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We study the effects of temporal UV-cutoff on the chiral critical surface in hot and dense QCD
using a chiral effective model. Recent lattice QCD simulations indicate that the curvature of the
critical surface might change toward the direction in which the first order phase transition becomes
stronger on increasing the number of lattice sites. To investigate this effect on the critical surface in
an effective model approach, we use the Nambu-Jona-Lasinio model with finite Matsubara frequency
summation. We find that the nature of the curvature of the critical surface does not alter appreciably
as we decrease the summation number, which is unlike the case what is observed in the recent lattice
QCD studies. This may either suggest the dependence of chemical potential on the coupling strength
or due to some additional interacting terms such as vector interactions which could play an important
role at finite density.

PACS numbers: 12.38.Aw,11.10.Wx,11.30.Rd,12.38.Gc

I. INTRODUCTION

The study of the chiral critical point (CP) in the
phase diagram of hot and dense quark matter is one of the
central issues in Quantum Chromodynamics (QCD) [1].
While, it is widely accepted that the QCD phase tran-
sitions concerning chiral symmetry restoration and color
deconfinement are crossovers with increasing tempera-
ture T for small chemical potential µ ≃ 0, the order of
the phase transitions along the µ direction for small T
is still under considerable speculation. Model analysis
indicate that a first-order phase transition occurs with
increasing µ and for small T [2]. The above observations
lead us to expect the existence of a critical point located
at the end of the first order line in the phase diagram for
some intermediate values, TE and µE .

A first principle determination of the phase diagram
by solving QCD itself is difficult due to the strongly in-
teracting nature of matter at low-energies/temperatures
which significantly restricts the range of applicability of
perturbative calculations. We must then rely on non-
perturbative techniques such as lattice QCD (LQCD) or
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some low-energy effective theories of QCD. The LQCD
simulations are known to be a viable approach for micro-
scopic calculations in QCD, and have recently reached a
reliable level at finite T and µ = 0 [3]. However, these
simulations are not yet able to provide a conclusive un-
derstanding of the QCD phase diagram due to severe
limitations posed by the well-known “sign-problem” at
finite µ, and difficulties dealing with small quark masses,
though only very approximate methods are available for
simulations at small µ values [4]. Thus, it is important
to develop low-energy effective models that may show
consistency with lattice results and can be extrapolated
into regions not accessible through simulations. Among
them, the local Nambu-Jona-Lasinio (NJL) model [5]
and its proposed extended version to include coupling
of quarks to Polyakov-loops, the so-called Polyakov-loop
NJL (PNJL) model [6], are useful to study the quark sys-
tem at finite T and/or µ. Such effective models share the
same symmetry properties of QCD and successfully de-
scribe the observed meson properties and chiral dynamics
at low-energies (see, e.g., [7–10]).

Using the framework of (P)NJL model we search the
CP and analyze the order of the chiral phase transition
by varying the current quark masses (mu, md, ms). We
usually set, for simplicity, md = mu and investigate the
phase transitions in the mu-ms-µ space. Renormaliza-
tion Group (RG) analysis of chiral models at µ ≃ 0 con-
clude that there is no stable infra-red (IR) fixed-point

for quark flavors NF >
√
3 [11], indicating that the ther-

mal phase transition is of fluctuation induced first or-



2

der for two or more flavors realized in the chiral limit
mu,d,s = 0. However, the transition becomes a crossover
for intermediate quark masses because of explicitly bro-
ken chiral and center symmetries. Hence, it is naturally
expected that there should be a “critical boundary” sep-
arating the regions of the first order phase transition and
crossover between small and intermediate quark masses.
Although LQCD results support the above model pic-
ture qualitatively, there had been a huge quantitative
difference between the two kinds of analyses, even at
zero chemical potential where the LQCD does not suf-
fer from the sign-problem; the value of the critical mass
obtained in the (P)NJL model is about one order of mag-
nitude smaller than the value in the LQCD analyses. In-
spired by recent works reporting that the critical mass
may become smaller when the number of lattice sites is
increased [12, 13], the present authors studied the criti-
cal boundary in the (P)NJL model with finite Matsubara
frequency summation N at zero chemical potential [14].
There it was found that the critical mass actually be-
comes larger if one decreases the Matsubara summation
number N (see, Eq.(7)), thereby showing the correct ten-
dency to explain the quantitative difference between the
LQCD and (P)NJL model results.
In this Letter, our goal is to study the critical bound-

