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Abstract

We observe that a recently proposed supersymmetric model with Q6 flavor symme-

try admits a new CP violating ground state. A new sum rule for the quark mixing

parameters emerges, which is found to be consistent with data. Simple extensions of the

model to the neutrino sector suggest an inverted hierarchical mass spectrum with nearly

maximal CP violation (|δMNS| ≃ π/2). Besides reducing the number of parameters in

the fermion sector, these models also provide solutions to the SUSY flavor problem and

the SUSY CP problem. We construct a renormalizable scalar potential that leads to

the spontaneous breaking of CP symmetry and the family symmetry.
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1 Introduction

Non–Abelian discrete symmetries have found applications in explaining aspects of the fla-

vor question not addressed by the standard model (SM) of particle physics. Restrictions

imposed by such symmetries can lead to predictions for the Cabibbo–Kobayashi–Maskawa

(CKM) quark mixing angles in terms of the quark mass ratios [1]. Such symmetries have

been employed successfully to generate a geometric structure for the leptonic mixing angles,

independent of the lepton mass ratios [2].

The non–Abelian discrete symmetric structure G appears to bode well within the su-

persymmetric (SUSY) standard model, since the same symmetry can also provide a natural

solution to the excessive flavor change that occurs with generic soft SUSY breaking terms [3].

The three families of quarks and leptons will transform as doublets or triplets of the group

G, which would result in the degeneracy of their masses. Degenerate squarks (and sleptons)

would alleviate the SUSY flavor violation problem. If the non–Abelian symmetry is con-

tinuous [4] and gauged [5], there is flavor violation arising from the D–terms of the flavor

group [6]. Continuous global symmetries are susceptible to explicit violation from quantum

gravity. Non–Abelian discrete symmetries which have a gauge origin are free from these

problems and deserve special considerations [7].

In Ref. [8] we presented a SUSY model based on the non–Abelian discrete group Q6 – the

binary dihedral group of order 12. This group has two inequivalent doublet representations,

one real doublet, and one pseudo–real doublet, which can be handy for model building. In the

flavor sector this symmetry results in one prediction for for a combination of the CKM mixing

parameters, which was shown to be consistent with data. The quark and lepton superfields are

assigned to doublets and singlets of Q6, with the singlets identified as belonging to the third

family. In the Q6 symmetric limit the squarks of the first two families would be degenerate,

which is sufficient to solve the SUSY flavor problem. Furthermore, by assuming that CP

violation has a spontaneous origin, this model also solves the SUSY CP problem. Excessive

CP violating processes arising from the SUSY breaking sector are absent, since the parameters

are all real. Yet the model admits CP violation in the quark mixing matrix.

One major purpose of the present paper is to show that the Q6 model studied in Ref. [8]

admits a new minimum which violates CP, but leaves a new interchange symmetry in tact.

By virtue of this interchange symmetry, we derive a new sum rule among the quark mixing

parameters and CP violation, which is found to be consistent with observations. Such an

interchange symmetry was present in Ref. [8] as well, but the new one presented here is

different, although it arises from the same Higgs potential. We extend this symmetry to the
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lepton sector and obtain interesting correlations between the neutrino oscillation parameters.

We also compare the predictions of the new minimum with those of the old, and in the process

update our old predictions. We use the most recent values of light quark masses where the

errors have decreased significantly as a result of improved lattice calculations. We compare

the model predictions to the best fit values obtained in the SM as well as by including certain

new physics contributions in Bd,s − Bd,s mixings as obtained by the CKFfitter group [9].

These new contributions are motivated by certain discrepancies obtained in the SM CKM

fits – such as the differences of order 20% in the CP violation parameter η obtained from

fits to ǫK and B → J/ΨKS decay. Small new physics contributions naturally arise in our Q6

based model. For example, there are contributions to meson–antimeson mixing via SUSY box

diagrams, which may be important for the Bd,s meson system since the third family squark

is not degenerate with the first two family squarks.

We also present a complete Higgs potential that leads to the spontaneous breaking of CP

symmetry and the Q6 flavor symmetry without leading to pseudo–Nambu–Goldstone bosons.

In addition to the Q6, a flavor universal Z4 symmetry is introduced. Owing to this Z4, even

after spontaneous symmetry breaking, an unbroken interchange symmetry survives in the

Higgs potential, for which there are two possible choices, denoted as PI,II . These symmetries,

along with Q6, reduce significantly the number of parameters in the fermion mass matrices.

This reduction of parameters leads to a sum rule involving quark masses and mixings [8].

Moreover, CP violation has a spontaneous origin, which is perhaps more satisfying than the

usual assumption of explicit CP violation. Nevertheless, the dominant source of CP violation

in the quark sector is the Kobayashi-Maskawa mechanism. The sum rule involving quark

masses and mixings that has been derived relies on the spontaneous violation of CP. With

this, the problem of excessive CP violation that generically exists in the soft SUSY breaking

sector can be solved in a rather simple way. Various phenomenological aspects of this model

in minimum PI have been studied in Ref. [8, 10, 11].

It is perhaps worthwhile to compare the present approach based on non–Abelian flavor

symmetries to those based on Abelian flavor symmetries. The latter can also lead to pre-

dictive scenarios for quark and lepton mixings with “texture zeros” in the fermion mass

matrices [12, 13]. While for two families of fermions, such symmetric matrices with nearest

neighbor interactions work well, the three family generalization is inconsistent with data [13].

