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The k⊥-moment of a quark’s Sivers function is known to be related to the corresponding twist-
three quark-gluon correlation function Tq,F (x, x). The two functions have been extracted from
data for single-spin asymmetries in semi-inclusive deep inelastic scattering and in single-inclusive
hadron production in pp collisions, respectively. Performing a consistent comparison of the extracted
functions, we find that they show a “sign mismatch”: while the magnitude of the functions is roughly
consistent, the k⊥-moment of the Sivers function has opposite sign from that of Tq,F (x, x), both for
up and for down quarks. Barring any inconsistencies in our theoretical understanding of the Sivers
functions and their process dependence, the implication of this mismatch is that either, the Sivers
effect is not dominantly responsible for the observed single-spin asymmetries in pp collisions or,
the current semi-inclusive lepton scattering data do not sufficiently constrain the k⊥-moment of the
quark Sivers functions. Both possibilities strengthen the case for further experimental investigations
of single-spin asymmetries in high-energy pp and ep scattering.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Ni, 13.88.+e

I. INTRODUCTION

Since the observation of surprisingly large single transverse spin asymmetries (SSAs) in p↑p→ πX at Femilab in the
1980s [1], the exploration of the physics behind the observed SSAs has become a very active research branch in hadron
physics, and has played an important role in our efforts to understand QCD and nucleon structure [2, 3]. Defined as
AN = (σ(s⊥)− σ(−s⊥)) / (σ(s⊥) + σ(−s⊥)), the ratio of the difference and the sum of the cross sections when the
hadron’s spin vector s⊥ is flipped, significant SSAs have by now been consistently observed in various experiments
at different collision energies. These include semi-inclusive hadron production at low transverse momentum Ph⊥ in
deep-inelastic scattering, ℓN↑ → ℓ′hX , by the HERMES Collaboration at DESY [4], COMPASS at CERN [5], and
CLAS at Jefferson Lab [6], as well as inclusive single-hadron production at high Ph⊥ in hadron-hadron collisions,
p↑p → hX , by the STAR, PHENIX, and BRAHMS collaborations at RHIC [7]. The observed large size of SSAs in
hadronic scattering initially presented a challenge for QCD theorists [8]. Later two complementary mechanisms were
proposed to describe the measured SSAs, and both of them have been quite successful phenomenologically [9–17].
One mechanism relies on the so-called transverse momentum dependent (TMD) factorization [18–25], and describes

the SSAs in terms of the spin-dependent part of TMD parton distribution functions (PDFs), known as the Sivers
functions [26], or TMD fragmentation functions (FFs), known as the Collins functions [27]. This TMD factorization
approach is suitable for evaluating the SSAs of scattering processes with two very different momentum scales, Q1 ≫
Q2

>∼ ΛQCD. The larger scale Q1 is necessary for using perturbative QCD, while the lower scale Q2 makes the
observable sensitive to the parton’s transverse motion. For example, the SSAs of hadron production at low Ph⊥ in
lepton-hadron semi-inclusive deep inelastic scattering (SIDIS) have this characteristic property: Q ≫ Ph⊥ ∼ ΛQCD,
and can be studied within the TMD factorization approach.
The other mechanism generalizes the successful leading-power QCD collinear factorization formalism to the next-

to-leading power in the expansion in 1/Q, where Q is the large momentum transfer of the collision, and describes
the SSAs in terms of twist-3 transverse-spin-dependent three-parton correlation functions [28–31], or a combination
of the transversity distribution and three-parton fragmentation functions [30–32]. This so-called twist-3 collinear
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factorization approach is more relevant to the SSAs for processes in which all observed momentum transfers Q are
much larger than ΛQCD. This applies, for example, to the SSAs of inclusive single hadron production at high Ph⊥ in
p↑p collisions. Although the two mechanisms describe the SSAs in two very different kinematic domains, they were
shown to be equivalent in the overlap region where they both apply, and they thus provide a unified QCD description
for the SSAs [33].
One of the potentially important contributions to the SSAs is the Sivers effect, which is generated by the initial- and

final-state interactions between the struck parton and the spectators or the remnant of the polarized hadron [21]. The
interactions provide the necessary phase that leads to the non-vanishing SSAs. In the TMD factorization approach,
the role of these interactions is accounted for by including the appropriate color gauge links into the definition of
the TMD parton distributions, whose spin-dependent part defines the Sivers functions [23, 34, 35]. Since the details
of the initial- and final-state interactions depend on the color flow of the scattering process, the form of the gauge
links including the phase of the interactions is process dependent. Since the gauge links are included in the definition
of the TMD parton distributions, the Sivers functions, too, are found to be process dependent [24]. Due to parity
and time-reversal invariance of the strong interactions, the process dependence of the Sivers functions is effectively
reduced to a sign change between their definitions in SIDIS and in Drell-Yan lepton-pair production in p↑p collisions
[23, 35]. The predictive power of the TMD factorization approach relies on this modified universality of the Sivers
functions.
On the other hand, in the twist-3 collinear factorization approach, the process dependence of the initial- and final-

