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We combine the unitarity method with the six-dimensional helicity formalism of Cheung and
O’Connell to construct loop-level scattering amplitudes. As a first example, we construct dimen-
sionally regularized QCD one-loop four-point amplitudes. As a nontrivial multiloop example, we
confirm that the recently constructed four-loop four-point amplitude of N = 4 super-Yang-Mills
theory, including nonplanar contributions, is valid for dimensions D ≤ 6. We comment on the con-
nection of our approach to the recently discussed Higgs infrared regulator and on dual conformal
properties in six dimensions.
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I. INTRODUCTION

Recent years have seen a renaissance in the study of scattering amplitudes. This has been driven in part by the
need for reliable next-to-leading-order QCD calculations for experiments at the Large Hadron Collider. It has also
been driven by the realization of profound hidden structures in scattering amplitudes whose full import remains to
be unraveled. A key idea for many of the advances has been that new amplitudes should be constructed using only
simpler on-shell amplitudes [1, 2], avoiding unphysical gauge-dependent quantities in intermediate steps. The on-shell
viewpoint has revealed a number of remarkable structures in gauge theories, including a description of amplitudes
in terms of curves in twistor space [3], and a duality between color and kinematics [4]. Maximally supersymmetric
planar amplitudes have an even richer structure, for example all-order resummations of planar amplitudes valid at
both weak and strong coupling [5, 6], new symmetries [7–9] and a Grassmannian structure [10]. On the practical side,
on-shell methods have allowed ever more complex calculations in next-to-leading-order QCD [11], supersymmetric
gauge theories [12–15] and supergravity theories to be carried out [16–19].

The unitarity method [1, 12, 20–31] gives a means for constructing complete loop amplitudes directly from on-shell
tree amplitudes. These methods are efficient and display a relatively tame growth in complexity with increasing
number of external particles or loops, especially when compared to traditional Feynman-diagrammatic approaches.
With this approach, it is usually advantageous to simplify the input tree amplitudes as much as possible prior to
applying them in loop calculations. A key tool for simplifying massless tree amplitudes strictly in four dimensions
has been spinor helicity [32, 33]. However, if we use dimensional regularization or any form of massive regularization,
massless four-dimensional spinor helicity techniques are no longer directly applicable within the loops.

In this paper we will describe a unitarity-based approach using the six-dimensional spinor-helicity formalism of
Cheung and O’Connell [34] to avoid these limitations. As in four dimensions, the six-dimensional spinor-helicity
formalism offers a relatively compact representation of amplitudes, making manifest little-group properties. Here we
are concerned with two basic applications: one-loop QCD amplitudes and multiloop scattering amplitudes in N = 4
super-Yang-Mills (sYM) theory. Although related, there are differences in the technical demands of the two cases.
In particular, the QCD amplitudes have both ultraviolet and infrared divergences, while the N = 4 amplitudes have
only the latter. All these divergences need to be regularized. On the other hand, the supersymmetric theory needs
an efficient formalism to organize its spectrum of states, especially at high-loop orders, in much the same way as
done in four dimensions using an on-shell superspace [35–38]. As we discuss, both aspects can be addressed using
six-dimensional spinor helicity.

In the past, the main bottleneck for carrying out next-to-leading-order QCD calculations. has been the difficulty
of evaluating one-loop amplitudes [39]. The unitarity method offers a universal solution to this difficulty that scales
well with the number of external legs. Any contributions which can be captured by four-dimensional techniques —
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the so called “cut-constructible pieces” — may be computed efficiently using four-dimensional helicity states in the
cuts [1, 23, 27, 40]. The remaining rational contributions tend to be the most complex (and time consuming) parts
of calculations, though there are a number of techniques for dealing with such pieces. In the bootstrap approach, the
rational pieces are constructed by on-shell recursion in four dimensions [40, 41]. Another approach uses D-dimensional
generalized unitarity [21, 22, 25, 28, 30, 42]. A six-dimensional unitarity procedure for any one-loop QCD amplitude
has been given in ref. [30] using the on-shell procedure of reducing integrals in ref. [26]. A related approach makes
use of the relation between massive states in four dimensions and those in extra dimensions to reduce the integrals
obtained from unitarity cuts [21, 31]. The six-dimensional helicity approach described here is well suited for either of
the latter two approaches for carrying out integral reductions. A convenient means for doing so is by reexpressing the
spinors of our six-dimensional approach as four-dimensional spinors and what are effectively mass parameters. This
gives expressions similar to those used in Badger’s four-dimensional massive approach [31]. We illustrate this using
some simple one-loop four-gluon contributions to QCD amplitudes [21].

We will also consider multiloop N = 4 sYM amplitudes. To set this up, we make use of the six-dimensional on-shell
superspace constructed by two of the authors and Siegel (DHS) [43]. General constructions of on-shell superspaces have
been discussed in ref. [44]. In strictly four dimensions we have a well-developed on-shell superspace [35–38] for tracking
contributions from different states in the multiplet. However,as already noted above this leaves open the question of
whether contributions are missed by using four-dimensional momenta in the unitarity cuts or in the recent BCFW
constructions of planar loop integrands [15, 45]. This is especially important when constructing amplitudes for use in
D > 4 studies, but even in dimensionally regularized four-dimensional expressions, when divergences are present, there
can be nonvanishing contributions from terms that vanish naively in four dimensions. This becomes more important
as the loop order or the number of external legs grows, allowing for a greater number of potentially problematic terms.
Besides terms with explicit dependence on extra-dimensional momenta, such terms can be formed from antisymmetric
combinations momenta which vanish in four dimensions. For example, we know that dimensionally regularized two-
loop six-point amplitudes in N = 4 sYM theory have such terms [14]. In theories with fewer supersymmetries, such
terms occur with more frequency, and, for example, appear in one-loop QCD amplitudes [21].

To illustrate the supersymmetric formalism, we first describe the three-particle cut of the planar two-loop four-point
N = 4 amplitude [46], before turning to the rather nontrivial case of four-loop four-point amplitudes in this theory,
including the nonplanar terms. The latter amplitude has recently been computed [47], using mainly four-dimensional
techniques. Direct calculations of four-point gluon amplitudes in N = 1 sYM in D = 10 dimensions, which upon
dimensional reduction gives N = 4 sYM theory, confirm that all terms are captured by calculating directly in four
dimensions, through three loops.1 At four loops, similar D = 10 checks have been performed in the planar case, up to
a mild assumption that no term has a worse power count than the amplitude [8]. However, in the case of nonplanar
contributions, there is no complete check that the expressions built using four-dimensional momenta in the cuts are
complete, although a number of strong consistency checks have been performed [47]. In this paper we confirm that
the expressions for the amplitudes of ref. [47] are valid for D ≤ 6, as expected.

The higher-dimensional viewpoint offers a simple way to introduce a gauge-invariant massive regulator. If we do
not integrate the loop momenta over the extra-dimensional momenta, but integrate over only a four-dimensional
subspace, we obtain a massive infrared regulator, where the masses are effectively the extra-dimensional momenta.
This allows us to connect to the massive Higgs regulator recently developed by Alday, Henn, Plefka and Schuster [48],
which offers a number of advantages over dimensional regularization for planar N = 4 sYM amplitudes. Although it
seems likely that terms proportional to the mass are suppressed as m → 0 [15], such mass terms are important for
studies of the Coulomb branch of N = 4 sYM theory. In many cases it is straightforward to convert the previously
determined dimensionally regularized massless integrands to massive forms [48]. Nevertheless, one would like a means
for obtaining or confirming such integrands directly via unitarity to ensure their reliability or for deriving regulators
valid for the nonplanar case. The six-dimensional on-shell superspace approach gives us a convenient means for doing
this.

At four points, the integrands of N = 4 sYM integrands do not depend explicitly on the space-time dimension, but
only implicitly through Lorentz dot products, as already noted in refs. [8, 16–18, 46, 47, 49] and explicitly confirmed
here at four loops. This suggests that the dual conformal properties, which impose strong constraints on the form of
the integrands in four dimensions, will impose similar constraints in higher dimensions. In addition, dual conformal
invariance can be extended to the massive Higgs-regulated case [48]. These facts suggest that the dual conformal
properties of planar N = 4 sYM amplitudes should have extensions away from four dimensions. Motivated by this, we

1 This property is special to maximal supersymmetry, and we have no expectation that it should hold for other theories.
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write down generators for dual conformal transformations in six dimensions and propose transformation properties,
which are straightforward to check at four points using the known expressions.

Finally, we also note that with the six-dimensional helicity formalism contributions to amplitudes factorize into
products of chiral-conjugate pairs. Since it holds in all cuts which decompose loop amplitudes into sums of products
of tree amplitudes, it seems reasonable that it holds at loop level as well. Although this structure is somewhat
reminiscent of the recently discovered double-copy structure of gravity-diagram numerators [4, 50], as we shall see,
there are a number of significant differences. Nevertheless, it can help simplify calculations.

This paper is organized as follows: In section II we review the six-dimensional helicity formalism, showing the
connection to four-dimensional helicity, briefly review the unitarity method in the context of this formalism, and
discuss modifications needed for obtaining massive regulators. Then in section III we review BCFW recursion in six
dimensions, before describing the chiral-conjugate property. In section IV we turn to our first examples, which are one-
loop four-point amplitudes of QCD. In section V we review an on-shell superspace compatible with six-dimensional
helicity. We give special care to the three-point amplitude since new variables are needed. We also develop the
necessary building blocks for high-loop unitarity cuts using on-shell recursion. Then in section VI we turn to high-
loop applications, using the two-loop four-point amplitude as an example to illustrate the methods before turning to
higher loops. In section VII we then discuss an extension of dual conformal properties to six dimensions. We give our
comments and prospects for future developments in section VIII. We include two appendices, one showing the analytic
results of a nontrivial cut of the four-loop four-point amplitude and the other collecting auxiliary variables [34] needed
for defining three-point tree amplitudes.

II. SIX-DIMENSIONAL HELICITY

We begin by summarizing Cheung and O’Connell’s six-dimensional spinor-helicity formalism [34]. To make the
connection to four-dimensional spinor techniques more transparent, we choose to write the six-dimensional spinors in
terms of the more conventional four-dimensional ones [43, 44]. This form is particularly well suited for carrying out
loop calculations in dimensional regularization, as needed for QCD computations. It also allows us to interpret the
extra-dimensional contributions in terms of masses.

