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Whether the kinematics includes the hard transverse photon momenta or not makes a dramatic
difference in computing deeply virtual Compton scattering (DVCS) in terms of the widely used
reduced operators that define generalized parton distributions (GPDs). Our tree-level complete
DVCS amplitude including the lepton current plays the role of spin filter to analyze such kinematic
dependence on the contribution of longitudinally polarized virtual photon as well as the conservation
of angular momentum.

PACS numbers: 13.40.-f

For some time already, it has been realized that in non-
forward kinematics, e.g. deeply virtual Compton scatter-
ing (DVCS), the scattering amplitudes, and thus cross
sections, can be expressed in terms of objects, general-
ized parton distributions (GPDs), which complement the
knowledge encoded in parton distribution functions [1–
3]. This idea has inspired many authors, whose work has
been summarized in several important review papers [4–
6].

The paramount feature of the treatment of deep in-
elastic scattering (DIS) and DVCS is factorization, i.e.,
writing the full scattering amplitude as a convolution of
a hard-scattering amplitude to be calculated in pertur-
bation theory, and a soft part embodying the hadronic
structure. The use of a hard photon that is far off-shell,
say −q2 = Q2 ≫ any relevant soft mass scale, enables
factorization theorems [7] with the identification of the
hard scattering amplitude. Light-front dynamics (LFD)
(see e.g. Ref. [8]) can be invoked to further analyze the
physics, as it has the advantage that vacuum diagrams
are either rigorously absent or suppressed. In the con-
text of single-photon physics (e.g. hadron form factors),
it means that in a reference frame where the momen-
tum of the photon qµ has vanishing plus component [9]:
q+ ≡ (q0+ q3)/

√
2 = 0, it cannot create partons, as their

momenta must have positive plus-components and these
components are conserved in LFD. This simplification
facilitates the partonic interpretation of amplitudes [10].
In two-photon physics such as DVCS, however, both pho-
tons cannot have vanishing plus components simultane-
ously and thus further investigation is called for to an-
alyze the choice of a preferred kinematics in which the
amplitudes are calculated and the link between the the-
oretical quantities, GPDs, and the cross sections can be
established.

This paper is devoted to the issue of kinematics in
computing the DVCS amplitude in terms of widely used
reduced operators that define GPDs. For example, the
operator γ+ is not invariant under the transformation
from the ~q⊥ = 0 frame to the q+ = 0 frame. In effect, the
choice of reference frame matters in computing the DVCS
amplitude in terms of GPDs. We discuss this in the sim-
plest possible setting, namely DVCS on a structure-less

spin-1/2 particle. Although this might seem to preclude
the discussion of the GPD formalism, we shall argue that
important lessons can be learnt from the anlysis of this
“bare bone” structure on top of which the GPDs are for-
mulated.

Before we get into the discussion of the GPD formal-
ism, we first report our benchmark calculation of the
complete full DVCS amplitude for the scattering of a
massless lepton ℓ off a point-like fermion f of mass m.
In the final state, we find the scattered lepton ℓ′, the
fermion f ′ with momentum k′ and a (real) photon γ′,
viz ℓ → ℓ′ + γ∗, γ∗ + f → γ′ + f ′. (‘Complete’ means
that the amplitude includes the leptonic part and ‘full’
means that no approximations are made in the calcula-
tion of the hadronic amplitude.) The complete amplitude
at tree level can be written as

M =
∑

h

L({λ′, λ}h) 1
q2

H({s′, s}{h′, h}), (1)

where the quantities λ′, λ, h′, h, s′, and s are the he-
licities of the outgoing and incoming leptons, outgoing
and incoming photons, and the rescattered and target
fermions, respectively. Leaving out inessential factors,
we may write

L({λ′, λ}h) = ū(ℓ′;λ′)ǫ/
∗
(q;h)u(ℓ;λ),

H({s′, s}{h′, h}) = ū(k′; s′)(Os +Ou)u(k; s), (2)

where the s- and u-channel operators of the intermediate
fermion are given by

Os =
ǫ/∗(q′;h′)(k/ + q/+m)ǫ/(q;h)

