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The detection of gravitational waves from compact binaries relies on a computationally bur-
densome processing of gravitational-wave detector data. The parameter space of compact-binary-
coalescence gravitational waves is large and optimal detection strategies often require nearly re-
dundant calculations. Previously, it has been shown that singular value decomposition of search
filters removes redundancy. Here we will demonstrate the use of singular value decomposition for a
composite detection statistic. This can greatly improve the prospects for a computationally feasible
rapid detection scheme across a large compact binary parameter space.
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I. INTRODUCTION

Ground-based laser-interferometric gravitational-wave
detectors have demonstrated sensitivity to gravitational-
wave strain at the level of 10−22/

√
Hz or better for fre-

quencies between 80 − 1000 Hz [1–3]. Later this decade
advanced detectors will surpass the present sensitivity by
a factor of ∼ 10 [4, 5]. One of the most promising sources
of gravitational waves is the merger of two compact ob-
jects [6]. Advanced detectors are expected to detect on
the order of 40 neutron star - neutron star merger events
per year [7, 8] and a similar number of mergers involving
black holes. The exact parameters of the signals, such
as mass and spin of the component objects, will not be
known ahead of time. Therefore, the optimal detection
strategy must include the possibility of detecting signals
with unknown parameters. Matched filtering has been
employed to search this parameter space [9, 10]. The pa-
rameter space is explored by choosing a discrete set of
filters that guarantees that all signals within the param-
eter space are found with a signal-to-noise ratio (SNR)
greater than ∼ 97% [11] of the maximum possible. Re-
cently it has been shown that the use of singular value
decomposition can reduce the number of filters necessary
to search the parameter space [12]. This paper extends
that work to explore use of the singular value decompo-
sition (SVD) filter outputs for detection without recon-
structing the physical template waveforms.

If one is interested only in knowing whether any of
the signals are present, and not which one is present,
then the problem of detection decouples from that of pa-
rameter estimation. Wainstein and Zubakov (1962) [13]
describe the problem of detecting any of several signals
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without concern for parameter estimation as composite
detection. This paper will explore the composite de-
tection of compact binary signals using the techniques
proposed in [12]. We find that the composite detection
statistics explored produce a lower detection efficiency
at a fixed false alarm rate than traditional approaches.
However when combined hierarchically with traditional
approaches, the combined approach can perform as well
at low false alarm rate, but with reduced computational
cost.

II. COMPOSITE DETECTION OF COMPACT
BINARY SIGNALS

We will consider an unknown gravitational wave signal
arising from a compact binary coalescence in the digitized
gravitational-wave detector output as a vector of data
points parameterized by an unknown amplitude A and a
collection of unknown parameters θ̄ (e.g., the masses of
the component bodies) that determine the shape of the
signal. We will denote this signal as As(θ̄). Both the
amplitude and shape parameters are not known a priori.
The relative frequency of parameters in the population
is described by the probability density function p(A, θ̄).
We will assume the joint distribution p(A, θ̄) is separa-
ble, that is p(A, θ̄) = p(A)p(θ̄). This is not generally
true globally across the parameter space, but should be
roughly true locally. We will denote the vector of dis-
cretely time-sampled strain data as h. In addition to
containing normally distributed noise, n, h will possibly
contain the gravitational-wave signal with amplitude A
and parameters θ̄,

h(A, θ̄) = n +As(θ̄). (1)

Assuming the noise has unit variance and s(θ̄) is nor-
malized such that the inner-product of it with itself is
unity, A is the expected value for the SNR of a signal
after optimally filtering with a template matching s(θ̄).
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The optimal detection statistic is the marginalized like-
lihood

Λ =
p(h|s)

p(h|0)
, (2)

where p(h|s) is the probability of obtaining h given the
presence of any signal, with the signal parameters A, θ̄
integrated out

p(h|s) =

∫
V

∫ +∞

−∞
p(h(A, θ̄)|A, θ̄)p(θ̄)p(A) dA dθ̄, (3)

and p(h|0) is the probability of obtaining h in the absence
of any signal. The marginalized likelihood increases as
the probability of the data containing a signal increases.
For white noise,

p(h|0) ∝ exp

(
−1

2
hTh

)
. (4)

This white noise form is also valid for colored noise cases
if one applies the linear whitening transformation to the
data h. In the frequency domain, this transformation
divides the data by the amplitude spectral density of the
noise. Our goal is to find a computationally inexpensive
approximation to this optimal detection statistic using
the SVD-reduced filter set described in [12].

