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Abstract

We consider a relativistic plasma containing charged chiral fermions in an exter-
nal magnetic field, e.g a chirally symmetric quark-gluon plasma created in relativis-
tic heavy ion collisions. We show that triangle anomalies imply the existence of a
new type of collective gapless excitation in this system that stems from the coupling
between the density waves of the electric and chiral charges; we call it ”the Chiral
Magnetic Wave” (CMW). The CMW exists even in a neutral plasma, i.e. in the
absence of the axial and vector chemical potentials. We demonstrate the existence
of CMW and study its properties using three different approaches: i) relativistic
magnetohydrodynamics; ii) dimensional reduction to (1 + 1) Sine-Gordon model,
appropriate in a strong magnetic field; and iii) holographic QCD (Sakai-Sugimoto
model), appropriate at strong coupling. We also briefly discuss the phenomenolog-
ical implications of the CMW for heavy ion collisions.
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1 Introduction

Recently, the rôle of triangle anomalies in the dynamics of relativistic plasmas in magnetic

field and/or at finite angular momentum has excited considerable attention. Such plasmas

are created for example in relativistic heavy ion collisions at RHIC and LHC where the

initial energy density significantly exceeds the threshold for the production of decofined

and chirally symmetric quark-gluon plasma, and the coherent electromagnetic fields of

colliding ions create a pulse of very intense magnetic field. Of particular interest are the

following two phenomena caused in the quark-gluon plasma by the axial anomaly: the

Chiral Magnetic Effect (CME) and the Chiral Separation Effect (CSE).

The CME is the phenomenon of electric charge separation along the axis of the applied

magnetic field in the presence of fluctuating topological charge [1, 2, 3, 4, 5]. The CME

in QCD coupled to electromagnetism assumes a chirality asymmetry between left- and

right-handed quarks, parametrized by an axial chemical potential µA. Such an asymmetry

can arise if there is an asymmetry between the topology-changing transitions early in

the heavy ion collision. In particular, at finite axial chemical potential µA, an external

magnetic field induces the vector current ji = ψ̄γiψ:

~jV =
Nc e

2π2
µA

~B; (1.1)

in our present convention the current of electric charge is ejV . Closely related phenomena

have been discussed in the physics of primordial electroweak plasma [6] and quantum

wires [7]. While the original derivation used the weak coupling methods, the origin of

the effect is essentially topological and so the CME is not renormalized even at strong

coupling, as was shown by the holographic methods [8, 9, 10, 11, 12, 13]. The evidence

for the CME has been found in lattice QCD coupled to electromagnetism, both within

the quenched approximation [14, 15, 16] and with light domain wall fermions [17].

Recently, STAR [18, 19] and PHENIX [20, 21] Collaborations at Relativistic Heavy

Ion Collider reported experimental observation of charge asymmetry fluctuations. While

the interpretation of the observed effect is still under intense discussion, the fluctuations

in charge asymmetry have been predicted [1] to occur in heavy ion collisions due to the

CME. Additional tests include the correlation between the electric and baryon charge

asymmetries [22]. There is an active ongoing discussion of the microscopic mechanisms of

CME [23, 24, 25, 26, 27, 28, 29] and of the quantitative estimates of the expected charge

asymmetries and of possible backgrounds – see e.g. [30, 31, 32, 33, 34, 35, 36, 37, 38].
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The Chiral Separation Effect (CSE) refers to the separation of chiral charge along the

axis of external magnetic field at finite density of vector charge (e.g. at finite baryon

number density) [39, 40, 41]. The resulting axial current is given by

~jA =
Nc e

2π2
µV

~B, (1.2)

where µV is the vector chemical potential. The close connection between CME and CSE

can be established for example by the method of dimensional reduction appropriate in

the case of a strong magnetic field [42]: the simple relations J0
V = J1

A, J
0
A = J1

V between

the vector JV and axial JA currents in the dimensionally reduced (1 + 1) theory imply

that the density of baryon charge must induce the axial current, and the density of axial

charge must induce the current of electric charge (CME); see also Ref.[43]. Since in the

strong coupling, short mean free path, regime the plasma represents a fluid (for a recent

review, see [44]), a number of recent studies initiated by [41] address the effects of triangle

anomalies in hydrodynamics, e.g. [45, 46, 47, 48].

The central observation of the present paper is the following: the connection between

the CME and CSE implies the existence of a new type of a collective excitation in the

plasma. This excitation stems from the coupling between the density waves of electric and

chiral charge. Let us illustrate this statement by a qualitative argument, to be followed by

more rigorous derivations in sections 2, 3, and 4. Consider a local fluctuation of electric

charge density; according to eq.(1.2) it will induce a local fluctuation of axial current.

This fluctuation of axial current would in turn induce a local fluctuation of the axial

chemical potential, and thus according to eq.(1.1) a fluctuation of electric current. The

resulting fluctuation of electric charge density completes the cycle leading to the excitation

that combines the density waves of electric and chiral charges; we will call it the ”chiral

magnetic wave” (CMW).

Apart from being interesting in its own right, the existence of CMW has important

implications for the phenomenology of heavy ion collisions. The CME relies on the fluctu-

ation of the axial charge density and so the net effect is expected to vanish when averaged

over many events; one thus relies on measuring the fluctuations of charge asymmetries

[1, 49]. On the other hand, since the quark-gluon plasma produced in heavy ion colli-

sions possesses non-zero value of the baryon chemical potential, the CSE can lead to a

non-vanishing axial current even after the summation over events is performed. However

unfortunately a direct detection of the axial current in heavy ion collisions is very chal-

lenging. The CMW should exist even in a neutral plasma and so can induce interesting
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observable effects in heavy ion collisions even after the sum over many events is performed;

we will return to this topic in the Summary.

The paper is organized as follows. In section 2 we provide a derivation of the CMW

based on relativistic magnetohydrodynamics. In section 3 we consider the case of a strong

magnetic field and perform a dimensional reduction; in this case the dynamics of CMW

is described by the Sine-Gordon equation. In section 4 we describe the CMW at strong

coupling using the holographic methods within the Sakai-Sugimoto model. When the

electromagnetism is treated dynamically, the CMW mixes with the longitudinal charge

wave in the plasma – the plasmon. We consider the mixing of CMW with plasmons in

section 6. Finally, in the Summary we outline the main result of the paper and discuss

the directions for future studies.

2 Chiral magnetic wave in magnetohydrodynamics

Let us now proceed with the derivation sketched out in the introduction. We will see that

there indeed exists a new gapless excitation in a deconfined QCD plasma that propagates

along the applied magnetic field; it arises as a dynamical consequence of the underlying

triangle anomaly of chiral symmetry. This new excitation is a long wavelength hydrody-

namic mode with a dispersion relation that looks like that of sound waves,

ω = ∓vχk − iDLk
2 + · · · ; (2.3)

however, these propagating modes carry both electric and chiral charges. Since these

modes would not exist if it were not for the applied magnetic field or the underlying

triangle anomaly, we will call them ”the chiral magnetic waves” (CMW). They give rise

to several important new transport properties of hot QCD plasma, and affect its ther-

modynamics; we will further discuss this in section 6. We note that CMW exists even if

the background plasma is neutral under either baryonic or axial symmetry, which should

make it a generic phenomenon in relativistic plasmas.

