AHLV networks are expected to have
about the same detection rates, however, the 4-site AHLV
network would have much better performance for the ac-
curate reconstruction of GW signals. The pointing res-
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olution required for joint observations with the electro-
magnetic telescopes is achievable with the networks con-
sisting of four sites. The AHJLV network demonstrates
further improvements, both in the detection and recon-
struction of GW signals, reaching a sub-degree angular
resolution. In addition, due to the limited duty cycle of
the detectors, both the LCGT and the Australian detec-
tors will significantly increase the observation time when
any of 4-site networks are operational.

The advanced LIGO and Virgo detectors are very ca-
pable of the first direct detection of gravitational waves.
However, for better reconstruction of the GW signals
more detectors are required. Extra detectors introduce
an important redundancy which lower the impact of lim-
ited duty cycle of the detectors, makes the coordinate
reconstruction more accurate, and less dependent on the
waveform morphology and calibration uncertainties. The
construction of the LCGT and the detector in Australia

will significantly enhance the advanced LIGO-Virgo net-
work and these detectors will play a vital role in the
future GW astronomy.
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