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Heavy hadron chiral perturbation theory (HHχPT) and XEFT are applied to the decays
X(3872) → ψ(2S)γ and ψ(4040) → X(3872)γ under the assumption that theX(3872) is a molecular
bound state of neutral charm mesons. In these decays the emitted photon energies are 181 MeV and
165 MeV, respectively, so HHχPT can be used to calculate the underlyingD0D̄0∗+D̄0D0∗

→ ψ(2S)γ
or ψ(4040) → (D0D̄0∗ + D̄0D0∗)γ transition. These amplitudes are matched onto XEFT to obtain
decay rates. The decays receive contributions from both long distance and short distance processes.
We study the polarization of the ψ(2S) in the decay X(3872) → ψ(2S)γ and the angular distri-
bution of X(3872) in the decay ψ(4040) → X(3872)γ and find they can be used to differentiate
between different decay mechanisms as well as discriminate between 2−+ and 1++ quantum number
assignments of the X(3872).
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The X(3872) [1–3] is the first of many recently discovered hadrons containing hidden charm that do not fit neatly
into the traditional model of charmonia as nonrelativistic bound states of cc̄. The extreme closeness of the X(3872)
to the D0D̄0∗ threshold has prompted many authors to suggest that the X(3872) is a molecular bound state of
neutral charm mesons, though other possibilities including tetraquark interpretations have also been considered in
the literature. For reviews of the recent discoveries in charmonium spectroscopy, see Refs. [4–6].

In this paper, we will work under the assumption that the X(3872) is a shallow S-wave bound state of D0D̄0∗ +
D̄0D0∗ and calculate the radiative decays X(3872) → ψ(2S)γ and ψ(4040) → X(3872)γ. The interpretation of the
X(3872) as a charm meson molecule is motivated by the following considerations: The observed branching ratios [7]

Γ[X(3872) → J/ψπ+π−π0]

Γ[X(3872) → J/ψπ+π−]
= 1.0 ± 0.4 ± 0.3 , (1)

and [8]

Γ[X(3872) → J/ψω]

Γ[X(3872) → J/ψπ+π−]
= 0.8 ± 0.3 , (2)

indicate that the X(3872) couples with nearly equal strength to I = 0 and I = 1 final states. This rules out a
conventional charmonium interpretation. The observation of the decay X(3872) → J/ψγ demands C = +1 and the
invariant mass distribution in the decay X(3872) → J/ψπ+π− is consistent with the quantum number assignments
JPC = 1++ or 2−+ only. The decaysX(3872) → D0D̄0π0 andX(3872) → ψ(2S)γ would suffer an angular-momentum
suppression if the JPC = 2−+ assignment is correct, leading to a preference for JPC = 1++. If the quantum numbers
of the X(3872) are 1++, then the X(3872) has an S-wave coupling to the D0D̄0∗ + D̄0D0∗. Finally, since the mass of
the X(3872) is 0.42± 0.39 MeV below the D0D̄0∗ threshold [9], the X(3872) can mix strongly with D0D̄0∗ + D̄0D0∗

and the long range part of the X(3872) wavefunction should be dominated by the D0D̄0∗ + D̄0D0∗ state. Recently,
the Babar collaboration studied the three-pion mass distribution in the decay X(3872) → J/ψπ+π−π0 and concluded
that the shape prefers the 2−+ assignment over 1++ [8]. However, the significance of their result is not so great
that the 1++ assignment can be ruled out. The 2−+ assignment is problematic from the point of view of both the
conventional quark model as well other interpretations, for discussions see Refs. [10–12]. For the majority of this paper
we will assume the 1++ assignment for the X(3872) but we will also consider the implications of the 2−+ assignment
for the radiative decays we will calculate below. An important point of this paper is that these observables may be
able to discriminate between the 1++ and 2−+ quantum number assignments.

