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Abstract

The null search for the Higgs boson at the Tevatron implies strong constraints on heavy
colored particles that increase the gluon-fusion induced production rate of the Higgs.
We investigate the implications of the Tevatron exclusion limit on example extensions of
the Standard Model that contain a new scalar state transforming as either an adjoint or
a fundamental under the QCD gauge group. The bounds on the adjoint (fundamental)
scalar mass exceed 200 GeV (100 GeV) for natural choices of scalar-sector parameters.



1 Introduction

The hunt for the Higgs boson in order to uncover its role in electroweak symmetry break-
ing has been actively undertaken during the previous few years at the Tevatron accelera-
tor complex. The CDF and D0 collaborations at the Tevatron have recently announced a
95% CL exclusion limit on a Standard Model (SM) Higgs boson with a mass in the ranges
100 GeV ≤ mh ≤ 109 GeV and 158 GeV ≤ mh ≤ 175 GeV [1]. This result is the culmina-
tion of intense efforts by experimentalists to reduce systematic errors inhibiting the search
and to devise sophisticated multi-variate analysis techniques to enable control of the severe
backgrounds [2], and by theorists to calculate precisely the production rate and distribution
shapes of the Higgs within the SM [3]. Although the Tevatron will soon cease operation and
the search for the Higgs boson will shift to the LHC, there is much to still be learned from
Tevatron’s null search. The lack of an observed Higgs signal, and our ability to calculate
very precisely what is expected in the Standard Model, implies significant constrains on
additional new states that increase the Higgs cross section. This has been demonstrated by
CDF and D0 by their placement of stringent bounds on the existence of a fourth generation
of fermions through its contribution to the gluon-fusion production of a Higgs [4]. In this
work the collaborations placed model-independent bounds on σgg→h × BR(h → WW ), al-
lowing the implications of their null search on other SM extensions which affect the partonic
process gg → h → W+W− to be investigated.

Our goal in this manuscript is to further examine the implications of the Tevatron ex-
clusion of the Higgs boson for physics beyond the Standard Model. We consider two ex-
ample states that contribute significantly to the gluon-fusion production of a Higgs boson:
color-fundamental and color-adjoint scalars. We calculate the gluon-fusion production cross
section and W+W− decay width of the Higgs through next-to-next-to-leading-order (NNLO)
in QCD using an effective-theory approach, and use the results of Ref. [4] to constraint the
scalar parameter space. We have previously presented a detailed discussion of how color-
adjoint scalars affect the Higgs production cross section [5], and we refer to this work for
many technical details. For natural choices of scalar parameters, we find bounds of one
hundred to several hundred GeV on the scalar mass, depending on both representation and
the Higgs mass. While our interest in these specific particles is because of their utility as
phenomenological examples, we note that such states appear in extensions of the Standard
Models. For example, adjoint scalars in the (8, 1)0 representation arise in theories with uni-
versal extra dimensions [6, 7]. We note that the examination of how the Tevatron exclusion
limit impacts modes of new physics has received other attention in the literature [8].

Our manuscript is organized as follows. We review our calculational approach for deter-
mining the effects of the colored scalar on Higgs production in Section 2. A more detailed
discussion is presented in our previous paper [5]. In Section 3 we present the Tevatron bounds
on these states, derived using the model-independent constraints on Higgs production and
decay via the partonic process gg → h → W+W−. We conclude in Section 4.
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2 Calculational details

We discuss here our calculational procedure for obtaining the modifications in the Higgs
production rate due to colored scalars. We consider two example models of colored states
that can modify the SM prediction for gluon-fusion production of a Higgs boson: scalars in
the (8, 1)0 and (3, 1)0 representations. The Lagrangians describing the interactions of these
states with the SM are given by

Ladj = LSM + Tr [DµSDµS] − m
′2

S Tr
[

S2
]

− g2

s G4S Tr
[

S2
]2 − λ1H

†H Tr
[

S2
]

,

Lfund = LSM + (DµS)† DµS − m
′2

S S†S − 1

2
g2

s G4S

(

S†S
)2 − λ1H

†H S†S. (1)

In the adjoint Lagrangian Ladj , S denotes the matrix-valued scalar field S = SATA, while in
the fundamental Lagrangian Lfund, S denotes a vector in color space with three components.
H indicates the Higgs doublet before electroweak symmetry breaking, v is the Higgs vacuum-
expectation value, and Dµ is the covariant derivative. After electroweak symmetry breaking,
the Higgs doublet is expanded as H =