A. Expansion of the marginalized likelihood

In this section we will consider an expansion of the
marginalized likelihood and show that it motivates a de-
tection statistic that exploits the SVD filter basis in the
weak signal limit.

For simplicity we will assume that the signal parame-
ters θ̄ take on discrete values [14] so that we may index
different signals as si. We will also assume that the am-
plitude, A, does not depend on the signal index i. The
detector output now has the form

hi = n +Asi. (5)

We don’t know a priori which signal si is present in the
data. The marginalized likelihood [9] is

Λi ∝
∑
j

exp[Ahi · sj ], (6)

where the integral in (3) is replaced by a sum over all
possible templates sj .

We desire to use the SVD basis proposed in [12] to re-
place the sum over sj with a sum having fewer terms (i.e.,
to reduce the number of filters required for the statistic).
Furthermore, we are not interested in a statistic that is
optimal for A � 1: detecting large amplitude signals in
the data often does not require optimal methods, instead
we focus on statistics that perform well for weak signals.

For very small A, the terms in the sum over j in (6) can
be approximated well by a truncated Taylor series,

exp[Ahi · sj ] ≈ 1 +Ahi · sj +
1

2
A2(hi · sj)2. (7)

However, we are interested in the intermediate case where
A ∼ O(few). In this regime, a truncated Taylor series is
a poor approximation of the exponential, but it proves to
be an approximation that can be productively simplified
using the SVD basis. The first term in (7) is a constant
offset and carries no information; the second term is os-
cillatory and contributes little to the sum over j in (6).
Focusing on the second order term and supposing A ∼ 1
we introduce the approximate likelihood, Λ′, as

Λ′i :=
∑
j

(hi · sj)2. (8)

Using the change of basis described in [12], where

sj =
∑
k

vjkσkuk, (9)

the approximate likelihood expression (8) simplifies to

Λ′i =
∑
k

(σkhi · uk)2, (10)

due to the properties of the orthonormal matrix vjk. (10)
has no dependence on the original parameter index j and
the i dependence only comes in through the data hi (i.e.
when given a data vector h, one computes (10) the same
way regardless of which signal si is in the data). It thus
makes sense to drop the explicit i dependence and write
the approximate likelihood as

Λ′ =
∑
k

(σkh · uk)2. (11)

As was shown in [12], fewer filters are required using the
uk basis, therefore the sum over k has fewer terms than
the original sum over j, i.e., (11) is substantially less
costly to compute than (6).

The SVD basis does not permit the higher-order terms
dropped from the Taylor series in (7) to be transformed
into simple sums over the k basis vectors as was done
for the second-order term, therefore we do not consider
them further. Unfortunately, for the range of amplitudes
we are interested in, the terms that have been dropped
are not insignificant. Since (11) is not equivalent to (6) it
is a sub-optimal detection statistic, nevertheless we have
succeeded in using the SVD basis to construct a quantity
closely related to the marginalized likelihood and that is
significantly less costly to compute. In the next section
we derive a detection statistic that also exploits the SVD
basis, but performs better than (11) at higher signal am-
plitudes and agrees exactly with (2) in the low amplitude
limit. This is accomplished by starting with a different
assumption for approximating the signal probability dis-
tribution given in (2).
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B. Assuming the signal probability distribution is
a multi-variate normal distribution

In this section we explore approximating the signal
probability p(h|s) in (3) as a multivariate normal distri-
bution. This will result in a different detection statistic
that still exploits the SVD filter basis. For simplicity,
when applicable, we drop the explicit A, θ̄ dependence
and write h(A, θ̄) as h and C(A, θ̄) as C

We begin by assuming the signal probability (3) has
the form

p(h|s) ∝ exp

(
−1

2
hTC−1h

)
, (12)

whose covariance matrix C of second-order moments
completely defines it. The covariance matrix is

Cij = cov(hi, hj)

=
〈
(ni +Asi(θ̄))(nj +Asj(θ̄))

〉
= 〈ninj〉+

〈
A2
〉 〈
si(θ̄)sj(θ̄)

〉
= δij +

〈
A2
〉 ∫

V

si(θ̄)sj(θ)p(θ̄) dθ̄, (13)

where
〈
A2
〉

=
∫ +∞
−∞ A2p(A) dA and we have assumed the

independence of the variables A, θ̄ and ni.
Using (4) and (12), we compute the logarithm of the

marginalized likelihood, Λ. This is monotonic in Λ and
therefore is sufficient to use as a ranking statistic

ln Λ ∝ Γ := hT
(
I−C−1

)
h. (14)

The performance of (14) depends on the waveform pop-
ulation; we will assess it for simple but realistic cases in
Sec. III.