For simplicity, let us consider single flavor (NF = 1) massless QCD with chiral sym-

metry U(1)L × U(1)R, or equivalently U(1)V × U(1)A where V (A) denotes vector(axial)

respectively. The axial symmetry U(1)A suffers from both QCD anomaly with gluonic

topological density and from the triangle anomaly of global chiral symmetry. The latter

is in fact not harmful to the conservation of U(1)A as long as one does not elevate the

global chiral symmetry to a gauged one, while the former indeed breaks the axial U(1)A
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symmetry by quantum fluctuations of topological density.

Our starting point is the anomalous generation of vector and axial currents along the

applied magnetic field in the presence of axial (vector) chemical potential µA (µV ), as

given by eqs. (1.1) and (1.2). We will now re-write these equations in a more suggestive

matrix form as
(

~jV
~jA

)

=
Nc e ~B

2π2

(

0 1
1 0

)(

µV

µA

)

. (2.4)

We are interested in small linearized fluctuations of the chiral currents jA and jV in the

plasma; let us assume that this plasma is neutral, without any background charge density

on average. We may then perform a linear expansion of the chemical potentials with

respect to small charge densities (j0
V , j

0
A),

(

µV

µA

)

=

(

∂µV

∂j0

V

∂µV

∂j0

A

∂µA

∂j0

V

∂µA

∂j0

A

)

(

j0
V

j0
A

)

+O
(

(

j0
)2
)

≡
(

αV V αV A

αAV αAA

)(

j0
V

j0
A

)

+O
(

(

j0
)2
)

.

(2.5)

Remembering that

µi =
∂F
∂j0

i

, i = V,A (2.6)

where F is the Helmholtz free energy, the α’s appearing above are nothing but the sus-

ceptibility matrices of vector/axial charge densities,

αij =
∂2F
∂j0

i ∂j
0
j

. (2.7)

Considering the parity P transformation V → −V and A→ A, one concludes that parity

invariance of QCD implies that αV A = αAV = 0 in the neutral plasma, µV = µA = 0.

Moreover, a simple large Nc counting shows that

αV V ∼ αAA ∼ O
(

1

Nc

)

, (2.8)

while their difference in a deconfined and chirally symmetric phase is subleading

αV V − αAA ∼ O
(

1

N2
c

)

; (2.9)

we will confirm this within the holographic large Nc Sakai-Sugimoto model in section 4.

Independently of this, the vanishing of the difference αV V −αAA can be taken as a signal

of chiral symmetry restoration. Therefore, we expect it to be a good approximation to

let αV V = αAA ≡ α in the chirally symmetric phase; this leads us to
(

~jV
~jA

)

=
Nc e ~Bα

2π2

(

0 1
1 0

)(

j0
V

j0
A

)

. (2.10)
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It is natural to diagonalize the equation above by going to the chiral basis

jµ
L ≡ 1

2
(jµ

V − jµ
A) , jµ

R ≡ 1

2
(jµ

V + jµ
A) . (2.11)

In terms of chiral currents, our previous assumptions and the definition of α’s are easily

translated to

α =
1

2

(

∂µL

∂j0
L

)

=
1

2

(

∂2F
∂j0

L∂j
0
L

)

=
1

2

(

∂µR

∂j0
R

)

=
1

2

(

∂2F
∂j0

R∂j
0
R

)

. (2.12)

The (2.10) then leads to two decoupled relations

~jL,R = ∓
(

Nce ~Bα

2π2

)

j0
L,R , (2.13)

where one should keep in mind the definite sign in front of the right-hand side depending

on the chirality of the currents.

One can view the above expression as the leading constitutive equation for the currents

in the long wavelength derivative expansion of hydrodynamics. Indeed, our starting point

(1.1,1.2) is strictly valid only when the variation of chemical potentials is sufficiently

slow; for a finite frequency/momentum these expression gets modified resulting in fre-

quency/momentum dependent chiral magnetic conductivity [50, 8, 24, 32]. The equation

(2.13) is the first leading term in the derivative expansion, while the next leading-order cor-

rection to the chiral magnetic conductivity will be ∂2 or ω2 ∼ k2 in frequency/momentum

space. However, there is an important first-order derivative term in any constitutive equa-

tion of conserved current: a diffusion term −D~∇j0, with a diffusion constant D. In our

case, we will be interested only in the waves propagating along the magnetic field direction

which we call longitudinal; thus on general grounds, the constitutive relation including

the next leading-order diffusion term reads as

~jL,R = ∓
(

Nc e ~Bα

2π2

)

j0
L,R −DL

~B( ~B · ~∇)

B2
j0
L,R + · · · , (2.14)

with a longitudinal diffusion constant DL. Although we discuss only longitudinal dynam-

ics in this paper, it would also be interesting to study the transverse dynamics with the

transverse diffusion constant DT .

A similar constitutive equation was written previously by Son and Surowka [41]. There

is however one point that will appear important for us: while Ref.[41] considers a weak

magnetic field B and treats it in the linear approximation, we are claiming that (2.13)
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and (2.14) are valid for arbitrary strength of eB non-perturbatively. This is equivalent

to the validity of our starting point (1.1),(1.2) for arbitrarily large eB, which is not at

all trivial and is a consequence of the absence of corrections to the axial anomaly. It is

also important to note that although (1.1),(1.2) look linear in eB, this linearity is only

apparent. Given a fixed density j0
V,A, the chemical potentials µV,A in general may well

depend on the dynamics of underlying microscopic theory, such as coupling constants,

temperature, as well as magnetic field eB non-linearly, so that the currents in (1.1),(1.2)

can in fact be very non-linear in these parameters, see e.g. [51, 52, 53]. The statement

of (1.1),(1.2) is that these dependencies can be absorbed into the chemical potentials

µV,A. Therefore, one expects that α and DL are in general non-linear functions of eB,

temperature T , etc. In particular, they would also depend on the coupling constant,

so that it is meaningful to study them in the strong coupling regime via holographic

QCD as we do in our section 4. Let us mention Ref.[54] that presents a diagrammatic

proof of (1.1),(1.2) perturbatively in the coupling constant, and Ref.[10] that proved this

relation in the Sakai-Sugimoto model using the two-derivative approximation. We will

present a strong coupling proof with full DBI action of holographic QCD in section 4 with

arbitrary strength of eB, which presumably includes non-linear effects of derivatives as

well. Therefore we expect that the equations (1.1),(1.2) and hence (2.14) hold universally.

Our next step is to combine (2.14) with the conservation law ∂µj
µ
L,R = 0. We take

~B = Bx̂1 and consider only longitudinal gradient ∂1, which results in

(

∂0 ∓
NceBα

2π2
∂1 −DL∂

2
1

)

j0
L,R = 0 . (2.15)

This describes a directional wave, or chiral wave, of charge densities whose direction of

motion is correlated with its chirality. The velocity is given by

vχ =
NceBα

2π2
=
NceB

4π2

(

∂µL

∂j0
L

)

=
NceB

4π2

(

∂µR

∂j0
R

)

. (2.16)

As we discussed in the previous paragraph, one expects that vχ and DL are non-trivial

functions of eB, T , and the coupling constant, so they are interesting dynamical quantities

to compute in any model. In frequency/momentum space, the above equation takes the

form

ω = ∓vχk − iDLk
2 + · · · , (2.17)

as a hydrodynamic dispersion relation. Our main observation is the new first term in

the dispersion relation which makes the mode propagating instead of simply diffusing. It
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exists only if 1) triangle anomaly exists and 2) there is a background magnetic field. We

stress that this new chiral mode of electric and chiral charge transport is present even if

the plasma is neutral on average.