(

0, (v + h)/
√

2
)

in the unitary gauge. The masses

of the colored scalars become m2
S = m

′2
S + λ1v

2/2. The Feynman rules which describe the
scalar couplings to the Higgs boson h and to gluons are easily obtained from Eq. (1). The
free parameters which govern the scalar properties are mS, λ1, and G4S. We note that
higher-order operators that break the S → −S symmetry present in the Lagrangians above,
and which allow the scalar to decay, can be obtained in explicit models [6, 7]. We neglect
them here since we anticipate that they have little effect on the gg → h production cross
section. We also note that a quartic-scalar coupling is generated by QCD interactions even
if it is set to zero at tree-level. At NNLO the quartic coupling must be included to obtain a
renormalizable result, as demonstrated in our previous work [5]. We include this operator in
the tree-level Lagrangian with a coefficient scaled by g2

s , the QCD coupling constant squared,
to permit an easier power-counting of loops.

We calculate the production rate of the Higgs through NNLO in QCD perturbation
theory, which is necessary to reduce theoretical uncertainties arising from variations of the
renormalization and facrorization scales in this process. We perform this calculation using
an effective-theory strictly valid when the Higgs mass is less than twice the scalar mass, and
also less than twice the top mass, mh < 2mS,t. In this limit, both the top quark and colored
scalar can be integrated out to obtain the following effective Lagrangian:

Leff = Lnl,eff
QCD − C1

H

v
O1, (2)

where C1 is a Wilson coefficient and the operator O1 is

O1 =
1

4
Ga

µνG
aµν . (3)

This form is valid for both the adjoint and fundamental scalar; only C1 changes. This
effective-theory has been extensively used to determine the contribution of top-quark loops
to the SM Higgs-gluon coupling, and to calculate the gluon-fusion cross section for Higgs
production at hadron colliders [9–18]. It has also been used to determine the effect of a
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fourth generation of fermions on the production rate at the Tevatron [19]. When normalized
to the full mt-dependent leading-order result, the effective-theory reproduces the exact NLO
result obtained in Ref. [12,20] to better than 1% for mh < 2mt and to 10% or better for Higgs
boson masses up to 1 TeV. For scalars in the adjoint representation, this approximation has
been studied against the exact NLO calculation [21], and is again accurate to the 1 − 2%
percent level for mh ≤ 2mS. The deviation reaches a maximum of 10% for Higgs masses
much heavier than the scalar, except very near the threshold mh ≈ 2mS. We adopt this
normalized effective-theory as the basis for our analysis. A detailed derivation of the Wilson
coefficient for the adjoint scalar was presented in Ref. [5]. We have derived C1 for the
fundamental scalar, and present it in Eq. (6) of the Appendix.

Before presenting numerical results, we explain what contributions we include in the
gluon-fusion cross section and gluoinic decay width of the Higgs, both of which are modified
in the presence of the scalar. The leading-order amplitude for the gg → h process takes the
form

ALO = ALO
t + ALO

b + ALO
S , (4)

where the subscripts t, b, S respectively denote the top, bottom, and scalar contributions.
The amplitude for h → gg has the identical structure. Upon squaring this amplitude,
interferences between the contributions of each particle are obtained. We denote by σt+S

the terms obtained by squaring together the top and scalar amplitudes, and keeping both
the interference term and the pieces from each separate particle squared. We let σtb, σSb

denote the interferences between the bottom-quark amplitude with the top and the scalar
pieces. For the cross section at the n-th order in perturbation theory, we use the following
expression:

σn = σLO
t+S(mt, mS) Kn

EFT + σLO
Sb (mS, mb) + σLO

tb (mt, mb) + σLO
bb (mb). (5)

Kn
EFT denote the ratio of the n-th order result for the cross section over the LO result, with

both quantities computed in the effective-theory defined in Eq. (2). The expression multi-
plying the K-factors is the LO cross section maintaining the exact dependence on the scalar
and top-quark masses. The remaining terms account for the scalar-bottom interference,
the top-bottom interference, and the bottom-squared contribution at LO with their exact
mass dependences. Various electroweak corrections which modify the SM contribution at
the percent level [22–26] are not known for the scalar, and for consistency are neglected. As
discussed above, this calculational framework yields results usually accurate to the percent
level, and to 10% at worst. For the SM it gives results differing by only a couple of percent
from the official predictions utilized by the Tevatron collaborations [24,27], and also closely
matches the prescription for LHC cross sections adopted by ATLAS and CMS [28]. To cal-
culate the partial width of the Higgs boson into gluons, we use HDECAY [29] to calculate its
SM partial width. We then scale its result by the ratio of the amplitude in Eq. (4) squared
over that in the SM squared, together with a factor accounting for the different Wilson co-
efficients in the SM and in the presence of the scalar. This partial width is then used with
the other outputs of HDECAY to form the h → W+W− branching ratio.
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3 Numerical results