A. Spinor helicity

Before we review the six-dimensional helicity formalism, we state our conventions of spinors in four dimensions. We
follow ref. [33] and work in a Weyl basis for the spinors such that pαα̇ = λpαλ̃pα̇. We use the bra-ket notation for the
chiral spinors and their contractions,

〈i j〉 = ǫαβλi βλj α , [i j] = ǫα̇β̇ λ̃
β̇
i λ̃

α̇
j , and 〈i j〉 [j i] = 2 pi ·pj = sij , (2.1)

with ǫ12 = −1, ǫ12 = 1. For further details we refer to the above-mentioned review.2

In six dimensions, a vector can be expressed using the spinor representation of SO(5,1),

pAB = pµσ
µ
AB , pAB = pµσ̃

µAB , (2.2)

where {A, B · · · } are fundamental representation indices of the covering group, SU∗(4). Here the σµ
AB and σ̃µAB are

antisymmetric 4×4 matrices which play a role analogous to the Pauli matrices in four dimensions. Further details
and explicit forms of the matrices may be found in Appendix A of ref. [34]. The Dirac equation for Weyl spinors in
six dimensions can be written as,

pµσ
µ
ABλ

Ba
p = 0 , pµσ̃

µAB λ̃pBȧ = 0 , (2.3)

and gives rise to two independent solutions for each of the Weyl spinors, λBa and λ̃Bȧ. Each solution is labeled by
indices a or ȧ, which are spinor indices of the little group SO(4), corresponding to SU(2)×SU(2). We may lower and

raise the little group SU(2) indices a, ȧ with the matrices ǫab and ǫȧḃ,

λa = ǫabλ
b , λ̃ȧ = ǫȧḃλ̃ḃ , (2.4)

2 Ref. [34] differ by a sign in the definitions of four-dimensional spinor angle brackets so that instead 〈i j〉 [j i] = −sij .
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and ǫ12 = −1, ǫ12 = 1, for this case as well. Spinor inner products are defined by contractions of the SU∗(4) indices,

〈ia|jḃ] = λAa
i λ̃jAḃ = [jḃ|ia〉 . (2.5)

Other common quantities are spinors contracted with the SU∗(4)-invariant Levi-Civita tensor,

〈iajbkcld〉 ≡ ǫABCDλ
Aa
i λBb

j λCc
k λDd

l ,

[iȧjḃkċlḋ] ≡ ǫABCDλ̃iAȧλ̃jBḃλ̃kCċλ̃lDḋ . (2.6)

The on-shell massless condition can be solved using bosonic six-dimensional chiral spinors in a way similar to the well-
known four-dimensional case. The antisymmetry of pAB together with the on-shell condition p2 ∼ ǫABCDpABpCD = 0
gives the bispinor representation,

pAB = λAa ǫabλ
Bb , pAB = λ̃Aȧ ǫ

ȧḃλ̃Bḃ , λAaλ̃Aȧ = 0 . (2.7)

One can also express the vector momenta directly in terms of the spinors via,

pµ = −1

4
〈pa|σµ|pb〉ǫab = −1

4
[pȧ|σ̃µ|pḃ]ǫ

ȧḃ . (2.8)

Other useful quantities appearing in amplitudes are spinor strings,

〈ia|/p1/p2 · · · /p2n+1
|jb〉 = (λi)

A1a (p1)A1A2
(p2)

A2A3 · · · (p2n+1)A2n+1A2n+2
(λj)

A2n+2b ,

〈ia|/p1/p2
· · · /p2n

|jḃ] = (λi)
A1a (p1)A1A2

(p2)
A2A3 · · · (p2n)A2nA2n+1 (λ̃j)A2n+1ḃ . (2.9)

In six dimensions we have four polarization states. Following Cheung and O’Connell, the polarization vectors can
be written as [34],

ǫµ
aȧ

(p, k) =
1√
2
〈pa|σµ|kb〉(〈kb|pȧ])−1 = (〈pa|kḃ])

−1 1√
2
[kḃ|σ̃µ|pȧ] , (2.10)

where the a and ȧ indices are labels for the four polarization states. As for the four-dimensional case, we have a null

reference momentum k to define the states. For each of the Weyl spinors [iȧ| and 〈ja| the indices a and ȧ label two

helicity states respectively. The object (〈pa|kḃ])
−1 = −(〈pa|kḃ])/2p · k is the inverse matrix of the spinor product

〈pa|kḃ] with respect to the helicity indices. As for the four-dimensional case, the polarization vectors are transverse,
and a redefinition of the reference spinor can be shown to correspond to a gauge transformation.

Given the proliferation of indices, we now summarize the indices that appear. For four-dimensional objects the
indices are,

SL(2,C) fundamental labels: α, β, γ, . . . = 1, 2 , and α̇, β̇, γ̇, . . . = 1, 2 ,

SO(3,1) vector labels: µ, ν, ρ, . . . = 0, 1, 2, 3 , (2.11)

For six-dimensional objects the indices are,

SU∗(4) fundamental labels: A,B,C, . . . = 1, 2, 3, 4

SO(5,1) vector labels: µ, ν, ρ, . . . = 0, 1, 2, . . .5

SU(2)×SU(2) helicity labels: a, b, c, . . . = 1, 2 and ȧ, ḃ, ċ, . . . = 1, 2 . (2.12)

The six-dimensional spinors will be identifiable because they carry SU(2)×SU(2) little-group helicity indices.

B. Decomposing six-dimensional spinors into four-dimensional ones

For many purposes, it is convenient to express the six-dimensional spinors in terms of the better-known four-
dimensional ones [43, 44]. This allows us to define a physical four-dimensional subspace, and identify states polarized
within and transverse to it.
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Viewed from four dimensions, the six-dimensional massless condition is that of a massive four-dimensional vector,

p2 = (4)p2 − p2
4 − p2

5 ≡ (4)p2 −mm̃ = 0 , (2.13)

where (4)p denotes a momentum vector keeping only the first four components. The masses are related to the fifth
and sixth components of the momentum,

m ≡ p5 − ip4 , m̃ ≡ p5 + ip4 , (2.14)

where we have chosen the masses to be complex, since these will be the natural combinations appearing in six-
dimensional spinors when decomposed into four-dimensional ones. In general, massive momenta can be expressed in
terms of two pairs of four-dimensional spinors, here denoted by λ, λ̃ and µ, µ̃, via,

(4)pαα̇ = λαλ̃α̇ + ρ µαµ̃α̇ , (2.15)

where,

ρ = κκ̃ = κ′κ̃′ , κ ≡ m

〈λµ〉 , κ̃ =
m̃

[µλ]
, κ′ ≡ m̃

〈λµ〉 , κ̃′ =
m

[µλ]
. (2.16)

Treating the six-dimensional spinors λA
a and λ̃Aȧ as 4× 2 matrices, the six-dimensional massless spinors can then be

expressed in terms of the above massless four-dimensional spinors via,

λA
a =

( −κµα λα

λ̃α̇ κ̃µ̃α̇

)

, λ̃Aȧ =

(

κ′µα λα

−λ̃α̇ κ̃′µ̃α̇

)

. (2.17)

The two columns in λA
a and λ̃Aȧ correspond to the little-group index a and ȧ taking value 1 or 2 respectively. This

particular embedding of the four-dimensional spinors is constrained by the explicit form of the σµ
AB matrices used

here. Using this, we can express the six-dimensional momenta in terms of the antisymmetric matrices,

pAB =

(

−mǫαβ λαλ̃
β̇ + ρ µαµ̃

β̇

−λ̃α̇λβ − ρ µ̃α̇µβ m̃ ǫα̇β̇

)

,

pAB =

(

m̃ ǫαβ λαλ̃β̇ + ρ µαµ̃β̇

−λ̃α̇λ
β − ρ µ̃α̇µ

β −mǫα̇β̇

)

, (2.18)

where AB are the antisymmetric SU∗(4) indices.
If we choose momenta which lie in the four-dimensional subspace p4,5 = 0, the spinors simplify to,

λA
a =

(

0 λα

λ̃α̇ 0

)

, λ̃Aȧ =

(

0 λα

−λ̃α̇ 0

)

, (2.19)

so that the six-dimensional spinors reduce to four-dimensional spinors.
We may also relate the six-dimensional polarization vectors (2.10) to four-dimensional ones. With four-dimensional

reference spinors embedded as the above momenta, the states with (a, ȧ) either (1, 1̇) or (2, 2̇) correspond to positive
and negative helicity states respectively. The mixed labels (1, 2̇) and (2, 1̇) appear as scalars from the four-dimensional
point of view. Of course, the particular map between six-dimensional quantum numbers and helicities depends on the
explicit embedding of four-dimensional spinors in the six-dimensional space.

C. Tree-amplitude examples

As usual, in this paper we will work with color-ordered amplitudes [33]. Applying the above helicity formulæ to
the color-ordered four-gluon amplitude, one obtains a remarkably compact result [34],

Atree
4 (1g

aȧ
, 2g

bḃ
, 3g

cċ
, 4g

dḋ
) = − i

s12s23
〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] , (2.20)
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where the inner products are defined in eq. (2.6). As another example, the two-chiral-quark two-gluon amplitude is
just as simple and given by,

Atree
4 (1g

aȧ
, 2g

bḃ
, 3q

c
, 4q

d
) = − i

s12s23
〈1a2b3c4d〉[1ȧ2ḃ3ė3

ė] , (2.21)

where the repeated index “ė” on the right side is summed. Besides their remarkable simplicity, these formulæ exhibit
a number of rather nice properties. In six dimensions, because the little group SU(2)×SU(2) connects all helicities
together, there is no concept like maximally helicity violating (MHV) amplitudes: in terms of six-dimensional spinors
a single formula describes the amplitude. This property is manifest in eq. (2.20).

The three-point amplitude is a bit trickier. Naively, the amplitude should contain an inverse of 〈ia|jḃ] which
would be ill-defined because det〈ia|jḃ] vanishes for three-point kinematics. The solution worked out by Cheung and
O’Connell is to introduce two-component objects uia, ũjḃ and wia, w̃jḃ. In terms of these, the three-point amplitude
is given by,

Atree
3 (1aȧ, 2bḃ, 3cċ) = iΓabc Γ̃ȧḃċ , (2.22)

where,

Γabc = u1au2bw3c + u1aw2bu3c + w1au2bu3c ,

Γ̃ȧḃċ = ũ1ȧũ2ḃw̃3ċ + ũ1ȧw̃2ḃũ3ċ + w̃1ȧũ2ḃũ3ċ . (2.23)

The definitions of the u and w objects may be found in ref. [34] and are summarized here in appendix B.
A striking property that can be observed in the three- and four-point amplitudes (2.20) and (2.22) is that they

contain pairs of chiral-conjugate factors. In particular, for the four-gluon case, both chiral 〈1a2b3c4d〉 and antichiral
[1ȧ2ḃ3ċ4ḋ] factors appear in the numerator. Similarly, the fermionic amplitude (2.21) breaks up into a chiral and an
antichiral factor.

D. Unitarity method and six-dimensional helicity

The modern unitarity method constructs loop amplitudes directly from on-shell tree amplitudes [1], by combining
unitarity cuts into complete expressions for amplitudes. The most convenient cuts generally are those that reduce the
loop amplitude integrands into a sum of products of tree amplitudes,

Aloop
n

∣

∣

cut
=
∑

states

AtreeAtree · · ·AtreeAtree . (2.24)

To construct the full amplitude, we can apply a merging procedure for combining cuts [42]. For more complicated
cases, it is best to build an ansatz first in terms of some arbitrary parameters. The arbitrary parameters are then
determined by comparing the cuts of the ansatz against the generalized unitarity cuts (2.24). If an inconsistency
is found, the ansatz is not general enough and must be enlarged. In four dimensions, a particularly simple set of
cuts to evaluate is those with the maximal numbers of cut propagators [23]. Often it is convenient to build the
ansatz for the amplitude by starting with generalizations of these types of maximal cuts and then systematically
relaxing the cut conditions one at a time [12, 17, 47]. This approach, known as the method of maximal cuts, offers
a systematic procedure for obtaining complete amplitudes, including nonplanar contributions, at any loop order in
massless theories. One can carry out cut calculations either analytically or numerically comparing to a target ansatz
at high precision.3

An important concept is “spanning cuts”, or a complete set of cuts for determining an amplitude. For the color-
ordered one-loop four-point amplitude a spanning set is the usual s and t channel two-particle cuts. More generally,
spanning cuts are determined by requiring that all potential terms that can contribute, including contact terms, can
be detected by the cuts. In section VI we use such a spanning set of cuts to confirm the six-dimensional validity
of the complete four-loop four-point amplitude of N = 4 sYM theory, calculated in refs. [18, 47] using mostly four-
dimensional methods.

3 Since this procedure does not involve any integration, high precision is straightforward. One can also choose rational numbers for the
kinematic points.
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One of the key ingredients in evaluating unitarity cuts is to have kinematics that satisfies all cut conditions. At one
loop, for explanatory purposes it is much more convenient to use analytic solutions of the cut conditions, as we do in
section IV, while at higher loops, numerical solutions are generally easier to use. One-loop analytic solutions for the
on-shell conditions for massless and massive cases have been discussed previously in refs. [23, 25–28, 31].

E. Comments on connection to massive regulators

For N = 4 sYM theory in four dimensions, one can use a massive regulator, because the theory is only infrared
divergent and not ultraviolet divergent. For planar amplitudes, a convenient massive Higgs regulator was recently
proposed in ref. [48] for use in this theory. This regulator has the advantage of preserving the dual conformal invariance
and also of leading to integrals that are much simpler to evaluate than their dimensionally regularized counterparts.