3 Chiral magnetic wave in strong magnetic field:

dimensional reduction to (1 + 1) Sine-Gordon prob-

lem

The expression (2.16) for the velocity vχ of the Chiral Magnetic Wave (CMW) shows that

vχ ∼ eB. What happens when eB becomes large? We will now show that in the limit

eB → ∞ the velocity vχ stays finite and reaches the velocity of light. To understand

this, let us first examine the spectrum of charged fermions in magnetic field; for massless

fermions, the energies of Landau levels are given by

En =

√

2eB(n+
1

2
− sz) + p2

z; (3.18)

we assume that magnetic field ~B is directed along the z axis. Note that the lowest Landau

level (LLL) with zero energy (at vanishing momentum pz) is not spin-degenerate, and all

excited Landau levels are – therefore the net chirality sz · pz is carried only by the LLLs.

When magnetic field is large compared to the temperature T , eB ≫ T 2, the fermions

stay ”frozen” in the LLL and the transverse and longitudinal (along ~z) dynamics are inde-

pendent. In this case one can perform a dimensional reduction to the (1+1) dimensional

theory where the only allowed direction of motion is along the magnetic field. The trans-

verse density of states is given by eB/(2π), the density of LLs in the transverse plane.

The longitudinal phase space density for a Fermi-momentum is simply pF/(2π). There-

fore for the density of Nc left-handed fermions j0
L with pF = µL (for massless particles the

Fermi-momentum and the chemical potential µ are equal) is

j0
L = Nc

eB

2π

µL

2π
, (3.19)

and the derivative is given by
∂µL

∂j0
L

=
1

Nc

4π2

eB
. (3.20)

Substituting this expression into (2.16), we obtain

vχ = 1; (3.21)
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therefore in the limit of strong magnetic field eB ≫ T 2 the CMW indeed propagates with

the velocity of light.

We can deduce a more detailed information about the dynamics of the CMW in strong

magnetic field by making use of bosonization procedure. As is well known, bosonization

approach is very powerful in the studies of (1 + 1) dimensional systems [55, 56]. This is

easy to understand as in one spatial dimension the produced fermion and an anti-fermion

never separate and propagate together as a composite bosonic excitation – even if they

do not interact at all!

The conservation of vector current ∂µj
µ
V = 0 can be ensured by introducing a boson

field ϕ and choosing

jµ
V =

1√
π
ǫµν∂νϕ; (3.22)

this way the vector current is always conserved independently of the equations of motion.

The corresponding choice for the axial current is

jµ
A = ǫµνjV

ν =
1√
π
∂µϕ. (3.23)

For zero quark mass and in the absence of background electric field, the axial current

should be conserved:

∂µj
µ
A = �ϕ = 0. (3.24)

Therefore the conservation of axial current leads to the wave equation for the bosonic

excitation ϕ. The variation of ϕ in space and time causes variations of both charge and

chiral densities; therefore it is natural to identify the wave defined by (3.24) with the

CMW. Since (for massless quarks) there is no mass term in (3.24), this CMW propagates

with the velocity of light.

It is convenient to split the field ϕ into left- and right-moving components:

ϕ(x, t) = ϕL(x− vt) + ϕR(x+ vt); (3.25)

in terms of these fields the original fermion fields are

ΨR(x− vt) =
1√
2π

e−i
√

4πϕR(x−vt); ΨL(x+ vt) =
1√
2π

ei
√

4πϕL(x+vt). (3.26)

Upon quantization of the boson fields, the fermions (3.26) represent coherent states of

ϕR, ϕL. Viceversa, these boson fields describe the collective electric and chiral charge

density fluctuations of the underlying fermion quark fields.
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(a) (b)

SU(N SU(NU(1)U(1)
A V F )A )

VF

B B

Figure 1: Anomalous triangle diagrams of chiral magnetic waves for (a) abelian and (b)
non-abelian flavor symmetries in the presence of external magnetic field B. The quark
lines are dressed propagators including the background magnetic field.

The quark mass term in the original Lagrangian can be re-written with the help of

(3.26) in the following form:

MΨ̄Ψ = M(Ψ̄RΨL + Ψ̄LΨR) =
M

π
cos
(√

4πϕ
)

, (3.27)

and leads to the interaction term for bosons; the bosonic Lagrangian thus describes the

Sine-Gordon theory. This correspondence between the fermionic and bosonic description

has been discovered by Coleman [55] and Mandelstam [56]. The kinks of the Sine-Gordon

theory describe the fermions, and the fluctuations of the boson field - collective fermion–

anti-fermion excitations. Coleman’s theorem [57] forbids spontaneous breaking of a con-

tinuous symmetry in (1 + 1) dimensions. The underlying reason for this no-go theorem

is the presence of strong infra-red fluctuations that dominate two-point functions and

destroy the long-range order in two dimensions. This means that the massless (in the

limit of massless quarks) boson ϕ is not a Goldstone boson∗. This is consistent with our

interpretation of the field ϕ as of a collective density wave of electric and chiral charges.

At finite density of baryon or chiral charge, this density wave propagates on top of a ”chi-

ral spiral” [59] – the winding configuration of the background field ϕ̄ causing the chiral

magnetic effect in (1 + 1) dimensional description [42, 43].

∗There exists however a way around Coleman’s theorem uncovered by Witten [58]: for N -component
field at N → ∞, when the number of degrees of freedom diverges at each point, the two-point functions
can exhibit long-range order and the Goldstone phenomenon can still be realized.
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One can also generalize the above to non-abelian version of chiral magnetic waves.

As Figure.1 illustrates, essentially the same type of triangle diagrams for mixed U(1)V ×
SU(NF )V × SU(NF )A would result in

(

~ja
V
~ja

A

)

=
Nce ~Bα

2π2

(

0 1
1 0

)(

j0a
V

j0a
A

)

, (3.28)

for non-abelian SU(NF ) components of currents jµ
V,A = jµa

V,At
a with trF (tatb) = 1

2
δab.

One then gets to the same conclusion on the emergence of the chiral/directional CMWs

for each non-abelian component of SU(NF ). Upon the 1+1 dimensional reduction with

strong magnetic field, these non-abelian chiral magnetic waves should be described by

non-abelian bosonization [60] of SU(NF ) symmetry. More precisely, the theory of NF

Dirac fermions in fundamental representation of SU(Nc) in bosonized description can be

represented as

L = NcL (SU(NF )) + L (U(1)) +NFL (SU(Nc)) , (3.29)

where L(G) represents the Wess-Zumino-Witten model of group G with level 1 [60]. After

integrating over QCD SU(Nc) dynamics, one is left with the first two pieces as a low

energy effective theory [61, 62, 63, 64]. The U(1) part is what we have discussed above,

while the non-abelian SU(NF ) part describes the non-abelian chiral magnetic wave as a

propagating group field g(x) ∈ SU(NF ).

4 Chiral magnetic wave in holographic QCD

In this section, we intend to study chiral magnetic wave at strong coupling in the frame-

work of holographic QCD, particularly using the model by Sakai and Sugimoto [65]. The

Sakai-Sugimoto model is a right place to look for the phenomenon because it includes

the relevant triangle anomalies of QCD chiral symmetry in terms of 5D Chern-Simons

terms and the existence of chiral magnetic wave is robust as long as the right anomalies

exist. What is non-trivial will be the details of dispersion relations such as wave velocity

and diffusion constant, which do depend on the strong dynamics and the stength of the

applied magnetic field.