If the X(3872) is indeed a shallow bound state of neutral charm mesons, then one can exploit the universal behavior
of shallow bound states to compute many X(3872) properties. Universal quantities are those which depend only on
the asymptotic form of the bound state wavefunction and known properties of the constituents in the bound state.
Examples of this for the X(3872) include the decay rates Γ[X(3872) → D0D̄0γ] and Γ[X(3872) → D0D̄0π0], first
calculated by Voloshin in Refs. [13, 14]. In the X(3872), the wavefunction of the D0D̄0∗ + D̄0D0∗ at a distance much
greater than R, where R is the range of the interaction between the charm mesons, takes on the form dictated by
quantum mechanics,

ψDD∗(r) ∝ e−γr

r
, (3)

where γ =
√

2µDD∗B, µDD∗ is the reduced mass of the D0 and D̄0∗, and B is the binding energy. From the known
binding energy, B = 0.42±0.39 MeV, we infer a mean separation rX = 4.9+13.4

−1.4 fm, which is incredibly large compared
to all known hadrons.

Effective field theory offers a systematic approach to understanding the X(3872) as a molecule. The interactions
of the theory are constrained by heavy quark and chiral symmetry via heavy hadron chiral perturbation theory
(HHχPT) [16–18]. XEFT [15] is a low energy effective field theory of nonrelativistic D0, D0∗, D̄0, D̄0∗, and π0 mesons
near the D0D̄0∗ threshold that is obtained from HHχPT by integrating out virtual states whose energies are widely
separated from the D0D̄0∗ threshold. At leading order (LO) XEFT reproduces the universal predictions that follow
from the wavefunction in Eq. (3).

In Ref. [19] elastic D(∗)X(3872) scattering was calculated using XEFT, and recently Ref. [20] applied XEFT to
inelastic π+X(3872) scattering. Both these leading order calculations make predictions which depend only on the
binding energy of the X(3872) and known properties of charm mesons with no other undetermined parameters. XEFT
can also be used to systematically calculate corrections to universal predictions from effective range corrections, other
effects due to higher dimension operators in the XEFT Lagrangian, and corrections from pion loops. In Ref. [15],
XEFT was used to calculate corrections to effective range theory predictions for the process X(3872) → D0D̄0π0. It
was shown that corrections from pion loops were quite small, justifying a perturbative treatment of pions in XEFT.
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Finally, XEFT can be used to analyze properties that are not universal but depend on short distance aspects of the
X(3872). Here, one seeks factorization theorems for decay rates and cross sections which separate long distance from
short distance scales in the X(3872). Factorization theorems for X(3872) production and decay were first obtained
in Refs. [21–23]. In XEFT these theorems are obtained by matching HHχPT amplitudes onto XEFT operators, then
using these operators to calculate decays and production cross sections in XEFT. An example is the calculation of
the hadronic decays X(3872) → χJπ

0 and X(3872) → χJππ [24]. These decays are interesting because the relative
rates to final states with different χcJ can be predicted using heavy quark symmetry [25].

In this paper, we apply XEFT to the radiative decays X(3872) → ψ(2S)γ and ψ(4040) → X(3872)γ. The BaBar
collaboration quotes the branching fraction [37]:

Γ[X(3872) → ψ(2S)γ]

Γ[X(3872) → J/ψγ]
= 3.4 ± 1.4 . (4)

Later Belle searched for the decay X(3872) → ψ(2S)γ but did not observe it and obtained an upper bound for the
branching ratio in Eq. (4) of 2.1 with a confidence level of 90%. This is consistent with Eq. (4) given the uncertainties,
but suggests the true value may be lower than the central value in Eq. (4). Ref. [37] concluded that their measurement
disfavored a molecular interpretation of the X(3872), largely because the branching ratio in Eq. (4) was predicted to
be 3.7 × 10−3 in the specific molecular model of the X(3872) in Ref. [27]. However, the ratio is sensitive to short-
distance components of the X(3872) wavefunction which may not be modelled correctly in the model of Ref. [27].
Ref. [28] describes a model of the X(3872) as a mixed molecule-charmonium state that can account for the branching
ratio in Eq. (4).

XEFT alone will not yield a prediction for the branching fraction in Eq. (4) . Since the charm mesons must come
to a point to coalesce into a quarkonium, each absolute decay rate in the ratio is sensitive to short distance physics
not described by XEFT. Typically one would want to calculate ratios in which this short distance component cancels.
But the ψ(2S) and J/ψ are members of different heavy quark multiplets, with couplings unrelated by symmetry.
Finally, the photon energy in the decay X(3872) → ψ(2S)γ is 181 MeV, which is within the range of applicability of
HHχPT, while the photon energy in the decay X(3872) → J/ψγ is 697 MeV, well outside the range of HHχPT. So
instead we will analyze what HHχPT and XEFT can tell us about X(3872) → ψ(2S)γ. We find that there are two
distinct mechanisms for the decayX(3872) → ψ(2S)γ and that the polarization of ψ(2S) will shed light on the relative
importance of these mechanisms. The polarization is calculated under both the JPC =1++ and 2−+ assumptions for
the quantum numbers of the X(3872) and we discuss how this might be used to distinguish between them.