In general, we can instead view a massively regulated amplitude as a higher-dimensional one, but where we do not
carry out the loop momentum integrations over the extra-dimensional components. This meshes well with our six-
dimensional helicity implementation of the unitarity method. The gauge invariance of this construction is guaranteed
by the gauge invariance of the constituent tree amplitudes appearing in the unitarity cuts.4 To implement a massive
regulator, we simply interpret the extra components in terms of masses,

∑5
µ=4 l

µ
i liµ ≡ −m2

i , taking on definite
values that are not integrated. The key constraints on the allowed choices are that the underlying extra-dimensional
components must satisfy the usual momentum conservation constraints and that all particles remain massless from
the six-dimensional viewpoint. From the four-dimensional viewpoint, the on-shell condition is then,

∑3
µ=0 l

µ
i liµ ≡ m2

i .

As emphasized in ref. [48], one particularly effective choice for planar amplitudes is to take a uniform mass in the
outermost loop, while keeping all other legs massless.

In many cases, conversion of massless dimensionally regularized results to massive ones is straightforward [48].
However, in general, one would like to derive or confirm massively regulated integrands directly from unitarity cuts. In
particular, our confirmation in section VI C that the functional form of the four-point four-loop amplitude is unchanged
between four and six dimensions ensures that the straightforward conversion of this amplitude to a massively regulated
form is compatible with unitarity. For six- and higher-point amplitudes, we know that the situation is a bit more
complicated, because the higher-dimensional integrands contain additional pieces not detectable in four-dimensional
massless cuts. Although such terms are expected to vanish as m → 0 even after integration, they would be needed
for studies of the Coulomb phase of the theory where the mass is kept finite.

III. A SIX-DIMENSIONAL STRUCTURE

As seen in section II C, three- and four-point tree amplitudes contain a pair of chiral-conjugate factors. How general
is this? To answer this we turn to BCFW recursion relations [2], which offer a means for constructing tree amplitudes
in a form where we can exploit the six-dimensional helicity techniques. It also provides a convenient means for
generating tree amplitudes needed in the unitarity cuts.

A. BCFW recursion

The BCFW shift using six-dimensional spinor helicity was given in ref. [34], and the supersymmetric version in [43].
Here we give a brief summary and the relevant bosonic shifts. We begin by picking two external lines, say 1, 2 as
special, and deform them by a null vector proportional to a complex parameter z,

p1(z) = p1 + zr, p2(z) = p2 − zr , (3.1)

where r is a null vector satisfying p1 · r = p2 · r = 0. These conditions ensure that the deformed momenta remain
on-shell, p2

1(z) = p2
2(z) = 0, and the overall momentum conservation of the amplitude is unaltered.

4 In theories with fewer supersymmetries, gauge invariance at the level of the integrand is complicated by the potential presence of terms
such as bubbles on external legs, which are not detectable in the unitarity cuts.
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Since a tree amplitude is a rational function of momenta with no more than a single pole in any given kinematic
invariant, this deformation will result in a complex function with only simple poles in z. Each pole in z will correspond
to a propagator that is a sum of a subset of external momenta that includes only one of the shifted momenta,

P2j(z)
2 ≡ (p2(z) + . . .+ pj)

2 = P 2
2j + 2zr · P2j . (3.2)

The location of the pole is given by solving the on-shell condition P2j(z)
2 = 0,

z2j = −
P 2

2j

2r · P2j

. (3.3)

As in common usage, we denote the shifted momenta evaluated at the value of z locating a pole with a hatted symbol
“ ˆ ”, e.g. p̂2 ≡ p2(z = z2j).

If a shifted amplitude vanishes as z → ∞, then standard complex variable theory implies that it is uniquely
determined by its residues in z. For D ≥ 4 dimensions, it is straightforward to find choices of shifts where this
property holds for Yang-Mills theories [34, 51]. The poles correspond to configurations where propagators go on shell
and where the amplitude factorizes into a product of lower-point amplitudes. Each residue is then simply a sum of
products of two lower-point tree amplitudes on either side of the propagator, with the shifted momenta evaluated at
the location of the pole. If legs 1 and 2 are shifted, the BCFW recursion relation gives us the unshifted amplitude as,

Atree
n (0) =

n−1
∑

j=3

∑

h

AL

(

p̂2, . . . , pj ,−P̂ (−h)
2j

) i

P 2
2j

AR

(

P̂
(h)
2j , pj+1, . . . , p̂1

)

∣

∣

∣

∣

z=z2j

, (3.4)

where AL and AR are lower-point tree amplitudes on the left and right sides of the propagator and are evaluated at
shifted momenta with z = z2j . The first sum in the above equation is over all diagrams that produce poles, while the

second is over all helicity states that cross the internal leg P̂ .
In six dimensions, the conditions p1 ·r = p2 ·r = 0 can be solved by choosing r to be proportional to the polarization

of line 1, r ∼ ǫ1aȧ, and choosing the reference spinor for the polarization vector to be λ2. This satisfies the needed
constraints and leads to sufficiently good behavior at large z. Since ǫ1aȧ has extra SU(2)×SU(2) little-group indices,
one introduces an auxiliary matrix Xaȧ to contract the indices so that,

rAB =
1√
2
Xaȧ(ǫAB

1 )aȧ = −Xaȧλ
[A
1aλ

B]
2b

[1ȧ|2b〉
= Xaȧ

[A/p2
|1ȧ]〈1a|B]

s12
, (3.5)

and the condition r2 = 0 now becomes detX = 0. This can automatically be satisfied by choosing Xaȧ = xax̃ȧ, where
the xa and x̃ȧ are arbitrary. These arbitrary variables will cancel out once one sums over all contributions. When
implementing the recursion relations numerically, these variables are helpful since they can identify errors when one
checks whether the result is independent of the choice of xa, x̃ȧ. The above shift can be translated into a redefinition
of the spinors,

λAa
1 (z) = λAa

1 − z

s12
Xa

ȧ
[1ȧ|2b〉λA

2b , λAb
2 (z) = λAb

2 − z

s12
Xa

ȧ
λA

1a[1ȧ|2b〉 ,

λ̃1Aȧ(z) = λ̃1Aȧ +
z

s12
Xa

ȧ
〈1a|2ḃ]λ̃

ḃ
2A , λ̃2Aḃ(z) = λ̃2Aḃ +

z

s12
Xa

ȧ
λ̃ȧ

1A〈1a|2ḃ] . (3.6)

In section VB, we will describe the supersymmetrized BCFW recursion relations to generate the tree amplitudes
needed in calculations of multiloop amplitudes of N = 4 sYM theory.

B. A double copy

As noted in section II C, the three- and four-point amplitudes contain chiral-conjugate factors. An obvious question
is whether this property can be extended to n points. Indeed this is the case, as can be seen using BCFW recursion
relations. This can be understood by noting that six-dimensional on-shell helicity states of Yang-Mills theory transform
under a representation of the little group which factorizes into the direct product of two spinor representations. That
is, the helicity sum in eq. (3.4), can be rewritten as a product of two independent sums:

∑

h →∑

a ×
∑

ȧ . Thus, if the
lower-point amplitudes in the numerator of eq. (3.4) can also be written as products, one factor carrying the undotted
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SU(2) indices and the other carrying the dotted SU(2) indices, then the BCFW recursion relations will preserve this
property for the higher-point amplitudes. Since the three and four-point amplitudes do have this property, it holds
for any number of legs by recursively constructing the amplitudes.

For example, at five points, applying a BCFW recursion based on shifting legs 1 and 2, following the discussion
of ref. [34], we obtain two contributions, one in the s23 channel and the other in the s51 channel. Evaluating the
diagrams gives,

Atree
5 (1aȧ, 2bḃ, 3cċ, 4dḋ, 5eė)

= − i

s45s51̂s23

(

〈1̂a2̂b4d5e〉u3c + 〈1̂a3c4d5e〉u2̂b

) ([

1̂ȧ2̂ḃ4ḋ5ė

]

ũ3ċ +
[

1̂ȧ3ċ4ḋ5ė

]

ũ2̂ḃ

)

− i

s34s51s2̂3

(

〈2̂b1̂a4d3c〉u5e + 〈2̂b5e4d3c〉u1̂a

) ([

2̂ḃ1̂ȧ4ḋ3ċ

]

ũ5ė +
[

2̂ḃ5ė4ḋ3ċ

]

ũ1̂ȧ

)

. (3.7)

We thus explicitly see that the chiral-conjugate nature of the three- and four-point amplitudes is inherited directly by
the five-point amplitude via the BCFW recursion relations. As noted above, the hats indicate that the momenta are
shifted as in eq. (3.1), with z evaluated at the value (3.3) for the two given channels. If we try to clean up the expression,
for example by factoring out the auxiliary variables xa, x̃ȧ, we can easily hide the chiral-conjugate structure. By
continuing the recursion and maintaining the BCFW format at each level of the recursion, we straightforwardly
obtain forms where chiral-conjugate factors appear in each term at n points.

This behavior has some similarities with the double-copy structure for gravity amplitudes uncovered by two of the
authors and Johansson (BCJ) in ref. [4]. In that case, numerators of gravity diagrams appear as two factors of gauge
theory numerators. There are, however, also important differences between the two cases. The most obvious one is
that in the gravity case no chiral conjugation is needed for one of the copies. More importantly, for the case of gravity,
we can interpret the factors as pieces of physical Yang-Mills amplitudes, but for the present case of Yang-Mills theory
we do not have an interpretation in terms of amplitudes of some theory. In fact, it is unclear how to write down a
Lagrangian that would lead to only one of the factors of the three-point Yang-Mills amplitude, either Γabc or Γ̃ȧḃċ. This
may be contrasted with the gravity case where there is a partial Lagrangian understanding [52]. Another difference is
that the gravity double copy relies on a group-theory Jacobi identity structure in the gauge-theory diagram kinematic
numerators [4]. Such a structure is not apparent in the present case. Nevertheless, the present structure can be helpful
in computations.

IV. EXAMPLE: ONE-LOOP QCD AMPLITUDES

Our task in this section is to demonstrate how six-dimensional helicity methods can be combined with the unitarity
method to obtain complete one-loop QCD amplitudes. We take external momenta and helicities to live in a four-
dimensional subspace, but take the internal momenta to be six dimensional. In general, any dimensionally regularized
massless amplitude can be expressed as a linear combination of scalar box, triangle, and bubble integrals with rational
coefficients [53]. Since these integrals are known, the problem is reduced to determining the rational coefficients of
the integrals. Here we choose a slightly different representation allowing also integrals with arbitrary powers of mm̃
in their numerators, following refs. [21, 31].

A. One-loop four-point cut conditions in D = 6

For the purposes of obtaining one-loop QCD amplitudes, we take the external legs to carry massless four-dimensional
momenta and the loop to carry six-dimensional momentum. To solve the cut conditions, we view the massless six-
dimensional loop momentum as massive four-dimensional momentum. The mass parameter is then conserved, as
inherited from the six-dimensional momentum components. To solve for the cut conditions, we consider a particle
with a uniform mass around the loop.

To illustrate six-dimensional helicity, we consider the simple case of four massless external legs. We start with the
quadruple cut displayed in fig. 1(a). In this case, we must solve the cut conditions (4)l2i = mm̃, where (4)l denotes
a momentum vector keeping only the first four components. In this case we can find a solution for the first four
components of the loop momentum vectors, in terms of purely four-dimensional spinors,

((4)l±)µ
1 =

1

2

(

c±1
〈

4−
∣

∣ γµ
∣

∣1−
〉

− 1

c±1

mm̃

s14

〈

1−
∣

∣ γµ
∣

∣4−
〉

)

, µ = 0, 1, 2, 3 (4.1)
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1

2 3

4
l1

l2

l3

l4

(a)
1

2 3

4

l2

l4

(c)

1

2 3

4
l1

l2 l4

(b)

FIG. 1: Cuts used to obtain a one-loop four-point amplitude. We display the triple cuts and ordinary two-particle cut in the
s14 channel. In general, we must also evaluate s12 channel cuts.

where,

c±1 =
〈1 2〉

2 〈4 2〉

(

1 ±
√

1 +
4mm̃s24
s23s34

)

. (4.2)

Although there are two solutions to the quadruple cuts, in general, when summing over these the square root drops
out.