The Sakai-Sugimoto model in deconfined phase consists of two separated D8 and D8

branes that touch the black hole horizon of the background geometry as shown in Figure

2. This geometric separation of two probe branes correctly indicates that interactions be-

tween left-handed quarks and right-handed quarks are sub-leading in large Nc expansion,

10



D8 bar Brane

D8 Brane

X_4

Black−hole horizon

Figure 2: A schematic picture ofD8−D8 branes in deconfined phase of the Sakai-Sugimoto
model.

when there is no chiral condensate in the deconfined phase. Because of this decoupling,

one can study dynamics of each D8 probe brane independently at least in leading order

approximation. The background geometry is a warped product of a 5D black hole and

S1 × S4 where D8/D8 branes are separated along S1. They wrap all other dimensions

except S1 to make up 9 dimensional world-volume on which the action is given by a

Dirac-Born-Infeld action plus a Chern-Simons term;

SD8/D8 = −µ8

∫

d9ξ e−φ
√

det (g∗ + 2πl2sF ) ∓ µ8 (2πl2s)
3

3!

∫

FRR
4 ∧A ∧ F ∧ F , (4.30)

with µp = (2π)−pl
−(p+1)
s . After integrating over S4, one arrives at an effective 5 dimen-

sional world-volume action of D8/D8 branes embedded in the 5 dimensional black hole

space-time of the metric

ds2
5D =

(

U

R

)
3

2

(

−f(U)dt2 +

3
∑

i=1

(

dxi
)2

)

+ 2dUdt , f(U) = 1 −
(

UT

U

)3

, (4.31)

where U is the holographic direction whose UV(IR) boundary is sitting at U → ∞(U =

UT ), and the metric is written in Eddington-Finkelstein coordinate. Note that Eddington-

Finkelstein coordinate is suitable to describe future event horizon in a smooth manner,

and the in-going boundary conditions of perturbed modes at the future horizon reduce to

simple regularity in this coordinate. The temperature T of the dual 4 dimensional QCD
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plasma is related to the parameters in the above by

T =
3

4π

(

UT

R3

)
1

2

, R3 = πgsNcl
3
s . (4.32)

The resulting 5 dimensional world-volume action of the probe brane is

SD8/D8 = −CR 9

4

∫

d4xdU U
1

4

√

det (g∗5D + 2πl2sF )

∓ Nc

96π2

∫

d4xdU ǫMNPQRAMFNPFQR , C =
N

1

2

c

3 · 25π
11

2 g
1

2

s l
15

2

s

, (4.33)

where the sign of the last Chern-Simons term depends on the chirality of the probeD8/D8

branes. The ǫ-symbol above is numerical one. It is straightforward to write down the

equation of motion of the world-volume gauge field AM from the above action, which

reads as

CR
9

4πl2s ∂N

[

U
1

4

√

det (g∗ + 2πl2sF )
(

(

g∗ + 2πl2sF
)−1
)[MN ]

]

∓ Nc

32π2
ǫMNPQRFNPFQR = 0,

(4.34)

where [MN ] = MN − NM is anti-symmetrization. In deriving the above as well as for

later convenience, it is useful to be reminded of the following expansion

√

det (1 + δA) = 1 +
1

2
tr (δA) +

1

8
[tr (δA)]2 − 1

4
tr
(

(δA)2)+ O
(

(δA)3) . (4.35)

For our purpose of studying chiral magnetic wave, we first need to construct a back-

ground solution of having a constant magnetic field of arbitrary strength pointing, say, x3

direction. It is in fact easy to show that the trivially constant F12 ≡ B solves both Bianchi

identity and the equation of motion (4.34), so the holographic background configuration

of a constant B will be our starting point of looking for a signal of chiral magnetic wave.

In making contact between our D8/D8 branes and the QCD chiral symmetry, we work in

the case of NF = 1 for simplicity, neglecting U(1)A-anomaly induced by gluons as a lead-

ing large Nc approximation. This is appropriate as long as we focus on triagle anomalies

which are encoded in the 5D Chern-Simons terms in holographic QCD. Therefore, chiral

symmetry is U(1)L × U(1)R, and D8(D8)-brane dynamics captures U(1)L(U(1)R) chiral

dynamics of QCD holographically. The electromagnetism lies in the diagonal combination

of U(1)L and U(1)R, while axial symmetry is the other orthogonal combination, so one

has a dictionary

eAEM =
1

2
(AL + AR) , Aa =

1

2
(−AL + AR) , (4.36)
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where AL(AR) is the external potential that couples to the chiral current JL(JR), and e

is the electromagnetic coupling constant. Therefore, having a constant electromagnetic

B means having a constant F12 on each D8 and D8 brane with

FD8
12 = FD8

12 = eB , (4.37)

and we will assume this in the following.

Our next task is to expand linearly around this background to study hydrodynam-

ics of longitudinal charge/current fluctuations. As we discuss in previous sections, these

longitudinal charge/current fluctuations would have had leading diffusive dispersion re-

lation ω ∼ −iDk2 in the absence of triangle anomalies. Chiral magnetic wave is an

anomaly-induced modification of this into a leading propagating dispersion relation

ω ∼ ∓vχk − iDLk
2 + · · · , (4.38)

where the velocity vχ as well as the longitudinal diffusion constant DL are expected to

depend on strong coupling dynamics and the magnitude of the magnetic field B. The

above dispersion relation due to triangle anomalies is our main objective we will be heading

to in this section. Especially, vχ as a function of B will be a new physical quantity that we

compute in the framework of holographic QCD. Because vχ should vanish in the absence

of anomalies and the magnetic field, it will be an odd function of the product of Chern-

Simons coefficient and the magnetic field B. We will confirm this expectation later. We

also emphasize that the sign of the leading term in (4.38) is fixed by the sign of Chern-

Simons term, that is, by the chirality one is looking at, so left-handed charge/current

fluctuations would have a definite propagating direction with respect to the magnetic field

direction, while the right-handed ones would propagate in the opposite way. Therefore,

one can achieve chirality separation in this way as a dynamical consequence of triangle

anomalies of QCD. Recall that no charge in the background, either axial or baryonic, needs

to be present for the effect to take place, and only magnetic field applied to a deconfined

plasma with an underlying triangle anomaly is sufficient to have the phenomenon.

Studying linearized fluctuations from the constant F12 = eB background requires

expanding the 5D action (4.33) quadratically in terms of relavant fluctuation fields, and

it is tedious but straightforward to do it using the formula (4.35). As we are interested

in longitudinal charge/current fluctuations, it is sufficient to consider (δFtU , δF3U , δFt3)

fluctuations of “helicity” 0 only. Because of residual SO(2) rotation symmetry of the

constant F12 background, other non-zero helicity modes simply decouple from the above

13



modes at linearized level of equations of motion. After a sizable amount of computation,

one arrives at

S
(2)

D8/D8
=

∫

d4xdU
1

2

[

A(U) (δFtU )2 − B(U) (δF3U)2 + 2C(U) (δFt3) (δF3U)
]

∓ NceB

8π2

∫

d4xdU [δAUδFt3 − δA3δFtU + δAtδF3U ] , (4.39)

where the three functions that appear in the coefficients are given by

A(U) = C
(

2πl2s
)2
U
[

U3 +R3
(

2πl2seB
)2
]

1

2

,

B(U) = C
(

2πl2s
)2
Uf(U)

[

U3 +R3
(

2πl2seB
)2
] 1

2

,

C(U) = C
(

2πl2s
)2
U

(

R

U

)
3

2
[

U3 +R3
(

2πl2seB
)2
]