Another decay that can be analyzed in XEFT is ψ(4040) → X(3872)γ, in which the photon energy is 164 MeV.
It may be possible to observe this decay at an e+e− collider experiment such as BES III if the energy is tuned to
the ψ(4040) resonance. The angular distribution (relative to the beam axis) of the X(3872) produced in the process
e+e− → ψ(4040) → X(3872)γ, yields similar information about the X(3872).

I. X(3872) → ψ(2S)γ

The procedure for calculating X(3872) decays to charmonium is described in detail in Ref. [24]. For the decay
X(3872) → ψ(2S)γ, one first calculates the transition amplitude for D0D̄0∗ + D̄0D0∗ → ψ(2S)γ using HHχPT,
extended to include charmonium states as explicit degrees of freedom. HHχPT Lagrangians with quarkonia were first
developed in Refs. [30, 31]. For a recent application to radiative decays of quarkonia, see Ref. [32]. These papers used
a covariant formulation in which the heavy mesons in the initial and final states can have distinct four-velocities. We
will use the two-component version of HHχPT introduced in Ref. [34]. This formalism uses two-component spinors

with the four velocity for both the initial and final heavy mesons fixed to be vµ = (1,~0). This formalism is suitable for
processes in which the recoil of the heavy particle in the final state can be neglected, which is the case for this decay
since vi ·vf = (m2

X +m2
ψ)/(2mXmψ) = 1.001, where vi(vf ) denotes the four-velocity of the initial (final) quarkonium.

The interaction Lagrangian for X(3872) → ψ(2S)γ is given by

L =
eβ

2
Tr[H†

1H1 ~σ · ~B Q11] +
eQ′

2mc

Tr[H†
1 ~σ · ~BH1] + h.c.

+i
g2
2

Tr[J†H1~σ·
↔

∂ H̄1] + i
ec1
2

Tr[J†H1~σ · ~EH̄1] + h.c. . (5)

Here Q11 = 2
3 , Q′ = 2

3 , h.c. means hermitian conjugate, and J is the superfield containing the ψ(2S) and ηc(2S).
The first two terms contain the couplings of the charm mesons to photons, the third term contains the coupling
of the charm mesons to charmonia, and the final (contact) term couples the charm mesons, the charmonia, and the
electric field. While g2 and c1 are unknown parameters at present, β occurs in HHχPT predictions involving measured
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a) b)

d)c)

FIG. 1: Feynman diagrams contributing to the D0D̄0∗
→ ψ(2S) γ amplitude. The thin solid line is a D0 meson, the double

line is a D̄0∗ meson, the wavy line is a photon, and the thick solid line is the ψ(2S).

quantities: Ref. [33] obtains β−1 ∼ 1200 MeV from radiative decays within the lowest charm meson multiplet, Ref. [34]
found β−1 = 275 − 375 MeV, and Ref. [35] included the effects of the excited charm meson multiplet to find β−1

= 670 MeV. Since we have integrated the excited charm mesons out and neglected loop corrections in the HHχPT
calculations in this paper, we will use the value of β−1 = 275−375 MeV extracted in Ref. [34], which makes the same
approximations. From these interactions we find four tree-level diagrams contributing to D0D̄0∗ + D̄0D0∗ → ψ(2S)γ,
which are shown in Figs. 1a)-d). The amplitudes corresponding to each of these diagrams are

a) = −g2 e β+

3

1

Eγ + ∆
(~k · ~ǫ ∗

ψ ~ǫD∗ · ~k × ~ǫ ∗
γ − ~k · ~ǫD∗ ~ǫ ∗

ψ · ~k × ~ǫ ∗
γ ) (6)

b) =
g2 e β+

3

1

∆ − Eγ
~k · ~ǫ ∗

ψ ~ǫD∗ · ~k × ~ǫ ∗
γ (7)

c) =
g2 e β−

3

1

Eγ
~k · ~ǫD∗ ~ǫ ∗

ψ · ~k × ~ǫ ∗
γ (8)

d) = −e c1Eγ ~ǫD∗ · ~ǫ ∗
ψ × ~ǫ ∗

γ , (9)

where β± = β ± 1/mc, the polarization vectors of the photon, D0∗, and ψ(2S) are ~ǫ ∗
γ ,~ǫD∗ , and ~ǫ ∗

ψ , respectively, and
~k is the outgoing photon momentum..

