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Abstract

We present f(ϕ)(Fµν)
2 -type non-canonical and non-polynomial interactions for

an N = 1 vector multiplet in three dimensions. We couple a Yang-Mills multiplet

(Aµ
I , λI) to a scalar multiplet (ϕ, χ), where ϕ appears in the arbitrary scalar

function f(ϕ) in the coupling αf(ϕ)(Fµν
I)2. Supersymmetric Chern-Simons terms

for the vector multiplet and a potential term for the scalar multiplet can be also added.

We first give the component lagrangian, and we give its superspace re-formulation.

We also give exact solutions for the vector and scalar fields in the Abelian case with

a finite total energy.
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1. Introduction

There seem to be limited types of higher-order consistent couplings of global Yang-Mills

(YM) multiplets. The most well-known example is the Dirac-Born-Infeld (DBI) interaction

[1]. General supersymmetric higher-order interactions in four dimensions (4D) in terms of

Abelian field strengths were considered, and its causal structures were studied [2]. The

investigation of deformations from BPS solutions to vector fields with slowly-varying field

strengths, showed that the DBI action is a unique deformation at least in the Abelian case

[3].

On the other hand, it is well known in 4D that the vector multiplet can have non-canonical

and non-polynomial couplings such as fαβ(z)Fµν
αF µνβ for a general YM multiplet. Here

fαβ(z) with two symmetric adjoint indices is an arbitrary non-polynomial function of the

complex scalar field z in the chiral multiplet (z, z∗, χ
L
, χ

R
) [4]. In other words, in 4D

a vector multiplet allows the presence of an arbitrary non-polynomial function of scalars

in front of its kinetic terms. These couplings arise in the context of local supersymmetry

or supergravity. Similar non-polynomial interaction terms have been found also with local

supersymmetry, for example, in 5D [5][6] or in 9D [7][8].

These non-polynomial couplings in D ≥ 5 exist with local supersymmetry, and in the

4D case, they also exist even with global symmetry [4]. However, it is a non-trivial question,

if such non-polynomial couplings exist in 3D with global supersymmetry, and what features

such couplings possess.

In this brief report, we seek such non-polynomial couplings in 3D, with N = 1 global

supersymmetry. We also add supersymmetric Chern-Simons terms for a vector multiplet,

as well as a potential for a scalar multiplet. As an important application, we present exact

solutions when the function h(ϕ) in front of the vector kinetic term h(ϕ)(Fµν
I)2 is an

exponential function. It turns out that the total energy is finite, in contrast to the usual

static electric field in 3D giving a divergent total energy.

We first give our result in components, and next re-formulate it in terms of superfields

[9][10]. The former formulation projects more practically transparent results with compo-

nent fields. On the other hand, superspace formulation has its own advantage of compact

expressions of all terms. The combination of these two formulations provides a solid ground

of the validity of our total system.
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Note that couplings such as ϕ(Fµν
I)2 are not renormalizable, because the scalar field

ϕ has the physical dimension m1/2 in 3D. However, we do not exclude these couplings in

this brief report, for the same reason non-renormalizable DBI actions [1] are not excluded.

2. The Lagrangian

The multiplets we deal with are the YM multiplet (Aµ
I , λI) and the scalar multiplet

(ϕ, χ) with global N = 1 supersymmetry. The indices I, J, ··· = 1, 2, ···, dimG are for the

adjoint representation of an arbitrary Lie group G with positive definite metric. Therefore,

the YM multiplet has 2 + 2 degrees of freedom (DOF) up to dimG, while the scalar

multiplet has 1 + 1 DOF. The spinors λ and χ are both Majorana spinors.

We start with our action I ≡ ∫
d3xL with the lagrangian3)

L = − 1
4
(Fµν

I)2 + 1
2
(λID/λI) + 1

2
(χ∂/χ)− 1

2
(∂µϕ)

2

+ 1
4
mǫµνρ

(
Fµν

IAρ
I − 1

3
gf IJKAµ

IAν
JAρ

K
)
+ 1

2
m(λIλI)

+ αf(ϕ)(Fµν
I)2 − 2αf(ϕ)(λID/λI)