ary for all values of the chemical potential, which may
eventually tell us the location of the CP in the QCD
phase diagram. As already mentioned that since an ab

initio determination of the critical point in QCD is a dis-
tant hope, nevertheless, it is worth studying the (P)NJL
model with finite frequency summation at finite chem-
ical potential that should capture the essential qualita-
tive features of the results expected in lattice studies.
Note that in the mu-ms-µ space, the critical boundary
becomes a surface called the “critical surface”. More pre-
cisely, through this study we would like to investigate the
qualitative behavior of this critical surface whose shape
can critically determine whether the CP exists. We can
then compare our results with the recent lattice predic-
tions.

II. MODEL SET UP

The NJL model Lagrangian in the 3 flavor system is
written by

LNJL = q̄ (i∂/− m̂) q + L4 + L6, (1)

L4 =
gS
2

8
∑

a=0

[

(q̄λaq)
2
+ (q̄ iγ5λaq)

2
]

, (2)

L6 = −gD [det q̄i(1− γ5)qj + h.c. ] . (3)

Here m̂ is the diagonal mass matrix (mu, md, ms) in the
flavor space which explicitly breaks the chiral symmetry.
L4 is the 4-fermion contact interacting term with cou-
pling constant gS, and λa is the Gell-Mann matrix in the
flavor space with λ0 =

√

2/3 diag(1, 1, 1). L6 is a 6-

fermion interaction term called the Kobayashi-Maskawa-
t’Hooft interaction whose coupling strength is gD [15].
The subscripts (i, j) indicate the flavor indices and the
determinant runs over the flavor space. This term is in-
troduced to explicitly break the UA(1) symmetry.
To study the chiral dynamics, we solve the gap equa-

tions which are derived through differentiating the ther-
modynamic potential Ω by the order parameters of the
model:

∂ Ω

∂ m∗
i

= 0 ; i = u, d, s (4)

The order parameters m∗
i are the constituent quark

masses. Since, we set md = mu in our analysis, this
should lead to the isospin symmetric result m∗

d = m∗
u,

reducing the number of gap equations from three to
two. The thermodynamic potential Ω is defined by
Ω ≡ − lnZ/(βV ), where Z is the partition function,
β(≡ 1/T ) is the inverse temperature and V is the vol-
ume of the thermal system.
In the mean-field approximation, after some algebra,

we arrive at the following expressions for the gap equa-
tion:

m∗
u = mu + 2i gSNctrS

u − 2gDN
2
c (trS

u)(trSs),

m∗
s = ms + 2i gSNctrS

s − 2gDN
2
c (trS

u)2,
(5)

where Nc(= 3) is the number of colors and trSi is the
chiral condensate written explicitly as

i trSi = 4m∗
i

∫

d3p

(2π)3
(iT )

∞
∑

n=−∞

i

(iωn)2 − E2
i

. (6)

Here wn = πT (2n + 1) is the Matsubara frequency and

Ei =
√

p2 +m∗ 2
i is the energy of the quasi-particle. A

detailed calculation for deriving the gap equations Eq.(5)
is clearly presented in the review paper [8].
To study the UV-cutoff effects in the model, we cut

the higher frequency modes in the Matsubara sum as
employed in [14],

∞
∑

n=−∞

−→
N−1
∑

n=−N

. (7)

This model has five free parameters {mu, ms, Λ, gS, gD}:
two current quark masses, a 3-dimensional momentum
cutoff, a four-fermion and a six-fermion coupling con-
stants. Following [7], we set mu = mphys

u = 5.5MeV fixed
for all values of N , while the remaining four parameters
are fitted each time by using the following physical ob-
servables

mπ = 138 MeV, fπ = 93 MeV,

mK = 495.7 MeV, mη′ = 958 MeV.

The parameter fitting for variousN has been done in [14],
and we employ the same values in this analysis which
are again displayed in Tab. I for the convenience of the
reader.
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N ms (MeV) Λ (MeV) gSΛ
2 gDΛ

5

15 134.7 631.4 4.16 12.51
20 135.0 631.4 4.02 11.56
50 135.3 631.4 3.82 10.14
100 135.4 631.4 3.75 9.69
∞ 135.7 631.4 3.67 9.29

TABLE I: The various fitted parameters for different N [14].