Furthermore, these models by themselves do not solve the SUSY flavor problem. Our ap-

proach here based on Q6 symmetry is similar in spirit to the texture zero models in that

certain entries in the fermion mass matrices are zero, and thus the model has a precise predic-

tion for one of the quark mixing parameters. The non–Abelian symmetry also enables us to
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solve the SUSY flavor problem, due to the degeneracy of the first two families implied by the

Q6 symmetry. After Q6 symmetry breaking, flavor changing operators can be generated, but

as shown in Ref. [8,10,11], these are all sufficiently suppressed. Higher dimensional operators

are suppressed by the Planck scale and have negligible effects.

With Abelian flavor symmetries, one has the prospect for explaining the mass hierarchy

via the Froggatt–Nielsen mechanism [14]. This involves the use non–renormalizable operators

for light family mass generation, or equivalently, the introduction of new fermionic degrees

of freedom that generate such operators. While such an approach can lead to a qualitative

understanding of the mass and mixing hierarchies, because of uncertainties involved with

order one Yukawa couplings, quantitative explanation of the observed fermion spectrum is

difficult to achieve. In the Q6 model presented here, we aim for a quantitative prediction for

the quark mixing parameter, which can be used to confirm or rule out the model. As such, we

do not explain the hierarchies in the Yukawa couplings, but we rather accommodate them. No

new fermions beyond those of the MSSM are employed, unlike the Froggatt–Nielsen models,

at the price of having an extended Higgs sector.

In our model, the effective theory below a TeV has the MSSM spectrum plus two additional

Higgsino doublets arising from the extended Higgs sector. The new spin zero Higgs bosons will

have to be heavier than a few TeV, in order to be compatible with flavor changing processes,

and thus are unlikely to be discovered at the LHC. On the other hand, the two Higgsino

doublets beyond the MSSM are predicted to be light (with masses of order 100 GeV), in

order to solve the SUSY CP problem. Spontaneous breaking of CP implies that the MSSM

soft SUSY breaking parameters are real, which solves bulk of the strong CP problem. Since

the VEVs of the Higgs fields are complex, after symmetry breaking, there is residual CP

violation, which is however small if the Higgsinos are light [11].

The plan of the paper is as follows. In Sec. 2 we present the supersymmetric Q6 model.

In Sec. 3 we analyze the predictions of model PI . In Sec. 4 we provide the new model PII

and analyze its predictions for the quark mixing angles and CP violation. Sec. 5 discusses

a simple extension of model PII to the neutrino and charged lepton sector and the resulting

predictions. In Sec. 6 we have our concluding remarks.
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2 CP invariant SUSY Q6 model

2.1 Q6 group theory and the Yukawa sector of the model

We work within the context of supersymmetric standard model, with a non–Abelian flavor

symmetry Q6 acting on the three families of quarks, leptons and their superpartners. The

group theory of Q6 is discussed in detail in Ref. [8]. We briefly recall its salient features

relevant for model building. Q6 is a binary dihedral group, a subgroup of SU(2), of order 12.

It has the presentation

{A,B;A6 = E,B2 = A3, B−1AB = A−1} . (2.1)

The irreducible representations of Q6 fall into 2, 2
′

, 1, 1
′

, 1
′′

, 1
′′′

, where the 2 is complex–valued

but pseudoreal, while the 2
′

is real valued. The {1, 1′, 1′′, 1′′′} singlets form a Z4 subgroup

with the 1 and 1
′

being real and the 1
′′

and 1
′′′

being complex conjugates of each other. The

group multiplication rules are given as

1′ × 1′ = 1, 1′′ × 1′′ = 1′, 1′′′ × 1′′′ = 1′, 1′′ × 1′′′ = 1, 1′ × 1′′′ = 1′′, 1′ × 1′′ = 1′′′ (2.2)

2× 1′ = 2, 2× 1′′ = 2′, 2× 1′′′ = 2′, 2′ × 1′ = 2′, 2′ × 1′′ = 2, 2′ × 1′′′ = 2 (2.3)

2× 2 = 1 + 1′ + 2′, 2′ × 2′ = 1 + 1′ + 2′, 2× 2′ = 1′′ + 1′′′ + 2 (2.4)

The Clebsch–Gordon coefficients for these multiplication can be found in Ref. [8].

In Table 1 we list the Q6 assignment of the quark, lepton and Higgs chiral supermulti-

plets in our model,4 where Q,Q3, L, L3 stand for the SU(2)L quark and lepton fields, and

Hu, Hu
3 , H

d, Hd
3 are the Higgs doublets. The SU(2)L singlet supermultiplets for quarks,

charged leptons and neutrinos are denoted by uc, uc3, d
c, dc3, e

c, ec3 and νc, νc3. Three pairs of

Higgs doublets are introduced in order to generate fermion masses directly in the presence of

Q6 symmetry using renromalizable couplings. The singlet field T3 is needed to generate the

Majorana mass for νc3. The other singlet scalar fields are needed to achieve spontaneous break-

ing of Q6 symmetry as well as CP symmetry without giving rise to pseudo–Nambu–Goldstone

bosons. This point will be clarified in the next subsection. Table 1 also shows a flavor uni-

versal Z4 symmetry, the purpose of which is to realize an unbroken interchange symmetry in

the scalar sector even after spontaneous symmetry breaking. Such an interchange symmetry,

for which we have two solutions, enables us to predict one quark mixing parameter.