An additional potential contribution to D0D̄0∗ + D̄0D0∗ → ψ(2S)γ is D0D̄0∗ + D̄0D0∗ → χc1(2P ) → ψ(2S)γ. It is
quite likely that the masses of the χcJ(2P ) states are close to the X(3872) mass. For example, Ref. [36] quotes quark
model predictions for the χc1(2P ) mass of 3925 MeV (in a nonrelativistic potential model) and 3953 MeV (in the
Godfrey-Isgur relativistic quark model). Alternatively, if the Z(3930) is the χc2(2P ) state one expects the χc1(2P )
to be about 3885 MeV, assuming that the spin-orbit splitting for χcJ(2P ) states is equal to the observed spin-orbit
splitting for χcJ(1P ) states. (The nonrelativistic potential model predicts this splitting to be approximately the same,
while the Godfrey-Isgur model predicts it to be slightly smaller.) In this scenario, the χc1(2P ) is within 14 MeV of
the X(3872) and the process D0D̄0∗ → χc1(2P ) → ψ(2S)γ could be important for the radiative decay of the X(3872).

The decay χcJ → ψ(2S)γ is an electric dipole transition mediated by the operator

L = δ2P2STr[J†χic]E
i + h.c. , (10)

where Ei is the electric field, χc is the super field containing the χcJ(2P ) states, and the coupling constant δ2P2S is
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the same as the one defined in Ref. [32], which calculated the decay rate

Γ[χc1(2P ) → ψ(2S)γ] =
(δ2P2S)2

3π

mψ(2S)

mχc1(2P )
k3
γ . (11)

The charm mesons couple to the χcJ(2P ) through a coupling

L =
i

2
g′1 Tr[χ†i

c H̄σ
iH ] + h.c. , (12)

This coupling is exactly the same as the coupling of heavy mesons to χcJ(1P ) states introduced in Ref. [24], except
now the χic superfield contains the χcJ(2P ) states and the coupling is g′1 instead of g1. The effect of including a
tree-level diagram for D0D̄0∗ + D̄0D0∗ → ψ(2S)γ using the vertices in Eqs. (10) and (12) is to modify amplitude d)
in Eq. (6) by the substitution

ec1 → ec1 +
g′1δ

2P2S

mX −mχc1(2P )
. (13)

At present, δ2P2S , g′1, and mχc1(2P ) are unknown, so in what follows we will simply absorb this contribution into the
definition of the coupling c1. Note that the term in Eq. (10) [32] can be considered as the leading order (in a multipole
expansion) contact term mediating the radiative decay of an object with 1++ quantum numbers to the ψ(2S) and
a photon. Its Feynman rules are identical to that of the c1 operator in Eq. (5). So an extraction of c1 yields any
(leading) short-distance contribution in X(3872), including its charmonium fraction.

An illuminating observable is the decay rate for X(3872) → ψ(2S)(~ǫψ)γ, where the polarization vector ~ǫψ of the
produced ψ(2S) can in principle be determined from the angular distribution of the leptons into which it decays:
ψ(2S) → ℓ+ℓ−. Averaging over the initial X(3872) and final photon polarizations we find

Γ[X(3872) → ψ(2S)(~ǫψ)γ] =
∑

λ

|〈0| 1√
2
ǫi(λ) (V i P̄ + V̄ i P )|X(3872, λ)〉|2 (14)

×mψ

mX

Eγ
24π

(

2

3
(A+ C)

2 |k̂ · ~ǫψ|2 +
1

3
(B − C)

2 |k̂ × ~ǫψ|2
)

,

where V i and P are the vector and scalar components of the D(∗) superfield, and ǫi(λ) are a basis of polarization

vectors for the X(3872). In Eq. (14), k̂ is a unit vector in the direction of the photon’s three-momentum, and

A =
g2eβ+

3

2E3
γ

∆2 − E2
γ

B =
g2e

3

β+E
2
γ + β−Eγ(Eγ + ∆)

