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Abstract

We perform a non-perturbative lattice calculation of the P-wave pion-pion scattering phase in

the ρ-meson decay channel using two flavors of maximally twisted mass fermions at pion masses

ranging from 480 MeV to 290 MeV. Making use of finite-size methods, we evaluate the pion-pion

scattering phase in the center-of-mass frame and two moving frames. Applying an effective range

formula, we find a good description of our results for the scattering phase as a function of the

energy covering the resonance region. This allows us to extract the ρ-meson mass and decay width

and to study their quark mass dependence.
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I. INTRODUCTION

In experiments, many hadrons are observed as resonances that decay via the strong inter-

action and have only a short life-time. On the theoretical side, the direct determination of

the resonance parameters from QCD is afflicted with many difficulties since the computation

of resonance masses and decay widths is essentially a non-perturbative problem. An attrac-

tive way to extract the resonance parameters non-perturbatively from first principles is the

use of lattice QCD. Among unstable hadrons, the case of the ρ-meson is ideal for lattice

studies of a resonance for two reasons. First, in lattice calculations, the noise-to-signal ratio

in the computation of a meson mass is proportional to e(mM−mπ)t, where mM is the meson

mass under consideration, mπ is the pion mass and t is a typical hadronic time scale. Since

the ρ is one of the lightest mesons, the statistical error of its numerically computed mass

can be well controlled. Second, the principle decay channel (with a branching rate of 99.9%)

of the ρ-meson is to a pair of pions, which can be treated on the lattice very precisely.

In the past, several lattice groups have undertaken efforts to study the ρ-meson decay.

A first attempt was made to estimate the decay width from the ρ → ππ transition am-

plitude [1–4]. This method relies on two assumptions: first, the energy gap between the

ground and the first excited state (corresponding to ρ-meson and ππ states with the same

quantum numbers) is small. Second, it is assumed that the hadron interaction is not large

and the transition amplitude 〈ρ|ππ〉 satisfies 〈ρ|ππ〉 ≪ 〈ρ|ρ〉1/2〈ππ|ππ〉1/2. An alternative

method, which does not rely on these assumptions, is to extract the ρ-meson resonance

parameters from the P-wave pion-pion scattering phase in the isospin I = 1 channel. The

non-perturbative determination of the scattering phase is possible by using finite-size meth-

ods, which were originally proposed by Lüscher in the center-of-mass frame (CMF) [5–9] and

later extended to more general cases employing also a moving frame (MF) by Rummunkainen

and Gottlieb [10]. Making use of these finite-size methods, two lattice studies [11, 12] have

been carried out to compute the ρ-meson resonance parameters.1 These calculations mainly

concentrated on the scattering phase at one or two energies for a single ensemble. In this

way, however, the scattering phase can be extracted at only a small number of energies and

it becomes difficult to map out the resonance region.

1 We note that recently another two lattice studies [13, 14] were reported at Lattice 2010.

2



In this work, we study the I = 1 pion-pion scattering system using three Lorentz frames:

the CMF, the first MF with total momentum P = (2π/L)e3 (MF1) and the second MF with

P = (2π/L)(e1 + e2) (MF2). Here, the ei denotes a unit vector in the spatial direction i

and L is the spatial extent of the lattice. In each frame, we evaluate the P-wave scattering

phase from the energy eigenvalues of the ground state and the first excited state. Using

three frames allows us to obtain the scattering phase at six energies for each set of physical

parameters considered without the need to go to larger lattices. Therefore, we think that

our calculations have two advantages compared to the earlier works mentioned above. First,

extracting the resonance parameters from six energies allows us to obtain more accurate

results. Second, some of the scattering phases are calculated at energies that lie in the range

[mρ − Γρ/2, mρ + Γρ/2], allowing us to directly map out the resonance region.

Our calculations are performed using the Nf = 2 maximally twisted mass fermion en-

sembles [15–17] from the European Twisted mass collaboration (ETMC) at a lattice spacing

of a = 0.079 fm. The pion masses range from 290 MeV up to 480 MeV, ensuring that the

physical kinematics for the ρ-meson decay, mπ/mρ < 0.5, is satisfied. The computation of

the ρ-meson resonance parameters at several values of the pion mass allows us to obtain

the pion mass dependence of the resonance mass and decay width and hence to perform

an extrapolation to the physical point. The benefit of using twisted mass fermions is that

at maximal twist physical observables are automatically accurate to O(a2) in the lattice

spacing, while the drawback is that isospin symmetry, although again an O(a2) effect for

the observables considered in this work, is broken at non-zero values of the lattice spacing.

As a result, for any value of a 6= 0 the decay of ρ0 to π0π0 is allowed, while in the continuum

limit isospin symmetry is restored and this decay is forbidden. In this letter we present a

first calculation to extract the ρ-meson resonance parameters from three Lorentz frames and

discuss the feasibility and accuracy achievable using this setup. Since here we use only one

value of the lattice spacing, we cannot test for the possible effects of isospin breaking. We

plan to come back to this issue in the future when we will analyze gauge field ensembles

obtained at finer values of the lattice spacing. As it will turn out, we are not able to match

the high experimental accuracy of the ρ-meson resonance parameters with our lattice calcu-

lation. Still, we consider this work an important conceptual study and the techniques used

here will be useful for other resonances such as the ∆ baryon.
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II. METHOD