state interactions is absorbed into the short-distance perturbative hard-part functions, while keeping the relevant twist-
3 three-parton correlation functions universal or process-independent. The necessary phase for generating the non-
vanishing SSAs arises from the quantum interference between a scattering amplitude with one active collinear parton
and an amplitude with two active collinear partons. The SSAs are therefore proportional to the non-probabilistic
three-parton correlation functions. Unlike the TMD parton distributions, which at given transverse momentum
provide direct information on a parton’s transverse motion, the twist-3 three-parton correlation functions provide a
net asymmetry of the parton’s transverse motion, after integration over all values of the parton’s transverse momentum.
As a result, the twist-3 three-parton correlation functions have a close connection with the transverse momentum k⊥-
moment of TMD parton distributions. More precisely, the twist-3 quark-gluon correlation function, Tq,F (x, x), often
referred to as Efremov-Teryaev-Qiu-Sterman (ETQS) function, is equal to the first k⊥-moment of the quark Sivers

function f⊥q
1T (x, k2⊥) probed in SIDIS (or Drell-Yan) processes [23, 33, 36].

Following the tremendous progress in experimental measurements of SSAs in recent years, the quark Sivers functions
and the ETQS functions have been extracted for various quark flavors from the single-spin asymmetries in SIDIS and
in pp scattering, respectively. In this paper, we examine the existing parameterizations of these two functions to see
whether the first k⊥-moments of Sivers functions are consistent with the existing twist-3 ETQS functions. Taking

the quark Sivers functions f⊥q
1T (x, k2⊥) extracted from SIDIS [10, 11], we evaluate their first k⊥-moments, and derive

the ETQS functions Tq,F (x, x) with the help of the operator relation between the two functions [23, 33, 36]. We then
compare the resulting “indirectly” obtained quark-gluon correlation functions with those “directly” extracted from
the global fit [14] to the SSAs for inclusive single hadron production in p↑p collisions. In doing so, we first observe that
the sign convention adopted for the SSA in p↑p → hX in the previous literature [14, 29, 30] is in fact not consistent
with that used for the experimental data. As a result, the signs of the Tq,F (x, x) functions extracted in [14] need to be
reversed. After this adjustment, we find that the twist-3 correlation functions Tq,F (x, x) obtained in the two different
ways have conflicting signs.
The rest of our paper is organized as follows. In the next section, we briefly review the definitions of the quark

Sivers functions and the twist-3 quark-gluon correlation functions (or ETQS functions). We recall the operator relation
between the k⊥-moment of the Sivers functions and the ETQS functions, and discuss its limitations and the corrections
to it. In Sec. III, we present our findings regarding the sign “mismatch” between the existing parameterizations of
quark Sivers functions and twist-3 quark-gluon correlation functions. We discuss the possible origins of this mismatch,
and potential remedies. We also address the implications for phenomenology and propose further measurements to
test the mechanisms for SSAs in hadronic processes. Finally, we give our conclusions and summary in Sec. IV. An
Appendix describes the derivation of the correct signs of the ETQS functions in single-inclusive hadron production in
pp scattering.

II. THE SIVERS FUNCTIONS AND THE ETQS FUNCTIONS

In this section, we recall the definitions and relations between the quark Sivers functions and the twist-3 quark-gluon
correlation functions, or ETQS functions. We use light-cone coordinates with the two light-like vectors

n̄µ = [1+, 0−, 0⊥], nµ = [0+, 1−, 0⊥], (1)
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to project out the light-cone components: v+ = vµ gµν n
ν and v− = vµ gµν n̄

ν of any four-vector vµ. For the fully
antisymmetric tensor ǫµνρσ, we adopt the convention ǫ0123 = 1. We choose a frame in which the momentum of the
transversely polarized hadron, p, is in the “+z” direction, with no transverse components: pµ = p+n̄µ.
The quark Sivers functions for SIDIS kinematics with the transversely polarized proton moving in the +z-direction

is defined through the following quark-field correlator [37]

M(x, k⊥) =

∫

dξ−d2ξ⊥
(2π)3

eixp
+ξ−e−i~k⊥·~ξ⊥〈p, s⊥|ψ̄(0)W[0,ξ]ψ(ξ)|p, s⊥〉|ξ+=0, (2)

where

W[0,ξ] = P exp

[

ig

∫ ∞

0

dη−A+(η−, 0⊥)

]

P exp

[

ig

∫ ξ⊥

0⊥

dη⊥A⊥(∞−, η⊥)

]

P exp

[

ig

∫ ξ−

∞

dη−A+(η−, ξ⊥)

]

(3)

is the gauge link consistent with the SIDIS process and P indicates path ordering [34]. We note that the gauge link
depends on the transverse separation ξ⊥ of the two field operators, which is responsible for the process dependence
of TMD parton distribution functions [35]. Here it is worth pointing out that a different sign convention for the
strong coupling constant g (for the interaction between the quark and the gluon) would lead to a different sign in the
exponent of the gauge link in Eq. (3) (i.e., from ig to −ig). For deriving Eq. (3) we adopted the convention of the
covariant derivative Dµ as

Dµ = ∂µ + igAµ, (4)

for the relevant part of the QCD Lagrangian density L = ψ̄iγµDµψ. Different conventions for Dµ (such as Dµ =
∂µ − igAµ) exist in the literature and in textbooks. Different conventions usually do not introduce any difference
for a cross section, which has an even power in g. However, the single transverse spin asymmetry is proportional
to the difference of two cross sections with the spin flipped, and the asymmetry is a consequence of an interference
between scattering amplitudes of different phases, which is linearly proportional to ig. Therefore, one has to use the
convention consistently in the theoretical definition and calculation of the single transverse spin asymmetry.
Following the so-called Trento convention [38], the correlator M(x, k⊥) can be expanded as

M(x, k⊥) =
1

2

[

f1(x, k
2
⊥)n̄/+

1

M
f⊥
1T (x, k

2
⊥)ǫ

µνρσγµn̄νk⊥ρs⊥σ

]

, (5)

where M is the nucleon mass, f1(x, k
2
⊥) is the spin-averaged TMD PDF, and f⊥

1T (x, k
2
⊥) is the quark Sivers function.