Eγ + ∆
C = −ec1Eγ . (15)

We have used ~ǫ ∗ψ · ~ǫψ = |k̂ · ~ǫψ|2 + |k̂ × ~ǫψ|2. The total decay rate is given by

Γ[X(3872) → ψ(2S)γ] =
∑

λ

|〈0| 1√
2
ǫi(λ) (V i P̄ + V̄ i P )|X(3872, λ)〉|2

× Eγ
36π

mψ

mX

[

(A+ C)2 + (B − C)2
]

. (16)

In addition to not having an experimental determination of the parameters g2 and c1 contained in A, B, and C,
the matrix element in Eq. (16) is unknown; additional measurements will be necessary to make a prediction for the
total rate. However, the matrix element between X(3872) and its constituents appears in any process involving the
X(3872), so a measurement from a different production or decay chain can be used in this calculation. Combining the
lower bound Γ[X(3872) → ψ(2S)γ]/Γ[X(3872)] > 3.0 × 10−2 from Refs. [37, 38] with the upper bound on the total
width Γ[X(3872)] < 2.3 MeV [1] yields the lower bound on the partial width Γ[X(3872) → ψ(2S)γ] > 7× 10−2 MeV.

If we define |M‖|2 (|M⊥|2 ) to be the matrix element squared for decay into ψ(2S) polarized parallel (perpendicular)
to the axis defined by the photon momentum, then

|M‖|2 =
2

3
(A+ C)2

|M⊥|2 =
2

3
(B − C)2 . (17)
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FIG. 2: fL as a function of the parameter λ (defined in text). Solid line corresponds to rβ = 1.0, dashed line to rβ = 0.66.

It is interesting to consider the limits i) |g2β±| ≪ |c1| and ii) |g2β±| ≫ |c1|. When |g2β±| ≪ |c1| the short distance
contribution dominates, |C| ≫ |A|, |B|, and

i)
|M‖|2
|M|2 =

|M‖|2
|M‖|2 + |M⊥|2

=
1

2
. (18)

That is, diagram d) yields |M‖|2 = |M⊥|2. In case ii), diagrams a) -c) dominate and we find

ii)
|M‖|2
|M|2 =

4E4
γ

4E4
γ + (Eγ + rβ(Eγ + ∆))2(Eγ − ∆)2

= 0.95 (0.92) . (19)

where rβ ≡ β−/β+. The first number on the r.h.s. of Eq. (19) corresponds to rβ in the range 0.62-0.69, taken from
fits in Ref. [34], while the number in parentheses corresponds to rβ = 1. In case ii) diagrams a)-c) dominate over
diagram d), and diagram b) dominates diagrams a)-c) because Eγ − ∆ ∼ 39 MeV is small. The result is that the
polarization of the produced ψ(2S) is dictated by diagram b), which peaks for longitudinally polarized ψ(2S). The
angular distribution of the final state lepton pair in the decay ψ(2S) → ℓ+ℓ− is

dΓ

d cos θ
∝ 1 + α cos2 θ α =

1 − 3fL
1 + fL

, (20)

where fL = |M‖|2/|M|2 and cos θ is the angle between the lepton’s and the photon’s momentum. For case i) α = −1/3
and for case ii) α = −0.91(−0.95), so the angular distribution of the leptons is sensitive to the production mechanism
and can be used to distinguish among them.

Defining λ = 3c1/(g2β+), λ → 0 corresponds to diagrams a)-c) dominating, while |λ| → ∞ corresponds to the
contact interaction dominating. In terms of λ,

fL =
N

D
,

where

N =

(

2E2
γ

∆2 − E2
γ

)2

− λ
4E2

γ

∆2 − E2
γ

+ λ2 (21)

D =

(

2E2
γ

∆2 − E2
γ

)2

+

(

Eγ + rβ(Eγ + ∆)

Eγ + ∆

)2

− 2λ

(

2E2
γ

∆2 − E2
γ

− Eγ + rβ(Eγ + ∆)

Eγ + ∆

)

+ 2λ2 .

