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Numerical simulations of the accretion of test scalar fields with non-standard kinetic terms (of the
k-essence type) onto a Schwarzschild black hole are performed. We find a full dynamical solution
for the spherical accretion of a Dirac-Born-Infeld type scalar field. The simulations show that the
accretion eventually settles down to a well known stationary solution. This particular analytical
steady state solution maintains two separate horizons. The standard horizon is for the usual particles
propagating with the limiting speed of light, while the other sonic horizon is for the k-essence
perturbations propagating with the speed of sound around this accreting background. For the case
where the k-essence perturbations propagate superluminally, we show that one can send signals
from within a black hole during the approach to the stationary solution. We also find that a ghost
condensate model settles down to a stationary solution during the accretion process.

PACS numbers: 04.25.D-,04.40.Nr,98.80.Cq,04.70.Bw

I. INTRODUCTION

Recent observations in cosmology suggest that the uni-
verse is expanding at an accelerated rate. In order to ex-
plain this acceleration, the energy density of the universe
must have a negative pressure dark energy component.
This dark energy component is most commonly modeled
as a cosmological constant. However, this explanation
fails to address why the universe has entered an acceler-
ating era shortly after the onset of matter domination.
One dark energy model that addresses this issue is k-
essence [1, 2], which postulates that there is a dynamical
scalar field with non-canonical kinetic terms that acts
as a negative pressure component only after the onset
of matter domination. In this context it is worth not-
ing that in order to solve this coincidence problem there
must exist a short phase of superluminal sound speed
of the k-essence fluctuations [3, 4]. However, this faster
than light propagation does not contradict causality, see
e.g. [5] and references therein. In order to determine if
nature indeed utilizes such scalar fields we must look for
unique signatures of k-essence models. Some possible ar-
eas worth investigating are the gravitational collapse of
k-essence [6] and the evolution of black holes surrounded
by various non-canonical scalar fields [7–13].

Numerical simulations [6] have shown that the gravi-
tational collapse of k-essence fields proceeds through an
intermediate stage of a black hole with two separate hori-
zons, one being the traditional event horizon that corre-
sponds to the speed of light, and the other being a sonic
horizon which corresponds to the propagation speed of
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k-essence field perturbations. As these previous simula-
tions required asymptotic flatness, only k-essence shells
with finite width could be simulated.

Because we know that these k-essence fields can form
black holes, an interesting question to answer is whether
or not these fields eventually settle down and have sim-
ple behavior during accretion onto a Schwarzschild black
hole. The simplest set-up for analytical studies of ac-
cretion is the steady state or Bondi accretion [14]. It
was shown in [15] that for general k-essence fields ex-
act stationary configurations are possible only for shift
symmetric theories 1. Since the Lagrangian has to be
invariant under constant translations in field space, it is
a function only of the derivatives of the scalar field. For
such Lagrangians exact stationary solutions have been
obtained [7–11] and steady state accretion analyzed. In-
deed the existence of two separate horizons, the usual
light horizon and a sound horizon which traps k-essence
fluctuations was to our best knowledge first discussed in
[18] for general irrotational hydrodynamics. While this
is very interesting, we would really like to know the out-
come of a full dynamical evolution as the scalar field ac-
cretes on to the already existing black hole. In this case
there will be a constant influx of scalar fields onto the
black hole and it is far from clear that at late times a
stationary or steady state configuration is reached. Be-
cause there is a constant influx of energy, a steady state
is only one possibility. Alternatively, the evolution of the
scalar field could result in a singularity, or the end state
could be an oscillatory solution rather than a station-
ary one (as happens for variable stars). In particular it
was shown in [7] that for a superluminal DBI-type model

and sound speeds higher than 2/
√

3 at spatial infinity a

1 For time-like gradients these shift-symmetric theories are equiv-
alent to barotropic perfect fluids , see e.g. [16–18]
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steady state solution suffers from catastrophic gradient
instabilities indicating that it is a repeller.

Stability of the steady state accretion is well studied,
see e.g. [18] in the case of the time-like gradients when the
shift-symmetric theory is equivalent to hydrodynamics.
Since we are studying the full dynamical evolution of the
scalar field, there can be regions where the gradient of
the scalar field is space-like even though we start with a
time-like gradient in our initial conditions. This has no
effect on the final state of the scalar field, which we find
is always stationary.

