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The Λc(2940)
+ baryon with quantum numbers JP = 1

2

+
is considered as a hadronic molecule

composed of a nucleon and D∗ meson. We give predictions for the width of the strong three-body
decay processes Λc(2940)

+
→ Λc(2286)

+π+π− and Λc(2286)
+π0π0 in this interpretation. Upcoming

experimental facilities like a Super B factory at KEK or LHCb might be able to provide data on
these decay modes.
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I. INTRODUCTION

The charmed baryon Λc(2940)
+ was originally observed by BABAR [1] and later on confirmed by the Belle Collab-

oration [2] as a resonant structure in the final state Σc(2455)π → Λcππ. Both collaborations deduce values for mass
and width with mΛc

= 2939.8± 1.3± 1.0 MeV, ΓΛc
= 17.5± 5.2± 5.9 MeV (BABAR [1]) and mΛc

= 2938.0± 1.3+2.0
−4.0

MeV, ΓΛc
= 13+8 +27

−5 −7 MeV (Belle [2]) which are consistent with each other.
Theoretical interpretations of this new charmed baryon resonance were already discussed in the literature (see e.g.

the short overview in Ref. [3]) including a conventional understanding in different types of three-quark and quark-
diquark models [4]-[14]. In Ref. [11] it was proposed that the Λc(2940)

+ is a hadron molecule, where this state is

regarded as a D∗0p configuration with spin–parity being JP = 1
2

−
or 3

2

−
. This interpretation is due to the fact

that the Λc(2940)
+ mass is just a few MeV below the D∗0p threshold value and therefore strong coupling to this

hadron channel is expected. It was also shown that the boson-exchange mechanism, involving the π, ω and ρ mesons,
can provide binding for such D∗0p configurations. But in a first variant of a unitary meson-baryon coupled channel
model [12] the Λc(2940)

+ cannot be identified with a dynamically generated resonance. Hence a possible binding of
D∗0p remains to be examined.
We also studied the structure of the Λc(2940)

+ as a possible molecular state composed of a nucleon and a D∗ meson
within a formalism related to the compositeness condition [3, 15]. We analyzed its two-body strong and radiative
partial decay widths for the channels of pD, Σc(2455)π and Λc(2286)γ. In case of the two-body strong decays we

tested two different spin-parity assignments for the Λc(2940)
+: JP = 1

2

+
and 1

2

−
. It was found that for JP = 1

2

+

the sum of the three partial widths is consistent with present observation, while for 1
2

−
a severe overestimate for the
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total decay width is obtained. Hence we concluded in [15] that the choice of spin-parity JP = 1
2

+
is preferred in the

molecular interpretation. Furthermore, the radiative decay Λc(2940)
+ → Λc(2286)

+γ has also been estimated using

the same approach [3] assigning the JP = 1
2

+
spin-parity to the Λc(2940)

+.
In this brief report we extend our previous analysis to estimate the two-pion decay channels of the Λc(2940)

+

as Λc(2940)
+ → Λc(2286)

+π+π− or Λc(2940)
+ → Λc(2286)

+π0π0. Although these two-pion decay modes of the
Λc(2940)

+ have also been discussed in Ref. [11] no quantitative results were presented yet. This is because an
unknown coupling constant for the vertex ND∗Σc occured in the considerations of Ref. [11]. However, a quantitative
prediction for the three-body decay widths of Λc(2940)

+ → Λc(2286)
+ + 2π could be done using information about

two-body decays Λc(2940)
+ → Σc(2455)+π done in Ref. [15] and would be helpful for a measurement at the upcoming

experimental facilities like Belle II at a Super B factory at KEK or with LHCb.
In this article the strong three-body decays of the Λc(2940)

+ baryon will be analyzed using the technique based
on the compositeness condition [16, 17] for describing and treating composite hadron systems as developed in
Refs. [15],[18]-[20]. In particular, in [15, 18, 19] recently observed unusual hadron states (like D∗

s0(2317), Ds1(2460),
X(3872), Y (3940), Y (4140), Z(4430), Λc(2940), Σc(2800)) were analyzed within the structure assumption as hadronic
molecules. The compositeness condition implies that the renormalization constant of the hadron wave function is set
equal to zero or that the hadron exists as a bound state of its constituents. It was originally applied to the study of the
deuteron as a bound state of proton and neutron [16] (see also Ref. [20] for a further application of this approach to
the case of the deuteron). Then it was extensively used in low–energy hadron phenomenology as the master equation
for the treatment of mesons and baryons as bound states of light and heavy constituent quarks (see e.g. Refs. [17, 21]).
By constructing a phenomenological Lagrangian including the couplings of the bound state to its constituents and
the constituents to other final state particles we evaluated meson–loop diagrams which describe the different decay
modes of the molecular states (see details in [18]).
In the present paper we proceed as follows. In Sec. II we briefly review the basic ideas of our approach. Moreover,

we consider the strong three-body decays of the Λc(2940)
+ baryon Λc(2940)