A. Scattering phase

In an elastic scattering system, the relativistic Breit-Wigner form (RBWF) for the scat-

tering amplitude al with a resonance at a center-of-mass (CM) energy MR and with a decay

width ΓR is [18]

al =
−√

sΓR(s)

s−M2
R + i

√
sΓR(s)

, s = E2
CM ,

where ECM is the CM energy and al is related to the scattering phase of the lth partial wave,

δl, through al = (e2iδl − 1)/2i. The RBWF corresponding to δl is then

tan δl =

√
sΓR(s)

M2
R − s

. (1)

The ρ-resonance has quantum numbers IG(JPC) = 1+(1−−) and decays into two pions in

the P-wave. A description of the scattering phase as a function of the ECM is provided by

the effective range formula (ERF) [19]

tan δ1 =
g2ρππ
6π

p3

ECM(m2
ρ − E2

CM)
, p =

√

E2
CM/4−m2

π , (2)

which fits the experimental data well. In Eq. (2) δ1 is the P-wave pion-pion scattering

phase, gρππ is the effective ρ → ππ coupling constant and mρ is the ρ-meson mass. We

remark already at this point that we will use the ERF also for our lattice calculations to

fit the scattering phase, even when using pion masses that are larger than the physical one.

Comparing Eqs. (1) and (2), we find that the ERF is a particular case of the RBWF if the

parameters MR and ΓR(s) are chosen such that

MR = mρ , ΓR(s) =
g2ρππ
6π

p3

s
.

The rho decay width Γρ can then be computed in the following way,

Γρ = ΓR(s)

∣

∣

∣

∣

s=m2
ρ

=
g2ρππ
6π

p3ρ
m2

ρ

, pρ =
√

m2
ρ/4−m2

π . (3)

Thus Eqs. (2) and (3) allow us to extract mρ and Γρ by studying the dependence of the

pion-pion scattering phase δ1 on ECM .
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B. Finite-size methods

1. Center-of-mass frame

A direct calculation of the phase shift from lattice QCD is possible by using a finite-size

method established by Lüscher [5–9]. In this method, the phase shift is obtained from the

energy eigenvalues of a two-pion system enclosed in a cubic box with spatial size L.

In the CMF the possible energy eigenvalues for two non-interacting pions are given by

Ē = 2
√

m2
π + p̄2 , p̄ = |p̄| , p̄ = (2π/L)n , n ∈ Z

3 .

In the interacting case the energy eigenvalues are shifted,

E = 2
√

m2
π + p2 , p = (2π/L)q ,

where q is no longer constrained to originate from a quantized momentum mode. Due to the

presence of the interaction, the energy eigenvalues deviate from those in the non-interacting

case. It is exactly this deviation that contains the information of the underlying strong

interaction and thus can be used to determine the scattering phase, as outlined next.

In this paper, we concentrate on the energy eigenstates with energies E in the elastic

region 2mπ < E < 4mπ with the two-pion system having the same quantum numbers as the

ρ-meson. In the CMF these states transform as a vector (more specifically the irreducible

representation Γ = T−
1 ) under the cubic group Oh. The corresponding finite-size formula

connecting the energy E to the scattering phase δ1 is given by [9]

tan δ1(E) =
π3/2q

Z00(1; q2)
, for Γ = T−

1 , (4)

with the zeta function defined through

Z00(s; q
2) =

1√
4π

∑

n∈Z3

(

|n|2 − q2
)−s

.

2. Moving frame

Using a MF with total momentum P = (2π/L)d, d ∈ Z
3, the energy eigenvalues in the

non-interacting case are given by

Ē =
√

m2
π + p̄21 +

√

m2
π + p̄22 ,

5



where p̄i = |p̄i| and p̄i denote the 3-momenta of the pions, which satisfy the relations

p̄i = (2π/L)ni , ni ∈ Z
3 , p̄1 + p̄2 = P . (5)

In the MF, the center-of-mass is moving with a velocity of v = P/Ē. Using the standard

Lorentz transformation with a boost factor γ = 1/
√
1− v2, the ĒCM can be obtained as

ĒCM = γ−1Ē = 2
√

m2
π + p̄∗2 ,

with CM momenta

p̄∗ = |p̄∗| , p̄∗ = p̄∗
1 = −p̄∗

2 =
1

2
~γ−1(p̄1 − p̄2) . (6)

Here, we use the notation

~γ−1p = γ−1p‖ + p⊥ , p‖ =
p · v
|v|2 v , p⊥ = p− p‖ .

From inspecting Eqs. (5) and (6) it can be seen that the p̄∗ are quantized to the values

p̄∗ = (2π/L)n , n ∈ Pd =
{

n
∣

∣ n = ~γ−1(m+ d/2) , for m ∈ Z
3
}

. (7)

In the interacting case, the ECM is given by

ECM = 2
√

m2
π + p∗2 , p∗ = (2π/L)q . (8)

From the energy shift between the non-interacting and the interacting situation, ECM−ĒCM

(or equivalently q2 − |n|2), one can compute the pion-pion scattering phase.

In the MF1 (d = e3), the energy eigenstates transform under the tetragonal group D4h.