4Essentially the same model can be realized with any Q2N if N is odd and a multiple of 3.
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Table 1: Particle content of the Q6 model along with their transformation under Q6 × Z4.

{Q,L} {Q3, L3} {uc, dc, νc, ec} {uc3, dc3, νc3, ec3} Hu,d Hu,d
3 S S3 T T3 U

Q6 2 1′ 2′ 1′′′ 2′ 1′′′ 2 1 2′ 1′ 1

Z4 −i −i + + i i − − + + +

The most general Yukawa superpotential involving the quark and lepton fields invariant

under the Q6 × Z4 symmetry, assuming matter parity in the usual way, is:

WYukawa = {auQ3u
c
3H

u
3 + bu(Q ∗Hu)uc3 + b′uQ3(H

u ∗ uc) + cu(Q ⋆ uc)Hu
3 + u→ d}

+ {aℓL3e
c
3H

d
3 + be(L ∗Hd)ec3 + b′eL3(H

d ∗ ec) + ce(L ⋆ e
c)Hd

3 + e→ ν}

+
M1

2
νc · νc + aνc

2
νc3ν

c
3T3 , (2.5)

where we have defined

x · y = x1y1 + x2y2 , x ∗ y = x1y2 + x2y1 , x ⋆ y = x1y2 − x2y1 . (2.6)

We have used the explicit basis for Q6 given in Ref. [8] and the notation uc ≡ (−uc1, uc2) etc,
for the right–handed Q6 doublet fermion fields. Note that the Z4 symmetry plays no role in

the construction of Eq. (2.5).

2.2 The Higgs sector

In order to break the Q6 symmetry spontaneously while avoiding pseudo–Nambu–Goldstone

bosons one needs to introduce SM singlet Higgs fields. The minimal such set will involve a 2,

2′, 1′ and two 1’s of Q6. These are listed in Table 1. The SM singlet S’s are needed to mix

the Q6 doublets Hu,d with the Q6 singlets Hu,d
3 . Without the Q6 doublet T there will be an

accidental O(2) symmetry in the Higgs potential. The O(2) symmetry is violated by the cubic

coupling of T . The field T3 is introduced for the Majorana mass for νc3, and the Q6 singlet

U is introduced to generate a spontaneous CP violation and also to enable the spontaneous

breaking of Q6×Z4 within the SM singlet sector. Thus the SM singlet Higgs sector employed

appears to be the minimal set consistent with the demands we wish to meet.

The most general Higgs superpotential involving the Higgs fields of Table 1 invariant under

the Q6 × Z4 symmetry along with the usual matter parity (with all the Higgs fields being
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even) has the form

WHiggs = WU +WST +WH , (2.7)

where

WU = µU U2 + λ U3 +
(

λ1 S
2
3 + λ2 T

2
3 + λ3T · T

)

U, (2.8)

WST = µS3
S2
3 + µT T · T + µT3

T 2
3 + λ′3 T · (T ⊗ T )

+λ′1[ − 2S2S1T1 + (S2
1 − S2

2)T2 ] + λ′2S · ST3 , (2.9)

WH = λ′′1 H
u
3 (H

d ∗ S) + λ′′2 (Hu ∗ S)Hd
3 + λ′′3 (Hu ·Hd)S3 (2.10)

with the notation

A · (B ⊗ C) = A1(−B1C1 +B2C2) + A2(B1C2 +B2C1) . (2.11)

Thus T · (T ⊗T ) = 3T1T
2
2 −T 3

1 . The Z4 symmetry has restricted the form of Eqs. (2.8)-(2.10);

without the Z4, the following couplings would be allowed:

W ′
Higgs = (−Hu

1H
d
1 +Hu

2H
d
2 )T1 + (Hu

1H
d
2 +Hu

2H
d
1 )T2 . (2.12)

We wish to avoid these terms, since in their absence we can define an unbroken discrete

symmetry, as discussed below.

The Higgs potential contains F terms derived from Eqs. (2.8)- (2.10), D terms associated

with SU(2)L × U(1)Y breaking, and the following soft SUSY breaking Lagrangian5

Lsoft = m2
U |U |2 +m2

S(|S1|2 + |S2|2) +m2
S3
|S3|2 +m2

T (|T1|2 + |T2|2) +m2
T3
|T3|2

+ m2
Hu

3
|Hu

3 |2 +m2
Hd

3

|Hd
3 |2 +m2

Hu(|Hu
1 |2 + |Hu

2 |2) +m2
Hd(|Hd

1 |2 + |Hd
2 |2)

+
{

BU U2 +BS3
S2
3 + BT T · T +BT3

T 2
3

+
[

A U2 + A1 S
2
3 + A2 T

2
3 + A3 (T · T )

]

U + A′
3 T · (T ⊗ T )

+ A′
1[ − 2S2S1T1 + (S2

1 − S2
2)T2 ] + A′

2S · ST3
+ A′′

1 H
u
3 (H

d ∗ S) + A′′
2 (Hu ∗ S)Hd

3 + A′′
3 (Hu ·Hd)S3 + h.c.