Fig. 2 is a plot of fL as a function of λ and Fig. 3 is a plot of α in terms of the parameter λ. Naive dimensional
analysis suggests λ ∼ O(1), so the plots range over −5 < λ < 5. The plots show the results for rβ = 1 (solid) and
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FIG. 3: α as a function of the parameter λ (defined in text). Solid line corresponds to rβ = 1.0, dashed line to rβ = 0.66.

rβ = 0.66 (dotted). The behavior shown in the plots remains the same when rβ is varied between −1 < rβ < 1, where
the lower limit corresponds to the situation where the 1/mc term (cf. Eq. (5)) dominates while the upper limit is the
heavy quark limit. The curves just continue to move to the right for smaller values of rβ . For the most likely values
of rβ , longitudinal polarization (fL ≥ 1/2 and α ≤ −1/3) is found for λ in the range −3 < λ < 5.

This analysis potentially yields a method for determining the amount of a molecular versus nonmolecular descrip-
tion consistent with a 1++ assignment for the X(3872). If the multipole expansion is legitimate, the leading order
description of a nonmolecular 1++ is a P -wave contact term equivalent to c1. This nonmolecular character includes
any charmonium content. So to the extent that the ψ(2S) polarization in the X(3872) → ψ(2S)γ decay is found to be
longitudinally polarized, the molecular description dominates the X(3872) character, and its overlap with charmonium
is not important.

It is also interesting to consider what the JPC = 2−+ assignment for the X(3872) would imply for the ψ(2S)
polarization. Denote the spin-2 field in HHχPT by X ij, where X ij is symmetric and traceless in its indices. The
simplest coupling mediating X(3872) → ψ(2S)γ is

L = g′ Tr[X ijJ†σi]Bj , (22)

which yields an amplitude proportional to

M[X(3872) → ψ(2S)(~ǫψ)γ] ∝ ~ǫ ∗iψ (~k × ~ǫ ∗γ )jhij , (23)

where ~k is the photon three-momentum, and ~ǫ ∗ψ, ~ǫ ∗γ , and hij are the polarization tensors for the ψ(2S), photon, and

X(3872), respectively. Summing over the polarizations of the X(3872) and the photon, the cross section’s dependence
on the polarization of the ψ(2S) becomes

∑

|M[X(3872) → ψ(~ǫψ)γ]|2 ∝ |~k · ~ǫψ|2 +
7

6
|~k × ~ǫψ|2 . (24)

The fraction of longitudinally polarized ψ(2S) is fL = 0.3, corresponding to α = 0.08. This leading order description
of a JPC = 2−+ X(3872) yields a very slight transverse polarization of the ψ(2S).

Ref. [10] assumes that the X(3872) is the ηc(
1D2). In the models considered in that paper, the leading contribution

to the decay is an M1 amplitude identical in form to that given by Eq. (22). In addition, the models include electric
quadrupole and magnetic octopole transitions (which correspond to higher dimension operators in HHχPT). From
the helicity amplitudes calculated in the five potential models of Ref. [10], we obtain fL = 0.11−0.28 (α = 0.13−0.6).
This suggests the JPC = 2−+ quantum number assignment prefers slightly transverse polarization for the ψ(2S) in
the X(3872) → ψ(2S)γ decay. In contrast, the molecular (1++) hypothesis predicts longitudinal polarization in much
(but not all) of parameter space.
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II. ψ(4040) → X(3872)γ

Assuming that the ψ(4040) is the 33S1 charmonium, the interaction Lagrangian for ψ(4040) → X(3872)γ is essen-
tially the same as in Eq. (5). The superfield J should be replaced by the superfield containing the ψ(4040) while the
couplings g2 and c1 are replaced by analogous couplings g̃2 and c̃1. The diagrams for ψ(4040) → (D0D̄0∗ + D̄0D0∗)γ
are related to those in Fig. 1 by crossing symmetry. The corresponding amplitudes are

a) = − g̃2 e β+

3

1

Eγ − ∆
(~k · ~ǫψ ~ǫD∗ · ~k × ~ǫ ∗

γ − ~k · ~ǫD∗ ~ǫψ · ~k × ~ǫ ∗
γ ) (25)

b) = −g2 e β+

3

1

Eγ + ∆
~k · ~ǫψ ~ǫD∗ · ~k × ~ǫ ∗

γ (26)

c) =
g̃2 e β−

3

1

Eγ
~k · ~ǫD∗ ~ǫψ · ~k × ~ǫ ∗

γ (27)

d) = −e c̃1Eγ ~ǫD∗ · ~ǫψ × ~ǫ ∗
γ . (28)