The irreducible representations A−
2 and E− are relevant for the pion-pion scattering states

|ππ, l = 1〉 in infinite volume with angular momentum l = 1. In this work, we calculate the

energies associated with the A−
2 sector. The formula converting the ECM in a finite volume

to the scattering phase in the infinite volume is given by Gottlieb and Rummukainen [10] as

tan δ1(ECM) =
γπ3/2q

Zd
00(1; q

2) + (2q−2/
√
5)Zd

20(1; q
2)
, for Γ = A−

2 , (9)

with the modified zeta function

Zd
lm(s; q

2) =
∑

n∈Pd

Y∗
lm(n)

(|n|2 − q2)s
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and

Ylm(r) ≡ rlYl,m(Ωr) , Ylm̄(r) ≡ rlYl,−m(Ωr) ,

where Ωr represents the solid angle parameters (θ, φ) of r in spherical coordinates and the

Yl,m are the usual spherical harmonic functions.

In order to obtain more energies in the resonance region, we developed a second moving

frame (MF2) with d = e1 + e2. The corresponding energy eigenstates transform under the

orthorhombic group D2h. The irreducible representations B−
1 , B

−
2 and B−

3 occur for the

|ππ, l = 1〉 states in infinite volume. Here we focus on the B−
1 sector. Our derivation of the

corresponding finite-size formula for the MF2 results in

tan δ1(ECM) =
γπ3/2q

Zd
00 − (q−2/

√
5)Zd

20 + i(
√
3q−2/

√
10)

(

Zd
22 −Zd

22̄

) ,

for Γ = B−
1 . (10)

For more details, we refer the reader to Ref. [20].

For brevity, we represent Zd
lm(1; q

2) with the short notation Zd
lm in Eq. (10). Using

Eqs. (4), (9) and (10) we can then convert a finite-volume determination of the ECM into

a calculation of the P-wave scattering phase δ1. This is, of course, exactly the situation we

are confronted with in a lattice calculation as performed here.

C. Correlation matrix

In the CMF, the value of the ECM is directly given by the discrete energy eigenvalue

E extracted from the large time behavior of the corresponding correlation function. In the

MF, ECM is related to E through the Lorentz transformation

E2
CM = E2 −P2 . (11)

In order to calculate the energy eigenvalues E, we construct a 2× 2 correlation function

matrix through

C2×2(t) =





〈

(ππ) (t) (ππ)† (0)
〉

〈

(ππ) (t) ρ†(0)
〉

〈

ρ(t) (ππ)†(0)
〉 〈

ρ(t) ρ†(0)
〉



 . (12)
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1. ππ sector

The ππ correlation function is constructed with the interpolating operators defined

through

(ππ)(t) =
dΓ
NG

∑

R̂∈G

χΓ(R̂)
(

π+(P/2 + R̂p, t)π−(P/2− R̂p, t)

−π−(P/2 + R̂p, t)π+(P/2− R̂p, t)
)

, (13)

with the momenta on the lattice P and p taking discrete values

P = (2π/L)d , p = P/2 + (2π/L)m , for d,m ∈ Z
3 .

Let us explain the notation we have used in Eq. (13). The pion interpolating operator

π±(q, t) is defined through

πa(q, t) =
1

L3/2

∑

x

e−iq·x

(

ψ̄γ5
τa

2
ψ

)

(x, t) , a = ±, 0 ,

where τa denote the isospin Pauli matrices and ψ the two-flavor quark fields. We also

introduce the symmetry group G as the set of all lattice rotations and reflections R̂, under

which the set of Pd defined by Eq. (7) is invariant

G =
{

R̂
∣

∣

∣
R̂n ∈ Pd , ∀ n ∈ Pd

}

. (14)

In the CMF, MF1 and MF2, G is given by the cubic groups Oh, D4h andD2h, respectively.

Γ is the irreducible representation of the group G, dΓ is the dimension of Γ and χΓ(R̂) is

the character of Γ. The average over all the operations R̂ in the group G weighted by

the coefficient χΓ(R̂) projects out the scattering states that belong to the Γ representation.

Finally, NG =
∑

R̂∈G 1.

Given the momenta {P,p} and the representation Γ, one can construct the interpolating

operators (ππ)(t) using Eq. (13). Here we set Γ to be T−
1 , A−

2 and B−
1 for the CMF, MF1 and

MF2, respectively, so that the energy eigenstates |ππ,Γ〉 in finite volume will approximate

the P-wave scattering states |ππ, l = 1〉 in infinite volume if one ignores states with higher

angular momentum. In the CMF, the interpolating operator is given by

(ππ)(t) = π+

(

2π

L
e3, t

)

π−

(

−2π

L
e3, t

)

− π+

(

−2π

L
e3, t

)

π−

(

2π

L
e3, t

)

.
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In the two MFs, the operators are given in a unified form through

(ππ)(t) = π+ (P, t)π− (0, t)− π+ (0, t) π− (P, t) ,

with P again the total 3-momentum of the scattering system. We can use these operators

to measure the energy eigenvalues E from the corresponding correlation functions, convert

E into ECM by applying Eq. (11) and then extract the P-wave scattering phase δ1 using the

finite-size formulae listed above.

2. ρ sector

The interpolating operator for the neutral ρ-meson is constructed through a local vector

current,

ρ(t) = ρ0(P, t) =
1

L3/2

∑

x

e−iP·x

(

ψ̄(a · γ)τ
0

2
ψ

)

(x, t) , a · γ =

3
∑

i=1

aiγi ,

where a indicates the polarization of the vector current. The direction of a is taken to

be parallel to e3 in the CMF, e3 in the MF1 and e1 + e2 in the MF2, respectively. This

choice allows us to obtain a good signal-to-noise ratio for the off-diagonal matrix element
〈

ρ(t) (ππ)†(0)
〉

in Eq. (12).