+ αf ′(ϕ)(χγµνλI)Fµν
I − 1

2
αf ′′(ϕ)(χχ)(λIλI)− 1

2
α2[f ′(ϕ)]2(λIλI)2

− 1
2
[W ′(ϕ) ]2 + 1

2
W ′′(ϕ)(χχ) + αW ′(ϕ)f ′(ϕ)(λIλI) , (2.1)

where f(ϕ) is an arbitrary continuous and differentiable scalar function of ϕ. The primes

on f(ϕ) are for the differentiations by ϕ, e.g., f ′(ϕ) ≡ d f(ϕ)/d ϕ. Similarly, W (ϕ) is

an arbitrary differentiable function of ϕ, corresponding to the superpotential W (Φ) in

superspace. Again, primes on the W ’s imply derivatives by ϕ. The α is a non-zero real

constant that parametrizes the new couplings starting with αf(ϕ)(Fµν
I)2, while the m is

another constant for the supersymmetric Chern-Simons terms. The field strength and the

covariant derivative are defined as usual by

Fµν
I ≡ +∂µAν

I − ∂νAµ
I + gf IJKAµ

JAν
K , Dµλ

I ≡ +∂µλ
I + gf IJKAµ

JλK , (2.2)

where g is a gauge coupling constant.

3) We are using the metric (ηµν ) = diag. (−,+,+), where the indices µ, ν, ··· = 0, 1, 2 are for the

D = 2 + 1 dimensions.
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Our action I is invariant under N = 1 supersymmetry

δQAµ
I = + (ǫγµλ

I) , (2.3a)

δQλ
I = + 1

2
(γµνǫ)Fµν

I , (2.3b)

δQϕ = + (ǫχ) , (2.3c)

δQχ = − (γµǫ)∂µϕ− αf ′(ϕ) ǫ (λIλI) +W ′(ϕ)ǫ . (2.3d)

Our lagrangian (2.1) is rewritten in terms of a new function h(ϕ) ≡ αf(ϕ)− 1/4 as

L = + h(ϕ)
[
(Fµν

I)2 − 2(λID/λI)
]
+ 1

2
(χ∂/χ)− 1

2
(∂µϕ)

2

+ 1
4
mǫµνρ

(
Fµν

IAρ
I − 1

3
gf IJKAµ

IAν
JAρ

K
)
+ 1

2
m(λIλI)

+ h′(ϕ)(χγµνλI)Fµν
I − 1

2
h′′(ϕ)(χχ)(λIλI)− 1

2
[h′(ϕ)]2(λIλI)2

− 1
2
[W ′(ϕ) ]2 + 1

2
W ′′(ϕ)(χχ) + αW ′(ϕ)h′(ϕ)(λIλI) . (2.4)

The expression (2.4) is more compact than (2.1), absorbing the kinetic terms into the general

function h(ϕ).

We can choose any continuous differentiable function for h(ϕ). For example, if we choose

the dilaton-like coupling h(ϕ) ≡ −(1/4) eaϕ, then the lowest order term for the YM kinetic

terms becomes canonical, and there is a peculiar global symmetry:

ϕ → ϕ+ 2c , Aµ
I → e−acAµ

I , λI → e−acλI , g → e+acg , (2.5)

for an arbitrary constant-shift parameter c.

The invariance δQI = 0 for (2.1) is confirmed by straightforward computation, contain-

ing non-Abelian contributions. Due to the scalar function h(ϕ) multiplied in front of the

YM and λ -kinetic terms, the partial integrations after the δQ -variations of these terms

generate terms like αh′(ϕ)(ǫγ···λI)F··
I∂·ϕ. However, these terms are cancelled by the like

terms arising in the variation of h′(ϕ)(χγµνλI)Fµν
I .

3. Superspace Formulation

We have so far relied only on component formulation. We now reconfirm the superin-

variance δQI = 0 in superspace in a more transparent manner.
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Our total action in superspace with the coordinates (ZM) ≡ (xµ, θα) (µ, ν, ··· = 0, 1, 2; α, β,

··· = 1, 2),4) is given in terms of the conventional superfield Γα
I(Z) and Φ(Z) respectively

for the vector multiplet (Aµ
I , λα

I) and the scalar multiplet (ϕ, χα, g) [9]. We basically

follow the notation in [9], such as L̃(x) = ∇2L̃(z)
∣∣∣5), where

L̃(z) ≡ + 1
4
W αIWα

I + 1
2
ΦD2Φ− αf(Φ)W αIWα

I +W (Φ)

+ 1
4
m

[
ΓαIWα

I + 1
6
{Γα,Γβ}IDαΓβ

I + 1
12
{Γα,Γβ}I{Γα,Γβ}I

]
. (3.1)