We note that a different convention for the Sivers function is commonly adopted in the phenomenological studies by
the Torino group [10, 11]. Here a function ∆Nfq/A↑(x, k⊥) is introduced which is defined from

fq/A↑(x, k⊥) ≡ Tr

[

1

2
n/M(x, k⊥)

]

= f1(x, k
2
⊥) +

1

2
∆Nfq/A↑(x, k⊥) s⊥ · (p̂× k̂⊥). (6)

The relation between ∆Nfq/A↑ and the Sivers function in the Trento convention is

∆Nfq/A↑(x, k⊥) = −2k⊥
M

f⊥q
1T (x, k2⊥). (7)

In the twist-3 collinear factorization approach, the ETQS function Tq,F (x, x) is defined as [14, 16]

Tq,F (x, x) =

∫

dξ−dζ−

4π
eixp

+ξ−〈p, s|ψ̄(0)V[0,ζ]γ+
[

ǫs⊥σnn̄F +
σ (ζ−)

]

V[ζ,ξ]ψ(ξ
−)|p, s〉, (8)

where V[0,ζ] and V[ζ,ξ] are the gauge links along the “−” light-cone direction and are given by

V[ζ,ξ] = Pexp

[

ig

∫ ξ−

ζ−

dη−A+(η−)

]

. (9)

Here the sign convention for coupling constant g is the same as that in Eq. (4). Choice of, for example, the convention
with Dµ = ∂µ−igAµ would change the sign of the exponent. Within the collinear factorization approach, it is assumed
that the typical transverse momentum of all active partons is much smaller than the hard scale of the scattering
process, Q. Up to power corrections in 1/Q, the transverse momenta of all active partons are completely integrated
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into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2
M

f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign

convention used to define Tq,F (x, x) is different from that in the definition of f⊥q
1T (x, k2⊥), the difference will introduce

an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the A
sin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF, Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π〈k2⊥〉
e−k2

⊥/〈k2
⊥〉 (13)

with a fitting parameter 〈k2⊥〉 for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)
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FIG. 1: The quark-gluon correlation function gTq,F (x, x) as a function of momentum fraction x for u-quarks (left) and d-quarks
(right). The dashed (dotted) lines are gTq,F (x, x)|new Sivers (gTq,F (x, x)|old Sivers) obtained by taking the k⊥-moments of the
corresponding quark Sivers functions according to the right-hand-side of Eq. (10). The solid lines represent the correlation
functions extracted directly from data on SSAs for inclusive pion production in proton-proton collisions, p↑p → π + X [14],
after correcting for the sign convention (see text).

where M0 and M1 are fitted parameters.
Since for both parameterizations the k⊥-dependence is assumed to be decoupled from the x-dependence, we can

derive the x-dependence of the associated twist-3 quark-gluon correlation Tq,F (x, x) analytically, using the relation in
Eq. (10). By substituting the parameterization of the Sivers function in Eq. (12) into the right-hand-side of Eq. (10),
and using the fitting parameters extracted in Refs. [10] and [11], we obtain the following two parameterizations for
the correlation function Tq,F (x, x):

gTq,F (x, x)|old Sivers = 0.40f q
1 (x)Nq(x)|old, (16)

gTq,F (x, x)|new Sivers = 0.33f q
1 (x)Nq(x)|new. (17)

From the existing data, the best constrained Sivers functions are those of u and d quarks. Using the fitted functions
Nq(x)|old and Nq(x)|new from Refs. [10] and [11], respectively, we plot the drived quark-gluon correlation functions
x gTu,F (x, x) (left) and x gTd,F (x, x) (right) in Fig. 1. The dashed lines are for the quark-gluon correlation functions
obtained by using the new Sivers parameterization, while the dotted lines are for the old Sivers parameterization. We
find that for these “indirectly” obtained quark-gluon correlation functions, Tu,F (x, x) is positive, while Td,F (x, x) is
negative.
On the other hand, the ETQS function Tq,F (x, x) can be “directly” extracted from data on SSAs for inclusive