D. Extraction of energies

By computing the matrix of correlation functions in Eq. (12), we are able to isolate the

ground state and first excited state in a clean way. This is of particular importance in

the resonance region, where the avoided level crossing occurs and the first excited state is

potentially close to the ground state. Such a situation renders the extraction of the ground

state energy difficult when only a single exponential fit ansatz is used. Since we cannot

predict a priori whether our energy levels will be close to the resonance region, we find it

necessary to always use the correlation matrix to analyze our results. To extract the energy

eigenstates, we follow the variational method [7] and construct a ratio of correlation function

matrices as

R(t, tR) = C2×2(t)C
−1
2×2(tR) , for t > tR ,
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Ensemble β aµ L/a mπ mπ/mρ N

A1 3.90 0.0085 24 480 0.43 176

A2 3.90 0.0064 24 420 0.40 278

A3 3.90 0.0040 32 330 0.32 124

A4 3.90 0.0030 32 290 0.30 129

TABLE I: Ensembles used in this work. We give the ensemble name Ai, the inverse bare coupling

β = 6/g20 , the bare quark mass aµ, the lattice size L/a and the value of mπ in units of MeV. We

also list the ratio mπ/mρ and the number N of configurations used.

where tR, the reference time slice, is assumed to be large enough such that the contributions

to the matrix R(t, tR) from the excited states |n〉 with n > 2 can be ignored.

The two eigenvalues Rn(t, tR) (n = 1, 2) of the matrix R(t, tR) behave as

Rn(t, tR) → An cosh (−En(t− T/2)) , (15)

where we assume that t is large enough (t > tR ≫ 0) to neglect excited states but still far

enough from the boundaries (t ≪ T/2) to ignore the unwanted thermal contributions as

discussed in the case for the pion scattering length using twisted mass fermions in Ref. [21].

III. LATTICE CALCULATION

A. Ensemble information

The results presented here are from a sequence of ensembles with a lattice spacing of

a = 0.079 fm. The pion masses range from mπ = 480 MeV to 290 MeV. At all pion masses

the physical kinematics of mπ/mρ < 0.5 is satisfied, such that it is physically possible for

the ρ-meson to decay into two pions. In our analysis we use two lattice sizes. The first

corresponds to L = 1.9 fm with pion masses of mπ = 480 MeV and mπ = 420 MeV,

i.e. ensembles A1 and A2 in Table I. The second uses L = 2.5 fm with pion masses of

mπ = 330 MeV and mπ = 290 MeV, i.e. ensembles A3 and A4 in Table I. Additional

information about the ensembles used is given in Table I and in Refs. [15–17].
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B. Sources

To calculate the ππ correlation functions, we employ a stochastic method using Z4 noise

sources ξits(x) that are restricted to each three-dimensional time-slice with time ts. The

sources ξits(x) are also diluted in the color and spin indices, which are suppressed for sim-

plicity. The index i runs from 1 to Ns, the number of stochastic noise sources. In this work

we are able to achieve sufficient accuracy with just Ns = 1 samples. Using the one-end

trick [22], we need to introduce two stochastic noise sources, eiq·xξits(x) and ξ
i
ts(x), for each

factor of π±(q, ts) in the correlation function. For the correlation functions in the MFs, we

must account for two momentum modes (eiq·xξits(x), q = 0 and q = P). In the CMF there

are three required momentum modes (eiq·xξits(x), q = 0, q = (2π/L)e3 and q = −(2π/L)e3).

Since we place the source on all the time slices ts = 0, . . . , T−1, we therefore perform T

inversions for each configuration and each momentum mode. Note that the time extent of

our lattices is chosen to be always twice the spatial extent. The correlator C11(t) is then

calculated through

C11(t) =
〈

(ππ) (t) (ππ)† (0)
〉

=
1

T

∑

ts

〈

(ππ) (t + ts) (ππ)
† (ts)

〉

.

The rather large effort to generate propagators on all the time slices allows us to obtain the

correlators with high precision, which is important to extract the desired energies reliably.

In the calculation of the off-diagonal correlator, C21(t), the contraction of the quark

fields leads to a three-point diagram. Since in this three-point diagram the two pion fields

are located at the same source time slice ts, we use the sequential propagator method to

construct the correlator. We calculate C21(t) through

C21(t) =
〈

ρ(t)(ππ)†(0)
〉

=
1

T

∑

ts

〈

ρ(t + ts)(ππ)
†(ts)

〉

,

and again average the correlator over all time slices ts. For the second off-diagonal correlator

C12(t), the two pion fields are placed at the sink time slice t + ts, which would render the

computation of C12(t) more difficult. However, using the relation C12(t) = C∗
21(t), we get

the off-diagonal matrix element C12 for free.

For the ρ-correlator, C22(t), we have performed a comparison between the Z4 stochastic

source method and the point source method and found that the required computational

effort to achieve a given signal-to-noise ratio is comparable. Historically, we started our

11



work with the calculation of the hadronic vacuum polarization tensor [23]. Since in that

work we generated point source propagators for the ensembles listed in Table I, we just use

the available propagators to construct the ρ-correlator

C22(t) =
〈

ρ†(t+ ts)ρ(ts)
〉

,

where now the source time slices, ts, are chosen randomly to reduce the autocorrelation

between consecutive gauge field configurations.

Due to the isospin symmetry breaking effects at non-zero lattice spacing in our maximally

twisted mass setup, the disconnected diagram for the neutral ρ-meson does not vanish.