The fifth and sixth dimensional components of the loop momenta are

l4i =
−m+ m̃

2i
, l5i =

m+ m̃

2
. (4.3)

The other momenta in the loop are given by momentum conservation l2 = l1 − p1, l3 = l1 − p1 − p2 and l4 = l1 + p4.
Because of the symmetry in the problem we can also obtain these momenta from relabellings of eq. (4.1). If viewed as
massive momenta in four dimensions, m and m̃ are constants, and the momenta (4.1) are two independent solutions
to the cut conditions. In contrast, when interpreted as six-dimensional momenta, (4.1) together with (4.3) are not
constrained completely by the cut conditions. Their remaining freedom is parametrized by the now dynamic mass
parameters m and m̃. In fact, what we labeled as two parameters can be thought of as a single complex parameter
family of solutions.

Now consider the triple cut displayed in fig. 1(b). We note that,

(4)lµ1 =
1

2

(

t
〈

4−
∣

∣ γµ
∣

∣1−
〉

− 1

t

mm̃

s14

〈

1−
∣

∣ γµ
∣

∣4−
〉

)

, (4.4)

solves the three cut conditions (4)l21 = (4)l22 = (4)l24 = mm̃, where t is a parameter describing the remaining degree of
freedom (from the four-dimensional vantage point) not frozen by the cut conditions. The other two cut momenta are
specified by momentum conservation, l2 = l1 − p1 and l4 = l1 + p4. Again it is simple to check that the cut legs all
satisfy the proper six-dimensional on-shell conditions.

We note that the similarity of the triple cut solution to the quadruple cut solutions is not accidental. Indeed if we
demand that a fourth propagator goes on shell, (4)l23 −mm̃ = l23 = (l1 − p1 − p2)

2 → 0, this has the effect converting
the triple cut into a quadruple cut. That is, we demand,

0 = (l1 − p1 − p2)
2 = t 〈4 2〉 [1 2] + s12 −

mm̃

ts14
〈1 2〉 [4 2] . (4.5)

Solving for t gives,

t0 =
〈1 2〉

2 〈4 2〉

(

1 ±
√

1 +
4mm̃s24
s14s12

)

, (4.6)

matching c±1 in eq. (4.2).
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B. One-loop four-point solution of six-dimensional spinors

Given the solution of the cut conditions above, it is then a simple matter to insert these into our solution for
the six-dimensional spinors in terms of four-dimensional ones. To illustrate this, consider the triple cut displayed
in fig. 1(b). To make the process simpler, it is convenient to express the four-dimensional momentum solutions in
two-component notation. Taking the solution (4.4) and rewriting it in two-component notation, we have,

(4)l1 = tλ4λ̃1 −
1

t

mm̃

s14
λ1λ̃4 ,

(4)l2 =

(

λ4 −
1

t
λ1

)

tλ̃1 −
mm̃

ts14
λ1 λ̃4 ,

(4)l4 = λ4

(

λ̃4 + t λ̃1

)

− mm̃

ts14
λ1 λ̃4 . (4.7)

To arrange the six-dimensional spinors for the loop momentum in terms of four-dimensional ones, we make use of the
decomposition in eqs. (2.15) and (2.16). Comparing l1 in eq. (4.7) to eq. (2.15), we see that in this case,

µ = λ1 , µ̃ =
λ̃4

t
, λ = λ4 , λ̃ = tλ̃1 ,

κ14 =
m

〈1 4〉 , κ̃14 =
m̃

[1 4]
, κ′14 =

m̃

〈1 4〉 , κ̃′14 =
m

[1 4]
. (4.8)

Plugging this into eq. (2.17) immediately gives us the six-dimensional spinors corresponding to l1 as,

(λl1)
A

a =

( −κ14λ1 λ4

tλ̃1 κ̃14λ̃4/t

)

, (λ̃l1)Aȧ =

(

κ′14λ1 λ4

−tλ̃1 κ̃′14λ̃4/t

)

. (4.9)

Similarly, for the spinors carrying momenta l2 and l4 — needed for evaluating the triple cut in fig. 1(b) — we have

(λl4)
A

a =

( −κ14λ1 λ4

λ̃4 + tλ̃1 κ̃14λ̃4/t

)

, (λ̃l4)Aȧ =

(

κ′14λ1 λ4

−λ̃4 − tλ̃1 κ̃′14λ̃4/t

)

,

(λl2)
A

a =

( −κ14λ1 λ4 − λ1/t

tλ̃1 κ̃14λ̃4/t

)

, (λ̃l2 )Aȧ =

(

κ′14λ1 λ4 − λ1/t

−tλ̃1 κ̃′14λ̃4/t

)

. (4.10)

In many cases, we find ourselves with an incoming momentum, and as such it is labelled −p in our all-outgoing
convention. A simple prescription which preserves the relation between spinors and momenta and which is sufficient
for purely gluonic amplitudes is to simply take λ−p = iλp and λ̃−p = iλ̃p. A similar prescription for any state in the
N = 4 supermultiplet will be given in section V.

Using this it is then a simple matter to work out the result for the cut. For the s14-channel cut we have, if legs 1
and 4 are of positive helicity,

〈(−l4)1, 41, 11, (l2)1〉 = det

( −iκ14λ1 0 0 −κ14λ1

iλ̃4 + itλ̃1 λ̃4 λ̃1 tλ̃1

)

= 0 ,

〈(−l4)1, 41, 11, (l2)2〉 = det

( −iκ14λ1 0 0 λ4 − λ1/t

iλ̃4 + itλ̃1 λ̃4 λ̃1 κ̃14λ̃4/t

)

= iκ14 〈1 4〉 [4 1] ,

〈(−l4)2, 41, 11, (l2)1〉 = det

(

iλ4 0 0 −κ14λ1

iκ̃14λ̃4/t λ̃4 λ̃1 tλ̃1

)

= −iκ14 〈1 4〉 [4 1] ,

〈(−l4)2, 41, 11, (l2)2〉 = det

(

iλ4 0 0 λ4 − λ1/t

iκ̃14λ̃4/t λ̃4 λ̃1 κ̃14λ̃4/t

)

= −i 〈1 4〉 [4 1]

t
. (4.11)

As seen from eqs. (2.6) and (2.17), the self-conjugate structure implies that the bracket expression is basically the
same as the angle expression, except for the replacement κ14 → κ′14 along with some signs,

[(−l2)1̇, 41̇, 11̇, (l4)1̇] = 0 , [(−l2)1̇, 41̇, 11̇, (l4)2̇] = −iκ′14 〈1 4〉 [4 1] ,

[(−l2)2̇, 41̇, 11̇, (l4)1̇] = iκ′14 〈1 4〉 [4 1] , [(−l2)2̇, 41̇, 11̇, (l4)2̇] = −i 〈1 4〉 [4 1]

t
. (4.12)
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1

2 3

4

FIG. 2: The quadruple cut. The cuts are indicated by dashed (red) lines. Here two pairs of three-point amplitudes are
grouped together to form two easier-to-use four-point tree amplitudes, indicated by the (blue) ovals. The cut propagators of
the four-point tree amplitudes are canceled by multiplying by inverse propagators prior to imposing cut conditions.

Similarly, if leg 1 is of negative helicity and leg 2 of positive, we have,

〈(−l4)1, 41, 12, (l2)1〉 = det

( −iκ14λ1 0 λ1 −κ14λ1

iλ̃4 + itλ̃1 λ̃4 0 tλ̃1

)

= 0 ,

〈(−l4)1, 41, 12, (l2)2〉 = det

( −iκ14λ1 0 λ1 λ4 − λ1/t

iλ̃4 + itλ̃1 λ̃4 0 κ̃14λ̃4/t

)

= i 〈1 4〉 [4 1] t ,

〈(−l4)2, 41, 12, (l2)1〉 = det

(

iλ4 0 λ1 −κ14λ1

iκ̃14λ̃4/t λ̃4 0 tλ̃1

)

= −i 〈1 4〉 [4 1] t ,

〈(−l4)2, 41, 12, (l2)2〉 = det

(

iλ4 0 λ1 λ4 − λ1/t

iκ̃14λ̃4/t λ̃4 0 κ̃14λ̃4/t

)

= 0 , (4.13)

and for the chiral conjugate,

[(−l4)1̇, 41̇, 12̇, (l2)1̇] = 0 , [(−l4)1̇, 41̇, 12̇, (l2)2̇] = i 〈1 4〉 [4 1] t ,

[(−l4)2̇, 41̇, 12̇, (l2)1̇] = −i 〈1 4〉 [4 1] t , [(−l4)2̇, 41̇, 12̇, (l2)2̇] = 0 . (4.14)

This solution is valid as well for quadruple cuts by substituting t→ t0 from eq. (4.6).
Similarly, the six-dimensional spinors can be solved for explicitly for any one-loop cuts with any number of external

legs, although we refrain from giving the solutions here. These solutions are closely connected to the solutions of the
cut conditions in four dimensions with masses [23, 28, 31].

C. QCD Calculations

By treating the extra-dimensional components of loop momenta effectively as masses to be integrated over, we can
make use of four-dimensional methods for evaluating the coefficients of the integrals. The box coefficients are obtained
by using the four on-shell conditions to freeze four components of loop momenta [23]. For the triangle and bubble
integrals, we can use the approach of refs. [27, 31].

As a warmup we consider the simplest one-loop QCD amplitudes, with four identical-helicity external gluons in
a four-dimensional subspace. This amplitude is especially simple because it can be determined entirely from the
quadruple cut illustrated in fig. 2, where all four propagators are placed on shell. This follows from the property
that in both two-particle cuts the four-point tree amplitudes on either side of the cut are each proportional to mm̃.
Thus the numerator of the integrand must be proportional to (mm̃)2, saturating the dimensions of the numerator
polynomial. Since this factor does not vanish when all four box propagators are placed on shell, the quadruple cut is
sufficient for constructing the entire amplitude.

As discussed in section II C, four-point tree amplitudes expressed in terms of six-dimensional spinor helicity are
simpler than their three-point counterparts. In general, this makes it advantageous to group three-point amplitudes
appearing in the cuts into four-point amplitudes, but with the cut propagators removed by multiplying by the
appropriate inverse propagators. With the grouping illustrated in fig. 2 by the (blue) ovals, we have the quadruple
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cut as,

C1234 =
∑

states

(−i)2(l2 − p2)
2(l2 + p1)

2A4(−l2, 2+, 3+, l4)A4(−l4, 4+, 1+, l2) (4.15)

=
〈(−l2)a, 21, 31, (l4)b〉 [(−l2)ȧ, 21̇, 31̇, (l4)ḃ] 〈(−l4)a, 41, 11, (l2)

b〉 [(−l4)ȧ, 41̇, 11̇, (l2)
ḃ]

s14s23
.

In general, we will label the generalized cuts with the indices i of li labeling the propagators; here all four propagators
carrying momenta l1, l2, l3 and l4 are cut. We also assigned SU(2)×SU(2) little group indices a, ȧ = 1 to the external
legs so that they carry positive helicity in the four-dimensional subspace.

Using the solution of the inner products given in eq. (4.11), relabeled for the other side of the cut, the quadruple
cut in eq. (4.15) gives,

C1234 = 4
1

s23s14
κ41κ23κ

′
41κ

′
23 〈1 4〉2 [4 1]2 〈3 2〉2 [2 3]2

= 4(mm̃)2
[2 3] [1 4]

〈2 3〉 〈1 4〉 = 4(mm̃)2
[1 2] [3 4]

〈1 2〉 〈3 4〉 . (4.16)

For this helicity configuration, the parameter t (which in the quadruple cut takes on the value t0 in eq. (4.6)) drops
out, leading to a rather simple result.

To obtain dimensionally regularized results we need to adjust the state sum. Such adjustments have been discussed
in refs. [21, 54] and more recently in some detail in the context of QCD calculations making use of six dimensions [30].
Since we are working in six dimensions, there are 6 − 2 = 4 gluon states circulating in the loop. This needs to be
modified to match dimensional regularization. Two popular schemes are the ’t Hooft-Veltman scheme [55], where
2(1 − ǫ) gluon states circulate in the loop, and the four-dimensional helicity (FDH) scheme [54], where two states
circulate. It is therefore convenient to take the number of states to be 2(1 − δRǫ), where δR is unity for the ’t Hooft-
Veltman scheme and zero for the FDH scheme.