III. CHIRAL CRITICAL SURFACE

The main purpose of this Letter is to determine
the chiral critical surface in the (P)NJL model with fi-
nite Matsubara summation. The critical surface is the
set of all critical points in the mu-ms-µ space which are
analyzed by scanning the space for discontinuities of the
chiral condensate. It should be noted that for each value
of N , we treat both the current quark masses mu and
ms as free parameters in obtaining the critical surface
once the other parameters, namely, Λ, gS and gD are de-
termined by fitting to the physical parameters, as shown
in Tab. I. Of course, we will eventually be interested
in the case of the real (physical) current quark masses
mphys

u ≃ 5.5MeV and mphys
s ≃ 135MeV, in order to de-

termine the possible existence/non-existence of the CP
through our model analysis. Because our motivation is
to make a direct comparison of our results with that of
LQCD where the simulations are mainly performed in
the mu = ms symmetric case at finite µ, we shall also
consider this case. In the actual numerical calculations,
we scouted out the critical masses (muc,msc) for each µ
by searching for discontinuities in the solutions of the gap
equations Eq.(5) in the entire mu-ms-µ space, in general.
The LQCD and model studies indicate a crossover re-

alized at µ = 0 for physical current quark masses. This
means that the curvature of the critical surface will tell
us whether the CP is favored in the phase diagram. To
be more concrete, if the region of the first order phase
transition expands with increasing µ, the physical quark
mass line will intersect with the critical surface and this
will end up as a CP. If on the other hand, the first or-
der phase transition region shrinks with µ, there is less
chance of an appearance of a the CP and a crossover
transition will be favoured for the whole range of T and
µ. Thus the sign of the curvature is indeed important,
and the main purpose of this Letter is to study whether
the sign can change by decreasing N from the usual case
of N = ∞.
In the LQCD calculations, the curvature of the critical

surface along the mu = ms symmetric line is analyzed
by obtaining the critical mass mc as a function of the
ratio of the critical chemical potential µc and the critical
temperature Tc, through the following Taylor expansion
formula

mN
c (µc)

mN
c (µc = 0)

= 1 +
∑

k=1

cNk

(

µc

πTc

)2k

, (8)

which so far yielded the following results: c41 = −3.3(3),
c42 = −47(20) for Nt = 4, and c61 = 7(14), −17(18) (pre-
liminary) for a leading order (LO) and next-to-leading or-
der (NLO) extrapolation in µ2, respectively, for Nt = 6
where Nt represents the number of the lattice sites in
the temporal direction [13]. These results are graphi-
cally represented in Fig. 3 and 6 in the following sections
which indicate that the sign of the curvature has not yet
been determined from lattice simulations.

IV. NJL MODEL RESULTS

In this section, we demonstrate the numerical
methodology in obtaining the phase diagram and chiral
critical surface for the NJL model.

A. Phase diagram
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FIG. 1: Position of the CPs on the T -µ phase diagrams from
the NJL model with finite Matsubara summation and the
current quark masses being equal to the respective physical
quark masses obtained by fitting for N = 15, 50, ∞. The
dotted and the solid lines represent crossovers and first order
phase transitions, respectively. The N = ∞ case corresponds
to the traditional NJL model.

In in Fig. 1, we display the phase diagrams for simu-
lations at the physical quark mass values of the current
current quarks obtained from fitting for N = 15, 50 and
∞, respectively. Here we use the parameters shown in
Tab. I wheremu is kept fixed at 5.5MeV andms is around
135MeV. We have also studied the model for other val-
ues of N , however, there were no significant qualitative
differences and we prefer to select just the above three
representative cases for graphical clarity. Here, it may be
noteworthy mentioning that for values of N < 15, it be-
comes a matter of numerical challenge to perform simula-
tions to determine the phase boundaries. So, henceforth,
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we shall be displaying our results only for the above three
cases. Note that the case N = ∞ corresponds to the tra-
ditional NJL model. In drawing the phase diagrams, we
apply the same criterion employed in [10] where the phase
transition or crossover is defined by the condition,

〈ūu〉
〈ūu〉T0

∣

∣

∣

∣

T=T (µ)

=
1

2
, (9)