To address the disconnected contribution to the neutral ρ-meson, we need to generate in

principle additional all-to-all propagators. However, the disconnected diagram correction

has been studied in Ref. [24], and has been found to be negligibly small and hence, we

neglect it also here in the computation of the neutral ρ-correlator. For the same reason

we neglect the disconnected diagrams for the off-diagonal entries, where these contributions

originate solely from the neutral ρ-operator. In the calculation of the correlator 〈(ππ)(ππ)†〉,
we are able to address these disconnected pieces since we put stochastic sources on all the

time slices. We find that the disconnected diagram makes an apparently small contribution

to the correlator but adds a significant amount of noise, which would destroy the signal for

the connected piece. Therefore we drop it from the ππ sector. To be clear, neglecting these

disconnected contributions is not a genuine approximation but is simply ignoring lattice

artifacts that would vanish in the continuum limit anyway.

IV. RESULTS

A. Energy eigenvalues

In Fig. 1 we show our lattice results for Rn(t, tR) (n = 1, 2) in a logarithmic scale for

the CMF, MF1 and MF2, as a function of time t together with a correlated fit to the

asymptotic form given in Eq. (15). From these fits we then extract the energies that will

be used to determine the scattering phase. Note that the slopes of ln(Rn(t, tR)) are often

very similar for n = 1 and n = 2, indicating that it is indeed essential to use the correlation

function matrix. In order to extract the energies, we have to consider the two main sources

of systematic error. One originates from the higher excited states and affects the correlator
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FIG. 1: For the ensembles A1 (upper left), A2 (upper right), A3 (lower left) and A4 (lower right),

the correlator Rn(t, tR) (n = 1, 2) as a function of t is shown. For each ensemble, from top to

bottom the three plots present the lattice calculations in the CMF, MF1 and MF2, respectively.

The solid lines are correlated fits to Eq. (15), from which the energy eigenvalues En are extracted.

In each plot, the upper curve is n = 1 and the lower curve with the slightly steeper slope is n = 2.

in the low-t region. The other arises from the unwanted thermal contributions that distort

the correlator in the large-t region. By defining a fitting window [tmin, tmax] and varying

the values of tmin and tmax, we are able to control these systematic effects. In practice, we

set tmin to be tR + 1 and increase the reference time slice tR to reduce the higher excited

state contaminations. Besides this, we set tmax to be sufficiently far away from the time

slice t = T/2 in order that the fitting results are protected from the unwanted thermal

contributions. The corresponding parameters tR, tmin and tmax used in this work are listed

in Table IV. All the ensembles shown in Fig. 1 visibly agree with the corresponding fit

and lead to reasonable values of χ2/dof. The χ2/dof together with the fit results for En

(n = 1, 2) are also given in Table IV.
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B. Lattice discretization effects

In the continuum limit, the ECM is simply related to the energy spectrum En through

the Lorentz transformation of Eq. (11). However, on the lattice, the discretization effects

explicitly break Lorentz symmetry and Eq. (11) is only valid up to discretization errors.

Another discretization error arises from the continuum dispersion relation in Eq. (8), which

is particularly relevant for the finite-size methods used here.

These two sources of systematic error have been studied in Ref. [10], where the authors

suggest to use the lattice modified relations

cosh(ECM) = cosh(En)− 2
∑

i

sin2(Pi/2) , n = 1, 2 ,

cosh(ECM/2) = 2 sin2(p∗/2) + cosh(mπ) , p∗ = (2π/L)q , (16)

instead of the continuum relations to reduce these discretization errors. Following this

suggestion, we calculate the energy ECM and the momentum p∗ from the energy eigenvalues

En using Eq. (16) and then estimate the P-wave scattering phase δ1 by employing p∗ in the

finite-size formulae. The results for ECM , p∗ and δ1 are given in Table V.

C. Extraction of resonance parameters

From the ECM we can now compute the P-wave scattering phases from six different

energy levels, two from each of the three Lorentz frames employed. In order to extract the

ρ-meson resonance parameters, we fit the results for the scattering phase to the effective

range formula Eq. (2) and show the corresponding fits in Fig. 2. At the position where the

scattering phase passes π/2, the resonance mass mρ is determined. Additionally, the values

of gρππ and hence Γρ are also evaluated from the fit. The corresponding results are given in

Table II.

The finite-size methods are valid only for elastic scattering processes. In a situation with

large enough energy, i.e. when ECM > 4mπ, the inelastic scattering channel will open and

it is unclear how to the determine the scattering phase in such a case. Therefore, in our

calculations we exclude results with energy ECM & 4mπ, which happened, fortunately, only

for the excited state in the CMF for ensemble A4.
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FIG. 2: We show for the ensembles A1 (upper left), A2 (upper right), A3 (lower left) and A4

(lower right), the scattering phases calculated in the CMF, MF1 and MF2 together with the fits

to the effective range formula Eq. (2). At the position where the scattering phase passes π/2, the

resonance mass mρ (denoted as aMR in the graph) is determined. Through the fit, the coupling

constant gρππ and decay width Γρ are also extracted.

D. Comparison with other results

Using the resonance masses determined in the previous section, we show our values for

mρ together with those of other groups in Fig. 3 as a function of mπ. In order to compare

these results, we scale mρ and mπ with the Sommer scale r0 [25] as determined by the

groups individually. This avoids systematic effects when determining the lattice spacing

from different observables and is most appropriate when one aims only at a comparison of

results between different groups. We find a rather satisfactory agreement and attribute the

mild variation among the groups with possible residual cutoff and finite-size effects in the

various calculations, although a definite conclusion cannot be given here.