For our sample amplitude, since all four six-dimensional states give identical contributions, the adjustment amounts
to simply changing the overall prefactor from 4 → 2(1 − δRǫ). We also need to adjust the number of components of
extra-dimensional momenta from six to D = 4 − 2ǫ. To do so we replace mm̃ → µ2, where µ is understood to carry
(−2ǫ)-dimensional components of momentum. With these replacements, we obtain the dimensionally regularized
result for the quadruple cut,

C1234 = 2(1 − δRǫ)µ
4 [1 2] [3 4]

〈1 2〉 〈3 4〉 . (4.17)

Since the identical helicity amplitude is determined entirely from the quadruple cut, we obtain the dimensionally
regularized amplitude by putting back the four cut propagators and integrating over the loop momentum in 4 − 2ǫ
dimensions. This gives,

A1-loop(1+, 2+, 3+, 4+) = 2(1 − ǫδR)
[1 2] [3 4]

〈1 2〉 〈3 4〉I4[µ
4] , (4.18)

where the box integral is

I4[P ] =

∫

d4−2ǫl

(2π)4−2ǫ

P
l2(l − p1)2(l − p1 − p2)2(l + p4)2

, (4.19)

with P a numerator polynomial. This result matches the known expression from ref. [21].
As a slightly more intricate example, consider the case where one external gluon carries negative helicity and the

others positive helicity. As before, the quadruple cuts and triple cuts are conveniently extracted from the two-particle
cuts, since these involve the simpler four-point tree amplitudes instead of three-point ones. Following similar logic as
for the identical-helicity case (4.15), for the present case the quadruple cut, illustrated in fig. 1(a), is given by,

C1234 =
1

s14s23
〈(−l2)a, 21, 31, (l4)b〉 [(−l2)ȧ, 21̇, 31̇, (l4)ḃ]

×〈(−l4)a, 41, 12, (l2)
b〉 [(−l4)ȧ, 41̇, 12̇, (l2)

ḃ] . (4.20)
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We then substitute in the solution for the spinor products, given in eqs. (4.11) and (4.13), appropriately relabeled
and with the parameter t fixed to the quadruple cut value t0 given in eq. (4.6). Summing over the internal helicity
states then gives

C1234 = −4
κ23κ

′
23 〈1 4〉2 [4 1]

2 〈3 2〉2 [2 3]
2
t20

s223

= 4
mm̃ [2 4]

2

[1 2] 〈2 3〉 〈3 4〉 [4 1]

s12s23
s24

(

s23s12
2s24

+mm̃± s23s12
2s24

√

1 +
4mm̃s24
s23s34

)

. (4.21)

As for the identical helicity case, each of the four states gives an identical result, so the dimensionally regularized
result is obtained by replacing the overall prefactor of 4 by 2(1−ǫδR) and substituting mm̃→ µ2. The box contribution
is given by the sum over both solutions (normalized by a factor of 1/2), so the square root drops out. Restoring the
cut propagators and putting in the loop integration gives the box contribution to the amplitude,

A(1−, 2+, 3+, 4+)
∣

∣

∣

box
= 2(1 − δRǫ)

[2 4]
2

[1 2] 〈2 3〉 〈3 4〉 [4 1]

s12s23
s13

(

s12s23
2s13

I4[µ
2] + I4[µ

4]

)

, (4.22)

where the box integrals are defined in eq. (4.19).
The triple cut of fig. 1(b) is also simple to obtain from the two-particle cut in fig. 1(c) by grouping the three-point

trees together. After modifying the state sum this gives,

C124 = −2(1 − ǫδR)
κ23κ

′
23 〈1 4〉2 [4 1]2 〈2 3〉2 [3 2]2 t2

s223

i

(l1 − p1 − p2)2

= −2i(1 − ǫδR)mm̃ [2 3]2 t2
(

t 〈4 2〉 [1 2] + s12 −
mm̃

ts14
〈1 2〉 [4 2]

)−1

. (4.23)

We used eq. (4.4) to express l1−p1−p2 in terms of the parameter t. In this form the corresponding triangle coefficient
can be extracted from the triple cut following refs. [27, 31]. Similarly, starting from the two-particle cuts, we can
obtain the coefficients of bubble integrals. With this procedure, we can keep all terms which contribute to rational
terms in the amplitudes.

In summary, this illustrates the use of six-dimensional helicity in unitarity cuts to obtain generalized cuts of one-
loop amplitudes in QCD, which can then be reduced to a basis set of integrals using on-shell methods [26, 27, 30, 31].
Further details for converting state sums from six dimensions to their dimensionally regularized values may be found
in ref. [30].

V. TREE-LEVEL MAXIMALLY SUPERSYMMETRIC YANG-MILLS AMPLITUDES

In this section we will describe tree-level amplitudes in N = 4 sYM theory using the recently constructed DHS
on-shell superspace in six dimensions [43], as a precursor to carrying out multiloop calculations via the unitarity
method in the next section. In particular, we will describe a convenient means for setting up high-point super-BCFW
recursion for use in unitarity cuts.

A. Tree-level amplitudes

In the DHS superspace formalism, the on-shell superfield appears as a polynomial in a pair of anticommuting
coordinates ηa, η̃

ȧ which carry SU(2)×SU(2) little group indices,

Φ(η, η̃) = φ+ χaηa + φ′(η)2 + χ̃ȧη̃
ȧ + ga

ȧηaη̃
ȧ + ψ̃ȧ(η)2η̃ȧ

+ φ′′(η̃)2 + ψaηa(η̃)2 + φ′′′(η)2(η̃)2 , (5.1)

where (η)2 ≡ 1
2ǫ

abηbηa and (η̃)2 ≡ 1
2ǫȧḃη̃

ḃη̃ȧ. Using these fields, we can obtain superamplitudes in the usual way.
The different component amplitudes can be read off from their η expansions. For example, the four-gluon amplitude
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〈ga
ȧ(1) gb

ḃ(2) gc
ċ(3) gd

ḋ(4)〉 appears as the coefficient of η1aη̃
ȧ
1η2bη̃

ḃ
2η3cη̃

ċ
3η4dη̃

ḋ
4 in the four-point superamplitude A4.

These amplitudes are functions of momenta pi and supermomenta qi, q̃i defined by,

qA
i = λAa

i ηia, q̃iB = λ̃iBḃη̃
ḃ
i . (5.2)

For a general discussion of higher-dimensional on-shell superspaces, see ref. [44].
In ref. [43], the three-, four- and five-particle tree-level superamplitudes were worked out analytically. Consider first

the four-point superamplitude, which is the simplest case. This is given by

Atree
4 (1, 2, 3, 4) = − i

s12s23
δ4
( 4
∑

i=1

qA
i

)

δ4
( 4
∑

i=1

q̃iB

)

, (5.3)

where the fermionic delta function is defined as,

δ4
(

∑

i
qA
i

)

≡ 1

4!
ǫBCDE

(

∑

i
qB
i

)(

∑

i
qC
i

)(

∑

i
qD
i

)(

∑

i
qE
i

)

, (5.4)

and likewise for the antichiral supermomentum q̃A. This expression makes manifest the chiral–antichiral structure
noted in section III B for the non-supersymmetric case.

The three-point superamplitude is a bit more complicated and is given by,

Atree
3 (1, 2, 3) = −i

(

u1u2 + u2u3 + u3u1

)

( 3
∑

i=1

wi

)

(

ũ1ũ2 + ũ2ũ3 + ũ3ũ1

)

( 3
∑

i=1

w̃i

)

, (5.5)

where ui and wi are defined in terms of the ua
i and wa

i of appendix B as,

ui = ua
i ηia, ũi = ũiȧη̃

ȧ
i , wi = wa

i ηia, w̃i = w̃iȧη̃
ȧ
i . (5.6)

The expression in eq. (5.5) is equivalent to the form given in ref. [43], except that here the chiral-conjugate property
has been made manifest; it is a product of a chiral factor and an antichiral factor. As discussed in section III, this
property survives the BCFW recursion, since the states in the six-dimensional sYM theory factorize into a direct
product.

The five-point tree-level superamplitude is

Atree
5 = i

δ4
(

∑

i q
A
i

)

δ4
(

∑

i q̃iB

)

s12s23s34s45s51

{

qA
1 (p2p3p4p5)

B
A q̃1B + cyclic

+
1

2

[

qA
1 ∆̃2A + qA

3 ∆̃4A + (q3 + q4)
A∆̃5A + (chiral conjugate)

]}

, (5.7)

where ∆̃2A = (p2p3p4p5 − p2p5p4p3)
B

A q̃2B, ∆̃4A = (p4p5p1p2 − p4p2p1p5)
B

A q̃4B, etc. The five-particle amplitude is
given here in a particularly compact form which lacks explicit cyclic symmetry, although the symmetry does hold on
the support of the fermionic delta functions.

An important distinction between the DHS on-shell superspace and the four-dimensional daughter theory is that
this superspace is non-chiral. The interesting consequence of this feature is that while the four-dimensional amplitudes
are organized according to NkMHV categories, these all come from a single six-dimensional parent amplitude. This
simplicity, however, is offset by the fact that one lacks the counterpart of the four-dimensional MHV amplitudes,
which have a simple form for arbitrary numbers of legs.

B. Supersymmetric BCFW recursion

In order to investigate high loop orders we need high-point tree amplitudes. To obtain these, we use supersymmetric
forms of the BCFW recursion relations. This also serves as a warmup for the unitarity cuts, because the state sums
generated by integration over Grassmann parameters at loop level are similar to the state sums in supersymmetric
forms of the BCFW recursion relations. As discussed in ref. [43], the super-BCFW recursion relations can be obtained
by shifting the Grassmann variables,

η1a(z) = η1a − zXaȧ[1
ȧ|2b〉η2b/s12 , η2b(z) = η2b − zXa

ȧ
[1ȧ|2b〉η1a/s12 ,

η̃ȧ
1 (z) = η̃ȧ

1 + zXaȧ[2ḃ|1a〉η̃ḃ
2/s12 , η̃ḃ

2(z) = η̃ḃ
2 + zXa

ȧ
[2ḃ|1a〉η̃ȧ

1/s12 , (5.8)
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FIG. 3: Two categories of BCFW diagrams. (A) contains a three-point subamplitude, which does not have the full supermo-
mentum delta function δ4(q)δ4(q̃). (B) contains no three-point subamplitude, thus all delta functions are of degree four.

in addition to the shifts of the spinors in eq. (3.6). This is designed to maintain supermomentum conservation,
i.e. qA

1 + qA
2 = qA

1̂
+ qA

2̂
and q̃1A + q̃2A = q̃1̂A + q̃2̂A. These shifts on η can be rephrased as shifts directly on the

supermomenta by combining with the spinorial shifts in eq. (3.6) and using the trick,

δa
b = − 1

s12
〈1a|/p2

|1b〉 . (5.9)

After the rearrangements, we have,

qA
1 (z) = qA

1 +
z

s212
Xa

ȧ
[1ȧ|2b〉λA

2b〈1a|2ḃ]λ̃
ḃ
2Bq

B
1 − z

s12
λAa

1 Xaȧλ̃
ȧ
1Bq

B
2 ,

qA
2 (z) = qA

2 − z

s12
λA

1aX
a
ȧ
λ̃ȧ

1Bq
B
2 − z

s212
Xa

ȧ
[1ȧ|2b〉λAb

2 〈1a|2ḃ]λ̃
ḃ
2Bq

B
1 ,

q̃1A(z) = q̃1A +
z

s212
Xa

ȧ
〈1a|2ḃ]λ̃

ḃ
2A[1ȧ|2b〉λB

2bq̃1B +
z

s12
λ̃1AȧX

aȧλB
1aq̃2B ,

q̃2A(z) = q̃2A +
z

s12
Xa

ȧ
λ̃ȧ

1Aλ
B
1aq̃2B +

z

s212
Xa

ȧ
λ̃2Aḃ[2

ḃ|1a〉[1ȧ|2b〉λB
2bq̃1B . (5.10)

As we will see, these supermomentum shifts help us avoid dealing directly with the supercoordinates η in the recursion.
The intermediate state sum in the recursion is realized as an integration over the Grassmann coordinates ηP , η̃P of

the intermediate leg (labeled as P ), and the remainder of this section is devoted to systematically carrying out these
integrations.