〈ūu〉T0
being the expectation value of the chiral conden-

sate for the up quark at temperature T0 and µ = 0. We
choose T0 = 0 for the N = ∞ traditional model, while
we set T0 = 50MeV for the case with finite N since the
model is ill-defined for small T , as discussed in [14]. This
is why we choose not to display the results for the small T
region where the curves are no longer physically reliable.
Here it is seen that the region below each of the curves

that represents the chiral symmetry broken phase ex-
pands with decreasing N . This comes from the fact that
the coupling constants become larger with decreasing N ,
being consistent with RG arguments that the coupling
strength becomes smaller when one considers the physics
at higher momenta, i.e., for larger N . When the coupling
strength grows the chiral condensate tends to enlarge,
which can be easily seen from Eq.(5). Thus, it is natu-
rally understood why the transition temperature increase
with a smaller choice of the summation number N .
Before proceeding to the critical surface, let us dis-

cuss how the phase diagram varies with changing current
quark masses. Since we treat the current quark masses as
free parameters in drawing the critical surface, it is worth
displaying the phase diagrams for different current quark
masses, as shown in Fig.2 for the case N = ∞. Here in
particular, we have chosen the mu = ms(≡ m) symmet-
ric direction to get a general idea of the nature of phase
diagram.
We see that the CP moves towards lower µ and higher

T with decreasing m, and it eventually hits µ = 0 axis
at m = 1.1MeV. For small current quark masses the or-
der of the transition is of the first, which is consistent
with the symmetry arguments presented in [11]. This
suggests that the critical chemical potential µc and the
critical temperature Tc could be thought of as functions
of the current quark masses, or conversely, one can ex-
press the critical mass mc as a function of µc and Tc,
namely, mc(µc, Tc), or equivalently, mc(µc/πTc). This
leads to the very idea of the chiral critical surface or
the Columbia plot which is our central issue. Note that
for other values of N , although the region of the broken
phase expands with decreasing N , the qualitative behav-
ior seen above in Fig.2 is found to be more or less the
same.
For the sake of comparison with the LQCD Taylor ex-

pansion formula Eq.(8), we define the following function
R(N, x)

R(N, x) ≡ mN
c (x)

mN
c (x = 0)

= 1 +
∑

k=1

cNk x2k, (10)
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FIG. 2: Position of the CP in the phase diagrams from the
traditional N = ∞ NJL model with m(= mu = ms) = 1.1,
3, 5MeV. The dotted and the solid lines represent crossovers
and first order phase transitions, respectively.

with x = µc/πTc. Thus the ratio of the critical mass mc

can be written as the function of N and x. For example,
mN

c (0) takes the values 1.1, 1.3 and 2.2MeV, respectively,
for N = ∞, 50 and 15, and hence mN

c (0) is strongly N
dependent. It may also be worth showing the correspond-
ing values of Tc in above three cases: Tc = 135, 153 and
190MeV for N = ∞, 50 and 15.

B. Critical surface
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FIG. 3: mN

c (x)/mN

c (0) vs x(= µc/πTc) plot for different N
values from the NJL model, along with the corresponding
results obtained from lattice simulations for Nt = 4 and Nt =
6. The actual values of mN

c (0) are 1.1, 1.3 and 2.2MeV for
N = ∞, 50 and 15, respectively.
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In Fig. 3, we show the numerical results for
mN

c (x)/mN
c (0) as a function of x(= µc/πTc), along with

the corresponding results obtained in the recent LQCD
simulations for Nt = 4 and 6 [13], respectively. We see
that the slope of the curves tends to go up only very
slightly on decreasing N from N = ∞ down to N = 15.
On the other hand, the results from lattice simulations
do not yield conclusive results so far, as clearly revealed
from the above figure, where the sign of the curvature
has not yet been constrained for the Nt = 6 case. Thus,
in comparison with the lattice studies, we find that the
qualitative behavior of our model results hardly changes
by using different N values in our analysis. This means
that there is indeed a stark quantitative contrast between
the NJL model results and the lattice predictions.
One particular aspect of the above results deserve a