We compute C by drawing N samples of θ̄ distributed
according to p(θ̄). We assume a signal population that
is distributed according to our ability to distinguish sig-
nals, which is approximated by the filter banks described
in [11]. This definition of the signal population is ap-
proximately uniform in the θ̄ distribution for sufficiently
small regions of parameter space. The integral in (13) is
then approximated by a summation over these samples,

Cij = δij +

〈
A2
〉

N

N∑
k=1

si(θk)sj(θk)

C = I +

〈
A2
〉

N

N∑
k=1

sT(θk)s(θk), (15)

where θk are discrete values of θ̄ and s(θk) is a row vector
of the time samples si(θk). By defining the matrix Sik =
si(θk) we can simplify the notation to

C = I +

〈
A2
〉

N
STS. (16)

This is precisely the arrangement of the signal matrix
proposed in [12]. As in (9), we use the SVD to decompose

the signal matrix S (here written in matrix notation but
equivalent to (9)),

S = VΣUT, (17)

where V and U are unitary matrices and Σ is a diag-
onal matrix of the singular values of S, referred to by
components σk in the Sec. II A. U is the matrix of the
orthonormal basis vectors uk described in the previous
section. Then we note that

I−C−1 = I−

(
I +

〈
A2
〉

N
STS

)−1

= I−

(
I +

〈
A2
〉

N
UΣ2UT

)−1

= U

I−

(
I +

〈
A2
〉

N
Σ2

)−1UT, (18)

where we have used UUT = UTU = I. Let us define a
diagonal matrix J

Jkk := 1−

(
1 +

〈
A2
〉

N
σ2
k

)−1
=

σ2
k/N

σ2
k/N + 〈A2〉−1

=
σ2
k

σ2
k +N/ 〈A2〉

. (19)

We show the intermediate step in simplifying (19) to em-
phasize that when holding the parameter space constant
while increasing the number of waveforms N (i.e., in-
creasing the density of waveforms), σ2

k ∝ N . Therefore,
the coefficients are insensitive to the number of wave-
forms that went into the decomposition as long as there
is a sufficient number to span the parameter space. An
example for a typical value of N in a given parameter
space is described in Sec. III A. With the above definition
the approximate detection statistic (14) can be written
as

Γ = hTUJUTh, (20)

which, in the notation of the previous section, is

Γ =
∑
k

σ2
k

σ2
k +N/〈A2〉

(h · uk)2. (21)

It is worth noting the limits of this expression for low
and high amplitude signals (small and large values of A),

lim
A→0

Γ =
∑
k

σ2
k(h · uk)2, (22a)

lim
A→∞

Γ =
∑
k

(h · uk)2. (22b)
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FIG. 1. The coefficients wk used to construct the compos-
ite detection statistic as a function of basis vector number,
ordered by their singular value. The solid trace shows the
coefficients we obtain from (19) assuming a signal amplitude
A = 20. The dashed trace shows the singular values squared,
the choice of coefficients given in (11). The dotted trace shows
“the excess power” choice of coefficients, which are unity for
all basis vectors.

The A → 0 limit is exactly the same result as the sec-
ond order approximation derived in the previous section.
In this limit the most important filters (i.e., those with
larger singular values) contribute more to the composite
detection statistic. The A → ∞ limit in (22b) reduces
the composite detection statistic to the sum of squares
of the orthogonal filter outputs, (h · uj). This detection
statistic is equivalent to the excess power statistic ob-
tained in Anderson et. al for the detection of waveforms
of known bandwidth and duration [15, equation (2.10)].
Here, instead of projecting the data onto a basis that
spans a time-frequency tile, we project the data onto a
basis that span the space of CBC waveforms. The essen-
tial difference between (21) and the excess power statistic
of Anderson et. al is that (21) folds in knowledge of the
relative probability that the waveforms we seek match
any of the basis vectors individually, whereas the target
waveforms in [15] are assumed to match the basis vectors
of the time-frequency tile with equal probability.