In order to resolve some of these issues, in this paper
we will simulate the accretion of a test k-essence field.
In the case that the end behavior of this k-essence scalar
field during the accretion process is stationary (if the field
settles down at all), we will be able to compare our end
result to the stationary analytic solutions found in the
literature [7, 10]. This will require us to use cosmological
boundary conditions, where at infinite radius we set the
time derivative of the k-essence field to a constant. The
two separate horizons can exist for a long enough time
to confirm if signals can escape from the black hole when
the sound horizon is inside the usual black hole horizon.

The paper is organized as follows: In the next section
we discuss the method used for the simulations and the
results are presented in section 3. Certain technical de-
tails of the construction of the exact stationary solutions
for the models considered are relegated to an appendix.

II. METHODS

The action for a k-essence scalar field in a background
curved spacetime is

I =

∫ √
g d4xL(X) , (1)

where X = − 1
2
gµν∇µφ∇νφ is the standard kinetic term

for the scalar field φ and g is the absolute value of the
determinant of the metric gµν . The use of a fixed back-
ground means that we are neglecting the gravitational
effects of the scalar field. Varying the action with re-
spect to φ yields the equation of motion

g̃µν∇µ∇νφ = 0 , (2)

with g̃µν being an effective inverse (contravariant) metric
associated with the k-essence acoustic geometry and is
given by

g̃µν = LXgµν − LXX∇µφ∇νφ . (3)

Here, we introduce the shorthand LX to mean dL/dX
and LXX to mean d2L/dX2.

We simulate the evolution of k-essence on a back-
ground Schwarzschild spacetime. In the usual coordi-
nates, the Schwarzschild metric is given by

ds2 = −f(r)dt2 + f−1(r)dr2 + r2(dθ2 + sin2θdϕ2) , (4)

where f(r) = 1 − (2M/r). However, this coordinate sys-
tem is not suitable for our simulation, since it becomes
singular on the black hole horizon. The usual solution
to this difficulty is to introduce Eddington-Finkelstein
coordinates (v, r, θ, ϕ) where v is defined by

v = t +

∫

f−1dr . (5)

This coordinate system covers a region that includes the
black hole interior; but it also is not suitable for our
purposes since v is a null coordinate, and as with most
numerical methods we require a time-like coordinate. In-
stead, we use the method of Marsa and Choptuik [19].
Introduce the coordinate T by

T = v − r . (6)

Then the Schwarzschild metric takes the form

ds2 = −
(

1 − 2M

r

)

dT 2 +

(

1 +
2M

r

)

dr2

+
4M

r
dTdr + r2(dθ2 + sin2θdϕ2) . (7)

In order to write the k-essence equation of motion in first
order form, we introduce the quantites P and S defined
by

P = ∂T φ , (8)

S = ∂rφ . (9)

Eqn. (8) provides an equation of motion for φ while from
eqn. (9) it follows that

∂T S = ∂rP , (10)

which is an equation of motion for S. Finally, some
straightforward but tedious algebra using eqns. (2) and
(7) yields the equation of motion for P which takes the
form

∂T P =
LXA + LXXB

C
, (11)

where the quantities A, B and C are given by

A =
4M

r
∂rP +

(

1 − 2M

r

)

∂rS +
2S + w

r
, (12)

B = (S + w)

[

2(P + w)∂rP

− (S + w)∂rS − w2

4M

]

, (13)

C =

(

1 +
2M

r

)

LX + (P + w)
2LXX , (14)

and the quantity w is given by

w =
2M

r
(P − S) . (15)
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We numerically evolve eqns. (8), (10), and (11) as
follows: time derivatives are treated using the iterated
Crank-Nicholson method. Spatial derivatives, except
those on the boundary, are evaluated using standard cen-
tered differences; that is, for any quantity F we approx-
imate ∂rF at grid point i by

Fi+1 − Fi−1

2dr
, (16)

where dr is the spacing between adjacent grid points. At
the boundary, spatial derivatives are evaluated using one-
sided differences: that is at grid point 1 we approximate
∂rF by

F2 − F1

dr
, (17)

while at the final gridpoint (point N) we approximate
∂rF by

FN − FN−1

dr
. (18)