closer inspection: here we draw Fig. 3 based on the idea
of Eq.(10) in which the N dependence of the curvature
comes from the coefficients cNk . The slope critical curves
as seen in Fig. 3 has a negligible N dependence for small
x, which mean that, if we were to assume a numerical
expansion as Eq.(10) applicable to the critical curves, cNk
for small k would be nearly independent of N as well. A
splitting of the curves indeed takes place on increasing
to large x when some N dependence may creep in for
larger k values. However, although there appears some
deviations for higher x (or µ), the qualitative behavior
of the critical surface does not change appreciably with
N at least for up to some µ(∼ 300MeV) as we shall see
below.
We are now in the position to actually display our re-

sults for the chiral critical surface on the Columbia plot
for the general case of real current quark masses. In
Fig. 4, we display our results obtained for the N = ∞
and 15 cases. It is clearly seen that, although the values
of the critical mass changes about factor of two, the slope
of the curvature does not differ as we change the value
of N . Thus, the region of the first order phase transi-
tion expands with respect to µ for all N values, since the
effect of variation of N is rather too nominal to change
the sign of the curvature of the critical surface. This
would then mean that the NJL model will always favour
the CP with physical current quark masses at some finite
value of µ, e.g., we obtain the CP when µ goes up around
µc = 324 (342)MeV for N = ∞ (15), as exhibited in the
phase diagram Fig. 1.

V. THE PNJL MODEL EXTENSION

It is also intriguing to study the critical surface in the
PNJL model, because of the closer resemblance to QCD
which treats the chiral and deconfinement phase tran-
sitions simultaneously. In the PNJL model, the order
parameter for the deconfinement phase transition is the
Polyakov-loop and it is described by a global mean-field
being similar to the chiral condensation in the traditional
NJL model. The Lagrangian of the PNJL model is writ-
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FIG. 4: The chiral critical phase surfaces for (a) N = ∞, and
(b) N = 15 from the NJL model in the mu-ms-µ space.

ten as [10],

LPNJL = L0 + L4 + L6 + U(Φ,Φ∗, T ) , (11)

L0 = q̄ (i∂/− iγ4A4 − m̂) q , (12)

U(Φ,Φ∗, T ) = −bT
{

54 e−a/TΦΦ∗

+ ln
[

1− 6ΦΦ∗ + 4(Φ3 +Φ∗ 3)− 3(ΦΦ∗)2
]}

, (13)

where U is the Polyakov-loop effective potential and Φ
and Φ∗ are the traced Polyakov- and the anti-Polyakov-
loop, respectively. They are defined by Φ = (1/Nc)trL,

Φ∗ = (1/Nc)trL
† with L = P exp[i

∫ β

0
dτA4] and A4 =

iA0. There are several candidates for the Polyakov-loop
potential in defining the PNJL model [6, 10, 17], and
we adopt the strong-coupling inspired form of Eq.(13)
following [10]. In the above expressions, the parameter
a solely parametrizes the strength of the Polyakov-loop
condensate for the deconfinement phase transition, while
the parameter b controls the relative strength of the mix-
ing between the Polyakov-loop and chiral condensates,
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with a smaller value of b signifying chiral phase transition
dominating over deconfinement. Here, the parameters a
and b are set as a = 664 MeV, and b ·Λ−3 = 0.03. Re-
garding the rest of the model parameters, it is legitimate
to use the same ones fixed in the NJL model because the
Polyakov-loop extension is likely to affect the system only
at finite temperatures comparable to the critical temper-
ature Tc. At much lower temperatures the chiral con-
densate is only very marginally modified by the Polyakov
loops.

VI. PNJL MODEL RESULTS

Let us now discuss the results in the PNJL model
with finite frequency summation.
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FIG. 5: Position of the CP on the T -µ phase diagrams from
the PNJL model with finite Matsubara summation and the
current quark masses being equal to the respective physical
quark masses obtained by fitting for N = 15, 50, ∞. The
dotted and the solid lines represent crossovers and first order
phase transitions, respectively. The N = ∞ case corresponds
to the traditional PNJL model.