We now explore what regions of scalar parameter space are excluded by the model-independent
search of the CDF and D0 collaborations for the process gg → h → W+W−. We study the
adjoint and fundamental representations separately. The addition of a scalar to the spec-
trum induces two competing effects on the Tevatron signal. The scalar tends to increase
the gluon-fusion production cross section throughout the parameter space. However, it also
increases the partial decay width of the Higgs into gluons, which decreases the branching
ratio into W+W−. To derive the allowed region of scalar parameter space we calculate
σgg→h×BR(h → WW ), and demand that it be less than the Tevatron limit on this quantity
from Ref. [4]. In addition, to avoid strong couplings and a breakdown of our perturbative
analysis, we impose the additional constraint Γtotal/mh < 1/5 on the total width of the Higgs.
This constraint prevents the ratio λ1v

2/m2
S appearing in the Wilson coefficient, where v is

the vacuum-expectation value of the Higgs, from becoming too large.
We use MSTW parton distribution functions [30] extracted through NNLO in QCD

when evaluating the cross section in Eq. 5. For the bottom quark we use the pole mass
mb = 4.75 GeV; this leads to slightly more conservative bounds than those obtained with
the MS mass. The cross section is evaluated using the scale choice µR = µF = mh/2. In
the scalar sector, we must set the parameters λ1, G4S, and mS. To determine the reasonable
range of G4S, we perform a renormalization-group analysis and demand that this coupling
does not encounter a Landau pole until a cutoff Λ = 10 TeV. This was discussed in detail
in Ref. [5], to which we refer the reader for further details. For the adjoint scalar, this leads
to the approximate condition G4S(v) < 1.5, while for the fundamental we find G4S(v) < 2.5.
The value of G4S does not significantly modify the bounds we derive. While we set G4S(v) = 1
in our study here, we have checked that other values in the allowed region do not modify
our bounds by more than 5%. The cross section depends primarily on λ1 through the ratio
λ1/m

2
S, as discussed in Ref. [5] . The constraints on mS depend strongly on the value of

λ1 chosen. However, there is no symmetry reason to expect a small value for this coupling,
indicating a ’natural’ value λ1 ≈ 1. We note that since the scalars considered here will not
significantly alter predictions for the precision electroweak observables measured at LEP and
SLC, the Higgs mass is also expected to be in the approximate range mh < 200 GeV. Results
for other values λo

1, but keeping the mass fixed at mS, can be approximately obtained by
studying the results at a mass mo

S given by λ1/m
2
S = λo

1/(mo
S)2. To avoid three-dimensional

plots we simply set λ1 = 1 in our analysis, and note that results for other values can be
obtained by scaling σgg→h × BR(h → WW ) as indicated. The only remaining parameters
are mh and mS. We present our results as exclusion regions in this two-dimensional space.

The excluded regions for the adjoint and fundamental scalars are presented in Figs. 1
and 2, respectively. We note that these are 95% CL exclusion bounds. The strongest bounds
occur when mh = 165 GeV in both cases. Since this search utilizes only the gluon-fusion
production mode, the SM Higgs is not excluded in this analysis, unlike in the combined
global analysis [1]. Taking mS → ∞ gives the SM result for the production rate, and if the
SM was excluded for a certain Higgs mass range in this analysis, even an extremely heavy
scalar would not be allowed. Adjoint-scalar masses approaching 1 TeV are excluded for this
Higgs mass, while fundamental-scalar masses near 500 GeV are ruled out. The constraints
are considerably weaker for other values of mh, but adjoint-scalar masses less than 130 GeV
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are ruled out for Higgs masses between 135 GeV and 250 GeV, while fundamental-scalar
masses less than 100 GeV are excluded for Higgs masses from 150 GeV to 190 GeV. For
comparison, the direct-search limits on the adjoint scalar mass is estimated to be 280 GeV
when the scalar decays primarily into bb at the Tevatron [7]. The direct search constraint is
very sensitive to the decay mode of the scalar. However, it is also insensitive to mh and λ1;
the two techniques for probing the scalar parameter space are complementary. The regions
of light scalar mass are allowed because Br(h → WW ) drops quickly as mS is decreased.
However, scalar masses that are too light increase the gluonic partial width to the point that
Γtotal/mh becomes too large, leading to the exclusion at small values of mS. The exclusion
regions extending to large mS apparent in the figures regions at high mh arise from the
increase of the cross section near the threshold mh ≈ 2mS. The allowed values of scalar
masses found by our analysis are presented in Tables 1 and 2. We note that we consider
only the Tevatron Higgs exclusion limit in determing these ranges. Also, the very light
allowed masses near mS ≈ 10 GeV should not be taken too seriously due to the limitations
of the effective-theory analysis. While caution must be exercised in using our effective-theory
framework for very light scalar masses, we note that the deviation of Eq. (5) form the exact
next-to-leading order calculation of Ref. [21] was found to be less than 10% for mh/mS ≤ 5.