Fig. 1 presents an example of the components of (19)
for the small and large amplitude limits, and for an ampli-
tude of 20. These were produced using the signal matrix
described in Sec. III A.

III. OPERATING CHARACTERISTICS OF THE
PROPOSED COMPOSITE DETECTION

STATISTICS

In this section we explore the performance of the pro-
posed detection statistic (21). We begin by establish-
ing the framework with which we conduct simulations to
produce Receiver Operator Characteristic (ROC) curves.
These indicate the probability of detection versus the
probability of false alarm. We then present some practi-

cal scenarios in which to understand these results.
We begin by assuming the detector data hi has the

form of (5) modified to allow an ambiguous phase

hi = n +Asi(0) +Bsi(π/2). (23)

Under ideal situations the signal si could be recovered by
a matched filter with an SNR of

√
A2 +B2. According

to [12] the signal si can be decomposed into orthogonal
basis functions using the singular value decomposition
such that

si(0) =
∑
j

vij(0)σjuj , (24)

si(π/2) =
∑
j

vij(π/2)σjuj . (25)

This leads to the following expression of the composite
detection statistic for (23)

Γi =
∑
k

wk(hi · uk)2

=
∑
k

wk

[
Avik(0)σk +Bvik(π/2)σk + nk)

]2
,

wk =
σ2
k

σ2
k +N/A2

, (26)

where nk is a random number drawn from a unit variance
Gaussian distribution. We have made use of the fact that
(ui · uj) = δij .

In order to assess the operating characteristics of (21)
we simulate several instances of signals and several in-
stances of noise. We then compare the number of noise
trials that produce a value of (21) greater than some
threshold Γ∗ with the number of signal, plus noise, trials
that produce values above the same threshold. This al-
lows us to parameterize the detection probability versus
false alarm probability using the value of Γ∗.

A. Simulations

In this section we simulate the procedure described
above. Our goals are the following. First we explore how
the detection probability of (21) varies as a function of
A at a fixed false alarm probability. We verify that it
peaks when the simulated signal amplitude is equal to
A. We then compare the performance of (21) with stan-
dard matched filtering results. We find, to no surprise
that (21) alone performs worse. However, we also find
that by using (21) to hierarchically reconstruct the phys-
ical template SNR the same detection probability can be
reached for sufficiently low false alarm probability.

In order to conduct these tests, we apply the singular
value decomposition to binary neutron star (BNS) wave-
forms with chirp masses 1.125M� ≤Mc < 1.240M� and
component masses 1M� ≤ m1,m2 < 3M� [12]. The
number of templates required to hexagonally cover this
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FIG. 2. Detection probability at a false alarm probability of
10−3 as a function of A. We simulated ∼ 1.8 × 107 signals at
SNR 7 for 300 values of A in the composite detection statistic
defined by (21). As we expect the detection probability peaks
when A = 7, the amplitude of the signal. It is worth noting
that in this case the low amplitude limit given by (22a) pro-
vides a similar detection probability. However the large signal
limit given by (22b) is considerably worse.

range in parameters using a lower frequency cutoff of
40 Hz and a minimal match of 96.8% is M = 456, which
implies a total number of single-phase filters N = 912.
These non-spinning waveforms were produced to 3.5PN
order[16], sampled at 2048 Hz, up to the Nyquist fre-
quency of 1024 Hz. The last 10 seconds of each wave-
form, whitened with the initial LIGO amplitude spectral
density, were used to construct the matrix of signals S.

Using this framework we first test how the detection
probability varies with the choice of A in (21). We simu-
late ∼ 1.8× 107 signals with SNR 7 and evaluate (21) as
a function of A. Likewise we evaluate (21) for just noise.
The results of the detection probability at a false-alarm-
probability of 10−3 are shown in Fig. 2. We find that the
peak of the detection probability occurs when A equals
the amplitude of the signal, 7. We note that for SNR 7
signals the low amplitude limit expression (22a) performs
nearly as well (within a few percent). However, the high
amplitude limit is considerably worse (by almost a factor
of two). SNR 7 was chosen to accentuate the dependency
of (21) on A. SNR 7 is actually higher than the typical
SNR threshold one would place in a gravitational-wave
search.