}

, (2.13)

where the · and ∗ products are defined in (2.6). We assume CP invariance, which implies

that all the Yukawa couplings and the parameters in the Higgs potential are real. The

Higgs potential would then admit two interesting minima which leave two separate discrete

symmetries PI or PII unbroken. We analyze these two ground states in the next two sections.

5We have used the same symbol for the scalar components as the superfields.
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3 Ground state with unbroken interchange symmetry

PI

The following symmetry PI is respected by the Q6 × Z4 invariant Higgs superpotentials Eqs.

(2.8) -(2.10), and (2.13) and the D terms:

Hu
1 ↔ Hu

2 , H
d
1 ↔ Hd

2 , S1 ↔ S2, T2 → −T2,
Hu

3 → Hu
3 , H

d
3 → Hd

3 , S3 → S3 , T1 → T1, T3 → T3, U → U. (3.14)

The VEVs of the various Higgs fields can be consistently chosen such that this symmetry

remains unbroken:

〈

Hu,d
1

〉

=
〈

Hu,d
2

〉

= vu,d1 eiφ
u,d
+ ,

〈

Hu,d
3

〉

= vu,d3 eiφ
u,d
3 , 〈S1〉 = 〈S2〉 = vSe

iφS ,

〈T1〉 = vT e
iφT , 〈T2〉 = 0, 〈S3〉 = vS3

eiφS3 , 〈T3〉 = vT3
eiφT3 , 〈U〉 = vUe

iφU . (3.15)

In Eq. (3.15), we have explicitly displayed the complex phases. It should be noted that this

symmetry PI is an accidental symmetry of the Higgs potential, and is not respected by the

full theory. For example, the Yukawa sector explicitly breaks this symmetry. Nevertheless,

the existence of PI enables us to choose a ground state given as in Eq. (3.15) consistently.

We have explicitly verified that the minimum of Eq. (3.15) is indeed a local minimum,

and that spontaneous breaking of Q6 × Z4 and CP symmetries occurs without generating

pseudo–Nambu–Goldstone bosons. The scalar spectrum of our model is in fact arrived at by

meeting these requirements.

In the ground state PI , the mass matrices for the up and down quarks take the form:

Mu,d =







0 Cu,d
Bu,d√

2
ei∆φu,d

−Cu,d 0
Bu,d√

2
ei∆φu,d

B′

u,d√
2
ei∆φu,d

B′

u,d√
2
ei∆φu,d Au,d






. (3.16)

Here we have defined the following parameters:

Au,d = au,d v
u,d
3 , Bu,d =

√
2 bu,d v

u,d
1 , B′

u,d =
√
2 b′u,d v

u,d
1 , Cu,d = cu,d v

u,d
3 ,

∆φu,d = φu,d
3 − φu,d

1 . (3.17)

We have ignored irrelevant overall phases of the two mass matrices. CP invariance of the

Lagrangian implies that the parameters (Au,d, Bu,d, B
′
u,d, Cu,d) are all real. In this case,
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after a common 45 degree rotation in the (1-2) sector that would set the (1,3) and (3,1)

entries of Mu,d of Eq. (3.16) to zero without inducing CKM mixing, we can write

Mu,d = Pu,dM̂u,dPu,d , (3.18)

where M̂u,d are real matrices given as

M̂u,d =





0 Cu,d 0

−Cu,d 0 Bu,d

0 B′
u,d Au,d



 , (3.19)

and Pu,d are diagonal phase matrices given as

Pu,d = diag.{e−i∆φu,d, ei∆φu,d, 1} . (3.20)

The CKM matrix is then given by

VCKM = OT
uPOd , (3.21)

where Ou,d are the orthogonal matrices that diagonalize M̂u,d via

OT
u,dM̂u,dM

T
u,dOu,d = diag.{m2

u,d, m
2
c,s, m

2
t,b} , (3.22)

and P is a diagonal phase matrix

P = diag.{eiφ, e−iφ, 1} (3.23)

with φ = ∆φd − ∆φu. Since M̂u and M̂d each has four real parameters, once the six quark

masses are fixed, Ou and Od will have one undetermined parameter each. These two param-

eters and the phase φ appearing in the matrix P of Eq. (3.23) will completely fix the three

CKM mixing angles and the one CP violating phase. That will lead to one sum rule involving

the CKM mixing angles, the CP violating phase, and the quark mass ratios. This prediction

was analyzed in Refs. [8, 15] and shown to be fully consistent with data.

Here we update the results of Ref. [8] for the quark mixing parameter prediction. We use

the most recent values of the quark masses. Lattice calculations have reduced the errors in

the light quark masses, which we adopt for our fits. Furthermore, we compare the model

prediction with the global fits provided recently in Refs. [9,16] assuming specific new physics

contributions. The new physics contributions are motivated by certain discrepancies that

have been observed in the CKM fits. For example, the CP violation parameter η determined

from ǫK differs from that obtained from the decay B → J/ψKS by more than 2 standard
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deviations. We compare our model fits with the best fit of the standard model, as well as

with the best fit for Scenario 1 of Refs. [9,16]. This scenario is characterized by independent

new contributions ∆d,s to Bd,s − Bd,s mixing amplitude. It turns out that there is room for

small (∼ 25%) new contributions to these mixings in our model, arising from gluino–squark

box diagrams. The Q6 assignment of quarks implies that the third family squark is not

degenerate with the first two family squarks (which are nearly degenerate). Once the quark

mass matrices are diagonalized, there will be small off–diagonal entries in the squark mass

matrix, which leads to Bd,s −Bd,s mixings. These diagrams have been evaluated in Ref. [11].