We note that the bulk of the exclusion region for the adjoint scalar with a mass in the
range 120 − 250 GeV and the fundamental scalar with a mass in the range 130 − 200 GeV
comes from the Tevatron bounds. The finite width constraint has no effect in these regions.
Also, in this dominant part of the excluded parameter space the effective-theory is working
with high precision. The properties of the width and the effective-theory limitations come
in only in the tails extending to mh ≥ 200 GeV and very light scalar masses, where the
Tevatron cross section becomes too small to constrain the parameter space.

As a final comment, we also note that the validity of the Tevatron exclusion limits
have been actively debated within the past year [31], due to the collaborations’ treatment of
theoretical systematic errors. We adopt the official results of the CDF and D0 collaborations
in our analysis.

4 Conclusions

In this manuscript we have investigated the implications that Tevatron’s null search for the
process gg → h → W+W− has for extensions of the Standard Model. We have considered
two example particles that substantially alter the gluon-fusion production of the Higgs and
its branching fraction into W+W−, and that also exist in extensions of the SM: heavy scalars
in the adjoint and fundamental representations of the color gauge group. We have outlined
an effective-theory computation of how the colored scalars modify Higgs properties, and have
also presented the Wilson coefficient for the fundamental scalar needed for studies of this
state through NNLO in QCD perturbation theory. Using the model-independent bounds on
σgg→h ×BR(h → WW ) presented in Ref. [4], we have derived the excluded regions of scalar
parameter space for both example states. The constraints can be quite severe; for Higgs
masses near mh ≈ 165 GeV, adjoint scalar masses approaching 1 TeV are ruled out, while
fundamental scalar masses near 500 GeV are not allowed. These should be compared to the
estimated direct search reach of mS ≈ 280 GeV for the adjoint scalar [7]. Of course, the
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Figure 1: Bounds on the (mh, mS) parameter space for an adjoint scalar. The excluded
values are denoted by red hatching. The choices of G4S(v) and λ1 are discussed in the text.

indirect bounds here depend significantly on mh and λ1, which the direct-search limit does
not. However, it is also independent of the scalar decay, which plays a crucial role in the
direct search. Throughout the natural range of mh and λ1, the Tevatron results restrict the
colored-scalar mass to be greater than 100−200 GeV, with the stronger restriction occurring
for the adjoint representation.

The Tevatron null search for the Higgs boson has implications beyond limiting the Stan-
dard Model parameter space. It imposes severe constraints on new theories that contain
heavy colored states which modify the Higgs-gluon interaction. We have demonstrated this
by showing the strong limits obtainable on color adjoint and fundamental scalars. It would
be interesting to investigate other consequences of the Tevatron result for physics beyond
the Standard Model.
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Appendix

We present here the Wilson coefficient C1 for the fundamental scalar that appears in the
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Figure 2: Bounds on the (mh, mS) parameter space for a fundamental scalar. The excluded
values are denoted by red hatching. The choices of G4S(v) and λ1 are discussed in the text.

effective Lagrangian of Eq. (2):

C1 = a
[

− λ1 v2

48 m2
S

− 1

3

]

+ a2

[ λ1 v2

16 m2
S

(

−3

2
+

G4S

3

)

− 11

12

]

+ a3

[

−(225x6 − 72x4 + 131x2 − 228) ln2(x)

6144(x− 1)x2(x + 1)
+

(861x4 + 7435x2 + 684) ln(x)