In Fig. 5, we present the phase diagrams resulting from
the PNJL model at physical quark masses with N = 15,
50 and ∞. Here we see that the curves are very similar to
the ones in Fig. 1, however, the critical temperatures are
about a factor of two or more larger than those obtained
via the NJL model. This is almost the same quantitative
difference as is observed between the traditional (N =
∞) NJL and PNJL models [18].
We again display the corresponding curves for the ratio

mN
c (x)/mN

c (0) and compare the results with the LQCD
simulations in the small (x < 0.1) region. We see that the
nature of the results exhibit similar qualitative character-
istics with the ones obtained in the NJL model; the ratio
does not change appreciably, although mN

c (0) is strongly
dependent on N . However, the ratios are numerically
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FIG. 6: mN

c (x)/mN

c (0) vs x(= µc/πTc) plot for different N
values from the PNJL model, along with the corresponding
results obtained from lattice simulations for Nt = 4 and Nt =
6. The actual values of mN

c (0) are 1.3, 1.6 and 2.6MeV for
N = ∞, 50 and 15, respectively.

larger than that obtained with the NJL case. This re-
sult can be interpreted as an effect of the Polyakov-loops
tending to suppress unphysical quark excitations below
Tc [10].
Finally, in Fig. 7, the critical surfaces in the PNJL

model with N = ∞ and 15 are displayed. We confirm
that the region of the first order transition expands with
respect to µ in these two figures, quite similar to that
found previously in the NJL case. It is interesting to
note that such qualitative similarity between the NJL
and PNJL model results is a priori non-trivial, since the
deconfinment phase transition order parameters, namely
the Polyakov-loops Φ and Φ∗, respectively, may cause the
system with chiral and deconfinment phase transitions
to deviate significantly (both qualitatively and quantita-
tively) from a system with only chiral phase transition,
especially in the vicinity of the CP.

VII. SUMMARY AND DISCUSSION

In this Letter, we studied the UV-cutoff effects on the
chiral critical surface with two light and one heavy flavors
using the (P)NJL model. We found that although the
critical masses may strongly depend on the choice of N ,
the “normalized” critical surface, denoted by the function
R(N, x), is not appreciably affected on changing N while
restricting to the small x region where lattice simulation
data is currently available. Note, however, that there
appears a nominal deviation for larger x. Our general
conclusion is that the critical surfaces show rapidly ex-
panding behavior for high µ, namely at high x, as clearly
evident from Figs. 4 and 7, in which case the “phys-
ical” line corresponding to the physical current quark



7

 0
 1

 2
 3

 4
 5  0

 5
 10

 15
 20

 25

 0

 50

 100

 150

 200

 250

C
he

m
ic

al
 p

ot
en

tia
l [

M
eV

]

Light Quark Mass [MeV] Stra
nge Q

uark
 M

ass
 [M

eV
]

(a)N=∞

 0
 1

 2
 3

 4
 5  0

 5
 10

 15
 20

 25

 0

 50

 100

 150

 200

 250

C
he

m
ic

al
 p

ot
en

tia
l[

M
eV

]

Light Quark Mass [MeV] Stra
nge Q

uark
 M

ass
 [M

eV
]

(b)N=15

FIG. 7: The chiral critical phase surfaces for (a) N = ∞, and
(b) N = 15 from the PNJL model in the mu-ms-µ space.

mass lines always intersects the critical surface due to
its monotonically expanding nature. In other words, the
NJL model always seems to favor the existence of the CP
scenario, irrespective to choice of N . While, on the other
hand, the current lattice simulations are not decisive at
the moment being beset with larger lattice cut-off effects

than finite density effects, making continuum extrapola-
tions doubtful. However, there is still room for further
precise lattice calculations in future with greater number
of lattice sites and development of new techniques for
finite-density simulations that may be necessary to make
definite conclusions.

As a final note, we point out the possibility of the
temperature and density dependence of the coupling con-
stants that may become important at high-energies, as we
expect the couplings to run with respect to the energy
scale. However, to test the effects of the temporal UV-
cutoff, we have used constant values of the couplings gS
and gD which were fixed from the very outset by fitting
to physical quantities at small temperature and chemical
potential. These dependencies so arising may turn out to
have crucial effects on the critical surface especially when
considering the system at high densities, where it is ex-
pected to be dominated by non-hadronic states. Thus,
the location of the CP is indeed sensitive to the nature
and magnitude of the coupling constants. In fact, it was
actually found in [19] that the UA(1) anomaly strength
modeled through the chemical potential dependent cou-
pling gD may change the curvature of the critical surface,
as well as its sign, resulting in a characteristic “back-
bending” of the critical surface as a function of µ. This
reflects the fact that the density dependence of the cou-
pling strengths plays crucial role when investigating the
chiral critical surface.
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