While real, these amplitudes are still in the interesting range for new physics to influence the

CKM parameter fits. In Ref. [17] the radiative corrections to these mixing parameters, arising

through Higgs boson exchange, have been computed, and have been shown to be complex.

Thus, it appears that the Q6 model admits small deviations in the CKM fits to Bd,s − Bd,s

mixings. It should be noted, however, that the prediction of the present model agrees well

with the best fit values of the CKM fits, with or without new physics assumed.

Guided by the analytic expressions for the CKM mixing parameters from (3.19) - (3.23),

we have done a numerical fit to all quark masses and mixings. An excellent fit is obtained

with the following choice of parameters at µ = 1 TeV:

Au/mt = 0.9963, Bu/mt = 0.06051, B′
u/mt = 0.06051, Cu/mt = 1.748× 10−4,

Ad/mb = 0.8895, Bd/mb = 0.04214, B′
d/mb = 0.4554, Cd/mb = −5.043× 10−3,

φ = 0.71875. (3.24)

The resulting mass eigenvalues at µ = 1 TeV are:

mu = 1.25 MeV, mc = 552 MeV,

md = 2.74 MeV, ms = 50.0 MeV, (3.25)

where we have used mt = 150.3 GeV and mb = 2.46 GeV. These values are to be compared

with quark masses extrapolated from low energy scale to µ = 1 TeV [18]:

mu = 0.85 ∼ 1.65 MeV , md = 2.05 ∼ 2.90 MeV ,

ms = 39.6 ∼ 64.4 MeV , mc = 502 ∼ 570 MeV ,

mb = 2.39 ∼ 2.53 GeV , mt = 148.9 ∼ 151.6 GeV , (3.26)

where we have updated the result of [18] by using the updated quark masses given in PDG

2011 [19], while neglecting the uncertainties due to the RG running. The input values of Eq.
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(3.24) give also the following output for the CKM parameters:

λ = 0.2252, A = 0.7962 , ρ̄ = 0.1613 , η̄ = 0.4230 ,

sin 2β = 0.8042 , α = 84.1 [deg] , β = 26.8 [deg] , γ = 69.1[deg] , (3.27)

which should be compared with the fit result of the CKMfitter group (scenario I) [9]

λ = 0.22542± 0.00077 , A = 0.801+0.024
−0.017 , (3.28)

ρ̄ = 0.159+0.036
−0.035 , η̄ = 0.438+0.019

−0.029 , sin 2β = 0.813+0.022
−0.068 ,

α = 79+22
−15 [deg] , β = 27.2+1.1

−3.1 [deg] , γ = 70.0+4.3
−4.5 [deg] . (3.29)

Figure 1: The prediction in the ρ̄− η̄ plane for the model PI , where we have used as the input parameters;

the quark masses, λ and A given in Eqs. (3.26) and (3.28), respectively. We also have imposed the constraints

on the quark mass ratios [19]: 2ms/(mu +md) = 22 ∼ 30, ms/md = 17 ∼ 22,mu/md = 0.35 ∼ 0.60. The

crosses are the CKMfitter group values [9]; blue (scenario I) and red (SM).

Since there are nine model parameters for six quark masses and four CKM mixing param-

eters, we can make one prediction in a two dimensional plane if we fix eight of the nine model

parameters. To fix these eight parameters we use the quark masses, λ and A given in (3.26)

and (3.28), respectively. Fig. 1 shows the prediction in the ρ̄− η̄ plane, and Fig. 2 shows the

11



Figure 2: The prediction in the β − γ plane for the model PI . The input parameters and the constraints

are the same as for Fig. 1.

prediction in the β − γ plane. The CKMfitter group best fit values (3.29) are also indicated

in these figures. We see from Eqs. (3.25), Fig. 1 and Fig. 2 that the model PI reproduces the

quark masses, CKM mixings and the CP violating phase in an excellent way.

4 New ground state with unbroken interchange sym-

metry PII

The same Higgs potential as derived from Eqs. (2.7), and the soft SUSY breaking Lagrangian

(2.13) including the D terms, with all parameters taken to be real so that CP is an exact

symmetry, admits a new unbroken interchange symmetry as given below:

Hu
1 ↔ Hu∗

2 , Hd
1 ↔ Hd∗

2 , S1 ↔ S∗
2 , T2 → −T ∗

2 ,

Hu
3 → Hu∗

3 , Hd
3 → Hd∗

3 , S3 → S∗
3 , T1 → T ∗

1 , T3 → T ∗
3 , U → U∗. (4.30)

This symmetry PII enables us to choose a ground state given by

〈Hu
1 〉 = vu1 e

−iφu , 〈Hu
2 〉 = vu1 e

iφu ,
〈

Hd
1

〉

= vd1e
−iφd,

〈

Hd
2

〉

= vd1e
iφd,
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〈Hu
3 〉 = vu3 ,

〈

Hd
3

〉

= vd3 ,

〈S1〉 = vSe
−iφS , 〈S2〉 = vSe

iφS , 〈S3〉 = vS3
, (4.31)

〈T1〉 = vT1
, 〈T2〉 = −ivT2

, 〈T3〉 = vT3
, 〈U〉 = vU ,

where the complex phases are all explicitly displayed. Note that there are only three phases,

φS, φu and φd in the VEVs, along with a purely imaginary VEV of T2.