Even though the basic notation is similar to [9], since we are using the 3D metric (−,+,+),

we have slight difference reflected in the gamma matrices, such as

{Dα, Dβ} = +∂αβ ≡ +(γµ)αβ ∂µ , (D2)2 = −1
2
∂αβ∂αβ = +∂2

µ . (3.2)

Using the universal rules [9], such as

L̃(x) = ∇2L̃(z)
∣∣∣ , ∇(αWβ)

I = +Fαβ
I ≡ +1

2
(γµν)αβFµν , ∇2Wα

I = ∇α
βWβ

I , (3.3)

we get the 3D lagrangian L̃(x) = ∇2L̃(z)
∣∣∣ now with the auxiliary field g:

L̃(x) = − 1
4
(Fµν

I)2 + 1
2
(λID/λI) + 1

2
(χ∂/χ)− 1

2
(∂µϕ)

2

+ 1
4
mǫµνρ

(
Fµν

IAρ
I − 1

3
gf IJKAµ

IAν
JAρ

K
)
+ 1

2
m(λIλI)

+ αf(ϕ)(Fµν
I)2 − 2αf(ϕ)(λID/λI)

+ αf ′(ϕ)(χγµνλI)Fµν
I − 1

2
αf ′′(ϕ)(χχ)(λIλI)− 1

2
α2[f ′(ϕ)]2(λIλI)2

− 1
2
[W ′(ϕ) ]2 + 1

2
W ′′(ϕ)(χχ) + αW ′(ϕ)f ′(ϕ)(λIλI)

+ 1
2

[
g − αf ′(ϕ)(λIλI) +W ′(ϕ)

]2
, (3.4)

where the last complete-square term is for the elimination of the auxiliary field g. After its

elimination, (3.4) coincides with (2.1).

The important point here is that the invariance of the action for (3.4) is valid without

any higher-order terms in α. Our component lagrangian (2.1) was originally obtained by

ignoring the O(α3) terms. However, it turned out to be valid to all orders in α, when

re-formulated in superspace.

4) We use the indices µ, ν, ··· for bosonic coordinate indices, in order to comply with the component

notation.
5) We use L̃ (x) for the superspace-based 3D lagrangian, to be distinguished from (2.1).
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4. Exact Solutions with Finite Energy

As another interesting application, we give exact solutions for the purely bosonic part

of our N = 1 system. These solutions contain certain non-polynomial functions of a

scalar, so that they are similar to dilaton black hole solutions in lower dimensions [11]. The

difference of our system is that we have only global N = 1 supersymmetry without gravity.

In 4D, exact solutions for similar systems have been studied for the dilaton couplings and

confinements [12]. We use the methodology in [12] for solving our 3D field equations.

For our purpose, we consider only the Abelian case, and omit the Chern-Simons terms

and scalar potential terms. The relevant lagrangian terms are

LA,ϕ = + h(ϕ)(Fµν)
2 − 1

2
(∂µϕ)

2 , (4.1)

yielding the Aµ and ϕ -field equations

∂ν [h(ϕ)F
µν ]

.

= 0 , (4.2a)

∂2
µϕ+ h′(ϕ)(Fµν)

2 .

= 0 . (4.2b)

We next restrict the function h(ϕ) to be

h(ϕ) = −1
4
eaϕ , (4.3)

where a is a real constant. Following the method in [12], we set up the ansätze

F0i = Ei(~r) = E(r)
xi

r
, Fij = 0 , ϕ = ϕ(r) , (4.4)

where the indices i, j, ··· = 1, 2 are only for spatial 2D in the 3D coordinate (x1, x2, x0) =

(x, y, t), while (r, φ) are the polar coordinates for (x, y). The field equations in (4.2) under

these ansätze are

~∇ ·
[
eaϕ ~E(~r)

]
.

= 0 , (4.5a)

d2ϕ

dr2
+

1

r

dϕ

dr
+

1

2
a eaϕ

[
~E(~r)

]2
.

= 0 . (4.5b)

Here all the vectorial symbols are for 2D spatial directions. Since the vector ~E(r) is only

the function of the radial coordinate r, one solution to (4.5a) is simply

~E(~r) =
k

r
e−aϕ r̂ , (4.6)
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where k is a real constant, and r̂ is the unit vector in the r -direction. We now change

the variable from r to ξ ≡ ln r, so that (4.5b) is now

d2ϕ

dξ2
.