(k + q)2 −m2
,

Ou =
ǫ/(q;h)(k/− q/

′
+m)ǫ/

∗
(q′;h′)

(k − q′)2 −m2
. (3)

We take the following three kinematics for the momenta
of the incoming and outgoing particles in the hadronic
amplitude:
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(1) δ-Kinematics (q+ → 0 as δ → 0)

qµ =

(

δp+, Q, 0,
Q2

2(ζ + δ)p+
+

ζm2

2x(x − ζ)p+

)

,

q′
µ

=

(

(ζ + δ)p+, Q, 0,
Q2

2(ζ + δ)p+

)

,

kµ =

(

xp+, 0, 0,
m2

2xp+

)

,

k′
µ

=

(

(x − ζ)p+, 0, 0,
m2

2(x− ζ)p+

)

, (4)

(2) q′+ = 0 Kinematics (effectively, ‘1+1’ dim.)

qµ =

(

−ζp+, 0, 0,
Q2

2ζp+

)

,

q′
µ

=

(

0, 0, 0,
Q2

2ζp+
− ζm2

2x(x− ζ)p+

)

. (5)

The momenta kµ and k′
µ
are the same as in case (1).

(3) Nonvanishing q+ and q′+ Kinematics (with m = 0)

qµ =

(

−ζ

2
p+,

Q√
2
, 0,

Q2

2ζp+

)

,

q′
µ

=

(

ζ

2
p+,

Q√
2
, 0,

Q2

2ζp+

)

. (6)

The momenta kµ and k′
µ
are the same as in case (1) if

the limit m → 0 is taken.
These kinematics correspond to the hard-scattering

part of a DVCS amplitude where the fermions are the
quarks and p+ is the plus-component of the momentum
of the parent hadron target. We use the Kogut-Soper
spinors [11] normalized to 2m and the polarization vec-
tors

ǫ(q;±1) =
1√
2

(

0,∓1,−i,∓qx ± iqy
q+

)

,

ǫ(q; 0) =
1

√

q2

(

q+, qx, qy,
q2
⊥
− q2

2q+

)

, (7)

that correspond to the LF gauge A+ = 0.
All of these three kinematics yield identical kinemati-

cal invariants such as s = x−ζ
ζ

Q2 and u = −x
ζ
Q2 in the

DVCS limit as δ → 0 and m → 0. To make sure of the
consistency in limiting procedures, we have checked ex-
plicitly that the two limits, δ → 0 and Q → ∞, commute
with each other. As we discuss below, each of the above
three kinematics has its own merit of consideration.
In the δ → 0 limit, the δ-kinematics coincides with

the well-known q+ = 0 frame [12] frequently cited in the
discussion of the GPD formalism. Noticing that taking
q+ = 0 will lead to singular polarization vectors in the
LF gauge A+ = 0 (see e.g. Eq. (7)), we proceed with
care: q+ is set to δp+ and all amplitudes are expanded
in powers of δ, taking the limit δ → 0 at the very end
of the calculation of the complete, physical amplitude.

TABLE I: Leptonic amplitudes in kinematics corresponding
to Eqs. (4)-(6)

L({λ′, λ}h)
{λ′, λ} h Eq. (4) Eq. (5) Eq. (6)

{ 1

2
, 1

2
} +1 −Q

(

1− δ
4ζ

+ 2ζ

δ

)

0 2Q

{ 1

2
, 1

2
} −1 −Q

(

1− 3δ
4ζ

− 2ζ

δ

)

−2Q −4Q

{ 1

2
, 1

2
} 0 −i2

√
2Q ζ

δ
0 4iQ

TABLE II: Hadronic amplitudes in DVCS in three kinematics
given by Eqs. (4)-(6)