Physically appropriate boundary conditions must also
be imposed on the k-essence field at each step of the
time evolution. We are treating an overall constant flux
of scalar field along with waves of scalar field that should
be outgoing at the outer boundary. Therefore we impose
the condition

P + S = cp , (19)

at the outer boundary, where cp is a constant representing
the rate of flux of scalar field. At the inner boundary, we
use an excision method appropriate for k-essence. That
is, we place the inner boundary sufficiently far inside the
black hole that not only light but also k-essence modes
are trapped and therefore ingoing at that point. Since all
modes are ingoing at the inner boundary, no boundary
condition is needed (or even allowed) there, and therefore
we do not impose any boundary condition at the inner
boundary.

III. RESULTS

Unless stated otherwise, for all results and figures
shown we chose the initial data at T = 0 such that φ = 0,
S = 0, and P = 0.01. The mass M of the black hole
was chosen to be unity, so the corresponding standard
Schwarzschild horizon is located at r = 2 for all shown
simulations.

A. DBI-Type Action

We will first consider a k-essence scalar field with the
DBI-like Lagrangian density:

L(X) = α

[

√

1 +
2X

α
− 1

]

. (20)
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FIG. 1: Profiles of P arrived at via simulation of the accretion
of the field described by (20). The solid line corresponds to
P at T = 2.97524, the dashed line corresponds to P at T =
14.8762, and the dotted line corresponds to P at T = 148.771.
For this particular plot, we used cp = 0.01, α = 0.0016, and
M = 1.

Note that the expression for the speed of sound (for time-
like gradients) for this model is

c2
s = 1 +

2X

α
. (21)

Thus, for negative α the propagation is subluminal and
for positive α the propagation is superluminal. Moreover,
for time-like gradients this field theory reproduces one of
the versions of a rather popular model among cosmolo-
gists, the so-called Chaplygin gas with the equation of
state p = −α/ρ, see [20]. This form of the kinetic term
with positive α was proposed for the first time in [21].
The analytical solution for a steady state accretion in this
model was found in [7, 8]. Upon simulating the accretion
of this type of k-essence model into a Schwarzschild black
hole, we found that for all positive α where the simulation
ran successfully, the scalar field eventually settled down
to a stationary solution. Simulated profiles for both P
and S at various times are shown in figures 1 and 2.

For sufficiently small values of positive α (for our ini-
tial conditions this is approximately α = 0.001), the
simulation did not run successfully. This is because for
these values of α, at some point in the simulation the
quantity C given in eqn. (14) goes to zero. Since this
quantity occurs as the denominator in eqn. (11), the
evolution equation for P becomes singular. To under-
stand what this means, note that C is proportional to
g̃TT = LXgTT −LXX∇T φ∇T φ. Thus, in physical terms,
our time coordinate T is no longer a valid global time co-
ordinate in the emergent k-essence spacetime. This is
because when g̃TT = 0, we have:

g̃µν∇µT∇νT = 0 , (22)

which indicates ∇µT is not time-like in the emergent
spacetime. This does not necessarily mean that there is
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FIG. 2: Profiles of S arrived at via simulation of the accretion
of the field described by (20). The solid line corresponds to
S at T = 2.97524, the dashed line corresponds to S at T =
14.8762, and the dotted line corresponds to S at T = 148.771.
For this particular plot, we used cp = 0.01, α = 0.0016, and
M = 1.
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FIG. 3: Profiles of P arrived at via simulation of the accretion
of the field described by (20). The solid line corresponds to
P at T = 2.97074, the dashed line corresponds to P at T =
14.8537, and the dotted line corresponds to P at T = 148.536.
For this particular plot, we used cp = 0.01, α = −0.0004, and
M = 1.

no scalar function that can serve as a valid global time co-
ordinate, which would indicate that the emergent space-
time is not stably causal [22].

We also simulated this k-essence model for negative
values of α, since in this case we can ensure that g̃TT 6= 0.
Simulated profiles for both P and S for α = −0.0004
at various times are shown in figures 3 and 4. In this
subluminal case we also find that for all successfully run
simulations the scalar field settles down to a stationary
solution. For values of negative α sufficently close to
zero (for our initial conditions this is approximately α =
−0.00015), the simulation did not run successfully due to
the speed of sound approaching zero. This is indicative
of a shockwave, which our code was not meant to handle.