single hadron production in hadronic collisions, p↑p→ h(Ph⊥, y)+X , assuming these asymmetries are predominantly
generated by the Sivers effect (or rather, its twist-3 counterpart). Such SSAs have been measured at sufficiently
large transverse momentum Ph⊥ by the E704 Collaboration at Fermilab [1], and the STAR, PHENIX, and BRAHMS
collaborations at RHIC [7]. Since they depend only on one large momentum scale Ph⊥, these SSAs are better studied
in the collinear factorization approach, where they may be generated by three possible mechanisms: (1) the twist-
3 quark-gluon and tri-gluon correlation functions of the polarized hadron, (2) the transversity distribution of the
polarized hadron combined with the twist-3 quark-gluon fragmentation functions to the observed hadron, and (3) the
transversity distribution combined with possible twist-3 unpolarized quark-gluon correlation functions [30]. It was
found that the third mechanism only makes a small contribution [31]. By assuming that the observed SSAs are mainly
generated by the ETQS functions Tq,F (x, x), a set of Tq,F (x, x) was extracted by a global fitting procedure [14]. In the
course of our investigations, we have revisited the sign convention adopted in [14], which was based on the earlier work
[14, 29, 30]. We have discovered that the convention was at odds with that chosen in the experimental studies. The
inconsistency can be traced to the value of the contracted Levi-Civita tensor appropriate for the spin asymmetry. We
provide a detailed discussion of this issue in the Appendix. Correcting the sign convention of [14, 29, 30] means that
one needs to change the signs of the Tq,F (x, x) functions extracted in [14]. We plot the resulting “directly” extracted
Tq,F (x, x) functions as solid lines in Fig. 1, along with the previous ones derived “indirectly” from the k⊥-moment of
the quark Sivers functions. Surprisingly, we find that the two sets of functions have opposite signs, both for up and
for down quarks.
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At first sight, it may seem that we have created a problem where none used to be. After all, the sign mismatch we
find becomes apparent only after we have changed the signs of the Tq,F (x, x) functions of [14]. However, the basic
problem is easy to see: as we discussed in the Introduction, the Sivers contributions to the single spin asymmetries
depend on initial or final state interactions in the scattering processes. The SSA in SIDIS comes from a final state
interaction. A negative up-quark Sivers function is known to generate a positive SIDIS spin asymmetry for π+

production. In p↑p → π+X at forward rapidities, however, the main partonic channel is ug → ug, for which initial-
state interactions play the dominant role, resulting in negative partonic hard-scattering functions. Therefore, if the
Sivers mechanism (or its twist-3 variant via Eq. (10)) is primarily responsible for the SSA in this process, one would
expect a negative asymmetry for π+, contrary to what is observed. Thus the Tq,F (x, x) functions needed to describe
the RHIC single-spin asymmetries cannot have the signs suggested by Eq. (10). We note that in these considerations,
one has to carefully take into account the experimental definitions of the SSAs; see the Appendix for some details.
There are two main caveats regarding the sign mismatch. The first one is that the integral over k⊥ in Eq. (10)

might produce a different sign from that of f⊥q
1T (x, k2⊥) itself in the region of k⊥ where it is constrained by data. The

HERMES SIDIS data that are mostly relevant for the extraction of f⊥q
1T (x, k2⊥) are at a relatively modest Q2 ∼ 2.4

GeV2. Since the TMD factorization formalism is valid only for k⊥ ≪ Q, the data constrain the function and its sign
only at very low k⊥ ∼ ΛQCD. The existing parameterizations of the quark Sivers functions [10, 11] assume a purely
Gaussian form of the k⊥-dependence and hence would not allow a sign change of the function at some k⊥. This
leads to significant uncertainties in the determination of the twist-3 quark-gluon correlation functions via Eq. (10),
because taking the k⊥ moment enhances the contribution from the unknown larger-k⊥ region. Also, the issue of UV
renormalization discussed in the previous section becomes relevant for the k⊥ moment. We note that future SIDIS
experiments at an Electron Ion Collider would have the kinematic reach to precisely map out the k⊥ dependence,
and to allow measurements of the transverse-momentum weighted asymmetries, providing direct access to the twist-3
quark-gluon correlation functions. In this way, reliable comparisons with the correlation functions extracted from pp
collisions would become possible.
It is worth keeping in mind that the SIDIS and pp single-spin asymmetry data also probe slightly different values

of x. The former reach up to x ∼ 0.4, while the latter mostly access yet larger values, x ∼ 0.6. While it is in principle
possible that a rapid sign change could occur towards large x which would explain the mismatch, there is nothing in
the SIDIS data or the pp data with a sufficiently large xF coverage that would indicate such a behavior, and we do
not consider this to be a likely scenario.
The second possibility is that there are other significant contributions to the SSAs for single hadron production

in p↑p collisions, besides the Sivers mechanism. In addition to the asymmetry due to the spin-dependent twist-3
quark-gluon correlation functions of the polarized hadron, the SSAs in hadronic collisions may also be generated at
the hadronization stage by a combination of the transversity distribution of the polarized hadron and the twist-3
quark-gluon fragmentation functions [32], which is effectively a representation of the Collins effect in the collinear
factorization approach. If this mechanism makes a large contribution to the hadronic SSAs, with sign opposite to
that by the Tq,F (x, x), it might explain the observed features. Unlike the measurement of SSAs in SIDIS, where
the Sivers effect and the Collins effect can be separated by using different azimuthal angle weighting, the two effects
cannot be separated in single-hadron inclusive production in hadronic collisions. Nonetheless, other measurements
are available in pp scattering that would allow to disentangle them. The prime example is the Drell-Yan process,
which allows direct access to the Sivers or Tq,F (x, x) functions [23, 35]. A similar role could be played by photon pair
production [44]. Here we will briefly consider two further processes that have the advantage of being somewhat more
copious at RHIC.
In order to get clean access to the quark-gluon correlation functions Tq,F (x, x), we need observables that are