1

2

. (4.40)

The second line in (4.39) is from the Chern-Simons term that represents triangle anomaly

of QCD holographically. It is easy to keep track of that by a combination NceB which

is the product of anomaly coefficient and the magnetic field. From the above quadratic

expansion of the action, one easily writes down the linearized equations of motion as

∂U (A(U)δFtU ) + C(U) (∂3δF3U ) ∓ NceB

4π2
δF3U = 0 ,

∂U (B(U)δF3U ) + C(U) (∂tδF3U) − ∂U (C(U)δFt3) ∓
NceB

4π2
δFtU = 0 ,

A(U) (∂tδFtU ) − B(U) (∂3δF3U) + C(U) (∂3δFt3) ±
NceB

4π2
δFt3 = 0 . (4.41)

To proceed to hydrodynamic analysis from the above, one invokes low frequency/momentum

expansion in solving (4.41) order by order with right boundary conditions. As mentioned

before, simple regualarity at the future horizon U = UT in Eddington-Finkelstein coordi-

nate is equivalent to implementing in-coming boundary conditions, and one should also

impose normalizability on the modes at the UV boundary U → ∞. Near U → ∞, (4.41)

gives two asymptotic behaviors, either O(1) or O(U− 3

2 ), and the normalizability picks

up the latter only. In holography, U → ∞ boundary value of Aµ corresponds to the

value of an external gauge potential that couples to the field theory currents. Because we

do not have such external gauge potential in the system, we have to put the boundary

condition corresponding to Aµ vanishing at U → ∞. Assuming the frequency/momentum

factor e−iωt+ikx3

or equivalently replacing ∂t = −iω and ∂3 = ik, and working in a gauge
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AU = 0, the equations of motion become

∂U [A(U) (∂UδAt))] + ikC(U) (∂UδA3) ∓
NceB

4π2
(∂UδA3) = 0,

∂U [B(U) (∂UδA3)] − iωC(U) (∂UδA3) − ∂U [C(U) (iωδA3 + ikδAt)] ∓
NceB

4π2
(∂UδAt) = 0,

−iωA(U) (∂UδAt) − ikB(U) (∂UδA3) + ikC(U) (iωδA3 + ikδAt) ±
NceB

4π2
(iωδA3 + ikδAt) = 0,

(4.42)

which should be solved in perturbative expansion of (ω, k). What one expects is that

imposing boundary conditions restricts the solution space such that ω in hydrodynamic

expansion is determined once k is given, and the relation ω = ω(k) is called the dispersion

relation.

There are several methods in literature to solve similar kinds of equations in hydro-

dynamic expansion [66], but we will follow our own method which seems most convenient

to us. We first assume that ω(k) is an analytic power series in k, which is expected based

on hydrodynamics,

ω(k) =
∑

n≥1

ank
n = vχk − iDLk

2 + · · · . (4.43)

Inserting this to (4.42), then one can take k as the only expansion parameter in solving

(4.42) systematically, along which an should also be determined order by order. Because

(4.42) is linear in (δAt, δA3) one can always rescale them so that they start their k-

expansion as

(δAt, δA3) =
∑

n≥0

(A
(n)
t , A

(n)
3 )kn = (A

(0)
t , A

(0)
3 ) + (A

(1)
t , A

(1)
3 )k + · · · , (4.44)

where (A
(0)
t , A

(0)
3 ) cannot vanish simultaneously by definition. It is straightforward to

insert (4.43) and (4.44) into (4.42), and solve order by order in k.

At O(k0), one gets the equations

∂U

[

A(U)
(

∂UA
(0)
t

)]

∓ NceB

4π2

(

∂UA
(0)
3

)

= 0 , (4.45)

∂U

[

B(U)
(

∂UA
(0)
3

)]

∓ NceB

4π2

(

∂UA
(0)
t

)

= 0 , (4.46)

−ivχA(U)
(

∂UA
(0)
t

)

− iB(U)
(

∂UA
(0)
3

)

± NceB

4π2

(

ivχA
(0)
3 + iA

(0)
t

)

= 0 . (4.47)
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Integrating the first two equations (4.45) and (4.46) gives us

A(U)
(

∂UA
(0)
t

)

∓ NceB

4π2
A

(0)
3 = C1 , (4.48)

B(U)
(

∂UA
(0)
3

)

∓ NceB

4π2
A

(0)
t = C2 , (4.49)

with two integration constants, while the last equation (4.47) simply becomes

−ivχC1 − iC2 = 0 =⇒ vχ = −C2

C1
, (4.50)

so that vχ will be determined once C1,2 (or more precisely their ratio) are fixed by imposing

relevant boundary conditions. Considering (4.48) at U → ∞, one first fixes

C1 = lim
U→∞

A(U)
(

∂UA
(0)
t

)

, (4.51)

and solving A
(0)
3 gives

A
(0)
3 = ±

(

4π2

NceB

)

(

A(U)
(

∂UA
(0)
t

)

− C1

)

. (4.52)

Inserting this into (4.49), one gets a second order differential equation for A
(0)
t ,

B(U)∂U

(

A(U)
(

∂UA
(0)
t

))

−
(

NceB

4π2

)2

A
(0)
t = ±C2

(

NceB

4π2

)

. (4.53)

Because B(UT ) = 0 at the horizon, the regularity boundary condition imples that

C2 = ∓
(

NceB

4π2

)

A
(0)
t (UT ) , (4.54)

and one can write the solution for A
(0)
t as

A
(0)
t = Ã + A

(0)
t (UT ) , (4.55)

where Ã satisfies

B(U)∂U

(

A(U)
(

∂U Ã
))

−
(

NceB

4π2

)2

Ã = 0 , (4.56)

with the boundary condition Ã(UT ) = 0 at the horizon. This uniquely determines Ã up

to rescaling. Note that A
(0)
t (UT ) is free up to this point, and the final boundary condition

we need to impose is to demand vanishing A
(0)
t at U → ∞, and from (4.55) this fixes

A
(0)
t (UT ) as

A
(0)
t (UT ) = − lim

U→∞
Ã(U) , (4.57)
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so that C2 is finally

C2 = ±
(

NceB

4π2

)

lim
U→∞

Ã(U) . (4.58)

Observe that C1 is also given by Ã as

C1 = lim
U→∞

A(U)
(

∂U Ã
)

. (4.59)

Therefore, the complete solution at O(k0) with the right boundary conditions can be

written solely in terms of Ã as above, and it is unique up to overall rescaling. Especially

vχ is well-posed and given by

vχ = −C2

C1
= ∓

(

NceB

4π2

)

lim
U→∞





Ã(U)

A(U)
(

∂U Ã
)



 . (4.60)

As expected, vχ is proportional to the anomaly coefficient, and its sign depends on the

chirality and the chiral magnetic wave is uni-directional.