For both positive and negative α, it was found that
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FIG. 4: Profiles of S arrived at via simulation of the accretion
of the field described by (20). The solid line corresponds to
S at T = 2.97074, the dashed line corresponds to S at T =
14.8537, and the dotted line corresponds to S at T = 148.536.
For this particular plot, we used cp = 0.01, α = −0.0004, and
M = 1.
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FIG. 5: The solid line is the radial derivative of the station-
ary solution for φ eventually arrived at via simulation of the
accretion of the field described by (20). The dotted line is
the radial derivative of φ for the analytic stationary solution.
For this particular plot, we used cp = 0.01, α = 0.0016, and
M = 1. The sound horizon has settled down at r = 1.88.
The radial derivative was chosen since the radial derivative of
a stationary solution is time independent.

the scalar field would settle down to a stationary solu-
tion for a wide range of initial conditions as long as the
same cosmological boundary condition (P + S = cp) was
maintained at infinite radius. An example of such inital
data is:

P =
cp

2
(tanh(r − r0) + 1) , (23)

for various choices of cp and r0, with φ = 0 and S = 0.

In order to confirm that the fields did indeed settle
down to a stationary solution, we compared our results
to the stationary solution found analytically in [7]. Ex-
pressed in our coordinates, the solution is (for a brief



5

5 10 15 20 25

-0.004

-0.002

0.000

0.002

0.004

r

S

FIG. 6: The solid line is the radial derivative of the station-
ary solution for φ eventually arrived at via simulation of the
accretion of the field described by (20). The dotted line is
the radial derivative of φ for the analytic stationary solution.
For this particular plot, we used cp = 0.01, α = −0.0004, and
M = 1. The sound horizon has settled down at r = 2.67.
The radial derivative was chosen since the radial derivative of
a stationary solution is time independent.

derivation see the appendix):

φ(T, r) = cp

(

T + r +

∫

F (r)dr

)

, (24)

where

F (r) ≡ 1

f(r)

(
√

c2
∞ + f(r) − 1

f(r)
r4c8
∞

16M4 + c2
∞ − 1

− 1

)

, (25)

with f(r) = 1 − (2M/r), and

c2
∞ ≡ c2

s(r → ∞) = 1 +
c2
p

α
. (26)

Comparisons between the analytic stationary solution
and the ones arrived at via simulation for both the pos-
itive and negative α cases are shown in figures (5) and
(6).

We can define a sonic horizon as being the outermost
radius at which null vectors with respect to the emergent
k-essence metric become trapped. The null vectors lµ are
defined by:

g̃−1
µν lµlν = 0 , (27)

where g̃−1
µν is the inverse of g̃µν . We can solve this

quadratic equation for lr/lT , taking the positive root for
outgoing null vectors. The sonic horizon is the outer-
most radius at which lr/lT = 0. For stationary solu-
tions corresponding to scalar fields with the Lagrangian
density of (20), the sonic horizon is located within the
Schwarzschild radius for positive α and located outside
the Schwarzschild radius for negative α. To see that this
implies that one can send signals from within a black hole
for the superluminal positive α models, we should plot
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FIG. 7: Outgoing radial null geodesics corresponding to the
emergent k-essence metric. For this simulation, we chose the
values cp = 0.01, α = 0.0016, and M = 1. We show five
geodesics that start at r = 1.75, 1.85, 1.95, 2.05 and 2.15.
The geodesic starting at 1.75 fails to escape the black hole;
the other four all escape, with two of the escaping geodesics
starting within the Schwarzschild radius at r = 2.

a set of radial null geodesics with respect to the emer-
gent k-essence metric. Because for radial null geodesics
dr/dT = lr/lT , we can numerically integrate this quan-
tity to find these geodesics, which are plotted in figure 7.
As can be seen in figure 7, there exist null geodesics that
start inside the Schwazschild radius at T = 0 (when as
stated earlier, P = cp and φ = 0 for all radii) and end
up escaping as the field evolves towards the stationary
solution. We want to emphasize that the null k-essence
geodesics can escape a black hole not only in the station-
ary solution but also during the approach towards the
stationary solution from more general initial conditions.