not sensitive to the details of the hadronization stage. At RHIC, for example, direct photon production [25] at
large transverse momentum Ph⊥ and inclusive single jet production at large transverse jet energy are two promising
observables of this kind. Since the fragmentation contribution to prompt photon production at large pT is much
smaller than the direct contribution at RHIC energies, in particular if photon isolation cuts are imposed, the SSAs of
these two observables could provide direct information on the twist-3 quark-gluon correlation functions, thus allowing
to see if their signs are consistent with those derived from Eq. (10).
In Fig. 2 we present our estimates for the SSAs for direct photon (left) and inclusive single jet production (right)

in p↑p collisions at
√
S = 200 GeV. We consider production in the forward region of the polarized proton, so that

to a good approximation we only need to include the valence quark contribution for the polarized beam. For the
relevant unpolarized PDFs, we use those specified in Ref. [10, 11, 14] correspondingly. The solid curves represent the
SSAs calculated by using the directly extracted Tq,F (x, x) (with Tu,F (x, x) < 0 and Td,F (x, x) > 0), which were shown
as the solid lines in Fig. 1. The dashed and dotted curves show the SSAs calculated by using the indirectly derived
Tq,F (x, x) from Eq. (16) and Eq. (17), respectively, which again were shown by the same line patterns in Fig. 1 and
have Tu,F (x, x) > 0 and Td,F (x, x) < 0. The results in Fig. 2 demonstrate that positive AN for direct photon and
inclusive single jet production should be expected at RHIC if the “directly” extracted Tq,F (x, x) are correct. If, on
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FIG. 2: The SSAs for direct photon (left) and single inclusive jet (right) production in p↑p collisions at
√
S = 200 GeV, as

functions of xF for rapidity y = 3.3. The various curves correspond to the Tq,F (x, x) shown in Fig. 1.

the other hand, the signs of Tq,F (x, x) follow Eqs. (16) and (17), negative values for the AN for the two processes are
predicted. We note that direct photon and inclusive single jet production both receive contributions from the u and
d quark ETQS functions. Since these have opposite signs and rather similar magnitude, their effects cancel to some
degree for jet production. For photons, the situation is more favorable thanks to the weighting by the quark’s charge
squared, which explains why here the spin asymmetries are overall larger.

IV. SUMMARY

We have computed the k⊥-moments for two parameterizations of up and down quark Sivers functions determined
from semi-inclusive lepton scattering data given in [10, 11]. These are related to the quark-gluon correlation functions
Tq,F (x, x) relevant for the description of single-spin asymmetries in single hadron production in pp scattering. The
latter have in the past been extracted from RHIC data [14]. Correcting an inconsistency in previous theoretical
treatments of the spin asymmetries in pp scattering, we have found that the resulting Tq,F (x, x) functions have signs
opposite to those predicted from the analysis of the k⊥-moments of the Sivers functions. We have discussed various
possible explanations for this apparent discrepancy.
Our finding highlights the importance of additional measurements of single-spin asymmetries. Measurements of the

k⊥ dependence of the Sivers functions with wide kinematic reach would be feasible at an Electron Ion Collider and
should shed light on the contributions from various k⊥-regions to the moment of the Sivers functions. We have also
shown that AN measurements for jet and direct photon production in pp collisions at RHIC should be valuable tools
for a cleaner determination of the quark-gluon correlation functions Tq,F (x, x).
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Appendix: The sign of Tq,F (x, x) in inclusive hadron production

In this appendix, we demonstrate why the SSA data for p↑p → hX require Tu,F (x, x) < 0 and Td,F (x, x) > 0, if
the ETQS functions are the dominant sources of the observed asymmetries.
We start with the QCD factorization formalism for the spin-averaged cross section for inclusive single particle
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FIG. A.1: Illustration of the sign convention for AN : positive AN means that more hadrons are produced to the left of the
beam direction when the beam’s spin is vertically upward.

production in hadronic collisions, A↑(S⊥) +B → h(Ph⊥) +X :

Eh
dσ

d3Ph
=

α2
s

S

∑

a,b,c

∫

dz

z2
Dc→h(z)

∫

dx′

x′
fb/B(x

′)

∫

dx

x
fa/A(x)H

U
ab→c(ŝ, t̂, û)δ

(

ŝ+ t̂+ û
)

, (A.1)

where fa/A(x) and fb/B(x
′) are the PDFs, Dc→h(z) are the FFs, andH

U
ab→c are the partonic hard-scattering functions,

with ŝ, t̂, and û the Mandelstam variables at the parton level. Including only the contributions by the twist-3 quark-
gluon correlation functions, the spin-dependent cross section d∆σ(s⊥) ≡ [dσ(s⊥)− dσ(−s⊥)]/2 is given by

Eh
d∆σ(s⊥)

d3Ph
=

α2
s

S

∑

a,b,c

∫

dz

z2
Dc→h(z)

∫

dx′

x′
fb/B(x

′)

∫

dx

x

√
4παs

(

ǫPh⊥s⊥nn̄

zû

)

×
[

Ta,F (x, x)− x
d

dx
Ta,F (x, x)

]

Hab→c(ŝ, t̂, û)δ
(

ŝ+ t̂+ û
)