We remark that our values of mρ in physical units result from using the lattice spacing
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mπ (MeV) mρ (MeV) Γρ (MeV) gρππ

A1 480 1118(14) 39.5(8.2) 6.46(40)

A2 420 1047(15) 55(11) 6.19(42)

A3 330 1033(31) 123(43) 6.31(87)

A4 290 980(31) 156(41) 6.77(67)

TABLE II: The results for the ρ-meson mass mρ, the decay width Γρ and the effective ρ → ππ

coupling gρππ at pion masses ranging from 480 MeV to 290 MeV.

a=0.079 fm given earlier. This value of the lattice spacing was determined in Ref. [17] by

fixing the physical value of the pion decay constant fπ.

E. Quark mass dependence

Having analyzed the ensembles listed in Table I allows us to discuss now the quark

mass dependence of the ρ-meson resonance parameters. There are several works using

effective field theory (EFT) to describe the quark mass dependence of the ρ-meson resonance

parameters [32–36]. The general structure of the pion mass dependence of mρ and Γρ can

be written down as

mρ = M0
ρ + Cm1M

2
π + Cm2M

3
π +O(M4

π) ,

Γρ = Γ0
ρ + CΓ1M

2
π + CΓ2M

3
π +O(M4

π) .

However, before using these formulae, it should be realized that mρ and Γρ are not only

statistically correlated, but also inherently related to each other, suggesting that the coef-

ficients Cmi and CΓi (i=1,2) are not independent from each other. Therefore, in this work

we will follow the strategy of Refs. [37, 38] where mρ and Γρ are considered as the real and

imaginary part of the complex pole of the ρ-meson propagator. Hence, we introduce the

complex pole parameter Z defined through

Z = (mρ − iΓρ/2)
2 .

In this approach the power counting is given by the complex-mass renormalization scheme.

Up to O(q4) in the chiral expansion, where q is a typical pion momentum, Z is given
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FIG. 3: ρ-meson mass as function of the pion mass squared, both scaled with r0. The ρ-meson

resonance masses determined in our calculations (ETMC) are compared with those of the groups

listed in the legend: chirally improved fermions (Graz) [26], overlap fermions (JLQCD) [27, 28],

non-perturbatively improved Wilson fermions (PACS-CS) [29] and domain wall fermions (RBC-

UKQCD) [30, 31]. In order to be consistent, we include only the results of those groups for which

we could readily find the values of r0 evaluated at the same coupling and pion mass as is the

ρ-meson mass. Also, note that only our calculation includes a proper treatment of the resonance

nature of the ρ-meson.

by [37, 38]

Z = Zχ + CχM
2
π −

g2ωρπ
24π

Z1/2
χ M3

π

−
g2ωρπ
32π2

M4
π

(

ln
M2

π

M2
χ

− 1

)

+
g2

16π2

M4
π

M2
χ

(

3− 2 ln
M2

π

M2
χ

− 2iπ

)

, (17)

where Zχ = (Mχ − iΓχ/2)
2 is the pole of the ρ-meson propagator in the chiral limit, M2

π is

the lowest-order expression of the chiral expansion for the squared pion mass and Cχ, gωρπ

and g are coupling constants assuming real values. Using Eq. (17) to fit our results, we can

determine the value of Z at the physical point, where it can be converted to the physical
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resonance mass mρ,phy and decay width Γρ,phy.

In practice, we perform the chiral extrapolation of Z in terms of the pion mass mπ as

extracted from the pseudoscalar correlation function as measured directly in the numerical

calculations. By inserting the relation

m2
π =M2

π

{

1 +
M2

π

32π2F 2
π

ln
M2

π

Λ2
3

+O(M4
π)

}

into Eq. (17), the expression for Z in terms of mπ is given by

Z = Zχ + Cχm
2
π −

Cχm
4
π

32π2F 2
π

ln
m2

π

Λ2
3

−
g2ωρπ
24π

Z1/2
χ m3

π

−
g2ωρπ
32π2

m4
π

(

ln
m2

π

M2
χ

− 1

)

+
g2

16π2

m4
π

M2
χ

(

3− 2 ln
m2

π

M2
χ

− 2iπ

)

. (18)

In Eq. (18) the values of the input parameters Fπ and Λ3 are taken from Ref. [17] with

Fπ =
1√
2
f0 = 86(1) MeV , ln

(

Λ2
3/m

2
π,phy

)

= l̄3 = 3.50(31) ,

where mπ,phy is the physical pion mass.

Before we perform a precise test of Eq. (18), we first confront our lattice results with a

simplified fit ansatz to order O(q3), namely

Z = Zχ + Cχm
2
π −

g2ωρπ
24π

Z1/2
χ m3

π . (19)

In the left panel of Fig. 4 we plot the mass of the ρ-meson as a function of the square of

the pion mass together with a fit to Eq. (19). Using the fit to extrapolate to the physical

point, our lattice result turns out to lie slightly high relative to the PDG value of the ρ-meson

mass and shows a deviation of 1.9 σ.