B. Ghost Condensate Action

Next we consider the ghost condensate models pro-
posed in [23]. These provide a modification of gravity
in the infrared regime with possible ramifications for the
dark matter problem and inflation. This model is a k-
essence like model, where X develops a non-zero vacuum
expectation value. The ghost condensate field is not di-
rectly coupled to other fields, so the only scale in the
ghost sector is a, the overall energy scale of the conden-
sate. The simplest such model is described by [10, 11]:

L(X) =
1

8a4
(X − a4)2 . (28)

The sound speed of the scalar field with this Lagrangian
is given by:

c2
s =

X − a4

3X − a4
. (29)

Thus, by making |a| larger for a fixed value of P (r →
∞) = cp (which as stated earlier, we set at 0.01), we
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FIG. 8: Profiles of P arrived at via simulation of the accretion
of the field described by (28). The solid line corresponds to
P at T = 11.9406, the dashed line corresponds to P at T =
59.7061, and the dotted line corresponds to P at T = 597.357.
For this particular plot, we used cp = 0.01, a = 0.0638943
(which corresponds to a sound speed at infinite radius having
the value c∞ = 1

2
), and M = 1.

can make the sound speed at infinite radius smaller. We
found that for all simulations with sufficiently large sound
speeds, the scalar field eventually settles down to a sta-
tionary solution. The code was not designed to simulate
fields with sound speeds close to zero. Simulated profiles
for both P and S at various times are shown in figures 8
and 9. Note that although our initial conditions have a
time-like gradient for the scalar field, during the course
of the dynamical accretion the gradient became space-
like at some regions. This can be seen from figures 1, 2,
8, and 9, where for the models given in eqn. (20) (for
positive α) and eqn. (28), S is larger than P in some
regions of spacetime.

We then compared the stationary solution we found
from the simulation to the analytically derived station-
ary solution [10]. For this model, deriving the analytic
solution involves solving a cubic equation (for details see
the appendix). A comparison of the analytic solution
(evaluated using Mathematica) and the simulated solu-
tion at late times is given in figure 10.

IV. CONCLUSION

Upon simulating the accretion of two very different
types of non-canonical scalar fields onto a black hole,
we find that both eventually settle down to a stationary
solution. This is reassuring as it suggests that the nu-
merous studies done on the stationary solutions of scalar
field models with non-standard kinetic terms correspond
to physically viable scenarios as opposed to special situa-
tions which cannot be reached dynamically from generic
initial conditions.

We find that for a k-essence scalar field with a DBI-
type action, if the parameters are chosen such that the
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FIG. 9: Profiles of S arrived at via simulation of the accretion
of the field described by (28). The solid line corresponds to
S at T = 11.9406, the dashed line corresponds to S at T =
59.7061, and the dotted line corresponds to S at T = 597.357.
For this particular plot, we used cp = 0.01, a = 0.0638943
(which corresponds to a sound speed at infinite radius having
the value c∞ = 1

2
), and M = 1.
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FIG. 10: The solid line is the radial derivative of the station-
ary solution for φ eventually arrived at via simulation of the
accretion of the field described by (28). The dotted line is the
radial derivative of φ for the analytic stationary solution. For
this particular plot, we used cp = 0.01, a = 0.0638943 (which
corresponds to a sound speed at infinite radius having the
value c∞ = 1

2
), and M = 1. The sound horizon has settled

down at r = 3.21. The radial derivative was chosen since the
radial derivative of a stationary solution is time independent.

field can propagate superluminally, one can send signals
from within a black hole as the field approaches this sta-
tionary solution. This was confirmed by numerically inte-
grating outgoing null geodesics with respect to the emer-
gent k-essence metric during simulations of this accretion
process.

Simulations of a typical ghost condensate action re-
vealed that the stationary solution reached is that de-
rived analytically by Frolov in [10]. He showed that
this particular solution has an extremely high accretion
rate, which puts very strong constraints on the ghost con-
densate model. However, for the case where the sound
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speed is zero, the solution is ambiguous (see appendix
for further details). Mukohyama has argued in [11] that
the sound speed should be extremely small on physical
grounds, and for corresponding solutions in this limit the
accretion rate is reasonable. As our numerical method is
not meant to deal with extremely small sound speeds, it
would be interesting to see this particular issue resolved
with the use of another method.
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Appendix A

Here we present some details concerning the deriva-
tion of the stationary solution used in figures 5, 6, and
10 that were found by Babichev et. al. [7] and Frolov
[10]. We generalize their solutions to our formalism and
present further details relevant to the results presented
earlier in this paper. In this appendix we use standard
Schwarzschild coordinates (ds2 = −f(r)dt2+f−1(r)dr2+
r2dΩ2). These coordinates are related those that we use
in the main text by equations (5) and (6).