Discussions in the previous sections independently argue that vχ should be given by

vχ = ∓
(

NceB

4π2

)(

∂µ

∂j0

)

j0=0

, (4.61)

where (µ, j0) are chemical potential and charge density for either U(1)L or U(1)R. Indeed

we can confirm this expectation in our final formula (4.60) which is fully non-linear in

eB, so that one can consider this as a strong coupling proof of the relation. First note

that to compute
(

∂µ
∂j0

)

j0=0
one only needs a linear perturbation of µ or j0 to the system

of our background B field, and the relevant equations of motion for them are precisely

given by our previous one (4.41) with additional assumption of space-time homogeneity

∂t = ∂3 = 0. Then the equations simplify exactly to the previous (4.48) and (4.49)

with suitable boundary conditions. In the second equation considering the horizon point

U = UT , we have B(UT ) = 0 and we demand that At vanishes at the horizon, so that

C2 = 0. Combining the two equations after removing A3, one easily arrives at that At

satisfies the same equation (4.56) that Ã satisfies, and moreover they share the same

boundary condition at the horizon U = UT , so that they are in fact the same object

At = Ã. On the other hand, gauge/gravity dictionary tells us that up to linear order,

µ = lim
U→∞

At(U) , j0 = lim
U→∞

A(U) (∂UAt) , (4.62)

so that one has
(

∂µ

∂j0

)

j0=0

= lim
U→∞





Ã(U)

A(U)
(

∂U Ã
)



 , (4.63)
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Figure 3: Numerical result for vχ in the Sakai-Sugimoto model with T = 150 MeV(dotted),
T = 200 MeV(plain), and T = 250 MeV(dashed).

which proves the relation (4.61) at strong coupling fully non-linearly in eB. As the valid-

ity of (4.61) is equivalent to (1.1),(1.2), this constitutes a holographic proof of (1.1),(1.2).

Note that there is a subtlety regarding the possible contribution of the Bardeen countert-

erm [10]; this issue was settled in Refs. [9, 11] that show that the Bardeen counterterm

does not affect the CME.

It is interesting to see how vχ depends on the magnitude of the magnetic field eB in

a non-linear way because (A(U), B(U)) contain eB as in (4.40), although the necessary

analysis inevitably involves numerical study. To perform numeric analysis, we have to

specify parameters of the model. First of all, one can always put 2πl2s ≡ 1 for simplicity

because this factor will eventually cancel out in any well-defined field theory observables.

One can easily check that this is the case for vχ as well. By fitting to the observed ρ-meson

mass and the pion decay constant, Sakai-Sugimoto fixed the parameters as

Nc = 3 , g2
Y MNc ∼ 17 , MKK ∼ 0.94 GeV , (4.64)

where g2
Y M and MKK are related to gs by

g2
Y M = 2πlsMKKgs . (4.65)

Recall that what matters for us is simply the parameters R3 and C, and in terms of the

above parameters, one has

C ∼ 0.0211 , R3 ∼ 1.44 . (4.66)
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Figure 4: Numerical result for DL in the Sakai-Sugimoto model with T = 150
MeV(dotted), T = 200 MeV(plain), and T = 250 MeV(dashed).

For the temperature, we take T = (150, 200, 250) MeV as an illustrative purpose. Note

that this model has deconfinement phase transition at Tc = MKK

2π
∼ 150 MeV [67]. We

plot our numeric result of vχ as a function of eB in Figure 3.

Limited analytic results for vχ are available for two extreme regions, either eB → 0

or eB → ∞. For this purpose as well as an easier numerical analysis, it is convenient to

consider the combination

V (U) ≡ Ã(U)

A(U)
(

∂U Ã
) , (4.67)

in terms of which the equation (4.56) becomes a simple first order differential equation

∂UV (U) =
1

A(U)
−
(

NceB

4π2

)2
1

B(U)
V 2(U) , (4.68)

with a boundary condition V (UT ) = 0. From (4.60), vχ is then simply given by

vχ = ∓
(

NceB

4π2

)

V (∞) , (4.69)

which seems technically much easier. With this formulation, it is not difficult to derive

the following results;

Weak field limit : eB → 0

vχ ∼ ∓
(

NceB

4π2

)
∫ ∞

UT

dU ′

A(U ′)
+ O (eB)3 = ∓ 27

8π2

MKK(eB)

(g2
Y MNc)T 3

+ O (eB)3 . (4.70)

Strong field limit : eB → ∞

vχ → ∓1 (speed of light) . (4.71)
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Note that the strong field limit gives us the same result that one expects in the weak

coupling Landau level picture that is discussed in section 3. It might come as a surprise

because the dynamical degrees of freedom in our holographic model are still mesonic

degrees of freedom represented by world-volume gauge fields on D8-branes. The Sakai-

Sugimoto model operates with mesonic degrees of freedom, so it is difficult to trace directly

the meaning of our results in terms of the Dirac eigenmodes of quarks [40]. However, we

find that our result for the velocity of the chiral magnetic wave in the strong field limit,

vχ → 1, seems natural in terms of the Landau level picture. Indeed, in the strong field

limit the quarks occupy only the lowest Landau levels that are chiral, so we indeed are

dealing with left- and right-handed Dirac modes. In this limit, and for vanishing quark

mass, the propagation of the wave must occur with the velocity of light, and this is what

we obtain from holography. This may represent a facet of quark-hadron duality, and it

would be interesting to explore this further.

One can go on to the next order expansion in k to compute the longitudinal diffusion

constant DL. As the computation is conceptually straightforward, we only present our

numerical results in our Figure 4. For eB = 0, it reduces to the known diffusion constant

in the model

DL → C(UT )

∫ ∞

UT

dU ′

A(U ′)
=

1

2πT
, eB → 0 , (4.72)

while in general it is a complicated function of eB and the temperature T . As one can

observe in Figure 4, DL generally gets decreased as eB increases, which seems physically

sensible because a larger magnetic field would align quasi-particles more efficiently, so that

their microscopic longitudinal velocity diffusion would be smaller. What is interesting is

that for some range of eB in a low temperature, say T = 150 MeV, one seems to have a

negative value of DL. Looking at the dispersion relation

ω = ∓vχk − iDLk
2 + · · · , (4.73)

this signals an instability for sufficiently small k or long wave-length fluctuations, which

is precisely similar to Gregory-Laflamme instability in a gravity system [68]. In the case

of gravity system, Gubser-Mitra conjecture [69] links this dynamic instability with a

thermodynamic instability, and it would be interesting to study whether our instability is

also related to some kind of thermodynamic instability. We leave this for future studies.
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5 Dynamical Electromagnetism : Mixing Chiral Mag-

netic Wave with Plasmons

The previous sections treat electromagnetism as providing only a non-dynamical external

magnetic field, and neglecting dynamical nature of electromagnetic field. This is valid

in the limit e → 0 while keeping eB finite. However, to describe the real world more

precisely, it would be desirable to go beyond this approximation including dynamical

electromagnetism. In general, dynamical electromagnetic field in the plasma couples to

longitudinal fluctuations of vector charge density inducing the plasma waves. The chiral

magnetic wave (more precisely its projection onto the vector U(1)V -part) also involves

longitudinal charge density fluctuations; it is thus natural to expect them to mix with

each other, resulting in interesting modifications of their dispersion relations. This will

be the main topic of this section. We also point out that for non-Abelian SU(NF ) chiral

magnetic waves there is no mixing with plasmons as far as one does not introduce gauging

of SU(NF ), so that the previous discussion stays intact for non-Abelian CMWs.†

Having dynamical electromagnetism, one first needs to include the Maxwell equation

as a new dynamical equation of motion in addition to the conservation laws of currents,

∂µ (∂µAν − ∂νAµ) = ejν
V . (5.74)