, (A.2)

where the relevant hard-scattering functions Hab→c(ŝ, t̂, û) can be written as

Hab→c(ŝ, t̂, û) = HI
ab→c(ŝ, t̂, û) +HF

ab→c(ŝ, t̂, û)

(

1 +
û

t̂

)

, (A.3)

with HI
ab→c and HF

ab→c representing the contributions from initial- and final-state interactions, respectively. The
explicit forms of HU

ab→c, H
I
ab→c, and H

F
ab→c are given in [14]. It is important to point out that the spin-dependent

cross section in Eq. (A.2) is calculated from an interference between two partonic amplitudes. It thus depends on
the sign convention for the coupling constant g; the form given in Eq. (A.2) is based on the convention in Eq. (4).
If one uses the other sign convention for the covariant derivative, there will be an extra minus sign appearing on the
right-hand side of Eq. (A.2), which would be compensated by an extra sign in Eq. (10).
The SSA, AN , is given by the ratio of spin-dependent and spin-averaged cross sections:

Eh
d∆σ(s⊥)

d3Ph

/

Eh
dσ

d3Ph
≡ AN sin(φs − φh), (A.4)

where φh and φs are the azimuthal angles of the hadron transverse momentum Ph⊥ and the spin vector s⊥, respectively.
The absolute sign of AN depends on the choice of frame and the coordinate system. In experiment the following
convention is used: positive values of AN correspond to a larger cross section for hadron production to the beam’s left
when the beam’s proton spin is vertically upward [30], as sketched in Fig. A.1. In the center-of-mass frame of A and
B, a convenient coordinate system (consistent with the experimental convention) is given by choosing the polarized
nucleon A to move along +z, the unpolarized B along −z, the spin vector s⊥ along y, and the produced hadron’s
transverse momentum Ph⊥ along the x-direction. In this frame, φh = 0, φs = π/2, and

ǫPh⊥s⊥nn̄ = −|Ph⊥||s⊥|. (A.5)

We note at this point that there is an overall sign error in [30] and consequently in [14], because in these papers the
choice ǫPh⊥s⊥nn̄ > 0 was made (see Eq. (73) of [30], in contrast to Eq. (A.5) above).
In the forward direction, qg → qg is the dominant partonic scattering channel for inclusive single hadron production.

The corresponding hard-scattering functions are given by [14]

HU
qg→qg =

N2
c − 1

2N2
c

[

− ŝ

û
− û

ŝ

] [

1− 2N2
c

N2
c − 1

ŝû

t̂2

]

|t̂|≪ŝ∼|û|−→
[

2ŝ2

t̂2

]

, (A.6)
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FIG. A.2: The SSA, AN , for inclusive single pion production in p↑p → π + X at
√
s = 200 GeV, as a function of xF and at

rapidity y = 3.7, evaluated by using the old Sivers functions in Eq. (16) (left), and the new Sivers functions in Eq. (17) (right).

HI
qg→qg =

1

2(N2
c − 1)

[

− ŝ

û
− û

ŝ

] [

1−N2
c

û2

t̂2

]

|t̂|≪ŝ∼|û|−→
[

− N2
c

2(N2
c − 1)

] [

2ŝ2

t̂2

]

, (A.7)

HF
qg→qg =

1

2N2
c (N

2
c − 1)

[

− ŝ

û
− û

ŝ

] [

1 + 2N2
c

ŝû

t̂2

]

|t̂|≪ŝ∼|û|−→
[

− 1

N2
c − 1

] [

2ŝ2

t̂2

]

. (A.8)

This shows that both HI
qg→qg and HF

qg→qg have opposite sign to that of the spin-averaged hard-scattering function

HU
qg→qg . Furthermore it is clear that the SSA in π+ production is mainly sensitive to Tu,F (x, x), while the one for π−

production probes Td,F (x, x). Since

ǫPh⊥s⊥nn̄

û
> 0, (A.9)

we conclude from Eq. (A.2) that the observed positive SSAs for π+ production indicates a negative Tu,F (x, x), while
the observed negative asymmetry for π− production indicates a positive Td,F (x, x), as shown by the solid curves in
Fig. 1.
To conclude this appendix, we demonstrate the apparent “sign mismatch” again numerically, by evaluating the

SSAs for inclusive single hadron production using the ETQS functions indirectly derived via Eq. (10) from the quark
Sivers functions in Eqs. (16) and (17). The results are shown in Fig. A.2. As expected, the signs of the calculated
SSAs are opposite to those observed experimentally.

[1] G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976); D. L. Adams et al. [E581 and E704 Collaborations], Phys. Lett. B 261,
201 (1991); D. L. Adams et al. [FNAL-E704 Collaboration], Phys. Lett. B 264, 462 (1991); K. Krueger et al., Phys. Lett.
B 459, 412 (1999).

[2] U. D’Alesio and F. Murgia, Prog. Part. Nucl. Phys. 61, 394 (2008) [arXiv:0712.4328 [hep-ph]].
[3] V. Barone, F. Bradamante and A. Martin, Prog. Part. Nucl. Phys. 65, 267 (2010) [arXiv:1011.0909 [hep-ph]].
[4] A. Airapetian et al. [HERMES Collaboration], Phys. Rev. Lett. 94, 012002 (2005) [arXiv:hep-ex/0408013]; Phys. Rev.