To set up high-point recursion, it is useful to first organize the types of contributions. If we track the factors
containing Grassmann parameters, and drop other factors, the n-point tree amplitudes have the schematic form,

An ∼ δ4
(

∑

i
qA
i

)

δ4
(

∑

i
q̃iB

)

qn−4q̃n−4 for n ≥ 4 . (5.11)

The supermomentum delta functions for n ≥ 4 impose algebraic constraints on ηP , η̃P under the fermionic integration.
We can follow the same strategy as used in four dimensions to consider the delta-function constraints as a set of
algebraic equations to be systematically solved [38]. A key identity for carrying this out is

δ4(qA
1 + qA

2 +QA) = s12 δ
2
(

η1a + s−1
12 〈1a|/p2

Q
)

δ2
(

η2b + s−1
12 〈2b|/p1Q

)

. (5.12)

A similar antichiral identity also holds. These identities are analogous to ones used in four dimensions [36].
Before proceeding, though, we are obliged to address a glitch in the spinor-helicity formalism: the spinors do

not properly distinguish between particles and antiparticles, causing phase inconsistencies in diagrams containing
fermions. This glitch and prescriptions for resolving it have already been discussed in the four-dimensional case, for
example, in ref. [38, 56]. Here we use the prescription that if p is incoming, so that this momentum is −p in our
all-outgoing convention, then we take,

λAa
(−p) ≡ iλAa

p , λ̃(−p)Aȧ ≡ iλ̃pAȧ . (5.13)
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In this way, we maintain the relationship between momenta and spinors, i.e.,

(−p)AB = λAa
(−p)λ

B
(−p)a = −λAa

p λB
pa . (5.14)

Along the same lines, we demand that qA
(−p) = −qA

p , which we achieve with the same prescription for the supercoor-

dinates η: whenever −p is outgoing, we choose,

η(−p)a ≡ iηpa, η̃ȧ
(−p) ≡ iη̃ȧ

p . (5.15)

Beyond four points, we can split all BCFW diagrams into two categories, as shown in fig. 3. We consider these two
cases in turn.

Case (A):

In cases where one has to sew a three-point superamplitude to a higher-point tree superamplitude, illustrated in
fig. 3(A), the Grassmann integration has the form,

∫

d2ηP d
2η̃P A3L × δ4

(

∑

i∈R

qB
i

)

δ4
(

∑

i∈R

q̃iC

)

qn−5q̃n−5 , (5.16)

where the summations are over all external lines of the right tree amplitude including shifted legs, and the integration

measure is d2ηP d
2η̃P = 1

4dη
a
P dηPadη̃Pȧdη̃

ȧ
P .

To perform this integral, we view the factors in the three-point amplitude (5.5) as algebraic constraints on the
supercoordinates ηP , η̃P imposing,

u1̂ = u2 , uP = 1
2 (u1̂ + u2), wP = −w1̂ − w2,

ũ1̂ = ũ2 , ũP = 1
2 (ũ1̂ + ũ2), w̃P = −w̃1̂ − w̃2 . (5.17)

Since there are two components each in ηPa and η̃ȧ
P , the three-point amplitude is sufficient to localize the ηP integrals.

The solutions to the constraint equations are

ηPa = 1
2wPa(u1̂ + u2) + uPa(w1̂ + w2) ,

η̃ȧ
P = − 1

2 w̃
ȧ
P (ũ1̂ + ũ2) − ũȧ

P (w̃1̂ + w̃2) , (5.18)

with the understanding that we are free to replace u1̂ ↔ u2 and ũ1̂ ↔ ũ2 at any step.
In practice, it is much easier to deal with supermomenta qi than the u and w variables. It is straightforward to

demonstrate that eq. (5.18) implies the substitutions,

qA
P = −qA

1̂
− qA

2 , q̃PA = −q̃1̂A − q̃2A . (5.19)

Thus one can substitute the result for qP in the tree amplitude on the right, avoiding the more complicated eq. (5.18),
and extract out the full supermomentum-conservation delta function. At this stage, we are left with the task of
integrating,

δ4
(

∑

i∈E

qA
i

)

δ4
(

∑

i∈E

q̃iB

)

qn−5q̃n−5

∫

d2ηP d
2η̃PA3L , (5.20)

where the two delta functions correspond to the overall supermomentum conservation, and E is the set of all external
legs of the full amplitude. The remaining integral has the solution,

∫

d2ηPd
2η̃PA3L = i(u1̂ − u2)(ũ1̂ − ũ2) , (5.21)

which can be re-written in terms of the q, q̃ as,

i

(

−
q1̂/pK/p2

q̃1̂
s1̂K

− q1̂q̃2 + q2q̃1̂ +
q2/pK/p1̂

q̃2

s2K

)

, (5.22)
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FIG. 4: A sample cut of the four-loop four-point amplitude.

where pK is an arbitrary null reference vector. The sewing of a three-point amplitude with a general tree amplitude
will thus result in the form,

δ4
(

∑

i∈E

qA
i

)

δ4
(

∑

i∈E

q̃iB

)

qn−5q̃n−5

(

−
q1̂/pK/p2

q̃1̂
s1̂K

− q1̂q̃2 + q2q̃1̂ +
q2/pK/p1̂

q̃2

s2K

)

, (5.23)

where all q, q̃s are in terms of external lines and q1̂ is the shifted q1 with z taking on the value at the pole.

Case (B):

For the case with no three-point subamplitudes, illustrated in fig. 3(B), we can always eliminate qP and q̃P from
the “R” amplitude, using the “L” delta functions. The Grassmann integral will then be of the form,

δ4
(

∑

i∈E

qA
i

)

δ4
(

∑

i∈E

q̃iB

)

f(q, q̃)

∫

d2ηPd
2η̃P δ

4

(

∑

i∈L

qC
i

)

δ4
(

∑

i∈L

q̃iD

)

. (5.24)

Focusing on the chiral integral, we proceed by splitting the delta function using eq. (5.12) on legs j and P , which
gives,

∫

d2ηP δ
4

(

∑

i∈L

qC
i

)

= sjP δ
2

(

ηja + s−1
jP 〈ja|/P (q1̂ + . . .+ qj−1)

)

= sjP δ
2

(

s−1
jP 〈ja|/P (q1̂ + . . .+ qj)

)

= −s−1
jP (q1̂ + . . .+ qj) /P /pj

/P (q1̂ + . . .+ qj)

= (q1̂ + . . .+ qj)
A(p1̂ + . . .+ pj)AB(q1̂ + . . .+ qj)

B , (5.25)

where P = p1̂ +p2 + · · ·+pj, and we used the identity (5.9) between the first and second lines. Likewise, the antichiral
integration contributes,

∫

d2η̃P δ
4

(

∑

i∈L

q̃iD

)

= (q̃1̂ + . . .+ q̃j)A(p1̂ + . . .+ pj)
AB(q̃1̂ + . . .+ q̃j)B . (5.26)

VI. MULTILOOP APPLICATIONS WITH MAXIMAL SUPERSYMMETRY

In this section we consider the construction of multiloop amplitudes in maximally supersymmetric Yang-Mills in
six dimensions. We consider the (1, 1) theory, which, under a dimensional reduction to four dimensions, is equivalent
to N = 4 sYM theory. After some general comments, we turn to a two-loop warmup before discussing four-point
amplitudes at four and six loops.
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FIG. 5: The three-particle cut of a two-loop four-point amplitude.

A. General considerations

In unitarity cuts, one must sum over states in multiple lines. The supersum then corresponds to integrating over
the η, η̃ coordinates of these lines. For example, when sewing the four-loop cut displayed in fig. 4, the sum over states
is implemented by the Grassmann integration,

∫ 7
∏

i=1

(

d2ηlid
2η̃li

)

A(1)
5 A(2)

4 A(3)
4 A(4)

5 , (6.1)

where the superscript A(j)
4 labels the four distinct tree amplitudes composing the cut.

The strategy for dealing with such supersums is similar to the strategy used at tree level; we use eq. (5.12) to
localize as many η integrals as possible. In cuts with no three-point subamplitudes, such as the cut in fig. 4, there
is a supermomentum delta function on each tree amplitude. Each delta function can be used to localize two pairs of
ηl, η̃l via eq. (5.12); in a cut with m tree amplitudes, a total of 2(m− 1) pair of ηl, η̃l can be localized in this manner,
with one overall δ4(

∑

E
q)δ4(

∑

E
q̃) extracted outside of the integral. We note that when solving the delta-function

constraints, care must be taken to avoid circular solutions.
In general, the fermionic delta functions will be insufficient to localize all of the η integrals; the remaining integrals

must be handled in a different manner. One approach is to expand the left-over integrand as a polynomial in ηli , η̃li

and interpret the fermionic integral as instructions to pick out the coefficient of
∏

i(ηli)
2(η̃li)

2. We will apply this
approach to a two-loop example in the next subsection.

Cuts that have three-point subamplitudes are generally more difficult, and may need to be handled on an ad hoc

basis. One can usually make progress by combining three-point subamplitudes into higher-point amplitudes, as was
done in the non-supersymmetric case in section IV. One can perform the remaining η integrals as before.

We note that for four-point loop amplitudes, after extracting out the overall supermomentum delta functions, the
number of remaining η, η̃s will always match the number of Grassmann integrations. Therefore, the four-point loop
amplitudes will depend on η, η̃ only through the supermomentum delta functions, i.e. they will be proportional to a
four-point tree superamplitude.

To illustrate these techniques we now work out a few examples. (The cut of fig. 4 is evaluated in some detail in
appendix A.)

B. Two-loop four-point example

We first evaluate the three-particle cut illustrated in fig. 5. The cut is given by sewing together two five-point tree
superamplitudes,

C2-loop =

∫ 3
∏

i=1

d2ηlid
2η̃li Atree

5L (p1, p2, l3, l2, l1)Atree
5R (p3, p4,−l1,−l2,−l3) . (6.2)
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We choose the following convenient representations for the five-point tree superamplitudes:

Atree
5L = i

δ4(
∑

L q)δ
4(
∑

L q̃)

sl3l2sl2l1sl11s12s2l3

{

qA
l3

(l2l1p1p2)
B

A q̃l3B + cyclic

+
1

2

[

qA
l3

∆̃L
l2A + qA

l1
∆̃L

1A + (ql1 + q1)
A∆̃L

2A + (chiral conjugate)
]

}

,

Atree
5R = i

δ4(
∑

R q)δ
4(
∑

R q̃)

sl1l2sl2l3sl33s34s4l1

{

qA
l1

(l2l3p3p4)
B

A q̃l1B + cyclic

+
1

2

[

−qA
l1

∆̃R
(−l2)A

− qA
l3

∆̃R
3A + (q3 − ql3)

A∆̃R
4A + (chiral conjugate)

]

}

, (6.3)

where the L,R superscript of the ∆’s denote with respect to which side of the cut they are defined. For example, we
have,

∆̃L
l2A = (l2l1p1p2 − l2p2p1l1)

B
A q̃l2B ,

∆̃R
(−l2)A

= −(l2l3p3p4 − l2p4p3l3)
B

A q̃l2B . (6.4)

As discussed previously, one can extract an overall supermomentum delta function δ4(
∑

E
q)δ4(

∑

E
q̃) outside of

the integral, leaving behind a degree eight delta function, which can be used to localize two pairs of ηs and η̃s. Here
we choose to localize ηl1 , ηl2 and their antichiral partners. Thus the fermionic delta functions from the two tree
amplitudes combine to give,

δ4
(

∑

L

q
)

δ4
(

∑

L

q̃
)

δ4
(

∑

R

q
)

δ4
(

∑

R

q̃
)

= δ4
(

∑

E

q
)

δ4
(

∑

E

q̃
)

s2l1l2

×δ2
(

ηl1a + s−1
l1l2

〈l1a|/l2(ql3 + q1 + q2)
)

δ2
(

ηl2b + s−1
l1l2

〈l2b|/l1(ql3 + q1 + q2)
)

×δ2
(

η̃ȧ
l1

+ s−1
l1l2

[lȧ1 |/l2(q̃l3 + q̃1 + q̃2)
)

δ2
(

η̃ḃ
l2

+ s−1
l1l2

[lḃ2|/l1(q̃l3 + q̃1 + q̃2)
)

, (6.5)

which is a direct application of eq. (5.12). From the above, one can immediately see that the delta function localizes
the d2ηlid

2η̃li integral in eq. (6.2) for i = 1, 2.
After factoring out the fermionic delta functions in A5LA5R, the remaining function is of Grassmann degree four,

and only terms proportional to (ηl3)
2(η̃l3)

2 can saturate the remaining Grassmann integrals. Keeping in mind that
ηl1 , ηl2 , η̃l1 , η̃l2 are localized through eq. (6.5), the contributing terms in the curly bracket in eq. (6.3) are,

{

qA
l3

(l2l1p1p2)
B

A q̃l3B + qA
l2

(l1p1p2l3)
B

A q̃l2B + qA
l1

(p1p2l3l2)
B

A q̃l1B +
1

2

[

qA
l3

∆̃L
l2A + q̃l3A∆LA

l2

]

}

×
{

qA
l1

(l2l3p3p4)
B

A q̃l1B + qA
l2

(l3p3p4l1)
B

A q̃l2B + qA
l3

(p3p4l1l2)
B

A q̃l3B − 1

2

[

qA
l1

∆̃R
(−l2)A

+ q̃lA∆RA
(−l2)

]

}

.