What is important for us is how to determine the current jµ
V . Typical discussions of plasma

waves proceed by assuming a linear retarded response of the plasma to the electromagnetic

field Aµ,

jµ
V = eΠµν(ω, k)Aν , kµΠ

µν = 0 , (5.75)

where we work in the frequency-momentum space. Combined with (5.74) this would

result in a self-contained equation for Aµ from which one can extract the plasmons. Let us

review this procedure briefly as we are going to extend it by including the chiral magnetic

waves and diffusion terms. Assuming a definite frequency-momentum e−iωt+ikx1

, we focus

on longitudinal polarizations (A0, A1), the only ones where we expect the emergence of

plasmons. Because one has a gauge freedom of shifting Aµ by kµ, one can use this to

remove A1 and work with A0 only, which simplifies the analysis significantly. From (5.74)

and (5.75), one then obtains

k2A0 = e2Π00(ω, k)A0 , kωA0 = e2Π10(ω, k)A0 . (5.76)

†To be more precise, EM charge is a sum of U(1) and I3 of SU(2)F for NF = 2, so the situation can
be more complicated in general. We leave a full discussion as a simple extension of ours to the readers.
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These two equations are in fact equivalent as can be seen using the Ward identity kµΠµ0 =

ωΠ00−kΠ10 = 0, and one has a non-trivial solution of A0 only if (ω, k) satisfies the plasmon

dispersion relation,

k2 = e2Π00(ω, k) . (5.77)

One expects plasma waves in long wave-length regime k → 0 with finite frequency, so one

expands Π00 in powers of k2

ω2 as

Π00 ∼ ω2
0

k2

ω2

(

1 + c2eff

k2

ω2

)

+ · · · , (5.78)

upon which the dispersion relation becomes

ω2 = e2ω2
0 + c2effk

2 + O(k4) ; (5.79)

this looks like a massive excitation of mass squared ω2
p ≡ e2ω2

0 with an effective speed of

light ceff . The parameter ω0 is typically of the order of temperature T , and the plasma

frequency is about ωp ∼ eT which can be small compared to T in weak-coupling limit; the

plasmon thus can be an important ingredient in describing the hydrodynamic properties

of the system.

We will have to modify this picture in two aspects for our case of a constant back-

ground magnetic field by including chiral magnetic waves and diffusion terms. Because

the magnetic field B is constant while the plasma waves involve only longitudinal elec-

tric field fluctuations, we can decouple them, and treat Aµ from now on as an additional

fluctuation of the gauge field on top of the background magnetic field. Looking at the

chiral magnetic effect (2.10), one first notices that the anomalously induced spatial cur-

rents are not directly related to retarded response to the gauge field fluctuations Aµ; they

are induced from the total charge densities j0
V,A without any regard to how these charge

densities appear. We will discuss these charge densities below. Also, we have to modify

(2.10) for finite frequency-momentum by introducing chiral magnetic conductivity σ(ω, k)

[50, 8] because it generally depends on (ω, k),

(

~jV
~jA

)

= ~Bα

(

0 σ(ω, k)
σ̃(ω, k) 0

)(

j0
V

j0
A

)

≡ Nce ~Bα

2π2





0
(

σ(ω,k)
σ0

)

(

σ̃(ω,k)
σ0

)

0





(

j0
V

j0
A

)

.

(5.80)

where σ0 = Nce
2π2 is the zero frequency-momentum limit we have used before. In general,

at finite (ω, k), we expect σ 6= σ̃. Therefore the total spatial currents ~jV,A will represent
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the sum of the retarded response to Aµ given by (5.75) and the anomalously induced

contribution (5.80),

j1
V = eΠ10A0 +

NceBα

2π2

(

σ(ω, k)

σ0

)

j0
A − ikDLj

0
V ,

j1
A = eΠ10

AVA
0 +

NceBα

2π2

(

σ̃(ω, k)

σ0

)

j0
V − ikDLj

0
A , (5.81)

where we keep our focus on longitudinal components only, and we also included the

diffusion terms proportional to DL. Note that we also include the induced axial current

from response to A0 through Π10
AV because this term indeed exists in the presence of

background magnetic field B (think of triagle diagram of external B and A0 which couples

to axial current). It is important to keep in mind that the charge densities j0
V,A appearing

on the right hand side are total charge densities that may come from both response to

Aµ as well as additional fluctuations due to chiral magnetic effects. Once we write down

(5.81), we don’t and can’t specify charge densities because they are free up to dynamical

equations of Maxwell equation and current conservation laws. To be more precise, we

have three dynamic equations; ν = 0-component of Maxwell equation and two current

conservation laws for jµ
V,A (the ν = 1 Maxwell equation becomes equivalent to ν = 0

once jµ
V -conservation is imposed due to gauge invariance). They are homogeneous linear

equations in terms of three variables (A0, j
0
V , j

0
A), so that non-zero solutions exist if and

only if the 3 × 3 coefficient matrix has zero determinant. This constraint on (ω, k) will

give us the dispersion relation.

Although it is not necessary, it is convenient to decompose j0
V as

j0
V = eΠ00A0 + δj0

V , (5.82)

to visualize additional fluctuation δj0
V to the retarded response explicitly. Let us then

write down the three independent dynamical equations mentioned above. The ν = 0-

component Maxwell equation is

k2A0 = e2Π00A0 + eδj0
V , (5.83)

while the vector current conservation, ∂µj
µ
V = 0, looks as

−iωδj0
V + ik

NceBα

2π2

(

σ

σ0

)

j0
A + k2DL

(

eΠ00A0 + δj0
V

)

= 0 . (5.84)

Finally, for axial current conservation, there is an important modification to its conser-

vation due to triangle anomaly we are considering (note that we are still neglecting QCD
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anomaly from gluons). Recall that axial current becomes anomalous in the presence of

non-zero electromagnetic ~E · ~B 6= 0 due to triangle anomaly,

∂µj
µ
A =

e2Nc

16π2
ǫµναβFµνFαβ =

e2Nc

2π2
~E · ~B . (5.85)

Remember that our Nc quarks have charge e in this paper. We already have a background

magnetic field ~B = Bx̂1, while dynamical longitudinal plasma fluctuations we are consid-

ering have a longitudinal electric field fluctuation E1 = ∂1A
0 = ikA0 in Fourier space, so

that one has locally non-vanishing ~E · ~B that affects axial current conservation law as in

(5.85). The resulting (modified) conservation law of jµ
A gives us

−iωj0
A +ikeΠ01

AVA
0+ik

NceBα

2π2

(

σ̃

σ0

)

(

eΠ00A0 + δj0
V

)

+k2DLj
0
A = ik

Nce
2B

2π2
A0 , (5.86)

where the right hand side is the anomalous contribution that we discussed. The above

equations (5.83),(5.84), and (5.86) are the main equations for (A0, δj0
V , j

0
A) from which

one can obtain dispersion relations.

As an easy application as well as an illustration, let us turn off the magnetic field for

a moment and consider the diffusion effects only, which may be called diffusive plasmons.

In this case, one has Π10
AV = 0 due to B = 0, and axial current decouples with the usual

diffusion ω = −iDLk
2, while (A0, δj0

V ) system becomes

(

k2 − e2Π00
)

A0 = eδj0
V ,

(

iω − k2DL

)

δj0
V = k2eDLΠ00A0 , (5.87)

which has non-zero solutions if and only if

(

k2 − e2Π00(ω, k)
) (

iω − k2DL

)

= k2e2DLΠ00(ω, k) , (5.88)

which gives the dispersion relation. Upon expanding Π00 as in (5.78), one can solve the

above for small k as

ω2 = ω2
p +

(

c2eff − iωpDL

)

k2 + O(k4) , (5.89)

where ωp = eω0 is the plasma frequency.