For a Lagrangian L(X) that is purely a function of the
kinetic variable X, the equation of motion can be written
as:

∇µ(LX∇µφ) = 0 , (A1)

We use the stationary ansatz2:

φ = cp

(

t + r ∗ +

∫

F (r)dr

)

, (A2)

where r∗ =
∫

f−1(r)dr. Note that under this ansatz, in
the Schwarzschild metric we have:

∇µφ = cp(∇µt + f−1W∇µr) , (A3)

where we have defined: W ≡ 1 + fF .
We also see that:

∇µφ = cp(−f−1δµ
t + Wδµ

r ) . (A4)

2 In [15] we have shown that this form of the solution directly
follows from the requirement of stationarity, c.f. with the so-
called delayed field approximation from [24]
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So with this ansatz (applying the general formula for di-
vergence) we find that the equation of motion becomes:

1

r2
∂r(r

2LXcpW ) = 0 . (A5)

This gives us the following equation for W:

c1 = r2LXW , (A6)

where c1 is a constant. Note from ∇µφ and ∇µφ we have
that:

X =
1

2
c2
pf

−1(1 − W 2) . (A7)

For the Lagrangian given in (20), we have that
LX = (1 + 2X

α )−1/2, so our equation for W becomes:

W 2 =
f + c2

∞ − 1
r4f
c2

1

+ c2
∞ − 1

. (A8)

In order to ensure that the solution is non-singular on and

outside the sound horizon, we choose c1 = 4M2

c4
∞

[7]. This

uniquely defines W and thus F , giving us the closed form
for our stationary solution which is plotted in figures (5)
and (6).

For the ghost condensate Lagrangian given in (28),
LX = 1

4
( X

a4 − 1), so the equation for W is:

r2(
c2
p

2a4
(1 − W 2) − f)W − 4c1f = 0 . (A9)

Before we go further, consider the horizon at r = 2M .
Because f [2M ] = 0, we know that the equation for
W [2M ] becomes:

(1 − W [2M ]2)W [2M ] = 0 . (A10)

Thus both W [2M ] = ±1 and W [2M ] = 0 are possible
solutions. Note that since W = 1 + fF , if W [2M ] = 1,
then F [2M ] is nonsingular. If W [2M ] = 0 or W [2M ] =
−1, F [2M ] is singular and nonphysical.

Upon solving the full cubic equation using Mathemat-
ica (as can be expected, these cubic roots are neither
brief nor illuminating and are omitted), we chose the so-
lution for W that has W [2M ] = 1. Normally, as was in
the previous case, we would choose the value of c1 that
makes W [r → ∞] = 0, as this prevents φ ∼ r at large
radii. However, we find that in the limit r → ∞, W is
independent of c1. Furthermore, the cubic root that cor-
responds to W [2M ] = 1 goes to a non-zero constant as
r → ∞. However, there is another cubic root which has
W [r → ∞] = 0. We can stitch these two separate roots
together provided there exists some radius at which the
roots become degenerate and coincide with each other.

This occurs for critical values of W and r where the full
differential of the cubic equation (A9) vanishes. These
are the values for W and r where both coefficients vanish
in the equation:

dC(W, r)

dW
dW +

dC(W, r)

dr
dr = 0 , (A11)

where C(W, r) = 0 gives the cubic equation defined in
(A9). The constant c1 can then be chosen so that these
critical values of W and r are solutions to the cubic equa-
tion. We can then stitch together the two solutions (one
with proper limiting behavior at the horizon and the
other with proper limiting behavior at infinite radius)
at this critical radius. The resulting solution is well be-
haved, and is plotted in figure (10).

One exceptional case where this procedure is ambigu-
ous is when we have c∞ = 0 or equivalently, c2

p = 2a4.
In this case as r → ∞, all three cubic roots have
W [2M ] = 0. Thus, there is no longer an obvious con-
dition on c1.