(6.6)

Thus performing the final d2ηl3d
2η̃l3 integration gives for eq. (6.2),

C2-loop =
is23Atree

4 (p1, p2, p3, p4)

s12(l3 + l2)4(l1 + p1)2(p2 + l3)2(l3 − p3)2(p4 − l1)2

×
{

〈l3|/l2/l1/p1/p2
+

/l1/p1/p2
/l3/l2/l1

(l1 + l2)2
+

/l2/l1/p1/p2
/l3/l2

(l1 + l2)2
|l3]

−1

2

[

〈l3|
(/l2/l1/p1/p2

−/l2/p2/p1
/l1)/l2/l1

(l1 + l2)2
|l3] − [l3|

(/l2/l1/p1/p2
−/l2/p2/p1

/l1)/l2/l1

(l1 + l2)2
|l3〉
]

}a

ȧ

×
{

〈l3|
/l2/l3/p3/p4

/l1/l2

(l1 + l2)2
+

/l1/l2/l3/p3/p4
/l1

(l1 + l2)2
+ /p3/p4

/l1/l2|l3]

+
1

2

[

〈l3|
(/l2/l3/p3/p4

−/l2/p4/p3
/l3)/l2/l1

(l1 + l2)2
|l3] − [l3|

(/l2/l3/p3/p4
−/l2/p4/p3

/l3)/l2/l1

(l1 + l2)2
|l3〉
]

} ȧ

a

. (6.7)
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FIG. 6: The eleven basic cuts decomposing a four-point four-loop amplitude into a product of tree amplitudes. Together with
ones involving two-particle cuts, these are the basic ones for determining a massless four-point four-loop amplitude, including
nonplanar contributions [18, 47]. The complete spanning set is given by taking all possible distinct permutations of cut and
external legs.

This expression can be cleaned up further, but for our purposes it is simplest to numerically evaluate it. We have
numerically checked that after dividing by the tree amplitude, this expression matches the analogous expression
obtained using four-dimensional cuts [46, 49], but extended into six dimensions. Since the four-dimensional expression
depends only on Lorentz dot products of momenta, this extension is carried out simply by treating the dot products
as six-dimensional ones.

C. Multiloop N = 4 super-Yang-Mills and N = 8 supergravity

Following the procedure described above, one can directly check the six-dimensional unitarity cuts of more com-
plicated multiloop N = 4 sYM amplitudes. Up to three loops, the four-gluon amplitude is known to be valid in D
dimensions (subject to mild power counting assumptions) [16, 17]. As a nontrivial application of the methods de-
scribed above, here we confirm that the complete four-loop four-particle amplitudes of N = 4 sYM theory computed
in ref. [47] are indeed valid for D ≤ 6. In that paper, the amplitude was given as a linear combination of 50 integrals
of the form,

stAtree
4

∫

(

4
∏

i=1

dDli
(2π)D

)

Nk(li, pi)
∏16

j=1 l
2
j

, (6.8)

where the numerator Nk is a polynomial of degree six in the loop and external momenta. Of these integrals, six are
planar and the rest nonplanar. In ref. [47], many of the terms in the numerators were explicitly determined using cuts
with D = 4 momenta and helicity states. Although a number of nontrivial checks were performed partially confirming
their validity in D > 4 dimensions, it is still useful to have a complete confirmation valid especially for D = 11/2,
which is the lowest dimension where an ultraviolet divergence can occur.

As explained in ref. [18], the validity of N = 4 sYM amplitudes in D dimensions implies that the corresponding
N = 8 supergravity amplitudes are valid as well. This follows from the construction of N = 8 supergravity amplitudes
from corresponding N = 4 sYM amplitudes using the unitarity method in conjunction with the KLT relations [57],
which are known to be valid in D dimensions. We therefore need only confirm the D = 6 validity of the N = 4
sYM amplitudes to confirm the result for N = 8 supergravity for 4 < D ≤ 6. A key conclusion of ref. [18] is that
the four-loop four-point amplitude of N = 8 supergravity then cannot diverge in dimensions lower than D = 11/2,
matching the behavior of N = 4 sYM theory.

As discussed in refs. [18, 47], any four-point four-loop amplitude of a massless theory can be completely determined
(up to scale-free integrals that integrate to zero in dimensional regularization) via a set of eleven basic cuts shown in
fig. 6 along with simpler ones containing two-particle cuts, not displayed. The complete spanning set is obtained by
considering all permutations of the legs of each constituent tree amplitude. This set is constructed by demanding that
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FIG. 7: A nontrivial cut of the planar four-point six-loop N = 4 sYM theory.

all potential terms are detectable in at least one cut. To carry out our six-dimensional evaluation, we compare the
cuts formed from the products of tree amplitudes against the corresponding cuts of the amplitudes as given in ref. [47].
In the latter form, after dividing by the tree amplitude, only Lorentz inner products remain in the amplitude, making
numerical comparisons in six dimensions straightforward. In appendix A, we give an explicit analytic evaluation of
the sample nonplanar cut shown in fig. 4.

More generally, after extracting an overall supermomentum-conservation delta function from the cuts, the remaining
delta functions localize most of the ηη̃ integration, leaving behind six, four, and two pairs of ηη̃ respectively for
diagrams (a), (b,c,d,e,g,j), and (f,h,i,k). These extra pairs of ηη̃s then saturate the remaining integration, as was the
case in the two-loop example above. This then gives us a result for the state sum of these cuts, which we evaluate
with six-dimensional kinematics constrained to satisfy the on-shell conditions.

We find appropriate numerical solutions to the cut conditions by sequentially building momenta that satisfy the
on-shell conditions of each of the constituent tree amplitudes in a cut. For a constituent n-point tree amplitude, we
need to impose momentum conservation and take the momenta on shell, p2

i = 0. For n− 2 of the legs, we can choose
arbitrary null vectors, imposing the momentum conservation constraints on the final two legs. We label the sum of
the arbitrary n− 2 momenta as P =

∑n−2
i pi. We then define pn−1 ≡

(

−P 2/2k · P
)

k, where k is an arbitrary null

vector. With this choice then pn ≡ pn−1 +K automatically satisfies the on-shell condition p2
n = 0. (It can happen

that momentum conservation constraints can lead to inconsistencies in this simple procedure, if a tree does not have
at least two unspecified legs. Although this can always be avoided in our case, we note that such inconsistencies can
be resolved by solving the cut conditions for groups of tree amplitudes instead of one by one.)

By systematically stepping through the spanning set of cuts described above, we confirm that for D ≤ 6 the full
amplitude is correctly constructed by the mostly four-dimensional evaluation of ref. [47], as expected.

Another interesting case is the four-point six-loop amplitude of N = 4 sYM theory. At six loops, the planar
amplitudes can be expressed as a linear combination of integrals similar to the four-loop form (6.8) [58], except that
the numerator Nk is a polynomial in the loop and external momenta of degree ten instead of degree six. In four
dimensions, any Gram determinant det(pi ·pj) vanishes for pi and pj corresponding to any five independent momenta,
since there can be no more than four linearly independent momenta. For the six-loop four-point amplitude we have a
total of nine independent external and loop momenta. Thus with four-dimensional momenta and spinors in the cuts,
the constructed amplitude is trivially invariant under the shifts,

Nm → Nm + am det(pi · pj) , (6.9)

although its form changes. The am are constants. If we impose dual conformal symmetry [7–9, 12], the planar
numerators are fixed with am = 0. What about higher dimensions? Iterated two-particle cuts are simple to evaluate
in D dimensions [46, 49], with the result that all am detectable in such cuts vanish. As a more nontrivial check, we
evaluated the cut shown in fig. 7 in six dimensions using the methods described above and numerically compared it
against the same cut obtained via four-dimensional methods [12, 38, 47] and extended into six dimensions. Because
this cut is composed of four- and five-point tree amplitudes, its evaluation in six dimensions is similar to the four-loop
cut described in appendix A. We find that am = 0 in six dimensions to match the cut fig. 7. Although we did not
check a spanning set of cuts, this result strongly suggests that all am vanish.

VII. DUAL CONFORMAL PROPERTIES IN HIGHER DIMENSIONS

The above results suggest that integrands of N = 4 sYM evaluated in six dimensions should have simple dual
conformal properties. If this were to hold, it would lead to important restrictions on the form of the integrands,
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guiding their construction in six dimensions, or equivalently in four dimensions but with masses.
In four dimensions, the dual conformal boost generators are [9],

Kµ =

n
∑

i=1

[

2xµ
i x

ν
i

∂

∂xν
i

− x2
i

∂

∂xiµ

]

, (7.1)

where µ = 0, 1, 2, 3, and the dual coordinates x are defined via,

xi,i+1 = xµ
i − xµ

i+1 = pµ
i . (7.2)

The principal constraint on amplitudes comes from the inversion symmetry xµ
i → xiµ/x

2
i . Since the integrals are

all dual translational invariant, they will also be dual conformal boost invariant as long as they are invariant under
inversion. This is because the conformal boost is a combination of translations and inversions. Under the inversion,
we have,

x2
ij →

x2
ij

x2
ix

2
j

, d4xi →
d4xi

x8
i

. (7.3)

We can extend this to six dimensions by adding extra terms to the generator, which in SO(1,3)×SO(2) notation, is

K̂µ = Kµ +
n
∑

i=1

[

2xµ
i

(

ni

∂

∂ni

+ ñi

∂

∂ñi

)

+ (n2
i + ñ2

i )
∂

∂xiµ

]

, (7.4)

where we explicitly include the sign from our choice of metric in the extra-dimensional components. The extra-
dimensional dual variables are

ni − ni+1 = p4
i , ñi − ñi+1 = p5

i .

This modification of the dual conformal generators is chosen so that the integrands maintain the same dual conformal
weight as in four dimensions. On the other hand, the integration measure does depend on the dimension,

d4xi →
d4xi

x̂8
i

, dni →
dni

x̂2
i

, dñi →
dñi

x̂2
i

, d6x̂i →
d6x̂i

x̂12
i

, (7.5)

where here the hats denote six-dimensional quantities, with x̂2
i = x2

i − n2
i − ñ2

i . To maintain the invariance of the
amplitude, we therefore should truncate the integration to four dimensions, which is equivalent to treating the extra-
dimensional components as fixed masses. Of course, even if we choose to integrate over the extra dimensions, the
fact that the integrands transform with a definite dual conformal weight puts severe restrictions on their form. The
SO(1,3)×SO(2) decomposition is especially convenient for treating the amplitudes as four-dimensional but containing
mass parameters, using the decomposition (2.17) of six-dimensional spinors into four-dimensional ones. This extension
of dual conformal properties to higher dimensions is thus related to the extension for the Higgs regulated case [48].