We are interested in the angular distribution of the X(3872) produced in the process e+e− → ψ(4040) → X(3872)γ.
The mass of the electrons is negligible compared to the ψ(4040); the electrons are treated as helicity eigenstates whose
spin angular momentum is projected along the beam axis. Thus the ψ(4040) has Lz = ±1, where the beam axis
defines the z-direction. Therefore the ψ(4040) is produced with polarization normal to the beam axis. This then
dictates the angular distribution of the X(3872) produced in the decay. If we square the amplitudes, and average over
the X(3872) and γ polarizations, we find the matrix element squared is

∑

|M(~ǫψ)|2 ∝ 2

3
P |k̂ · ~ǫψ|2 +

1

3
T |k̂ × ~ǫψ|2 , (29)

where ~ǫψ is the ψ(4040) polarization vector, k̂ is unit-vector along the three-momentum of the photon in the ψ(4040)
rest frame, and P and T are given by:

P =

(

g̃2eβ+

3

2E3
γ

∆2 − E2
γ

− ec̃1Eγ

)2

T =

(

g̃2eβ+

3

E2
γ + rβEγ(Eγ − ∆)

Eγ − ∆
+ ec̃1Eγ

)2

. (30)

The angular distribution can be obtained by replacing ǫiψǫ
∗j
ψ = δij − ẑiẑj in Eq. (29). Defining θ to be the angle that

the X(3872) (or the photon) makes with the beam axis, we find

dσ

d cos θ
∝ 1 + ρ cos2 θ , (31)

where ρ is given by

ρ =
T − 2P

T + 2P
. (32)

The value of ρ in Eq. (31) depends on the following combination of HHχPT coupling constants:

Λ ≡ 3c̃1
g̃2β+

. (33)

Fig. 4 is a plot of ρ as a function of the dimensionless parameter Λ, for −10 ≤ Λ ≤ 10. Λ is expected to be O(1).
In the region where c̃1 dominates, |Λ| → ∞, and ρ asymptotes to −1/3. As rβ decreases, ρ reaches the asymptote
at larger values of Λ. Near Λ ∼ −8, ρ is very sensitive to Λ and can take on any value between −1 and +1. For
comparison, if the X(3872) has quantum numbers JPC = 2−+ and couples to the ψ(4040) and the photon by the
leading order operator analogous to Eq. (22), ρ = 1/13 = 0.08. So the angular distribution of X(3872) produced in
the process e+e− → ψ(4040) → X(3872)γ can also be used to discriminate between quantum number assignments of
the X(3872).
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FIG. 4: The parameter ρ from the angular distribution of X(3872) in the decay ψ(4040) → X(3872)γ as a function of
Λ ≡ 3c̃1/(g̃2β+). The solid line has rβ = 1.0 and the dashed line has rβ = 1.0.

III. SUMMARY

In this paper we have calculated the radiative decays X(3872) → ψ(2S)γ and ψ(4040) → X(3872)γ using XEFT.
Each receives contributions from a “long-distance” portion involving the propagation of a heavy charm meson (dia-
grams a)-c) in Fig. (1)), and a short-distance contact operator (diagram d) in Fig. (1)). The relative importance of
these two types of diagrams depends on the ratio of two undetermined parameters in the HHχPT Lagrangian; λ for
the X(3872) decay mechanism above and Λ for the X(3872) production mechanism. A primary result of this paper
is that the angular distributions of decay products can be used to distinguish between the 1++ and 2−+ assignments
of the X(3872) as well as the relative importance of the two types of diagrams involved. The polarization of the
ψ(2S) produced in the decay X(3872)1++ → ψ(2S)γ is sensitive to λ. In much of the parameter space the ψ(2S) is
longitudinally polarized. In contrast, for X(3872)2−+ → ψ(2S)γ, ψ(2S) is produced with a slight transverse polar-
ization. A similar set of diagrams to those in Fig. (1)) (with different coupling constants) contributes to the decay
ψ(4040) → X(3872)γ. In the process e+e− → ψ(4040) → X(3872)γ, the angular distribution of the X(3872) (or
γ) relative to the e+e− beam axis can discriminate between the 1++ and 2−+ assignments of X(3872). In most of
parameter space, the parameter ρ in Eq. (31) is near −1/3 for X(3872)1++, while X(3872)2−+ produces ρ ≈ 0.08.
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