In the background PII , the fermion mass matrices Mu,d following from Eq. (2.5) take the

form

Mu,d =







0 Cu,d
Bu,d√

2
e−iφu,d

−Cu,d 0
Bu,d√

2
eiφu,d

B′

u,d√
2
e−iφu,d

B′

u,d√
2
eiφu,d Au,d






(4.32)

with the parameters as defined in Eq. (3.17). CP invariance of the Lagrangian implies that

the parameters {Au,d, Bu,d, B
′
u,d, Cu,d} are all real.

Model PII , while different from model PI , is just as predictive in the quark sector as PI .

It is then interesting to see if the quark mixing sum rule of PII is consistent with data. To

address this question we proceed to diagonalizeMu,d of Eq. (4.32). The phases in the matrices

of Eq. (4.32) can be factorized:

Mu,d = Pu,dM
r
u,dPu,d (4.33)

where

Pu,d = diag.{eiφu,d, e−iφu,d, 1} (4.34)

withM r
u,d given as in Eq. (4.32), but with φu,d set to zero. Quark field redefinitions can absorb

the phases in Pu,d, however a phase matrix will then appear in the quark mixing matrix:

P = diag.{eiφ, e−iφ, 1} , (4.35)

where

φ = φd − φu . (4.36)

Now we do a 45 degrees rotation in the (1-2) plane to bring M r
u,d into M̂u,d as given in Eq.

(3.19), but this will generate a non-trivial quark mixing matrix given by

K =





cosφ i sinφ 0

i sin φ cosφ 0

0 0 1



 . (4.37)

The CKM mixing matrix is then obtained as

VCKM = OT
uKOd , (4.38)
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where Ou,d diagonalize the matrices of Eq. (3.19) as specified in Eq. (3.22).

Using the approximate analytic expressions for the CKM mixing parameters, we have done

a numerical fit to all quark masses and mixings within this model. An excellent fit is obtained

with the following choice of parameters at µ = 1 TeV:

Au/mt = 0.01389, Bu/mt = −0.003282, B′
u/mt = 0.9999, Cu/mt = 1.381× 10−3,

Ad/mb = 0.9020, Bd/mb = 0.04512, B′
d/mb = 0.4297, Cd/mb = 4.554× 10−3,

φ = 0.1038. (4.39)

The resulting mass eigenvalues at µ = 1 TeV are:

mu = 1.12 MeV, mc = 535 MeV,

md = 2.27 MeV, ms = 50.0 MeV, (4.40)

where we have used mt = 150.3 GeV and mb = 2.46 GeV as in the case of PI . These values

are to be compared with quark masses given in Eq. (3.26). The input values of Eq. (4.39)

give the output for the CKM parameters:

λ = 0.2254, , A = 0.7987 , ρ̄ = 0.1575 , η̄ = 0.4231 ,

sin 2β = 0.8021 , α = 83.7 [deg] , β = 26.7 [deg] , γ = 69.9[deg] , (4.41)

which should be compared with the fit result of the CKMfitter group (3.29).

Fig. 3 shows the prediction in the ρ̄ − η̄ plane, and Fig. 4 shows the prediction in the

β− γ plane for model PII . The CKMfitter group best fit values (3.29) as well as the SM best

fit values are indicated in these plots. As in the case of PI , we see from Eqs. (4.40), Fig. 3

and Fig. 4 that the model PII also reproduces the quark masses, CKM mixings and the CP

violating phase in an excellent way.

5 Predictive scenario for neutrino mixing

The lepton sector of model PI with the Q6 assignment given in Table 1 has been studied

in Ref. [8], and therefore we will not discuss it further here. It is interesting to see if there

are any constraints on neutrino oscillation parameters for model PII . Here we explore an

alternative possibility of the Q6 assignment for the leptons, which is given in Table 2.

In this new scenario, the leptonic part of the superpotential (2.5) becomes

WYukawaℓ = be(L ·Hd)ec3 + b′eL3(H
d · ec) + ce(L⊗ ec) ·Hd

14



Figure 3: The prediction in the ρ̄− η̄ plane for the model PII , where we have used as the input parameters;

the quark masses, λ and A given in Eqs. (3.26) and (3.28), respectively. We also have imposed the constraints

on the quark mass ratios [19]: 2ms/(mu +md) = 22 ∼ 30, ms/md = 17 ∼ 22,mu/md = 0.35 ∼ 0.60. The

crosses are the CKMfitter group values [9]; blue (scenario I) and red (SM).

+ aνL3ν
c
3H

u
3 + b′νL3(H

u · νc) + cν(L⊗ νc) ·Hu

+
M1

2
νc · νc + aνc

2
νc3ν

c
3T3 , (5.42)

where the · and ⊗ products are defined in (2.6) and (2.11), respectively.