H({h′, h}{s′, s})
{h′, h} {s′, s} Eq. (4) Eq. (5) Eq. (6)

{+1,+1} { 1

2
, 1

2
} 2

√

x
x−ζ

(

1 + ζ

δ

)

2
√

x−ζ

x
−2

√

x
x−ζ

{+1,+1} {− 1

2
,− 1

2
} 2

√

x−ζ

x

(

1 + ζ

δ

)

2
√

x
x−ζ

−2
√

x−ζ

x

{+1,−1} { 1

2
, 1

2
} −2

√

x
x−ζ

ζ

δ
0 4

√

x
x−ζ

{+1,−1} {− 1

2
,− 1

2
} −2

√

x−ζ

x

ζ

δ
0 4

√

x−ζ

x

{+1, 0} { 1

2
, 1

2
} i

√
2
√

x
x−ζ

(

1 + 2ζ

δ
− δ

4ζ

)

0 −i4
√

x
x−ζ

{+1, 0} {− 1

2
,− 1

2
} i

√
2
√

x−ζ

x

(

1 + 2ζ

δ
− δ

4ζ

)

0 −i4
√

x−ζ

x

The q′+ = 0 kinematics without any transverse compo-
nent (effectively, ‘1+1’ dimensional) avoids the singular-
ity in the polarization vectors of the real photon and
consequently provides a convenient framework of calcu-
lation without encountering any singularity. Similarly,
the nonvanishing q+ and q′+ kinematics also avoids the
singularity in the amplitude calculation, while the pho-
tons carry the same order of transverse momenta as the
ones in the δ-kinematics given by Eq. (4).
The results from these three kinematics are summa-

rized in Tables I, II, and III. A straightforward eval-
uation of L({λ′, λ}h) gives the result in Table I, where
we have used the corresponding lepton kinematics1 to
Eqs. (4)-(6) and presented the results only up to order
δ as well as in the DVCS limit. For the massless lep-
tons helicity is conserved. The amplitudes not shown in
Table I can be obtained using the helicity rule

L({−λ′,−λ} − h) = (−1)λ
′
−λ+hL({λ′, λ} h). (8)

The full hadronic amplitudes are shown in Table II, where
we again presented the results only up to order δ. They
obey the rule

H({−h′,−h}{−s′,−s}) = (−1)h−h′
−s+s′H({h′, h}{s′, s}).

(9)
The complete DVCS amplitude M in Eq. (1) is shown in
Table III. Since all the singular terms of orders δ−2 and

1 The details of lepton kinematics and spinors will be presented
somewhere else.
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TABLE III: Complete DVCS amplitudes, in three kinematics
given by Eqs. (4)-(6)

∑

h
L({λ′ = λ}, h) 1

q2
H({h′, h}{s′, s})

λ′ = λ h′ s′ = s Eq. (4) Eq. (5) Eq. (6)
1

2
1 1

2

4

Q

√

x
x−ζ

0 4

Q

√

x
x−ζ

1

2
1 − 1

2

4

Q

√

x−ζ

x
0 4

Q

√

x−ζ

x

− 1

2
1 1

2
0 − 4

Q

√

x−ζ

x
0

− 1

2
1 − 1

2
0 − 4

Q

√

x
x−ζ

0

1

2
−1 1

2
0 4

Q

√

x
x−ζ

0

1

2
−1 − 1

2
0 4

Q

√

x−ζ

x
0

− 1

2
−1 1

2
− 4

Q

√

x−ζ

x
0 − 4

Q

√

x−ζ

x

− 1

2
−1 − 1

2
− 4

Q

√

x
x−ζ

0 − 4

Q

√

x
x−ζ

δ−1 are exactly cancelled out in the complete amplitude,
we have taken δ = 0 in Table III. Note in Table III that
there is an interchange2 of the polarization of the final
photon in the result of the ‘1+1’ dim. kinematics in com-
parison with the other kinematics, in which the momenta
of photons have transverse components. This is remark-
able in view of the LF helicity [13]. One should realize
that the LF helicity states are defined for a momentum
q′ by taking a state at rest with the spin projection along
the z direction equal to the desired helicity, then boosting
in the z direction to get the desired q′+, and then doing a
LF transverse boost (i.e., E1 = K1+J2 [13]) to get the de-