Lett. 103, 152002 (2009) [arXiv:0906.3918 [hep-ex]].
[5] V. Y. Alexakhin et al. [COMPASS Collaboration], Phys. Rev. Lett. 94, 202002 (2005) [arXiv:hep-ex/0503002]; A. Mar-

tin [COMPASS Collaboration], Czech. J. Phys. 56, F33 (2006) [arXiv:hep-ex/0702002]; M. Alekseev et al. [COMPASS
Collaboration], Phys. Lett. B 673, 127 (2009) [arXiv:0802.2160 [hep-ex]].

[6] H. Avakian, P. E. Bosted, V. Burkert and L. Elouadrhiri [CLAS Collaboration], AIP Conf. Proc. 792, 945 (2005)
[arXiv:nucl-ex/0509032].

[7] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 92, 171801 (2004) [arXiv:hep-ex/0310058]; B. I. Abelev et al.

[STAR Collaboration], Phys. Rev. Lett. 99, 142003 (2007) [arXiv:0705.4629 [hep-ex]]; Phys. Rev. Lett. 101, 222001 (2008)
[arXiv:0801.2990 [hep-ex]]; S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 95, 202001 (2005) [arXiv:hep-
ex/0507073]; I. Arsene et al. [BRAHMS Collaboration], Phys. Rev. Lett. 101, 042001 (2008) [arXiv:0801.1078 [nucl-ex]].

[8] G. L. Kane, J. Pumplin and W. Repko, Phys. Rev. Lett. 41, 1689 (1978).



10

[9] J. C. Collins, A. V. Efremov, K. Goeke, S. Menzel, A. Metz and P. Schweitzer, Phys. Rev. D 73, 014021 (2006) [arXiv:hep-
ph/0509076]; S. Arnold, A. V. Efremov, K. Goeke, M. Schlegel and P. Schweitzer, arXiv:0805.2137 [hep-ph].

[10] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, Phys. Rev. D 72, 094007 (2005)
[Erratum-ibid. D 72, 099903 (2005)] [arXiv:hep-ph/0507181].

[11] M. Anselmino et al., Eur. Phys. J. A 39, 89 (2009) [arXiv:0805.2677 [hep-ph]].
[12] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, Phys. Rev. D 79, 054010 (2009)

[arXiv:0901.3078 [hep-ph]]; Z. B. Kang and J. W. Qiu, Phys. Rev. Lett. 103, 172001 (2009) [arXiv:0903.3629 [hep-ph]];
Phys. Rev. D 81, 054020 (2010) [arXiv:0912.1319 [hep-ph]].

[13] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin and C. Turk, Phys. Rev. D 75, 054032
(2007) [arXiv:hep-ph/0701006].

[14] C. Kouvaris, J. W. Qiu, W. Vogelsang and F. Yuan, Phys. Rev. D 74, 114013 (2006) [arXiv:hep-ph/0609238].
[15] K. Kanazawa and Y. Koike, Phys. Rev. D 82, 034009 (2010) [arXiv:1005.1468 [hep-ph]]; Y. Koike and T. Tomita, Phys.

Lett. B 675, 181 (2009) [arXiv:0903.1923 [hep-ph]].
[16] Z. B. Kang and J. W. Qiu, Phys. Rev. D 78, 034005 (2008) [arXiv:0806.1970 [hep-ph]]; Z. B. Kang, J. W. Qiu, W. Vogelsang

and F. Yuan, Phys. Rev. D 78, 114013 (2008) [arXiv:0810.3333 [hep-ph]].
[17] M. Anselmino, M. Boglione and F. Murgia, Phys. Lett. B 362, 164 (1995) [arXiv:hep-ph/9503290]; U. D’Alesio and

F. Murgia, Phys. Rev. D 70, 074009 (2004) [arXiv:hep-ph/0408092]; M. Anselmino, M. Boglione, U. D’Alesio, E. Leader,
S. Melis and F. Murgia, Phys. Rev. D 73, 014020 (2006) [arXiv:hep-ph/0509035]; M. Boglione, U. D’Alesio and F. Murgia,
Phys. Rev. D 77, 051502 (2008) [arXiv:0712.4240 [hep-ph]]; L. Gamberg and Z. B. Kang, Phys. Lett. B 696, 109 (2011)
[arXiv:1009.1936 [hep-ph]]; Z. B. Kang and F. Yuan, Phys. Rev. D 81, 054007 (2010) [arXiv:1001.0247 [hep-ph]].

[18] J. C. Collins and D. E. Soper, Nucl. Phys. B 193, 381 (1981) [Erratum-ibid. B 213, 545 (1983)].
[19] X. d. Ji, J. p. Ma and F. Yuan, Phys. Rev. D 71, 034005 (2005) [arXiv:hep-ph/0404183]; Phys. Lett. B 597, 299 (2004)

[arXiv:hep-ph/0405085].
[20] J. C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001 (2004) [arXiv:hep-ph/0408249].
[21] S. J. Brodsky, D. S. Hwang and I. Schmidt, Phys. Lett. B 530, 99 (2002) [arXiv:hep-ph/0201296]; Nucl. Phys. B 642, 344

(2002) [arXiv:hep-ph/0206259].
[22] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B 461, 197 (1996) [Erratum-ibid. B 484, 538 (1997)] [arXiv:hep-

ph/9510301]; D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998) [arXiv:hep-ph/9711485].
[23] D. Boer, P. J. Mulders and F. Pijlman, Nucl. Phys. B 667, 201 (2003) [arXiv:hep-ph/0303034].
[24] A. Bacchetta, C. J. Bomhof, P. J. Mulders and F. Pijlman, Phys. Rev. D 72, 034030 (2005) [arXiv:hep-ph/0505268];

C. J. Bomhof, P. J. Mulders and F. Pijlman, Eur. Phys. J. C 47, 147 (2006) [arXiv:hep-ph/0601171]; T. C. Rogers and
P. J. Mulders, Phys. Rev. D 81, 094006 (2010) [arXiv:1001.2977 [hep-ph]].