9216 x2

+
4608 LS x4 − 105x4 + 21888 LS x2 − 89129x2 − 2052

27648 x2
+ nl

(

1

288
(64 LS + 67) +

2 ln(x)

9

)

− λ1 v2

2 m2
S

{ 7

96
(2 LS − 1) G2

4S +

(

424 LS − 823

2304
+

ln(x)

72

)

G4S +
(−6 LS − 71) nl

1728

− (225x6 − 72x4 + 131x2 − 228) ln2(x)

12288(x − 1)x2(x + 1)
+

(287x4 − 103x2 + 228) ln(x)

6144 x2

+
4608 LS x4 − 2409x4 − 25152 LS x2 + 48247x2 − 2052

55296 x2

}

+
(

75x6 + 26x4 + 7x2 + 76
)

×
(

(ln(1 + x) − ln(1 − x))
ln2(x)

4096 x3
+ (Li2(−x) − Li2(x))

ln(x)

2048 x3
+

Li3(x) − Li3(−x)

2048 x3

−λ1 v2

2 m2
S

{

(ln(1 + x) − ln(1 − x))
ln2(x)

8192 x3
+ (Li2(−x) − Li2(x))

ln(x)

4096 x3
+

Li3(x) − Li3(−x)

4096 x3

}

)

]

.

(6)

In these expressions, we have set Li = ln (mi/µ) for i = (S, t), x = mt/mS and a = g2
s/(4π2).

As discussed in our previous work [5], the combination λ1v
2/m2

S is scale-invariant if only
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mh (GeV) mS (GeV) mh (GeV) mS (GeV)

110 10 −∞ 210 140 −∞
115 9 −∞ 215 139 −∞
120 9 −∞ 220 139 −∞
125 9 − 16, 109 −∞ 225 135 −∞
130 9 − 12, 124 −∞ 230 132 −∞
135 155 −∞ 235 133 −∞
140 156 −∞ 240 134 −∞
145 187 −∞ 245 133 −∞
150 262 −∞ 250 133 −∞
155 298 −∞ 255 23 − 37, 134 −∞
160 477 −∞ 260 25 − 53, 135 −∞
165 950 −∞ 265 27 − 70, 136 −∞
170 396 −∞ 270 29 − 88, 137 −∞
175 442 −∞ 275 31 − 105, 139 −∞
180 327 −∞ 280 33 − 121, 141 −∞
185 239 −∞ 285 35 − 132, 143 −∞
190 221 −∞ 290 38 −∞
195 175 −∞ 295 40 −∞
200 154 −∞ 300 43 −∞
205 146 −∞ − −

Table 1: Allowed values of the adjoint scalar mass mS for each mh, given the Tevatron
bounds [4] and the constraint Γtotal/mh < 1/5. The choices of the parameters λ1 and G4S

are described in the text.

QCD-induced αS corrections are considered. The Wilson coefficient therefore takes the same
form in both the MS and pole schemes through next-to-next-to-leading order in perturbation
theory. In presenting our numerical results we interpret the masses of the top and scalar as
pole masses.
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mh (GeV) mS (GeV) mh (GeV) mS (GeV)

110 6 −∞ 210 10 − 80, 107 −∞
115 6 −∞ 215 11 − 86, 109 −∞
120 6 − 36, 61 −∞ 220 12 − 92, 111 −∞
125 6 − 17, 70 −∞ 225 13 − 102, 113 −∞
130 6 − 15, 76 −∞ 230 15 −∞
135 6 − 11, 85 −∞ 235 16 −∞
140 6 − 10, 87 −∞ 240 17 −∞
145 6 − 8, 98 −∞ 245 19 −∞
150 124 −∞ 250 21 −∞
155 137 −∞ 255 22 −∞
160 198 −∞ 260 24 −∞
165 482 −∞ 265 26 −∞
170 172 −∞ 270 28 −∞
175 189 −∞ 275 30 −∞
180 152 −∞ 280 33 −∞
185 126 −∞ 285 35 −∞
190 122 −∞ 290 38 −∞
195 14 − 44, 110 −∞ 295 40 −∞
200 10 − 60, 106 −∞ 300 43 −∞
205 9 − 70, 106 −∞ − −

Table 2: Allowed values of the fundamental scalar mass mS for each mh, given the Tevatron
bounds [4] and the constraint Γtotal/mh < 1/5. The choices of the parameters λ1 and G4S

are described in the text.
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