sired transverse momentum ~q′
⊥
. Whether the kinematics

includes the LF transverse boost (E1) or not makes a dra-
matic difference in the spin direction because E1 rotates
the spin direction. Thus, the spin direction of the LF
helicity state is opposite (or antiparallel) to the direction
of the photon momentum when the photon doesn’t carry
any transverse momentum but moves only in the −z di-
rection as in the case of the outgoing photon given by
Eq. (5). When the photon carries the transverse momen-
tum of order Q as in the kinematics given by Eq. (4) or
Eq. (6), the spin directions of the LF helicity state and
the Jacob-Wick helicity state [14] are related [13] by the
Wigner function d1h′,h′(tan−1 2m

Q
), which becomes unity

for the outgoing photon. This illustrates the correspon-

dence between the results of a kinematics with ~q′
⊥

= 0
and a kinematics with the transverse momentum of order
Q: e.g. in Table III, the result of h′ = 1 in the effective
‘1+1D’ kinematics corresponds to the result of h′ = −1
in the δ-kinematics or the nonvanishing q+ and q′+ kine-
matics for λ′ = λ = 1

2
and s′ = s = 1

2
. One should

note that the conservation of angular momentum is sat-

2 We have also confirmed the similar interchange of the helicity
amplitudes between the kinematics with and without the trans-
verse momentum of the virtual photon in the case of a form-factor
calculation.

isfied in the complete full amplitudes for any kinematics.
Therefore, we may take the calculation up to now as a
benchmark for the discussion of the GPD formalism as
we do below. Rewriting the s- and u- channel hadronic
amplitudes as

ū(k′; s′)Osu(k; s) = ǫµ
∗(q′;h′)ǫν(q;h)Ts

µν ,

ū(k′; s′)Ouu(k; s) = ǫµ
∗(q′;h′)ǫν(q;h)Tu

µν , (10)

we may neglect an inessential fermion mass m to express
the tensorial amplitudes Ts

µν and Tu
µν as

Ts
µν =

kα + qα
s

ū(k′; s′)γµγαγνu(k; s),

Tu
µν =

kα − q′α
u

ū(k′; s′)γνγαγµu(k; s), (11)

respectively. Using the identity

γµγαγν = gµαγν + gανγµ − gµνγα + iǫµανβγβγ5 (12)

and the Sudakov variables nµ(+) = (1, 0, 0, 0) and
nµ(−) = (0, 0, 0, 1), one may expand Ts

µν and Tu
µν

to find the terms proportional to ū(k′; s′)n/(−)u(k; s)
and ū(k′; s′)n/(−)γ5u(k; s) that correspond to the nu-
cleon GPDs H(x,∆2, ζ) and H̄(x,∆2, ζ) defined e.g. in
Ref. [1], respectively (here, ∆2 = (q′ − q)2). One should
note, however, that a special system of coordinates with-
out involving any large transverse momentum (see e.g.
Eq. (5)) was chosen in Ref. [1] to compute the scattering
amplitude in terms of GPDs 3.
In order to cover the more general kinematics involv-

ing large transverse momenta such as given in Eqs. (4)
and (6), we may expand qµ (similarly q′µ) and kµ as qµ =
q+nµ(+)+q−nµ(−)+q⊥

µ and kµ = k+nµ(+)+k−nµ(−)
with q⊥

µ representing the transverse momentum corre-
sponding to qµ. For m = 0, k− = 0 and Ts

µν (similarly
Tu

µν) can be expanded as

Ts
µν =

1

s

[(

{(k+ + q+)nµ(+) + q−nµ(−) + q⊥
µ}nν(+)