+ → Λc(2286)
++2π in this section. In the

calculation of the three-body decay of the Λc(2940)
+ we consider two resonance contributions with the intermediate

charmed baryon Σc(2455) and ρ0 meson. In Sec. III we present our numerical results, and, finally, in Sec. IV a short
summary.

II. APPROACH

Here we briefly discuss the formalism for the study of the composite (molecular) structure of the Λc(2940)
+ baryon.

In the following calculation we adopt spin and parity quantum numbers JP = 1
2

+
for the Λc(2940)

+, which is
consistent with the observed strong decay width of the Λc(2940)

+ obtained in a hadronic molecule interpretation [15].
Following the original suggestion of Ref. [11] we consider this new baryon resonance as a superposition of molecular
pD∗0 and nD∗+ components with the adjustable mixing angle θ:

|Λc(2940)
+〉 = cos θ |pD∗0〉 + sin θ |nD∗+〉 . (1)

The values sin θ = 1/
√
2, sin θ = 0 or sin θ = 1 correspond to the cases of ideal mixing, of a vanishing nD∗+ or pD∗0

component, respectively. Since the observed mass value of the Λc(2940)
+ with mD∗0 +mp −mΛc(2940)+ = 5.94 MeV

and mD∗+ +mn −mΛc(2940)+ = 10.54 MeV lies closer to the pD∗0 than to the nD∗+ threshold, we might expect that

the |pD∗0〉 configuration is the leading component. In this case the mixing angle θ should be relatively small and
therefore we will vary its value from 0 to 250.
Our approach is based on an effective interaction Lagrangian describing the coupling of the Λc(2940)

+ to its
constituents. We use a construction for the Λc(2940)

+ in analogy to mesons consisting of a heavy quark and a light
anti-quark, i.e. the heavy D∗ meson sets the center of mass of the Λc(2940)

+ while the light nucleon moves around
the D∗. The distribution of the nucleon relative to the D∗ meson is described by the correlation function Φ(y2)
depending on the Jacobi coordinate y. The simplest form of such a Lagrangian reads

LΛc
(x) = Λ̄+

c (x) γ
µ

∫

d4yΦ(y2)
(

g0Λc
cos θD∗0

µ (x) p(x + y) + g+Λc
sin θ D∗+

µ (x)n(x + y)
)

+ H.c. , (2)

where g+Λc
and g0Λc

are the coupling constants of Λc(2940)
+ to the molecular nD∗+ and pD∗0 components. Here

we explicitly include isospin breaking effects by taking into account the neutron-proton and the D∗+ − D∗0 mass
differences. Note that in our previous analysis [15] of strong two-body decays we restricted to the isospin symmetric
limit. A basic requirement for the choice of an explicit form of the correlation function Φ(y2) is that its Fourier
transform vanishes sufficiently fast in the ultraviolet region of Euclidean space to render the Feynman diagrams
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FIG. 1: Diagrams contributing to the Λc(2940)
+
→ Λc(2286)

+ + 2π decay

ultraviolet finite. We adopt a Gaussian form for the correlation function. The Fourier transform of this vertex is
given by

Φ̃(p2E/Λ
2)

.
= exp(−p2E/Λ

2) , (3)

where pE is the Euclidean Jacobi momentum. Here, Λ is a size parameter characterizing the distribution of the
nucleon in the Λc(2940)

+ baryon, which also leads to a regularization of the ultraviolet divergences in the Feynman
diagrams. From the analysis of the strong two-body decays of the Λc(2940)

+ baryon we found that Λ ∼ 1 GeV [15].
The coupling constants g+Λc

and g0Λc
are determined by the compositeness condition [15–18, 21]. It implies that the

renormalization constant of the hadron wave function is set equal to zero with:

ZΛc
= 1− Σ′

Λc
(mΛc

) = 0 . (4)

Here, Σ′
Λc
(mΛc

) is the derivative of the Λc(2940)
+ mass operator (see details in [15]).