Going back to our interesting case of non-zero magnetic field B 6= 0, it is straight-

forward to study (5.83),(5.84), and (5.86) in complete generality, but we will restrict

ourselves to the case with DL = 0 for simplicity in this paper, leaving their full analysis
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including DL to the future. The system then becomes

k2A0 = e2Π00A0 + eδj0
V ,

−iωδj0
V + ik

NceBα

2π2

(

σ

σ0

)

j0
A = 0 ,

−iωj0
A + ikeΠ10

AVA
0 + ik

NceBα

2π2

(

σ̃

σ0

)

(

eΠ00A0 + δj0
V

)

= ik
Nce

2B

2π2
A0 , (5.90)

which mixes all three fluctuations together. From the first equation, one can replace A0

with δj0
V , and inserting it into the other two equations, one gets

−iωδj0
V + ik

NceBα

2π2

(

σ

σ0

)

j0
A = 0 ,

−iωj0
A + ik

NceBα

2π2

(

σ̃

σ0

)

(

k2 − e2

α
σ0

σ̃
+ 2π2e

NcBα
σ0

σ̃
Π10

AV

)

k2 − e2Π00
δj0

V = 0 , (5.91)

from which one gets the dispersion equation

ω2 = v2
χk

2

(

σ(ω, k)

σ0

)(

σ̃(ω, k)

σ0

)

(

k2 − e2

α
σ0

σ̃(ω,k)
+ 2π2e

NcBα
σ0

σ̃(ω,k)
Π10

AV (ω, k)
)

k2 − e2Π00(ω, k)
, (5.92)

where vχ = NceBα
2π2 as before. This equation is our master equation that governs mixing

between chiral magnetic waves and plasma waves.

For small magnetic field B and ω ∼ ωp ∼ eT ≪ T , one expects that chiral magnetic

conductivities are approximately the zero-frequency value σ ≈ σ̃ ≈ σ0, and moreover

anomaly triangle diagram gives us

Π10
AV (ω, k) → NceB

2π2
as ω, k → 0 , (5.93)

so that the numerator in the right hand side of (5.92) becomes simplified. One then uses

the previous expansion (5.78) of Π00 to solve the above equation to get

ω2 = ω2
p +

(

v2
χ + c2eff

)

k2 + O(k4) , (5.94)

which describes effects from chiral magnetic wave to the plasma waves. Note that the effect

exists only with finite k, and this makes sense because chiral magnetic waves disappear

in k → 0 limit.

Another interesting limit is an infinitely large B → ∞ limit, where one expects effec-

tive reduction to 1+1 dimensional theory. In fact, making electromagnetism dynamical
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corresponds to 1+1 dimensional QED with Nc massless Dirac fermions, or the Schwinger

model [70]. It has been known for long time that the photon in the model becomes massive

due to 1+1 dimensional axial anomaly,

m2
γ =

Nce
2
eff

π
, (5.95)

where e2eff is an effective 1+1 dimensional QED coupling constant. As the 4-dimensional

triangle anomaly (5.85) correctly reduces to 1+1 dimensional axial anomaly in the pres-

ence of background magnetic field B, one should be able to reproduce this Schwinger

phenomenon from our master equation (5.92) in the limit B → ∞.

One can be more quantitative to test this connection. To find e2eff , it is useful to

consider a transverse area of
∫

d2xT =
2π

eB
, (5.96)

to have a single lowest Landau level system per each 4D fermion because the transverse

density of LLL is eB/2π. Thinking of fermion kinetic term, the proper normalization

between 4D fermion and 2D fermion is

ψ4D =

√

eB

2π
ψ2D , (5.97)

which will be useful shortly when we discuss about Π00. Because one is looking at only

longitudinal dynamics of 4D U(1) gauge field, the only relevant dynamical field is F01,

and the gauge field action indeed reduces to 1+1 dimensional QED action as

1

2e2

∫

d4x (F01)
2 =

1

2e2
2π

eB

∫

d2x (F01)
2 ≡ 1

2e2eff

∫

d2x (F01)
2 , (5.98)

so that e2eff = e3B
2π

, and the Schwinger photon mass should be

m2
γ =

Nce
3B

2π2
. (5.99)

To reproduce this from our equation (5.92), note that as B → ∞, the expected ω2 = m2
γ

is also infinite and one naturally expects that chiral magnetic conductivities go to zero

in this limit as the system cannot respond to arbitrary fast perturbations; (σ, σ̃) → 0 as

ω → ∞. Therefore, the solution of (5.92) in this limit is found simply by demanding that

the denominator vanishes or

k2 = e2Π00(ω, k) , (5.100)

26



where Π00 should be given by the effective 1+1 dimensional theory. To find it, recall from

(5.97) that jµ
4D = eB

2π
jµ
2D, so that

Π00 ∼
∫

d4xe−iωt+ikx〈j0
4D(x)j0

4D(0)〉 =
2π

eB

(

eB

2π

)2 ∫

d2xe−iωt+ikx〈j0
2D(x)j0

2D(0)〉 =

(

eB

2π

)

Π00
2D.

(5.101)

As we have Nc 1+1 dimensional Dirac fermions, Π00
2D is Nc times that of a single Dirac

fermion, which can be found most easily by bosonization to a single real scalar field φ

such that

jµ
V =

√

1

π
ǫµν∂νφ , jµ

A =

√

1

π
∂µφ , (5.102)

where φ is normalized to have a standard kinetic term L = 1
2
∂µφ∂

µφ. Then, Π00
2D is easily

computed as

Π00
2D =

Nc

π
〈(∂1φ)(∂1φ)〉 =

Nc

π

(ik)(−ik)
ω2 − k2

=
Nc

π

k2

ω2 − k2
, (5.103)

so that the equation (5.100) becomes

k2 = e2Π00
4D =

Nce
3B

2π2

k2

ω2 − k2
, (5.104)

which indeed gives us ω2 = m2
γ + k2 reproducing the Schwinger model result.

Therefore the plasmon in the dimensionally reduced theory can be seen as a result of

the interaction of the dynamical photon with the chiral magnetic waves.

6 Summary

We have demonstrated that the Chiral Magnetic and Chiral Separation Effects (CME

and CSE) in relativistic plasmas subjected to magnetic field imply the existence of a

new type of a collective excitation in the plasma - the Chiral Magnetic Wave (CMW).

This excitation represents the density waves of electric and chiral charge coupled by the

triangle anomaly. In strong magnetic field the CMW propagates with the velocity of light,

vχ → 1. In weak magnetic field, the velocity vχ decreases; the result of the holographic

computation is shown in Figure 3. At weak coupling, this decrease of the velocity of the

CMW can be understood as originating from the admixture of the excited Landau levels.

The existence of CMW in the quark-gluon plasma has important implications for the

phenomenology of heavy ion collisions. The CME relies on the fluctuation of the axial
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charge density and so the net effect is expected to vanish when averaged over many events;

one thus relies on measuring the fluctuations of charge asymmetries [1, 49]. On the other

hand, the CMW should exist even in a neutral plasma, and so does not require the presence

of the axial or baryon chemical potentials. Since it represents the coupled density waves

of electric and chiral charges propagating along the direction of the applied magnetic field

(that in heavy ion collisions is perpendicular to the reaction plane), the CMW can induce

dynamical, reaction plane dependent, fluctuations of electric charge. The azimuthal angle

dependence of these fluctuations will be determined by the wavelength of the CMW

excitation. We will return to the consideration of phenomenology related to CMW in

heavy ion collisions in a forthcoming publication [71].
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