= − ak2

2
e−aϕ . (4.7)

Multiplying both sides by dϕ/dξ, we get the first integration:

dϕ

dξ
= ±|k|

√
e−aϕ + C , (4.8)

where C is a real constant.

We expect that dϕ/dξ → 0 as ϕ → ∞, so that C = 0 in (4.8) is appropriate. In this

case, (4.8) is further integrated to be

ϕ =
2

a
ln

[
1± a|k|

2
ln

(
r

r0

) ]
. (4.9)

When a → 0, the standard logarithmic solution of the type ϕ ≈ ln(r/r0) is recovered from

(4.9).

The radius r0 can be regarded as a ‘regulator’ for the r = 0 singularity, such that the

range of r is chosen to be r0 ≤ r < ∞. After all the computation has been done, we take

r0 → 0. As will be seen in (4.13) below, this is also consistent with the value of a > 0 (or

a < 0) for upper (or lower) sign in (4.9).

The regulator feature in (4.9) both at r → 0, and at r → ∞, as is clear from the solution

for ~E(r) via (4.6):

~E(r) =
k

r
[
1± a|k|

2
ln

(
r

r0

)]2 r̂ , (4.10)

because the usual 1/r -type damping at r → ∞ becomes faster like 1/[r(ln r)2] by the

extra factor [1± (a|k|/2) ln(r/r0)]2 ≈ (ln r)2 in the denominator.

The non-singular feature of (4.9) can be also seen in the total energy. The dynamical

energy-momentum tensor is computed via the gravitational couplings as

Tµ
ν = −δµ

νh(ϕ)(Fρσ)
2 + 4h(ϕ)FµρF

νρ + 1
2
δµ

ν(∂ρϕ)
2 − ηνρ(∂µϕ)(∂ρϕ) . (4.11)

The 00 -component of (4.11) gives the energy density

ρ(r) = T0
0 =

k2

r2
[
1± a|k|

2
ln

(
r

r0

)]2 , (4.12)
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so that the total energy E is

E =
∫

d2~x ρ(r) = lim
r0→0

∫ ∞

r0
dr 2πrρ(r) = +2πk2 lim

r0→0

∫ ∞

r0

dr

r
[
1± a|k|

2
ln

(
r
r0

)]2

= ∓ 4π|k|
a

lim
r0→0


 1

1± a|k|

2
ln

(
r
r0

)



∞

r0

= ±4π
|k|
a

. (4.13)

For the reason already mentioned, we have performed the spatial integration from r0 to

∞, avoiding the singularity at r = 0. Note that there is no singularity at r0 → 0.

For the total energy E to be positive, as physically meaningful solutions, we have to

choose the upper (or lower) sign in (4.13), when a is positive (or negative).

Note that in the conventional case of a = 0 with the usual E(r) = k/r ≈ 1/r, the total

energy corresponding to (4.13) is divergent at r → ∞. In this sense, the h(ϕ) -interaction

provides a ‘regulators’ for the singularities both at r → ∞ and r → 0.

5. Concluding Remarks

In this brief report, we have established non-polynomial interactions of the type

f(ϕ)(Fµν
I)2 for an N = 1 vector multiplet in 3D, where ϕ is the scalar in the scalar

multiplet (ϕ, χ). We have no problem with the non-Abelian generalization, such as su-

persymmetric Chern-Simons terms, and a potential term for the scalar multiplet. We have

performed the invariance confirmation δQI = 0 both in component field and superspace

formulations.

As an important application, we have a set of exact solutions for the Abelian case, when

h(ϕ) is an exponential function, while the Chern-Simons terms and scalar multiplet potential

terms are absent. They seem to be physically meaningful solutions with a finite total energy.

In particular, we see that the h(ϕ) -function plays a role of regulator both for r → 0 and

r → ∞.

In principle, we can consider the generalization of our couplings to extended supersymme-

tries [13]. However, non-Abelian cases will be much more non-trivial. The main obstruction

against higher N is that scalar fields are generally non-singlets. Therefore, it seems very

difficult for them to appear in a scalar function such as f(ϕ) in non-Abelian cases.
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Needless to say, the non-polynomial function f(ϕ) or h(ϕ) implies the existence of

infinitely many coupling constants in the system. The special example of exact solutions

presented above form only a small set of more non-trivial features of supersymmetric vector

and scalar systems in 3D yet to be explored.

This work is supported in part by Department of Energy grant # DE-FG02-10ER41693.
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