In the calculation of the three-body decay Λc(2940)
+ → Λc(2286)

+ + 2π we consider two resonance contributions:
with the intermediate charmed baryon Σc(2455) [see Fig.1(a)] and for the ρ0 meson [see Fig.1(b)] in the transition.
Note, the diagram in Fig.1(b) only contributes to the process with a charged π+π− pair in the final state. The
full matrix element of the three-body decay Λc(2940)

+ → Λc(2286)
+ + 2π is calculated using a phenomenological

Lagrangian formulated in terms of hadronic degrees of freedom with:

Leff = LΛc
+ La + Lb . (5)

The Lagrangian contains the following terms — the coupling of Λc(2940)
+ with the constituents (LΛc

), the terms
La and Lb describing the two-step transitions of the Λc(2940)

+ constituents to the final state of Figs.1(a) and 1(b),
respectively. In particular, the term

La = LπD∗NΣc
+ LπΣcΛ′

c
(6)

contains the πD∗NΣc and πΣcΛ
′
c couplings. These vertices are deduced from the SU(4) symmetric Lagrangians

originally derived in [22] and then extensively employed in our formalism in Refs. [3, 15, 19]:

Lπ−D∗0pΣ++
c

=

[

1

4
(g1 + g2)−

3

2
g3

]

Σ̄++
c π−iγµγ5pD

∗0
µ + H.c. ,

Lπ−D∗+nΣ++
c

= −3

2
g3Σ̄

++
c π−iγµγ5nD

∗+
µ + H.c. ,

Lπ0D∗0pΣ+
c

=
1

2

[

1

4
(g1 + g2)− 3g3

]

Σ̄+
c π

0iγµγ5pD
∗0
µ + H.c. ,

Lπ0D∗+nΣ+
c

=
1

2

[

1

4
(g1 + g2)− 3g3

]

Σ̄+
c π

0iγµγ5nD
∗+
µ + H.c. ,

Lπ+D∗0pΣ0
c

= −3

2
g3Σ̄

0
cπ

+iγµγ5pD
∗0
µ + H.c. ,

Lπ+D∗+nΣ0
c

=

[

1

4
(g1 + g2)−

3

2
g3

]

Σ̄0
cπ

+iγµγ5nD
∗+
µ + H.c. , (7)
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and

L
πΣcΛ

′+
c

= −1

2

√

3

2
(g′2 −

1

2
g′1)Λ̄

′+
c iγ5πΣc + H.c. . (8)

The effective couplings gi and g′i are fixed as [3, 15, 19]

g1 = 0, g2 = − 2

5Fπ
gAgρππ, g3 = − 2

3Fπ
gAgρππ ,

g′1 = 0, g′2 = −4

5

√
2gπNN . (9)

Here Fπ = 92.4MeV is the pion decay constant, gπNN = 13.2 is the pion-nucleon coupling constant, gA = 1.2695 is
the nucleon axial charge, gρππ = 6 is the coupling of the ρ meson to pions. We also introduce the notation Λ

′+
c for

the Λc(2286)
+ baryon.

The effective Lagrangian Lb involved in the calculation of the diagram Fig.1(b) also contains two terms:

Lb = LρD∗NΛ′

c
+ Lρππ . (10)

Here, Lρππ is the effective Lagrangian of the ρππ coupling having the standard form

Lρππ = gρππρ
µ
kπi∂µπjǫijk, (11)

where i, j, k represent the isospin indices. The Lagrangian LρD∗NΛ′

c
can be derived using the procedure suggested in

Ref. [23]. In particular, we start with the non-minimal (tensorial) ND∗Λ′
c coupling

LD∗NΛ′

c
= −gD∗NΛ′

c
κD∗NΛ′

c
N̄ σµν ∂ν D

∗
µΛ

′
c + H.c. , (12)

where the couplings gD∗NΛ′

c
and κD∗NΛ′

c
are fixed as [3, 23]:

gD∗NΛ′

c
= −

√
3

2
gρππ , κD∗NΛ′

c
= 2.65 . (13)

In a next step we gauge the derivative acting on the D∗ meson by introducing the ρ0-meson field as:

∂νD
∗
µ → (∂ν − i

2
gρππρ

0
ν)D

∗
µ . (14)

It finally results in the ρ0D∗NΛ′
c coupling:

LρD∗NΛ′

c
=

gρD∗NΛ′

c

2MN
N̄D∗+

µ iσµν ρν Λ
′+
c + H.c. , (15)

where gρD∗NΛ′

c
= gρππgD∗NΛ′

c
κD∗NΛ′

c
/2.