In order to see whether higher-order corrections could reconcile our calculation with the

experimentally determined ρ-meson mass, we also fit our lattice results to Eq. (18). All the

fit results are listed in Table III. From the simplified fit to Eq. (19) the lattice result of

g2ωρπ/24π is larger than the one suggested by EFT, which is g2ωρπ/24π = 3.4 GeV−2 [34]. Af-

ter including the terms of O(q4) in the fit, the uncertainty of the determination of g2ωρπ/24π

becomes, unfortunately, much larger and in fact g2ωρπ/24π cannot be determined in a statis-

tically significant way. A similar situation happens in the determination of the parameter

g2/(16π2M2
χ). The KSFR relation [39, 40]

M2
χ = 2g2F 2

π
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Fit of Z to Eq. (19) Eq. (18)

mρ,phy 0.821(24) 0.850(35)

Γρ,phy 0.171(31) 0.166(49)

Mχ 0.756(24) 0.803(47)

Γχ 0.190(35) 0.179(58)

Cχ 6.42(45) 4.9(2.0)

g2ωρπ/24π 9.8(1.5) 10(12)

g2/(16π2M2
χ) — 0.01(1.09)

TABLE III: The physical ρ-meson mass and decay width as extracted using Eq. (19) and Eq. (18).

The values of mρ,phy, Γρ,phy, Mχ and Γχ are given in units of GeV and g2ωρπ/24π and g2/(16π2M2
χ)

are in units of GeV−2.

suggests that g2/(16π2M2
χ) takes the value of 1/(32π2F 2

π ) = 0.43 GeV−2. However, we are

unable to determine g2/(16π2M2
χ) reliably from the fit. As can be inferred from Table III,

using a fit to Eq. (18) there is a 40% uncertainty in the determination of Cχ and a more than

100% uncertainty in the determinations of both g2ωρπ/24π and g2/(16π2M2
χ). Proceeding with

these results, we plot the mass of the ρ-meson as a function of the square of the pion mass

together with the fit to Eq. (18) in the right panel of Fig. 4. At the physical point the

result of mρ is still high relative to the PDG value, suggesting that the pion masses used in

the current calculations are too high for even the O(q4) extrapolations and that yet lighter

quark masses will be necessary for quantitatively precise comparisons with experimental

measurements of the ρ-meson mass.

In Fig. 5, we plot the coupling gρππ as a function of the square of the pion mass and

find that gρππ is practically independent of the pion mass. Moreover, the value of gρππ is

consistent with the PDG value. This is not entirely unexpected. The coupling gρππ, being

dimensionless, is expected to be less sensitive to the pion masses and lattice spacings used

in the calculation than the resonance mass mρ is. In fact, whereas the accuracy of mρ is

currently systematically limited by the pion masses used in the calculation, the precision

with which we can calculate gρππ is clearly dominated by just the statistical errors of the

current calculation.
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FIG. 4: The ρ-meson resonance mass as a function of the square of the pion mass. In the left

panel, we fit the lattice results to Eq. (19). In the right panel, we fit them to Eq. (18). Note that

these are combined fits to mρ and Γρ (shown in Fig. 6).

Eq. (3) shows that the decay width is determined from the fitted values of both mρ

and gρππ. Hence, we expect that it will reflect a combination of the aspects just discussed.

In fact, in the chiral limit Eq. (3) reduces to Γρ = mρg
2
ρππ/(48π). Thus the fact that

mρ overshoots the experimental measurement implies that Γρ will also be larger than the

measured value. Additionally, the error of gρππ will be enhanced in Γρ leading to larger

errors in the width than in the mass. These features can indeed be seen in Fig. 6, where

we show the lattice results for Γρ as a function of the square of the pion mass together

with the fit to Eq. (19) in the left panel and with the fit to Eq. (18) in the right panel. At

the physical point, the decay widths are obtained as Γρ,phy = 171(31) MeV using the fit to

Eq. (19) and as Γρ,phy = 166(49) MeV using the fit to Eq. (18). Both of the results are

consistent with the PDG value Γρ,PDG = 149.1(0.8) MeV within 1σ. Note, however, that

obviously the values determined from our lattice calculation are much less accurate than the

one extracted from experimental measurements. Therefore, we consider the present work

more as an initial study of how accurately resonance parameters can be extracted from non-
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perturbative lattice calculations and not as a precise determination of these parameters. The

results we have obtained here demonstrate that resonances can indeed be analyzed on finite

lattices with numerical calculations. This is very promising, given the number of hadrons

that appear in the physical QCD spectrum as resonances.
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FIG. 5: The effective coupling gρππ as a function of the square of the pion mass.

V. CONCLUSION

In this work, we have calculated the P-wave pion-pion scattering phase in the I = 1 chan-

nel near the ρ-meson resonance region. We have performed our calculations at pion masses

ranging from 480 MeV to 290 MeV and at a lattice spacing of a = 0.079 fm. At all the pion

masses, the physical kinematics for the ρ-meson decay, mπ/mρ < 0.5, is satisfied. Compared

to previous calculations, we have pushed the techniques much farther forward by employ-

ing three Lorentz frames simultaneously. This allowed us, in particular, to map out the

energy region of the resonance without having to employ larger and more computationally

demanding lattice calculations.

Making use of Lüscher’s finite-size methods, we evaluated the scattering phase from six
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FIG. 6: The ρ-meson decay width as a function of the square of the pion mass. The left panel

shows the lattice results and the fit to Eq. (19). The right panel shows the fit to Eq. (18). Note

that these are combined fits to Γρ and mρ (shown in Fig. 4).

energy eigenvalues per ensemble. In this way, we could fit the scattering phase with an

effective range formula allowing us to extract the ρ-resonance mass mρ, the decay width

Γρ and the effective coupling gρππ. Taking the inherent relation between mρ and Γρ into

account, we have performed a fit to our results, obtained at four values of the pion mass,

as a function of the complex parameter Z = (mρ − iΓρ/2)
2. This provided a means of

extrapolation to the physical point. Even though our fit formulae are guided by EFT, our

results are not precise enough to perform a thorough test of the fit ansätze.