In order to test the efficiency of the composite detec-
tion statistic versus the traditional matched filter ap-
proach we again generated ∼ 1.8× 107 instances of (26)
for signal and signal plus noise. This time we chose a
lower, more realistic, signal amplitude of 5. The signals
had uniform distributions in the template bank and in
phase angle. We compare this with the standard result
arising from maximizing the SNR across the bank and
over phase angle

ρmax := maxi
[
(h · si(0))2 + (h · si(π/2))2

]
. (27)

The result of the two procedures is shown in Fig. 3.

10−5 10−4 10−3 10−2 10−1 100

PFA

0.0

0.2

0.4
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0.8

1.0
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D

Γ

max(ρ)

Γ then max(ρ)

FIG. 3. Receiver Operator Characteristic curves associated
with different detection statistics. The solid-black trace shows
the performance of choosing the maximum likelihood filter
across the bank. The dashed line shows the performance of
the composite detection statistic. The dotted line shows the
performance of choosing max filter across the bank after con-
ditionally thresholding on the composite detection statistic.

As expected, the composite detection statistic performs
worse than explicit reconstruction of the template param-
eters. However, when the two methods are combined, it
is possible to reach the same detection probability with
asymptotically low false alarm probability.

Fig. 3 contains three curves, showing the detection
probability PD versus false alarm probability PFA when
there is a signal with amplitude A = 5 in the data. The
solid-black line is found by choosing the maximum SNR
across the filter bank as defined in (27). Maximization
over the filter output is commonly done in gravitational-
wave searches. The dashed-black line is the result of
the composite detection statistic (21) with the choice of
A = 5. The dotted-black line is the result of first thresh-
olding on the composite detection statistic and then con-
ditionally maximizing the SNR over the bank. This pro-
cedure produces roughly the same detection probability
for a false alarm probability of 10−5 but allows one to do
the full maximization for only 3% of the filtered data.

B. Use example

Our simulations indicate that only ∼ 3% of the data
needs to have the physical template parameters recon-
structed in order to have a similar detection probability
as the maximum likelihood method at a false alarm prob-
ability of 10−5. This section provides an example of what
this means for a realistic gravitational-wave search.

Advanced gravitational-wave detectors should be able
to analyze and locate compact binary sources at the
moment they merge. Prompt electromagnetic followup
could confirm a gravitational-wave detection and low-
latency searches will be critical to maximize the num-
ber of simultaneously observed signals. However, low-
latency gravitational-wave searches will be computation-
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ally costly. The reduced filter set proposed by [12] could
lower the computational cost substantially, helping to en-
able near real-time searches. Additionally, in this work,
we have shown that it is possible to reduce the number
of physical parameter reconstructions by 97% and main-
tain similar detection efficiencies. If these methods were
to be used, it would be necessary to understand what the
result in Fig. 3 implies.

We now consider how the results of Fig. (3) may ap-
ply to a low-latency gravitational-wave search and an-
swer whether or not a false-alarm probability of 10−5 is
a useful operating point. Consider the joint false alarm
probability for N independent gravitational-wave detec-
tors in coincidence

PFA = CN−1 ×
N∏
i

PFA,i, (28)

where PFA,i is the false alarm probability for the ith de-
tector and C is the coincidence trials factor. In order to
understand the double coincidence, limiting false alarm
rate from the single detector false alarm probability a few
pieces of information are needed. The first is the num-
ber of independent trials per second obtained by filtering
the data. We will take this to be the frequency of the
minimum point of the noise curve ∼ 150 Hz. If one al-
lows ∼ 30 ms to define coincidence this corresponds to
an additional 5 samples for coincidence trials at 150 Hz.
Therefore the false alarm rate of double coincidence cor-
responding to a 10−5 false alarm probability in a single
detector is 150Hz× 5× 10−10 = 7.5× 10−8Hz = 2.4yr−1.
This is well above the false rate that would be required
for a detection candidate. Therefore we conclude that
this procedure should not impact the detectability of near

threshold signals.

IV. CONCLUSIONS

We have presented a study of compact-binary
gravitational-wave detection that precedes parameter es-
timation. This could allow more computationally effi-
cient algorithms to be run in near real time that deter-
mine whether a signal is present before attempting to
measure it’s parameters. Our study shows that it should
be possible to reconstruct the physical parameters for
only O[1%] of the data while not impacting the sensitiv-
ity of a compact binary search.
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