+{(k+ + q+)nν(+) + q−nν(−) + q⊥
ν}nµ(+)− gµνq−

)

×ū(k′; s′)n/(−)u(k; s)

−iǫµναβ{(k+ + q+)nα(+) + q−nα(−) + q⊥α}nβ(+)

×ū(k′; s′)n/(−)γ5u(k; s)] . (13)

Since q− has the highest power of Q among the compo-
nents of momenta, one may just take the terms propor-
tional to q− as shown in Ref. [1], i.e.,

Ts
µν =

q−

s
[{nµ(−)nν(+) + nν(−)nµ(+)− gµν}

×ū(k′; s′)n/(−)u(k; s)

−iǫµναβnα(−)nβ(+)× ū(k′; s′)n/(−)γ5u(k; s)
]

.

3 In Ref. [2], q = q′−ζp was taken although the physical momenta
instead of the Sudakov variables were used. It was explicitly
stated in Ref. [2] that writing q = q′−ζp is equivalent to using the
Sudakov decomposition in a situation when there is no transverse
momentum.
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Although this is correct in the frame of reference cho-
sen in Ref. [1], one should note that Eq. (14) cannot
provide the full result of the hadronic amplitude in the
kinematics involving large transverse momenta such as
Eq. (4) and Eq. (6), because the polarization vectors
ǫµ

∗(q′;h′) and ǫν(q;h) in Eq. (10) amplify the contribu-
tions neglected in the tensorial amplitude Ts

µν (similarly
Tu

µν) given by Eq. (14). For example, the coefficient of
ū(k′; s′)n/(−)u(k; s) in the s-channel hadronic amplitude
ū(k′; s′)Osu(k; s) is given by the following four terms:

1

s

[

2(k+ + q+)ǫ∗−(q′;h′)ǫ−(q;h)

+ ǫ∗−(q′;h′) q⊥ · ǫ⊥(q;h) + ǫ−(q;h) q⊥ · ǫ⊥∗(q′;h′)

− q−ǫ⊥
∗(q′;h′) · ǫ⊥(q;h)

]

. (14)

Since all of the above four terms have the same
powers of Q, one cannot just take the last term
proportional to q− but must keep all terms to-
gether. In other words, the factorization such as
(

1

x−ζ
+ 1

x

)

{nµ(−)nν(+)+nν(−)nµ(+)−gµν} for the co-

efficient of ū(k′; s′)n/(−)u(k; s) in the tensorial amplitude
Ts

µν +Tu
µν cannot hold in general because the polariza-

tion vectors ǫµ
∗(q′;h′) and ǫν(q;h) can amplify the terms

neglected in the tensorial amplitude unless a special sys-
tem of coordinates is chosen to avoid the large transverse
momenta of initial and final photons such as given by
Eq. (5). This is the main point of this paper. In the
following, we demonstrate this point explicitly, present-
ing the consequence of taking the reduced amplitude that
keeps only the terms proportional to q− in the tensorial
amplitude as done in the formulation of GPDs. Unless
the kinematics is chosen properly to avoid the large trans-
verse momenta of initial and final photons, we find that
the reduced amplitude does not agree with the full am-
plitude but yield the wrong result, not even satisfying
the conservation of angular momentum.
Since the q+ = 0 frame is used [12] in the GPD formal-

ism, we utilize the δ-kinematics for our demonstration.
We perform an expansion in the hard momentum scaleQ,
which allows us to define reduced hadronic amplitudes.
In the expansion, it is important to retain terms of orders
δ−1, . . . δ2 as well as orders Q−1, . . .Q2, as it turns out
that not only are the order δ−1-terms cancelled by or-
der δ terms in the convolution of L and H, but also that
the order Q−1-contribution of the longitudinally polar-
ized virtual photon gives a finite contribution in leading
order. (We have checked that the two limits, δ → 0 and
Q → ∞, commute.)
The reduced hadronic operators used in the formula-

tion of GPDs are defined as the limits Q → ∞ of the
operators given in Eq. (3) and found to be, as expected:

Os|Red =
ǫ/
∗
(q′;h′)γ+ǫ/(q;h)

2p+
1

x− ζ
,

Ou|Red =
ǫ/(q;h)γ+ǫ/∗(q′;h′)

2p+
1

x
. (15)

The J = 0 fixed pole contribution in Eq. (15) for point-
like scattering has been discussed in Ref. [15] along with

the universality of this contribution in two-photon pro-
cesses. These reduced propagators contain the nilpo-
tent Dirac matrix γ+ only, which kills the singular parts
of the polarization vectors, namely ǫ−(q;h)γ+. This is
the reason for disregarding the singularities in the po-
larization vectors in q+ = 0 kinematics, as the reduced
hadronic amplitude does not ‘see’ it. However, the lep-
tonic part L of the complete amplitude is also singular.
Consequently, the complete amplitude calculated with
the reduced hadronic part and taking into account the
transverse polarizations only, is wrong, even in the limit
Q → ∞. Contrary to the expectation[12], the contri-
bution from the longitudinal polarization of the virtual
photon is not suppressed by a factor 1/Q compared to
the contribution from the transverse polarizations. Not
only ǫ−(q;h = 0) is singular but also q⊥ · ǫ⊥(q;h = 0)
contributes in the same leading order of Q as the h = ±1
contributions do.
Table IV clearly shows that the reduced amplitudes

and the full ones disagree. We have checked that the
same disagreement occurs in the nonvanishing q+ and
q′+ kinematics given by Eq. (6), although for the kine-
matics without any transverse component, e.g. Eq. (5),
the reduced amplitudes and the full ones do agree. Upon
convoluting the leptonic and hadronic amplitudes to ob-
tain the complete ones, we find that the singular 1/δ-
terms cancel in δ-kinematics, but the full and reduced
hadronic amplitudes do not produce the same complete
ones. Moreover, if the contribution of the longitudinal
polarization of the virtual photon is neglected, i.e., if its
propagator is reduced too, the singular parts do not can-
cel out. As such, the contribution of the longitudinal
polarization should not be neglected when the photons
carry transverse momenta of order Q. The inclusion of
the longitudinal polarization can also be found in the
previous work on the virtual Compton scattering, e.g.
Ref.[16], specifically in the center of momentum frame.

TABLE IV: Complete amplitudes in δ-kinematics for
λ′ = λ = 1

2
and s′ = s = 1

2

h L 1

q2
HFull for h′ = 1 L 1

q2
HRed for h′ = 1

+1 1

Q

√

x
x−ζ

(

4ζ2

δ2
+ 6ζ

δ
+ 3

2
− δ

4ζ

)

2

Q

√

x−ζ

x

(

2ζ

δ
+ 1− δ

4ζ

)

0 1

Q

√

x
x−ζ

(

−8ζ2

δ2
− 4ζ

δ
+ 1− δ

2ζ

)

2

Q

√

x−ζ

x

(

− 2ζ

δ
− 1 + δ

4ζ

)

−1 1

Q

√

x
x−ζ

(

4ζ2

δ2
− 2ζ

δ
+ 3

2
− 5δ

4ζ

)

0
∑

h
1

Q

√

x
x−ζ

(

4− 2δ
ζ

)

0

h L 1

q2
HFull for h′ = −1 L 1

q2
HRed for h′ = −1

+1 1

Q

√

x−ζ

x

(

− 4ζ2

δ2
− 2ζ

δ
+ 1

2
− δ

4ζ

)

0

0 1

Q

√

x−ζ

x

(

8ζ2

δ2
+ 4ζ

δ
− 1 + δ

2ζ

)

2

Q

√

x
x−ζ

(

2ζ

δ
+ 1− δ

4ζ

)