Keeping in mind the caveats just discussed, we quote for the ρ-meson mass mρ,phys =

0.850(35) GeV and for the decay width Γρ,phys = 0.166(49) GeV. When these values are

compared to the corresponding experimentally measured quantities, it is clear that the

lattice computations cannot yet match the experimental accuracy. Although a precise de-

termination of resonance parameters on the lattice is still a challenge, our work serves as a

next step in the attempt to understand the strong decays in a conceptually clean way.

22



Acknowledgments

This work is supported by the DFG Sonderforschungsbereich / Transregio SFB/TR-9

and the DFG project Mu 757/13. X. F. is supported in part by the Grant-in-Aid of the

Japanese Ministry of Education (No. 21674002) and D. R. is supported in part by Jefferson

Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. We thank

G. Herdoiza, C. Urbach and M. Wagner for helpful suggestions and assistance. X. F. would

like to thank N. Ishizuka, C. Liu and C. Michael for valuable discussions. The computer time

for this project was made available to us by the John von Neumann Institute for Computing

on the JUMP and JUGENE systems in Jülich. Part of the analysis runs were performed

in the computer centers of DESY Zeuthen and the IDRIS (Paris-sud). We thank these

computer centers and their staff for technical support.

23



Frame tR/a tmin/a tmax/a n χ2/dof aEn

1 2.21 0.4559(52)

CMF 7 8 18
2 1.26 0.6584(90)

1 0.76 0.4869(35)

A1 MF1 9 10 18
2 1.40 0.5563(98)

1 0.65 0.5660(42)

MF2 8 9 18
2 0.80 0.642(11)

1 0.66 0.4301(52)

CMF 8 9 17
2 1.17 0.637(16)

1 0.48 0.4537(25)

A2 MF1 9 10 17
2 0.49 0.527(12)

1 0.37 0.5343(57)

MF2 9 10 17
2 0.40 0.612(16)

1 1.03 0.4037(68)

CMF 8 9 17
2 1.02 0.4931(80)

1 1.16 0.3638(13)

A3 MF1 10 11 17
2 0.92 0.474(23)

1 0.07 0.4330(25)

MF2 9 10 17
2 0.67 0.518(18)

1 1.36 0.3844(79)

CMF 8 9 20
2 1.90 0.4591(86)

1 1.03 0.3363(14)

A4 MF1 9 10 20
2 1.12 0.440(19)

1 0.72 0.4035(36)

MF2 9 10 20
2 1.21 0.490(22)

TABLE IV: Values of the energy eigenvalues for the ground state (n = 1) and the first excited

state (n = 2) in the CMF, MF1 and MF2. In the table we list the ensemble number, the reference

time tR, the lower and upper bound of the fitting window, tmin and tmax, the fit quality χ2/dof

and the fit results for energy eigenvalues En (n = 1, 2).
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Frame n aEn aECM ap∗ δ1(
◦)

1 0.4559(52) 0.1207(50) 137(3)

CMF
2 0.6584(90) 0.2686(57) 170(9)

1 0.4869(35) 0.4137(41) 0.0729(61) 4.7(.3)

A1 MF1
2 0.5563(98) 0.494(11) 0.1543(91) 162(5)

1 0.5660(42) 0.4356(56) 0.1000(62) 15.3(.4)

MF2
2 0.642(11) 0.533(13) 0.1838(97) 160(6)

1 0.4301(52) 0.1331(42) 128(3)

CMF
2 0.637(16) 0.2719(96) 165(15)

1 0.4537(25) 0.3737(31) 0.0794(36) 4.4(.1)

A2 MF1
2 0.527(12) 0.461(14) 0.157(11) 159(6)

1 0.5343(57) 0.3925(80) 0.0997(79) 12.9(.6)

MF2
2 0.612(16) 0.495(20) 0.182(14) 159(9)

1 0.4037(68) 0.1516(46) 70(6)

CMF
2 0.4931(80) 0.2081(48) 156(10)

1 0.3638(13) 0.3076(15) 0.0761(16) 2.4(.4)

A3 MF1
2 0.474(23) 0.433(25) 0.171(16) 103(22)

1 0.4330(25) 0.3354(33) 0.1013(27) 4(2)

MF2
2 0.518(18) 0.441(21) 0.176(13) 120(15)

1 0.3844(79) 0.1534(50) 67(7)

CMF
2 0.4591(86)∗

1 0.3363(14) 0.2743(17) 0.0726(15) 2.4(.3)

A4 MF1
2 0.440(19) 0.396(22) 0.161(13) 116(16)

1 0.4035(36) 0.2959(50) 0.0915(40) 6(2)

MF2
2 0.490(22) 0.407(27) 0.167(17) 128(17)

TABLE V: We give the P-wave scattering phase δ1 as extracted from the energies of the ground

state and the first excited state in the CMF, MF1 and MF2. We list the ensemble number, the

energies En and ECM , the momentum p∗ and the scattering phase δ1 (in units of degree). The

single result marked by a star denotes that the corresponding ECM is above the 4mπ threshold.

We therefore exclude that point from our calculations.
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