Note that eq. (7.4) gives simply the first four components of the six-dimensional dual conformal boost generator.
The observed form invariance of the four-point integrands (after dividing out the tree amplitude) suggests that we
can treat the generator in a fully covariant form, similar to eq. (7.1), except we allow the indices µ and ν to run over
all six components.

Furthermore, we note that the dual conformal boost generator can also be defined on the spinor variables. We start
with the form of the dual conformal boost generator defined on the dual coordinates, and modify it to act also on
spinors and to preserve the constraint equations that define the dual coordinates,

(xi − xi+1)
AB = pAB

i = λAa
i λB

ia ,

(xi − xi+1)AB = piAB = λ̃iAȧλ̃
ȧ
iB . (7.6)

This gives the generator in the full space (λ, λ̃, x),

K̂µ =

n
∑

j=1

[

2x̂µ
j x̂

ν
j

∂

∂x̂ν
j

− x̂2
j

∂

∂x̂jµ

+
1

2
λA

ja(σµ)AB(x̂j + x̂j+1)
BC ∂

∂λC
ja

+
1

2
λ̃jAȧ(σ̃µ)AB(x̂j + x̂j+1)BC

∂

∂λ̃jCȧ

]

. (7.7)
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As in D = 4, we expect the dual conformal properties to be more transparent for superamplitudes rather than
ordinary amplitudes [36]. It is not difficult to check that the four-point tree superamplitude transforms covariantly
under a six-dimensional extension of dual conformal transformations. Introducing the dual superspace coordinates,

θA
i − θA

i+1 = λAa
i ηia = qA

i , θ̃iA − θ̃i+1A = λ̃iAȧη̃
ȧ
i = q̃iA , (7.8)

the four-point tree-level superamplitude in dual superspace is

Atree
4 = −i δ

6(x̂1 − x̂5)δ
4(θ1 − θ5)δ

4(θ̃1 − θ̃5)

x̂2
13x̂

2
24

. (7.9)

Using the usual dual conformal-inversion properties of the supercoordinates,

θA
i → x̂iAB

x̂2
i

θB
i , θ̃iA → x̂AB

i

x̂2
i

θ̃iB, (7.10)

the four-point amplitude transforms as,

Atree
4 → (x̂2

1)
2(x̂2

1x̂
2
2x̂

2
3x̂

2
4)Atree

4 . (7.11)

The extra weight on x̂1 is due to the delta functions, which choose a specific point to enforce the cyclic identification.
It would of course be interesting to further study the implications of dual conformal transformations on higher-

dimensional integrands, especially at higher points. For example, one can show using BCFW recursion that under
dual conformal inversions for n ≥ 4, the six-dimensional superamplitudes behave as [59],

Atree
n → (x̂2

1)
2
(

n
∏

i=1

x̂2
i

)

Atree
n , (7.12)

where x̂1 is the special point taken to enforce momentum conservation in the dual space.

VIII. COMMENTS AND CONCLUSIONS

In this paper, we developed six-dimensional helicity [34] as a practical tool in unitarity-based calculations of loop
amplitudes. As simple illustrations we described the unitarity cuts of one-loop four-point amplitudes in QCD. As more
sophisticated examples, we also described multiloop amplitudes in N = 4 sYM theory, using also the DHS on-shell
superspace [43]. To illustrate this, we worked out the three-particle cut of a two-loop four-point amplitude in some
detail, before turning to higher-loop cases. Our results confirm that the four-loop four-point N = 4 sYM and N = 8
supergravity amplitudes obtained in refs. [18, 47] using mainly four-dimensional techniques are complete for D ≤ 6,
as expected.

There are a number of obvious further applications and studies that would be interesting to carry out. Our six-
dimensional approach can be reinterpreted as a massive approach, by expressing six-dimensional spinors and momenta
in terms of four-dimensional quantities, with the extra-dimensional pieces interpreted as mass terms. For one-loop
QCD amplitudes, this should give forms of the cuts similar to the massive approach for rational terms taken by
Badger [31]. It would be interesting to make the connection precise. More generally, it would, of course, be interesting
to apply the unitarity-based six-dimensional helicity method described here to cases of phenomenological interest in
QCD and to compare them to other approaches.

In general, the integrands of amplitudes can contain terms that vanish when loop momenta are set to D = 4, but are
nonvanishing in higher dimensions. This can make it dangerous to extrapolate results from cuts in four dimensions to
higher dimensions. Similarly, in a massive infrared regularization scheme [48], or when studying the Coulomb branch
of gauge theories, additional mass terms can be present. The six-dimensional helicity formalism is well suited for
systematically deriving such terms via unitarity. Interesting cases are two-loop N = 4 amplitudes at six and higher
points where we know such additional terms can appear [14]. Even at four points, the power counting in this theory
is such that starting at six loops contributions proportional to Gram determinants that vanish in four dimensions
but are non-vanishing in higher dimensions in principle can appear, though our results indicate that they do not.
The six-dimensional formalism may also shed light on the peculiar pattern of vanishing and non-vanishing integral
coefficients in MHV and non-MHV amplitudes at higher points in the N = 4 theory [60], because six-dimensional
helicity treats these cases in a unified way. In principle, it would be worthwhile to evaluate cuts using even higher
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dimensions, but six-dimensional methods push any potential lost terms to rather large numbers of loops or legs. For
example, covariance and simple power counting considerations suggest that four-point amplitudes in N = 4 sYM
theory will be free of terms that can vanish in six dimensions through at least eight loops.

We noted that the expressions for the four-point planar integrands through at least six loops do not appear to differ
between four and six dimensions. This suggests that the integrands of amplitudes in higher dimensions will also be
constrained by extensions of dual conformal symmetry. Based on this, we proposed a six-dimensional extension of
the dual conformal symmetry generators. We also noted that the four-point tree amplitudes of N = 4 sYM theory
have simple properties under this extension, and proposed the general property at n points [59]. Our six-dimensional
extension is connected to a recently proposed extension of the dual conformal generators to massive amplitudes [48].
It is also likely connected to a ten-dimensional extension [61]. More generally, it seems likely that extensions of the
four-dimensional structures identified in planar loop integrands [15] will restrict the form in higher dimensions as well.
The BCJ relations between planar and nonplanar contributions [4, 50] then suggest that nonplanar integrands will
also be restricted by extensions of the four-dimensional structures. This warrants further study, especially for larger
numbers of external legs.

In summary, six-dimensional helicity and its associated on-shell superspace are additional useful tools both for
carrying out loop calculations in conjunction with the unitarity method and for uncovering new structures in scattering
amplitudes.
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Appendix A: An Analytic Four-Loop Cut

In this appendix, we present a nontrivial cut of the four-loop four-point amplitude of N = 4 sYM. In particular, we
analytically evaluate the cut shown in fig. 4, which is a nonplanar permutation of the cut (k) in fig. 6. Since this cut
consists of only four- and five-point subamplitudes, the calculation is not significantly more difficult than the two-loop
example in section VI B. The cut is evaluated by carrying out the Grassmann integration,

C4-loop =

∫
( 7
∏

i=1

d2ηlid
2η̃li

)

Atree
5 (p1, p2, l1, l2, l3)Atree

4 (−l1,−l2, l4, l5)

×Atree
4 (−l4,−l5, l6, l7)Atree

5 (p3, p4,−l3,−l6,−l7) . (A1)

Here we have seven on-shell internal momenta labeled li, and four component tree amplitudes. In this cut, we can
use the supermomentum delta functions to localize six of the seven internal supercoordinates ηli , η̃li . The remaining
supercoordinate integration is handled in the same way as in the example of section VI B.

A solution to the supercoordinate delta-function constraints is

ql1 → −s−1
l1l2

/l1/l2ql3 , q̃l1 → −s−1
l1l1

/l1/l2q̃l3 ,

ql2 → −s−1
l1l2

/l2/l1ql3 , q̃l2 → −s−1
l1l2

/l2/l1q̃l3 ,

ql4 → −s−1
l4l5

/l4/l5ql3 , q̃l4 → −s−1
l4l5

/l4/l5q̃l3 ,

ql5 → −s−1
l4l5

/l5/l4ql3 , q̃l5 → −s−1
l4l5

/l5/l4q̃l3 ,

ql6 → −s−1
l6l7

/l6/l7ql3 , q̃l6 → −s−1
l6l7

/l6/l7q̃l3 ,

ql7 → −s−1
l6l7

/l7/l6ql3 , q̃l7 → −s−1
l6l7

/l7/l6q̃l3 , (A2)

where we have ignored all dependence on {q1, q2, q3, q4}, since these will drop out after the final ηl3 integration. As
usual, we take the Mandelstam invariants to be slilj = (li + lj)

2. Because of extra factors of these invariants coming
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from the Grassmann integrations — seen in eq. (6.5) — we must also multiply the final cut by s2l1l2
s2l4l5

s2l6l7
. The rest

of the calculation is similar to the derivation of eq. (6.7), giving,

C4-loop =
s23(l4 + l5)

2(l6 + l7)
2Atree

4 (p1, p2, p3, p4)
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× 〈la3 |
(
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/l1/l2 +
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−
/l1/l2(/l3/p1/p2

/l1 −/l3/l1/p2/p1) − (/l1/p2/p1
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/l1/l3)/l2/l1

2(l1 + l2)2

)

|l3ȧ]
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/l3/l6/l7 +/l6/l7/p3/p4
/l3/l6

(l6 + l7)2

+
(/l7/p3/p4

/l3 −/l7/l3/p4/p3
)/l7/l6 −/l6/l7(/l3/p4/p3

/l7 − /p3/p4
/l3/l7)

2(l6 + l7)2

)

|lȧ3 ] . (A3)

This expression is just a gamma trace, and although it appears to be chiral, the γ7 term in the trace actually drops
out. In fact, the five-point tree amplitude itself is non-chiral, although this property is not manifest in the present
form.

One can compare this to the cut of the amplitude derived in ref. [47] using (mostly) four-dimensional methods,

C4-loop =
s12s23Atree

4 (p1, p2, p3, p4)

(p2 + l1)2(p3 − l7)2(l1 − l5)2(l4 − l7)2

×
(

s212(l2 − l6)
2

(l2 + l3)2(l3 + l6)2
+

s23(l4 + l5)
4

(p1 + l3)2(p4 − l3)2

+
s12(l4 + l5)

2(p1 + l3 + l6)
2

(p1 + l3)2(l3 + l6)2
+
s12(l4 + l5)

2(p4 − l2 − l3)
2

(p4 − l3)2(l2 + l3)2

)

. (A4)

We have evaluated these two expressions numerically using six-dimensional momenta to verify their equality.

Appendix B: Auxiliary variables at three points

In this appendix, we summarize the construction of the variables needed to define the three-point amplitudes in
eqs. (2.22) and (5.7), as given in ref. [34]. At three points, momentum conservation and on-shell conditions mean
that the Lorentz products of the momenta all vanish. This gives a vanishing determinant of the Lorentz-invariant
inner product of a fundamental and an anti-fundamental spinor, i.e. the 2×2 matrix 〈ia|jȧ] has rank one, so that
〈ia|jȧ] = uiaũjȧ. Consistently defining these SU(2) spinors for all Lorentz invariants, we have (for {i, j} cyclically
ordered),

〈ia|jȧ] = uiaũjȧ , 〈ja|iȧ] = −ujaũiȧ . (B1)

One important property of these SU(2) spinors can be derived from momentum conservation,

uc
1〈1c| = uc

2〈2c| = uc
3〈3c| , ũ1ċ[1

ċ| = ũ2ċ[2
ċ| = ũ3ċ[3

ċ| . (B2)

Ref. [34] also defines a pseudoinverse of these spinors,

uawb − ubwa = ǫab , ũȧw̃ḃ − ũḃw̃ȧ = ǫȧḃ , (B3)

subject to the additional condition,

wa
1λ

A
1a + wa

2λ
A
2a + wa

3λ
A
3a = 0 , w̃1ȧλ̃

ȧ
1A + w̃2ȧλ̃

ȧ
2A + w̃3ȧλ̃

ȧ
3A = 0 . (B4)
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