−1 1

Q

√

x−ζ

x

(

− 4ζ2

δ2
− 2ζ

δ
+ 1

2
− δ

4ζ

)

2

Q

√

x
x−ζ

(

− 2ζ

δ
+ 1− 3δ

4ζ

)

∑

h 0 1

Q

√

x
x−ζ

(

4− 2δ
ζ

)

We see in Table IV that summing the complete am-
plitudes over h gives the same result for the full and
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the reduced amplitudes, but for the interchange of the

polarization of the final photon. As this polarization is
an observable, we observe that the reduced amplitude
gives the wrong amplitude. Clearly the tree-level hard
amplitude plays the role of a spin filter. Using the re-
duced amplitudes means using a spin filter that provides
an erroneous connection between the data and the GPD.
Using it only for the spin-averaged data would not do,
as in DVCS the GPD amplitude is added to the Bethe-
Heitler amplitude with its own spin structure, so using
the reduced amplitudes would mean to obtain the wrong
interference terms in the expression for the cross section.
Unless the full amplitude is used, the spin filter is artifi-
cial as the complete amplitude depends on the choice of
the reference frame.
Since GPDs are carried on top of our bare bone spin

filter, the reference frame where the experimental data
are taken to extract GPDs should be transformed into
the frame where the spin filter provides the correct re-
sult. Likewise, theoretical predictions based on the dom-
inance of the handbag diagrams should be analyzed in
the special system of coordinates without involving large
transverse momenta as given by Eq. (5). We realize
that our concern discussed in this work doesn’t apply
to the bulk of the GPD discussion[17–19] which refers
to the kinematics where the transverse momentum of
the virtual photon is not of order Q but small or zero
(e.g. to the center-of-mass of virtual photon and tar-
get hadron, or to the kinematics given by Eq. (5)). We
stress, however, that for a correct analysis of the experi-
mental data and/or theoretical predictions based on the
handbag dominance, one must transform the experimen-
tally measured and/or theoretically predicted quantities
to the corresponding ones in the reference frame where
the transverse momenta of the photons are small com-
pared to Q. Once the handbag diagrams are reduced to
a triangle diagram, the relevant kinematic variable be-
comes ∆ = q − q′ instead of the two independent vari-
ables q and q′ and the GPD parametrization made in

the level of triangle diagram would not be affected by
our findings. On the other hand, the handbag diagram
calculations formulated in q+ = 0 frame [12] should be re-
analyzed in q⊥ = 0 frame to extract GPDs and likewise
any future DVCS computations based on the box dia-
grams to extract GPDs in QCD or in any effective model
field theories should be analyzed ultimately in the frame
where there is no hard transverse photon momenta.
Based on these straightforward tree-level calculations

of DVCS amplitudes, we conclude:
(i) The formulation of GPDs corresponding to the ten-

sorial amplitude given by Eq. (14) is not general enough
to cover the kinematics with large transverse momenta
such as given by Eqs. (4) and (6) but requires the trans-
formation of experimental data and/or theoretical pre-
dictions to the corresponding quantities in the special
system of coordinates without involving large transverse
momenta as given by Eq. (5).
(ii) In kinematics where the transverse components of

the momenta are of order Q the full hadronic amplitudes
and the reduced ones do not agree, even in the limit
Q → ∞, which means that the calculations of the DVCS
amplitudes using the GPD cannot be trusted in this kine-
matics. It is crucial to realize that the contribution of
the longitudinally polarized virtual photon is not down
by one order in Q but even plays the role of cancelling
the singular parts.
(iii) The singularities we have found are in no way con-

nected to the strong-interaction part, but entirely due to
the minus components of the photon-polarization vec-
tors, meaning that a calculation beyond tree level will
encounter the same singularities.
We have found [20] the same singularities to occur

in real Compton scattering using the same kinematics.
There they turn out to be of equal magnitude but op-
posite sign in the s- and u-channel amplitudes and thus
cancel out, as expected.
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