In the evaluation of the two diagrams of Fig. 1 we use the standard free propagators for the intermediate particles:

iSN(x− y) =
〈

0|TN(x)N̄(y)|0
〉

=

∫

d4k

(2π)4i
e−ik(x−y)SN (k),

SN (k) =
1

mN− 6k − iǫ
(16)

for the nucleons and

iSµν
D∗(x− y) =

〈

0|TD∗µ(x)D∗ ν †(y)|0
〉

=

∫

d4k

(2π)4i
e−ik(x−y)Sµν

D∗(k) ,

Sµν
D∗(k) =

−gµν + kµkν/m2
D∗

m2
D∗ − k2 − iǫ

(17)

for the D∗ vector mesons. The contributions of the intermediate resonance states, the Σc(2455) baryon and the ρ
meson, are described by Breit–Wigner type propagators. The related expressions are given in momentum space by

SΣc
(k) =

MΣc
+ k/

M2
Σc

− k2 − iMΣc
ΓΣc

(18)
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for the Σc baryon, and

Sρ(k) =
1

M2
ρ − k2 − iMρΓρ

(19)

for the ρ-meson, where ΓΣc
≃ 2.2 MeV and Γρ = 149.1 MeV are the total widths of the Σc and ρ-meson, respectively.

The three-body decay width of Λc(2940)
+ is calculated according to the standard formula

Γ =
β

512π3M3
Λc

(MΛc
−MΛ′

c
)2

∫

4M2
π

ds2

s+1
∫

s−1

ds1
∑

pol

|Minv|2 (20)

where β is the factor taking into account identical particles in the final state (β = 1 for the mode with a charged
π+π− pair and β = 1/2 for the mode containing two neutral pions). Here, Minv is the invariant matrix element, the
symbols s±1 represent

s±1 = M2
π +

1

2

(

M2
Λc

+M2
Λ′

c

− s2 ± λ1/2(s2,M
2
Λc
,M2

Λ′

c

)

√

1− 4M2
π

s2

)

(21)

and

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz (22)

is the Källen function. We use the following set of the invariant Mandelstam variables (s1, s2, s3):

s1 = (p− p3)
2 = (p1 + p2)

2 ,

s2 = (p− p1)
2 = (p2 + p3)

2 ,

s3 = (p− p2)
2 = (p1 + p3)

2 ,

s1 + s2 + s3 = M2
Λc

+M2
Λ′

c

+ 2M2
π , (23)

where p, p1, p2 and p3 are the momenta of Λc, Λ
′
c and pions, respectively.

III. NUMERICAL RESULTS

For our numerical calculations the hadron masses are taken from the compilation of the Particle Data Group [24].
The only free parameters in our calculation are the dimensional parameter Λ and the mixing angle θ. As mentioned
before, in our approach the parameter Λ describes the distribution of the nucleon around the D∗ which is located in
the center-of-mass of the Λc(2940)

+. Here, as in previous calculations [3, 15], we consider a variation of Λ from 0.75
to 1.25 GeV. The parameter θ is varied in the interval (0− 20)0.
For the decay channel Λc(2940)

+ → Λc(2286)
+ + π0π0 the graph of Fig.1(b) does not contribute and only Fig.1(a)

does with the intermediate Σ+
c resonance. In Table I we give the predictions for the three-body decay width

Λc(2940)
+ → Λc(2286)

+ + π0π0, proceeding via the Σc(2455)
+, for three different cases of the regularization pa-

rameter Λ and for a variety of mixing angles θ in the interval (0 − 25)0. In Table II we list the results for the mode
Λc(2940)

+ → Λc(2286)
+ + π+π− with an intermediate Σc [Fig.1(a)]. The two values in the parentheses reflect the

contributions of Σ++
c and Σ0

c , respectively. The full results of Fig.1(a) and Fig.1(b) are given in Table III. Values in
the parentheses represent the contribution of Fig.1(b) only.
From the results listed in Tables I-III we find that the processes with intermediate Σc baryons play the by far

dominant role in the decay especially because of their very narrow widths. The diagram of Fig.1(b), with a ρ
propagator, is completely negligible. In addition, our results are rather sensitive to a variation of the scale parameter
Λ. This should be obvious since the ultraviolet divergence of the diagrams is regularized by this quantity. Smaller
values of Λ lead to a reduction in the predictions for the decay widths. The results are also very sensitive to a
variation of the mixing parameter θ. An increase of θ leads to a larger decay width. The decay amplitudes of the
two molecular components pD∗0 and nD∗+ add up in constructive interference. The magnitude of the two respective
transition amplitudes is however different. This effect can be traced to the difference in g0Λc

and g+Λc
because of slight

isospin violation, to the coupling constants gπD∗BBh
in Eq. (7) for the two components and also to the different loop

integrals.
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IV. SUMMARY

To summarize, we have pursued a hadronic molecule interpretation of the recently observed charmed baryon
Λc(2940)