[25] A. Bacchetta, C. Bomhof, U. D’Alesio, P. J. Mulders and F. Murgia, Phys. Rev. Lett. 99, 212002 (2007) [arXiv:hep-
ph/0703153].

[26] D. W. Sivers, Phys. Rev. D 41, 83 (1990); Phys. Rev. D 43, 261 (1991).
[27] J. C. Collins, Nucl. Phys. B 396, 161 (1993).
[28] A. V. Efremov and O. V. Teryaev, Sov. J. Nucl. Phys. 36, 140 (1982) [Yad. Fiz. 36, 242 (1982)]; A. V. Efremov and

O. V. Teryaev, Phys. Lett. B 150, 383 (1985).
[29] J. W. Qiu and G. Sterman, Phys. Rev. Lett. 67, 2264 (1991); Nucl. Phys. B 378, 52 (1992).
[30] J. W. Qiu and G. F. Sterman, Phys. Rev. D 59, 014004 (1999) [arXiv:hep-ph/9806356].
[31] H. Eguchi, Y. Koike and K. Tanaka, Nucl. Phys. B 763, 198 (2007) [arXiv:hep-ph/0610314]; Y. Koike and K. Tanaka,

Phys. Lett. B 646, 232 (2007) [Erratum-ibid. B 668, 458 (2008)] [arXiv:hep-ph/0612117]; Phys. Rev. D 76, 011502 (2007)
[arXiv:hep-ph/0703169].

[32] Z. B. Kang, F. Yuan and J. Zhou, Phys. Lett. B 691, 243 (2010) [arXiv:1002.0399 [hep-ph]].
[33] X. Ji, J. W. Qiu, W. Vogelsang and F. Yuan, Phys. Rev. Lett. 97, 082002 (2006) [arXiv:hep-ph/0602239]; Phys. Rev. D

73, 094017 (2006) [arXiv:hep-ph/0604023]; Phys. Lett. B 638, 178 (2006) [arXiv:hep-ph/0604128]; Y. Koike, W. Vogelsang
and F. Yuan, Phys. Lett. B 659, 878 (2008) [arXiv:0711.0636 [hep-ph]]; A. Bacchetta, D. Boer, M. Diehl and P. J. Mulders,
JHEP 0808, 023 (2008) [arXiv:0803.0227 [hep-ph]].

[34] X. d. Ji and F. Yuan, Phys. Lett. B 543, 66 (2002) [arXiv:hep-ph/0206057]; A. V. Belitsky, X. Ji and F. Yuan, Nucl. Phys.
B 656, 165 (2003) [arXiv:hep-ph/0208038].

[35] J. C. Collins, Phys. Lett. B 536, 43 (2002) [arXiv:hep-ph/0204004].
[36] J. P. Ma and Q. Wang, Eur. Phys. J. C 37, 293 (2004) [arXiv:hep-ph/0310245].
[37] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders and M. Schlegel, JHEP 0702, 093 (2007) [arXiv:hep-ph/0611265].
[38] A. Bacchetta, U. D’Alesio, M. Diehl and C. A. Miller, Phys. Rev. D 70, 117504 (2004) [arXiv:hep-ph/0410050].
[39] J. C. Collins, Acta Phys. Polon. B 34, 3103 (2003) [arXiv:hep-ph/0304122].
[40] Z. B. Kang and J. W. Qiu, Phys. Rev. D 79, 016003 (2009) [arXiv:0811.3101 [hep-ph]]; J. Zhou, F. Yuan and Z. T. Liang,

Phys. Rev. D 79, 114022 (2009) [arXiv:0812.4484 [hep-ph]]; W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010 (2009)
[arXiv:0904.0410 [hep-ph]]; V. M. Braun, A. N. Manashov and B. Pirnay, Phys. Rev. D 80, 114002 (2009) [arXiv:0909.3410
[hep-ph]]; Z. B. Kang, Phys. Rev. D 83, 036006 (2011) [arXiv:1012.3419 [hep-ph]].

[41] D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Phys. Rev. Lett. 101, 072001 (2008) [arXiv:0804.0422 [hep-ph]];
Phys. Rev. D 80, 034030 (2009) [arXiv:0904.3821 [hep-ph]].

[42] EIC wiki page - https://wiki.bnl.gov/eic/index.php/Main_Page
[43] Z. B. Kang, J. W. Qiu and H. Zhang, Phys. Rev. D 81, 114030 (2010) [arXiv:1004.4183 [hep-ph]].
[44] J.Qiu, M. Schlegel, W. Vogelsang, in preparation.