The Majorana mass matrix for the right–handed neutrinos is given by

Mνc =





M1 0 0

0 M1 0

0 0 M3



 , (5.43)

where M3 = aνc vT3
. Note that M1 and M3 are both real. The Dirac neutrino and charged

lepton mass matrices are:

MνD =





−Cνe
iφu Cνe

−iφu 0

Cνe
−iφu Cνe

iφu 0

B′
νe

iφu B′
νe

−iφu Aν



 , Mℓ =





−Cℓe
iφd Cℓe

−iφd Bℓe
iφd

Cℓe
−iφd Cℓe

iφd Bℓe
−iφd

B′
ℓe

iφd B′
ℓe

−iφd 0



 .(5.44)
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Figure 4: The prediction in the β − γ plane for the model PII . The input parameters and the constraints

are the same as for Fig. 3.

Table 2: An alternative Q6 × Z4 assignment for the leptons.

L {ec, νc} L3 ec3 νc3
Q6 2′ 2′ 1 1 1′′

Z4 −i + −i + +

The light neutrino Majorana mass matrix is found (by the seesaw formula) to be

M light
ν = m0





2ρ22 cos(2φu) 0 −2iρ2ρ4 sin(2φu)

0 2ρ22 cos(2φu) 2ρ2ρ4

−2iρ2ρ4 sin(2φu) 2ρ2ρ4 −ρ23 + 2ρ24 cos(2φu)



 , (5.45)

where

ρ22 = (Cν)
2/M1 , ρ

2
3 = −(Aν)

2/M3 , ρ
2
4 = (B′

ν)
2/M1 . (5.46)

We have assumed that M1 is positive, while M3 is negative. When φu = 0, the neutrino

mass matrix is exactly the same as the matrix discussed in [20], and yields only a tiny
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Ue3 ∼ me/mµ ∼ 10−3, where Ue3 is the (e, 3) element of the Maki-Nakagawa-Sakata (MNS)

mixing matrix UMNS. It was also shown there that the mass matrix (5.45) with φu = 0 can

yield consistent neutrino masses and mixing only if M3 is negative, and the mass spectrum is

inverted. This conclusion also applies to the present case with non-vanishing φu. For non-zero

φu, we obtain Ue3 ∼ sin 2φu, which can be small or large. We vary |Ue3| in its entire range

allowed by experiments and correlate its value with other observables.

0 0.01 0.02 0.03 0.04 0.05

| U
e3

 |
2

-3

-2

-1

0

1

2

3

δ M
N

S

Figure 5: The prediction in the |Ue3|2−δMNS plane for the model PII with the Q6 assignment of the leptons

given in Table 2, where we have used the parameters given in (5.52), and φd = φu + 0.1038. The dashed

vertical line is the maximal CP violation.

We make the matrix (5.45) real by redefining ν1 = iν ′1. The resulting mass matrix M̂ light
ν

can be diagonalized by an orthogonal matrix Oν as OT
ν M̂

light
ν Oν . As for the charged lepton

mass matrix Mℓ, we can obtain hierarchical masses, e.g., me ∼ B′
ℓ , mµ ∼ Cℓ , mτ ∼ Bℓ.

Keeping this in mind we rotate Mℓ according to

M̂ℓ = PLMℓPR , (5.47)
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Figure 6: The prediction in the |Ue3|2− < mee > plane for the same input parameters as Fig. 5.

where

PL =
1√
2





e−iφd −eiφd 0

−ie−iφd −ieiφd 0

0 0
√
2



 , PR =
1√
2





e−iφd e−iφd 0

−eiφd eiφd 0

0 0
√
2



 . (5.48)

Then we consider M̂ℓM̂ℓ
†
in the limit B′

ℓ → 0, (i.e. me → 0), and find

M̂ℓM̂ℓ
†

=





C2
ℓ (3− cos(4φd)) C2

ℓ sin(4φd) 0

C2
ℓ sin(4φd) 2B2

ℓ + C2
ℓ (1 + cos(4φd) 0

0 0 0



 . (5.49)

The eigenvalues in the limit are

m2
e = 0 , m2

µ ≃ C2
ℓ (3− cos(4φd)) , m

2
τ ≃ 2B2

ℓ + C2
ℓ (1 + cos(4φd) , (5.50)

and the (inverse) diagonalizing orthogonal matrix (OT
ℓ M̂ℓM̂ℓ

†Oℓ) is found to be

OT
ℓ ≃







0 0 1

1 − C2
ℓ

2B2
ℓ

sin(4φd) 0
C2

ℓ

2B2
ℓ

sin(4φd) 1 0






. (5.51)
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Figure 7: |Uµ3|2 against |Ue3|2 for the same input parameters as Fig. 5.

Since the relative phase φ = φd − φu is fixed in the quark sector, there are seven independent

parameters in the lepton sector. We use [21]:

me = 0.511 MeV , mµ = 105.7 MeV , mτ = 1.777 GeV , |Ue2|2 = 0.318 +0.019
−0.016

∆m2
13 = (2.40 +0.12

−0.11)× 10−3 eV2 , ∆m2
21 = (7.59 +0.23

−0.18)× 10−5 eV2 (5.52)

as input parameters. The MNS neutrino mixing matrix is then given by

UMNS = OT
ℓ PLPνOν × diag.{ 1 , i , 1 } , (5.53)

where the last phase factor multiplied with UMNS is the Majorana phase, and Pν = diag.{ i , 1 , 1 },
which was introduced to make the matrix (5.45) real. In the lepton sector we have only one

free phase φu, which controls Ue3. In the following calculations we use φd = φu + 0.1038 (see

(4.39).