+. We studied the consequences for the three-body decay of Λc(2940)
+ → Λc(2286)

+ + 2π which could
be observed in a forthcoming round of experiments. Here, the Λc(2940)

+ is regarded as a superposition of |pD∗0〉
and |nD∗+〉 components with the explicit admixture expressed by the variable mixing angle θ. Furthermore, we

used the spin-parity assignment JP = 1
2

+
for the Λc(2940)

+ as based on a previous analysis of the observed de-
cay modes. In our calculation we employed the extended SU(4) chiral Lagrangians to describe the interaction
terms contained in LπD∗BBh

and LπBB′ . Therefore, the necessary couplings gπD∗BBh
and gπBB′ are well deter-

mined. The numerical results for the decay widths of the transition processes Λc(2940)
+ → Λc(2286)

+ + π+π−

and Λc(2940)
+ → Λc(2286)

+ + π0π0 were given. We also indicated the explicit contributions resulting from the
two-step processes Λc(2940)

+ → Σ++
c π− → Λc(2286)

+ + π+π−, Λc(2940)
+ → Σ0

cπ
+ → Λc(2286)

+ + π+π−,
Λc(2940)

+ → Σ+
c π

0 → Λc(2286)
+ + π0π0, and Λc(2940)

+ → ρ0Λc(2286)
+ → Λc(2286)

+ + π+π−. It is shown
that the interactions of the chiral Lagrangian embedded in Fig. 1(a) are by far dominant while the contribution of
Fig. 1(b) is essentially negligible. The results for the two-pion decay widths are of the order of several MeV. The
charged decay mode involving π+π− is less than two times larger than the neutral π0π0 mode. This deviation from
a ratio of two is caused by isospin breaking effects in the masses and in the effective coupling constants. Our results
for the three-body decay widths present another test for the molecular interpretation of the Λc(2940)

+, where these
decays are hopefully accessible at new facilities like the Super B factory at KEK or at LHCb.
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Table I. Three-body decay widths for Λc(2940)
+
→ Λc(2286)

+π0π0 (in MeV) for
different values of the parameters θ and Λ.

θ Λ = 1.25 GeV Λ = 1 GeV Λ = 0.75 GeV

00 3.755 2.693 1.646

50 3.994 2.863 1.750

100 4.234 3.034 1.855

150 4.474 3.204 1.960

200 4.714 3.375 2.065

Table II. Three-body decay widths for Λc(2940)
+
→ Λc(2286)

+π+π− (in MeV) with the
diagram Fig.1(a) for different values of θ and Λ. The values in the parentheses

represent the contributions from Σ0
c and Σ++

c , respectively.

θ Λ = 1.25 GeV Λ = 1 GeV Λ = 0.75 GeV

00 6.010(1.930,1.568) 4.311(1.384,1.125) 2.729(0.876,0.712)

50 6.392(2.040,1.679) 4.583(1.462,1.204) 2.899(0.925,0.762)

100 6.776(2.150,1.792) 4.855(1.541,1.284) 3.070(0.974,0.812)

150 7.160(2.259,1.905) 5.129(1.618,1.364) 3.241(1.023,0.862)

200 7.543(2.368,2.018) 5.401(1.696,1.445) 3.411(1.071,0.912)

Table III. Three-body decay widths Λc(2940)
+
→ Λc(2286)

+π+π− (in MeV) with
diagrams of Figs.1(a) and 1(b) for different values of θ and Λ. Values in parentheses

indicate the contributions of Fig.1(b) with an intermediate ρ meson.

θ Λ = 1.25 GeV Λ = 1 GeV Λ = 0.75 GeV

00 6.014(5.486 × 10−3) 4.314(4.268 × 10−3) 2.732(3.083 × 10−3)

50 6.396(5.835 × 10−3) 4.586(4.539 × 10−3) 2.902(3.276 × 10−3)

100 6.780(6.186 × 10−3) 4.859(4.811 × 10−3) 3.073(3.468 × 10−3)

150 7.165(6.537 × 10−3) 5.133(5.083 × 10−3) 3.244(3.661 × 10−3)

200 7.548(6.888 × 10−3) 5.405(5.354 × 10−3) 3.414(3.853 × 10−3)