Fig. 5 shows the Dirac phase δMNS (in the convention of Ref. [19]) against |Ue3|2. We see

that the model predicts nearly maximal CP violation. This can be understood as follows.

Consider the limit me, φu, φd → 0. In this limit, only Pν contributes to δMNS, and the first

element of Pν , e
iπ/2, appears as the Dirac phase.
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It is possible to predict the effective neutrino mass < mee >= |mν1U
2
e1+mν2U

2
e2+mν3U

2
e3|

for neutrinoless double beta decay as a function of |Ue3|. Note that the first row of OT
ℓ PLPν

is diag.{ 0 , 0 , 1 } in the me → 0 limit. Since Oν is real, the first and third elements of the

first row of UMNS are real, while the second element is purely imaginary. Therefore,

< mee > ≃ |mν1 cos
2 θsol −mν2 sin

2 θsol| ≃ mν2 cos 2θsol ≃ 0.4 mν2 . (5.54)

In Fig. 6 we plot the prediction in the |Ue3|2− < mee > plane, which verifies the rough

estimate above. The main contribution to |Uµ3| comes from Oℓ. In the limit me, φu →
0, it is exactly 1/

√
2, so the maximal mixing. The deviation from the maximal mixing

has terms proportional to me/mµ and to sin 2φu. In Fig. 7 we plot |Uµ3|2 against |Ue3|2,
verifying our expectation. Note that the entire range of |Ue3| allowed by experiments currently

is also allowed by atmospheric neutrino oscillations. But once the |Ue3| is measured, the

model will make precise prediction for |Uµ3| which can be scrutinized with improved precision

experiments.

6 Conclusions

The Q6 model of flavor is constructed to solve the SUSY flavor problem of the supersymmetric

standard model. It also yields an interesting prediction for the quark mixing parameters,

which compares very well with experimental data. An unbroken interchange symmetry plays

an important role in obtaining the quark mixing parameter prediction. In this paper we have

updated this prediction, and compared it with the best fit values within the standard model

as well as with new physics contributions assumed in Bd,s − Bd,s mixing amplitudes. The

model prediction is in very good agreement with the data.

A major observation of the present paper is the existence of a new minimum that violates

CP symmetry spontaneously, but leaves a new interchange symmetry unbroken. In this

minimum, there is again a prediction for quark mixing parameters. We have analyzed this

prediction and found that it fits data (within the CKM model and with new physics included)

rather well. We have extended this symmetry to the leptonic sector, and have found various

correlations between neutrino oscillation parameters.

We conclude with several comments on the new solution found.

(1) The SUSY flavor problem is solved in the new ground state PII in the same way it is

solved in PI . Q6 invariance requires the first two family squarks and sleptons to be degenerate

in mass, which provides the needed SUSY GIM mechanism. Since after Q6 breaking the Q6
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doublet and singlet quark states mix, there is residual flavor violation mediated by the SUSY

particles, but such FCNC processes are well within experimental limits.

(2) The SUSY CP problem is solved in the model by virtue of spontaneous CP viola-

tion. The fundamental parameters in the Lagrangian are all real, complex phases develop

only spontaneously via the VEVs of Hu,d and S, T, U fields. This implies that the soft SUSY

breaking parameters such as the gluino mass are all real, which alleviates bulk of the SUSY

phase problem. The trilinear SUSY breaking A–terms are not proportional to the correspond-

ing Yukawa couplings, however the phases in these A–terms, since they arise spontaneously,

will align with the phases in the fermion mass matrices. Thus the A–terms do not generate

CP violation. There is CP violation arising from the µ–terms, but as suggested in Ref. [11],

if the Higgsino masses are parametrically smaller than the squark and slepton masses, this

CP violation is not excessive. We also note that in the new minimum PII , the spontaneously

induced phase that is necessary for KM CP violation is rather small, ∼ 0.1038. One can then

assume an approximate CP symmetry for the entire Lagrangian, where all the phases remain

small, of this order. This will further suppress the SUSY phase effects.

(3) The new interchange symmetry PII might appear to be CP transformation, but it

actually is not. If it were CP transformation, when extended to the fermion Yukawa sector,

that would make the parameters cu,d,ℓ,ν in Eq. (2.5) purely imaginary. CP violation will

then disappear from the CKM matrix, as it should, since this symmetry remains unbroken.

The symmetry PII is an accidental symmetry of the Higgs potential, and is not respected

by the Yukawa couplings, just as it was for the interchange symmetry PI . This state leads

to a new sum rule involving the quark masses and CKM mixing parameters, which is found

to be in good agreement with data. Extension of the model to the neutrino sector, by

changing the Q6 assignment of the leptons, can lead to a predictive scenario. In this version

we find that neutrino mass hierarchy is inverted with nearly maximal CP violation along with

nearly maximal mixing of atmospheric neutrinos. Thus the model lends itself to experimental

scrutiny in the near future.

(4) The question of whether it is possible to obtain a large CP violation in the B0
s − B̄0

s

mixing for the case of PII , as in the case of PI [17], remains to be studied. To distinguish

two ground states of the same model, precise measurements of the CKM parameters [22] and

neutrino oscillation parameters [23] as well as precise determination of the quark masses [24]

are indispensable.
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